129 research outputs found

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

    Full text link
    We present a method to extract a weighted finite automaton (WFA) from a recurrent neural network (RNN). Our algorithm is based on the WFA learning algorithm by Balle and Mohri, which is in turn an extension of Angluin's classic \lstar algorithm. Our technical novelty is in the use of \emph{regression} methods for the so-called equivalence queries, thus exploiting the internal state space of an RNN to prioritize counterexample candidates. This way we achieve a quantitative/weighted extension of the recent work by Weiss, Goldberg and Yahav that extracts DFAs. We experimentally evaluate the accuracy, expressivity and efficiency of the extracted WFAs.Comment: AAAI 2020. We are preparing to distribute the implementatio

    マシンビジョンを用いた農業圃場における操縦者安全のための機械学習システムの開発

    Get PDF
    この博士論文は内容の要約のみの公開(または一部非公開)になっています筑波大学 (University of Tsukuba)201

    Introduction to computer image processing

    Get PDF
    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed

    Dynamical Systems in Spiking Neuromorphic Hardware

    Get PDF
    Dynamical systems are universal computers. They can perceive stimuli, remember, learn from feedback, plan sequences of actions, and coordinate complex behavioural responses. The Neural Engineering Framework (NEF) provides a general recipe to formulate models of such systems as coupled sets of nonlinear differential equations and compile them onto recurrently connected spiking neural networks – akin to a programming language for spiking models of computation. The Nengo software ecosystem supports the NEF and compiles such models onto neuromorphic hardware. In this thesis, we analyze the theory driving the success of the NEF, and expose several core principles underpinning its correctness, scalability, completeness, robustness, and extensibility. We also derive novel theoretical extensions to the framework that enable it to far more effectively leverage a wide variety of dynamics in digital hardware, and to exploit the device-level physics in analog hardware. At the same time, we propose a novel set of spiking algorithms that recruit an optimal nonlinear encoding of time, which we call the Delay Network (DN). Backpropagation across stacked layers of DNs dramatically outperforms stacked Long Short-Term Memory (LSTM) networks—a state-of-the-art deep recurrent architecture—in accuracy and training time, on a continuous-time memory task, and a chaotic time-series prediction benchmark. The basic component of this network is shown to function on state-of-the-art spiking neuromorphic hardware including Braindrop and Loihi. This implementation approaches the energy-efficiency of the human brain in the former case, and the precision of conventional computation in the latter case

    Cross View Action Recognition

    Get PDF
    openCross View Action Recognition (CVAR) appraises a system's ability to recognise actions from viewpoints that are unfamiliar to the system. The state of the art methods that train on large amounts of training data rely on variation in the training data itself to increase their ability to tackle viewpoints changes. Therefore, these methods not only require a large scale dataset of appropriate classes for the application every time they train, but also correspondingly large amount of computation power for the training process leading to high costs, in terms of time, effort, funds and electrical energy. In this thesis, we propose a methodological pipeline that tackles change in viewpoint, training on small datasets and employing sustainable amounts of resources. Our method uses the optical flow input with a stream of a pre-trained model as-is to obtain a feature. Thereafter, this feature is used to train a custom designed classifier that promotes view-invariant properties. Our method only uses video information as input, in contrast to another set of methods that approach CVAR by using depth or pose input at the expense of increased sensor costs. We present a number of comparative analysis that aided the design of the pipelines, farther assessing the power of each component in the pipeline. The technique can also be adopted to existing, trained classifiers, with minimal fine-tuning, as this work demonstrates by comparing classifiers including shallow classifiers, deep pre-trained classifiers and our proposed classifier trained from scratch. Additionally, we present a set of qualitative results that promote our understanding of the relationship between viewpoints in the feature-space.openXXXII CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - InformaticaGoyal, Gaurv

    Large-scale document labeling using supervised sequence embedding

    Get PDF
    A critical component in computational treatment of an automated document labeling is the choice of an appropriate representation. Proper representation captures specific phenomena of interest in data while transforming it to a format appropriate for a classifier. For a text document, a popular choice is the bag-of-words (BoW) representation that encodes presence of unique words with non-zero weights such as TF-IDF. Extending this model to long, overlapping phrases (n-grams) results in exponential explosion in the dimensionality of the representation. In this work, we develop a model that encodes long phrases in a low-dimensional latent space with a cumulative function of individual words in each phrase. In contrast to BoW, the parameter space of the proposed model grows linearly with the length of the phrase. The proposed model requires only vector additions and multiplications with scalars to compute the latent representation of phrases, which makes it applicable to large-scale text labeling problems. Several sentiment classification and binary topic categorization problems will be used to empirically evaluate the proposed representation. The same model can also encode relative spatial distribution of elements in higher-dimensional sequences. In order to verify this claim, the proposed model will be evaluated on a large-scale image classification dataset, where images are transformed into two-dimensional sequences of quantized image descriptors.Ph.D., Computer Science -- Drexel University, 201

    Effective denoising and classification of hyperspectral images using curvelet transform and singular spectrum analysis

    Get PDF
    Hyperspectral imaging (HSI) classification has become a popular research topic in recent years, and effective feature extraction is an important step before the classification task. Traditionally, spectral feature extraction techniques are applied to the HSI data cube directly. This paper presents a novel algorithm for HSI feature extraction by exploiting the curvelet transformed domain via a relatively new spectral feature processing technique – singular spectrum analysis (SSA). Although the wavelet transform has been widely applied for HSI data analysis, the curvelet transform is employed in this paper since it is able to separate image geometric details and background noise effectively. Using the support vector machine (SVM) classifier, experimental results have shown that features extracted by SSA on curvelet coefficients have better performance in terms of classification accuracies over features extracted on wavelet coefficients. Since the proposed approach mainly relies on SSA for feature extraction on the spectral dimension, it actually belongs to the spectral feature extraction category. Therefore, the proposed method has also been compared with some state-of-the-art spectral feature extraction techniques to show its efficacy. In addition, it has been proven that the proposed method is able to remove the undesirable artefacts introduced during the data acquisition process as well. By adding an extra spatial post-processing step to the classified map achieved using the proposed approach, we have shown that the classification performance is comparable with several recent spectral-spatial classification methods
    corecore