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Abstract 

 

The most important points to ensure the safety of agricultural machinery operators are 

correctly understand the driver action or behavior and external driving environments. 

Worldwide aging farmer increases which causes higher risk in driving in rural road 

structures. A safety system is required with adopting in common datasets for farmer’s 

inattention while driving and surrounding environments including road conditions, 

obstacles, and free spaces in rural environments. Therefore, the objective of this research 

is to develop a safety system through recognition of driving environments in rural road 

structures and driver’s inattention or behavior while driving agricultural vehicles. On the 

other hand, a machine learning approach is required to deal with the large datasets for 

driving environment and driver’s inattention behavior. 

 

To achieve the objective of this research, vision-based sensors has the potential as a non-

contact sensor to the driver. In this regard, first, establish an internal and external 

monitoring system, sensor layout included Kinect sensor, thermal camera and monocular 

camera for developing a vision-based rescue system. The Kinect sensor and the thermal 

camera were used to collect the sequence of images for the operator’s action of driving; 

the monocular camera was used for road images to realize the driving environments.  

 

Second, the machine learning was introduced for the analysis of images and videos that 

incorporated the sub space method. The mutual subspace method was extended for 

nonlinear analysis using a kernel called KMSM (KMSM: Kernel Mutual Subspace 

Method). The developed KMSM-based machine learning system was used to establish a 
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large datasets system for driving environment and driver action monitoring. At the same 

time, KMSM-based data processing system ensured low computational complexity and 

high accuracy recognition algorithm to satisfy real-time application and emergency 

response system for rescue of agricultural machinery operator.  

 

Third, KMSM was implemented to classify road type and developed a Hankel-based 

KMSM to recognize driver inattention actions while driving a tractor. To reduce the 

computational complexity for fulfilling the requirements of real-time recognition, high 

resolution of raw images were resized to low-dimensional images. The resized low-

dimensional vectors were used to generate low-dimensional block Hankel matrices as 

representations for input road images and action sequences. A sliding window was 

designed both for road type and action classifiers. By using the sliding window, stability 

and efficiency was improved through generation of sub sequences. 

 

Fourth, the performance of the proposed KMSM and Hankel-based KMSM was evaluated. 

A road type dataset was established included three categories: straight road, curve road, 

and cross road under structured road and unstructured road classifiers, respectively. 

Typical roads included agricultural roads with grasses, without grasses, publicly available 

agricultural roads in Japan for the establishment of road type dataset. A driver action 

dataset was established that included 10 subjects and 5 classifiers of inattention actions 

for a tractor, respectively. Inattention actions with high possibility lead to an accident was 

discussed and selected for the driver inattention action dataset, which included: talking 

on the phone, look aside, rubbing eye, nodding and yawning. These inattention actions 

were collected and discussed in this research. The driver inattention actions were 
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categorized into three danger levels, and the corresponding countermeasures for each 

danger level’s actions were similarly classified. Referring to the driver danger level, and 

MRM (MRM: Minimal Risk Maneuver) was defined as a system response under different 

road conditions. According to driver action as danger level and road condition, 

countermeasures and MRM included warning the driver for speed down, drive to roadside 

or stop, or proceed to parking. If the action level were recognized as higher danger level 

such as fatal accident or sudden comma or unable to drive, the rescue system could able 

to contact to the emergency center using android-based mobile communication. 

 

Fifth, designed off-line and on-line experiments using KMSM and Hankel based KMSM 

algorithms was used to evaluate recognition performance of classifiers. For road 

condition classification, similar and different road driving conditions were trained and 

tested. For driver action recognition, similar subjects (volunteer drivers) and different 

subjects (volunteer drivers) were conducted to evaluate the inattention action recognition 

performance. For road classification using KMSM, the off-line classification accuracy 

rates were 97.7%, 98.1% and 95.4% for curve road, straight road and cross road under 

structured road and unstructured road, respectively. The on-line classification accuracy 

rates were 100%, 85.5% and 91.55%, curve road, straight road and cross road under 

structured road and unstructured road classifiers, respectively. The average computation 

time was 0.03s, proved the system with low calculation time to be implemented as a real-

time system. The developed Hankel-based KMSM was used in the off-line recognition 

system for driver inattention action classification. The average recognition accuracy of 

the classifier were 91.18% and 86.18% for similar subjects training and testing and 

different subjects testing, respectively for Kinect sensor using RGB images. On the other 



 

iv 

 

92.2% and 47.52% for similar subjects training and testing and different subjects testing, 

respectively, for thermal camera using thermal image. The on-line classification accuracy 

rates were 87.02% and 79.97% for similar subjects training and testing and different 

subjects testing, respectively in case of RGB image; and with accuracy of 83.24% and 

42.75% for similar subjects testing and different subjects testing, respectively in case of 

thermal image. The average computation time was 0.07 s and 0.08 for RGB image and 

thermal image, respectively.  Which proved the system with low calculation time can be 

implemented in the real-time application for a rescue system in presently uses agricultural 

machinery.  

 

In conclusion, the core of this research work contributed to developing the architecture 

of the driving rescue system, driver action inattention behavior datasets that included 

driver danger status monitoring with inattention actions and fatigue detection; road type 

classifies and minimal risk maneuvers strategy.  As a conclusion, the proposed method 

of the KMSM and Hankel-based KMSM could satisfy the real-time application with 

higher accuracy requirements and minimal type of recognition for classifiers of rural road 

type and driver inattention action behavior to develop a driver rescue system for 

agricultural vehicles. 
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Chapter 1 

Introduction 

 

With the development of autonomous driving technology, agricultural vehicles for bio-

production systems have obtained significant intelligence improvements. Technology of 

smart agricultural machinery is creating a chance to changes the traditional agricultural 

and transform to an intelligent agricultural operation method. Autonomous agricultural 

production could ensure precise operation, increase productivity, saving workforce, and 

improving production. In these systems, autonomous applications have recently gained 

high adoption potential through the improvements to sensors, positioning and navigation 

performance. And now, autonomous tractors with advanced sensing technologies, control 

theories, have been developed.  

 

However, most of the previous research focused on the navigation of tractors and 

autonomous agricultural task operation. Under current conditions, there is in fact a strong 

need to ensure driving safety in agricultural operation. In these regards, the datasets are 

not also available to speed up the autonomous agricultural operation and farmers safety 

perspectives. From a safety standpoint, many barriers to the implementation of 

autonomous driving systems and agricultural vehicle operation exist because in contrast 

to passenger car control in agriculture, autonomous driving must not only adapt to uneven 

farmland roads and terrain but also conform to the requirements of a variety of tasks. 

Most of the researches have been contributed to passenger car control systems. 

Agricultural driving monitoring especially rural roads and terrain environmental detests 

are very much important. Once the datasets are established artificial intelligence can be 
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extended for the autonomous operations. 

 

1.1 Rescue System 

To ensure safety during driving, some of the researches have been performed, and many 

types of machine learning algorithm and sensor systems have been applied to agricultural 

navigation. The advancements may possibly lead to the increased safety of agricultural 

vehicles for autonomous applications. Researches worked for driving safety and efforts 

can be divided into three categories or approaches: first, safety and correctly driving 

strategy making based on external environment sensing; second, vehicle control based on 

its posture detection relay on internal sensors; and third, monitoring a driver's condition 

to ensure safety by alarming or trigger MRM (minimal risk maneuver). In researches of 

driving safety, the position of machine learning is becoming more and more important. 

As the machine leaning is possible to provide solutions to handling complex models and 

conditions, with advantage to establish a robust and flexible system then traditional model 

approach. 

 

Systems that sense the external environment and detect driver posture inarguably improve 

the safety of autonomous driving and advance driver assistance; monitoring a driver’s 

condition is both effective and important in ensuring driving safety. Statistics of accidents 

caused by driver fatigue and distraction have been reported by many countries. One 

important factor in these accidents, especially on rural roads, is inattention caused by 

driver fatigue or monotony. Moreover, with the aging population and the rapid reduction 

in the agricultural labor force, the average age of farmers worldwide has risen to 

approximately 60. One study reported that by 2020, more than 60% of the people engaged 



 

3 

 

in farming in Japan will be older than 65, and 45% will be older than 70 (Zhang et.al, 

2018). The poorer physical condition of older farmers causes them to be easily distracted 

and fatigued, which poses higher health risks while driving. Another challenge for aged 

farmers to drive a tractor under uneven farmland conditions, for their slow response and 

incorrectly understanding to the surrounding environment and road condition. Thus, a 

rescue system that monitor environmental and a driver’s condition while driving 

agricultural vehicles in farmland is essential to ensure driving safety.   

 

1.2 Environmental Monitoring 

Environment of an agricultural vehicle that is possible to drive and conduct tasks in most 

of the features of irregularity farmland ground, varied topography, and terrible road 

condition. Agricultural vehicles have to confront conditions such as slippery land cause 

accumulated odometry error; dust and flog would lead optic sensors detection noise; and 

strong sunshine would even lead to blind of cameras. For driving a vehicle, the most 

important surround environment information is driving able area, means roads and free 

space. Detection of road, boundary, obstacles or holes on the road to support the 

autonomous driving focused by some of the researches. However, it is difficult to support 

correct detection under different land and road condition using one kind of sensor or 

algorithm. Approach that robust to environment variousness is required to adapt different 

ground conditions. Machine vision and machine learning algorithm by dealing with raw 

images is possible to meet for the above requirement. In this research, the machine 

learning approach-based machine vision was designed to recognize agricultural 

environment. The machine vision has the potential to provide rich information and also 

low-cost involvement in automation. There are several machine learning approaches and 

http://www.baidu.com/link?url=lBxCR4atq8tKnXW4y9R3CdTqAWKGlOE6B5BKx7tet23X_cTO6A8zEfgTVhyrq-8u9RlpzXMU6nTIFrlYawsA0zS_TLePl8X70iywjhRMggm
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this becomes increasing important due to demand of artificial intelligence in agriculture. 

Deep learning, Neural Network has been implemented in the machine system. However, 

some of the machine learning system is hard to explore as the computation complexity 

and black box issues. In this regard, the machine learning algorithm of Mutual Subspace 

Method (MSM) could be possible solution to interpret and developed accordingly to 

reduce environment noises and meet with requirement of environment variance. 

 

1.3 Driver’s Action Monitoring 

Monitoring drivers' conditions by measuring physiological characteristics such as their 

brain waves, heart rate, skin conductivity and pulse rate yields the maximum detection 

accuracy. However, there are disadvantages when using physiological sensors that require 

physical contact with drivers that include causing annoyance, noise from the electrical 

signals obtained from such sensors, and lack of a realistic environmental perception. Less 

intrusive techniques, including computer vision techniques such as eye- or gaze-tracking 

have provided good results in judging whether the driver's view deviated from the driving 

direction. At the same time, such techniques provide more information concerning the 

driver’s face, head and body movements that can be even more meaningful than eye 

motion. Driver video images could be used to monitor driver behaviors such as eyelid 

movements, eye closure percentage, nodding, yawning, gazing, sluggish facial 

expressions, and sagging posture. However, the existing solutions lack sufficient accuracy 

and speed to function reliably under real vehicle conditions. Sequential images of human 

actions contain rich information on body postures and motion. However, the images are 

easily affected by different viewpoints, illumination conditions and individual 

characteristics. Although many approaches have been proposed to recognize human 



 

5 

 

actions, how to effectively handle the rich body of gesture information and capture the 

temporal information from human action sequences is the most important problem need 

to conquer. It is possible to address the former by modelling the distribution of the image 

patterns using the machine learning approach of nonlinear subspace. Very recently, the 

Kinect device and thermal camera has been identified to have higher the potential 

compare to stereovision images due to depth of RGB images and infrared images.  

Thermal image has the advantages in uses of monitoring during low illumination 

condition. The machine-learning algorithm of   Kernel Mutual Subspace Method 

(KMSM) has the advantage to modeling high nonlinear human actions. 

 

1.4 Objectives 

Therefore, this study intent to address the issues of driving safety in two ways: One 

approach is by monitoring driving environmental of road condition and road type to 

identify structured road and unstructured road, straight roads, curve roads and cross roads. 

Another approach is by monitoring driver condition and action to identify inattention 

action and fatigue status. Based on the driving environment and driver condition 

recognition results, a minimal risk policy is designed to ensure driving safety. Machine 

vision system and machine learning algorithm with accuracy and stable recognition and 

low computational is designed to complete the rescue system from road driving and field 

operation. 

Therefore, the objectives of this thesis are listed according to reach the goal: 

1. To develop a rescue system for farmland and uneven road driving, with road type 

monitor, driver condition and action monitoring, minimal risk policy, 

communication network, and emergency center. 
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2. To develop dataset of road types with different environment, dataset of driver 

action through including general dangerous behaviors or status as health risk.     

3. To development high accuracy and low computational complexity road types 

recognize system and driver action/status recognize system which is fulfill real-

time recognize.  

4. To development a minimal risk policy considering road condition and driver status, 

to realize minimal risk and ensure safety.  

 

1.5 Organization of this Thesis  

The research works in this thesis describes the progress of using machine vision for the 

road type monitoring and driver action and status monitoring in the outdoor environment. 

In this chapter, discussed the nature of the problems: rescue ensure for agricultural vehicle 

driving in section 1.1; the scope of this research and highlights the application of 

environment and driver monitoring in approaching is discussed in the section 1.2 and 1.3; 

section 1.4 covers the objectives of this research; section 1.5 presents the structure of the 

thesis; The rest of the thesis is composed as follows:  

 

Chapter 2 covers the major work contributed in research of driving rescue, machine 

learning approaches for action recognition and environment recognition. The uses of 

machine learning algorithm and sensors to develop the rescue systems are reviewed in 

this chapter.  

 

Chapter 3 introduces the subspace method of MSM, KMSM, Block Hankel Matrix and 

the designed Hankel based KMSM. Where the KMSM is used for recognition of road 
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type and the Hankel based KMSM is used for recognition of driver action and status.  

 

Chapter 4 discusses the structure of hardware system used in the research. The tractor and 

vehicle used data collection, the vision sensors selected for providing images is 

introduced, which are used to contribute the rescue system. Also, installation of sensors 

in the experimental tractor/vehicle and the sensors specifications are described.  

 

Chapter 5 describes the analysis of agricultural environments especially the agricultural 

road conditions. Based on the result, establishment of dataset for road types cover major 

road feature under different environments are discussed. And the implement of KMSM is 

introduced, which included the training and recognize processes. The recognized result 

with developed KMSM algorithm is addressed.  

 

Chapter 6 describes the analyzation of driver actions and status potentially lead to 

accidents. Establishment of datasets included the defined general danger driver actions 

and implement of designed Hankel based KMSM algorithm is introduced, in which the 

Kinect sensor and thermal camera are used. Recognized results of driver action recognize 

system by utilizing two different vision sensors are evaluated and compared, applied the 

developed Hankel based KMSM algorithm. 

 

Chapter 7 concludes the thesis with the summary of contributions to achieve the research 

target and discussed for future research. 
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Chapter 2 

Literature Reviews 

 

With the development and improvement of traditional method and appear of innovated 

approach, performance of recognize complex application such as action recognition was 

greatly improved. And the improved sensors device promoted machine learning 

technology to understand human action and surround environment. However, compare 

with indoor application, driver action recognize could be affected by illumination 

condition, vehicle vibration and driver posture change caused by uneven ground. Also, 

different with the autonomous vehicles working indoor or running on highway public 

roads, the autonomous agricultural machines request higher performance of sensing 

system and robust controller. As a rescue system to recognize agricultural vehicle driver 

ab-normal actions and land road condition, the system has to conquest worse condition 

under agricultural environment at first and further ensure accuracy recognize. In this 

chapter, the follower sections discuss the contributions regarding agricultural vehicle 

rescue system. 

 

2.1 Machine Learning for Action Recognition and Environmental Recognition  

Machine learning is an important study area of computer science, which target to establish 

model or algorithm to learn from data. Generally, the machine learning algorithms can be 

divided to two main types: supervised learning and unsupervised learning. The supervised 

learning algorithms aim to minimize some error criterion based on the difference between 

the targets and the outputs. On the contrary, unsupervised learning algorithms exploit 

similarities between inputs to cluster those inputs that are similar together. Typical 
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approach for action recognizes and environment machine learning algorithm such as 

Hidden Markov Models, Linear Dynamic Systems, Support Vector Machine, Principal 

Component Analysis / Mutual Subspace Method and Deep Learning is wildly researched 

in the world.    

 

2.1.1 Hidden Markov Models 

Hidden Markov Models (HMM) are popular approach to model and describe state 

transitions between actions. Since the HMM can easily model the temporal evolution of 

a single or a set of numeric features extracted from the data. An HMM include a number 

of states and each of which is indicate a probability of transition from one state to another 

state. And state transitions occur stochastically with time. Same as Markov models that 

states at any time depend on the state at current time. Symbol yielded from each of the 

HMM states according to the probabilities assigned to the states. HMM can be observed 

only through a sequence of observed symbols, as states are not directly observable. The 

selection of the feature set and the related emission probability function are the key issues 

to be defined. In particular, if the training set is not sufficiently large, a manual or 

automatic feature selection and reduction is mandatory. The main challenge to design a 

method that the developed system is allow to cope with different types of action, even the 

actions are very similar to each other and also in the case of cluttered and complex 

scenarios. Occlusions, shadows and noise are the main problems to be faced. In video 

surveillance applications the actions should usually be recognized by means of an image 

stream coming from a single camera. (Yamato et.al, 1992) proposes a human action 

recognition method based on the HMM. A feature-based bottom up approach with HMM 

is characterized by its learning capability and time-scale invariability. One set of time-
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sequential images is transformed into an image feature vector sequence, and the sequence 

is converted into a symbol sequence by vector quantization. In learning human action 

categories, the parameters of the HMMs, one per category, are optimized to best describe 

the training sequenced from the category. To recognize an observed sequence, the HMM 

which best matches the sequence is chosen. Experimental results of real time-sequential 

images of sports scenes showed recognition rates higher than 90%. Lee et.al: researched 

for mapping the driver’s sight line and the driving lane path using two cameras by capture 

the driver’s image and the front-road image. Two correlation coefficients among the 

driver’s sight line, the driving lane path and the car heading direction are calculated in the 

global coordinate to monitor the driving status such as a safe driving status, a risky driving 

status and a dangerous driving status. By implement the HMM, four driving patterns 

including the driving in a straight lane, the driving in a curve lane, the driving of changing 

lanes, and the driving of making a turn was successes for recognition.  

 

2.1.2 Linear Dynamic Systems 

Linear Dynamic Systems is a powerful tool to represent temporally data. LDSs were 

wildly utilized in engineering, controls, economics and physical and social sciences. The 

need for comparing LDSs also arising in computer vision, for example to effectively 

describe or model videos of human motion or activity. As compared with traditional 

methods, more dynamic information in action exhibits and suitable for being analyzed by 

LDSs. By fitting an LDS to a sequence image, different actions conducted by same people 

or same action conduct by different people can be identified. The distance between LDSs 

of modeled action is useful for recognizing an action. Learning a dynamical system from 

data involves finding the parameters and the distribution to maximize likelihood of 
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observed data. The maximum likelihood solution for these parameters can be found 

through iterative techniques such as expectation maximization (EM), gradient descent 

and least squares on a state sequence. A hierarchy of dynamic medial axis structures at 

several spatial-temporal scales was modeled using a set of Linear Dynamical Systems 

(LDSs) (Chaudhry et.al, 2013). Then propose novel discriminative metrics for comparing 

these sets of LDSs for the task of human activity recognition. Combined with simple 

classification frameworks, the proposed features and corresponding hierarchical 

dynamical models provide high human activity recognition rates by testing on several 

skeletal datasets. Wang et.al: Using LDSs to describe the dynamic texture which exhibits 

certain stationarity properties in time. They are adopted to model the spatiotemporal 

patches which are extracted from the video sequence, as the reason that, rather than the 

video sequence the spatiotemporal patch is more analogous to a linear time invariant 

system. By adopt a kernel principal angle to measure the similarity between LDSs, and 

using a multiclass spectral clustering to generate the codebook for the bag of features 

representation. And the method was proved by testing UCF Sports and Feature Films 

datasets in realistic complex scenarios. 

 

2.1.3 Support Vector Machine 

The Support Vector Machine algorithm (SVM) is also a popular classifier and wildly used 

for computer vision tasks as its high accuracy and efficiency. The SVM method has vastly 

demonstrated its performance in two-class discriminant classification. It is used to find 

the straight line that leads to the optimal separation (maximum margin) between the 

classes or clusters in the input space. A considerable advantage of SVM over the 

traditional neural networks is its better generalization performance even with a small 
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dataset. (Li et.al, 2013) trained an SVM classifier and using eighty FFT and wavelet-

based features that are extracted from 1-min HRV signals from four subjects. The 

averaged leave-one-out (LOO) classification obtained higer performance using wavelet-

based feature better than the FFT-based results. 

 

A simple Linear Iterative Clustering based Support Vector Machine (SLIC-SVM) is 

proposed to solve the problem that the SVM can only output a single terrain label and 

fails to identify the mixed terrain (Zhu et.al, 2018). The Simple Linear Iterative Clustering 

based SegNet (SLIC-SegNet) single-input multi-output terrain classification model is 

derived to improve the applicability of the terrain classifier. Series of experiments on 

regular terrain, irregular terrain and mixed terrain were conducted and both super pixel 

segmentation based synthetic classification methods can supply reliable mixed terrain 

classification result with clear boundary information.  

 

2.1.4 Principal Component Analysis / Mutual Subspace Method 

Principal component analysis (PCA) is used to reduce redundancy and obtain a compact 

eigen joints for each frame. PCA is one of the most successful approaches to the problem 

of creating a low dimensional data representation and interpretation, it got good result for 

face recognize. Multi-dimensional data is projected onto the singular vectors 

corresponding to a few of its largest singular values. It using an orthogonal transformation 

to convert a set of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables. The main components are obtained in decreasing order of 

importance and a number of them collect most of the information. The first eigenvector 

explains the main part of the total variance. Human action is represented with temporal 

displacement of joints, relative joint positions and joints offset concerns with the initial 



 

13 

 

frame. The PCA is applied to the classification of human action. The Mutual Subspace 

Method (MSM) is methods for object recognition based on the PCA and eigenvectors of 

subspace obtained by PCA on the entered images.  (Fukui et.al, 2003) Utilized the MSM 

for face recognition, using multiple face patterns obtained in various views for robot 

vision. As a face pattern may change dramatically due to changes in the relation between 

the positions of a robot, a subject and light source. Constrained mutual subspace method 

(CMSM) using multi viewpoint face patterns was designed to overcome problem that a 

single face pattern is not capable of dealing with the variations of face pattern. And 

effectiveness of the CMSM method for robot vision is demonstrated, face recognition was 

robust against variations caused by the changes. (Eduardo et.al, 2015) Designed a PCA 

for path recognition and obstacle detection for an autonomous mobile vehicle. The Path 

Extraction Algorithm (PEA) recognizes drivable paths on the road by image processing. 

The Environment Extraction Algorithm (EEA) provides the special pose of the mobile 

vehicle and obstacle detection by the data processing of the 2D laser scanner. The PCA 

was used to classify road patterns by the use of trained Artificial Neural Networks. The 

Navigation-Path Extraction Algorithm (NPEA) is comprised of these three sub-systems. 

Reliable and robust for Navigation-Path Extraction System (NPES) is evaluated, and the 

system was thought with possibility to be implementable on a mobile vehicle to achieve 

self-driving. 

 

2.1.5 Deep Learning 

Deep learning is widely used to resolve difficult problems which cannot be handled 

properly using conventional methods. One of the most popular and successful 

architectures in research of deep learning is convolutional neural networks (CNNs), 
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CNNs showed a great potential especially for tasks such as image classification, object 

detection, emotion recognition, scene segmentation tasks. CNNs composed layers as 

convolutional layers, pooling layers, a dropout layer, a flatten layer, and a set of fully-

connected neuron layers. Multiple layers possible to highlight different features or 

characteristics of the input and CNN models typically have millions of parameters. As a 

result, large amounts of training data are needed and the collection, pre-processing, and 

annotation of datasets require a lot of human and computational resource. (Zhang et.al, 

2010) infrared videos and CNN network are utilized for detecting and propose an eye 

state recognition. The designed system has high recognition accuracy of state of eyes 

when wearing glasses and can detect the fatigue effectively. (Lundahl et.al, 2014) propose 

an approach to detect drivable road area in monocular images. The system automatically 

generates training road annotations for images using OpenStreetMap through vehicle 

pose estimation sensors, and camera parameters. CNN was trained for road detection 

using these annotations. Reasonably accurate training annotations was showed in KITTI 

data-set.  

 

2.2 Sensors 

2.2.1 Biomedical Sensor 

Physiological signal detected by biomedical sensors can provide most direct information 

to describe driver physiological condition. Potential of physiological signals such as 

electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), 

electro-oculogram (EOG), and respiration signals (RESP) are wildly discussed. 

Physiological features such as complexity, approximate entropy (ApEn), sample entropy 

(SampEn), heart rate variability (HRV), medium frequency (MF), integrated 
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electromyography (IEMG) are researched to identify the river fatigue condition. (Masala 

et.al, 2014) Proposed to using single-channel EEG device (TGAM-based chip) to monitor 

changes in mental state (from alertness to fatigue). Fifteen drivers performed a 2-h 

simulated driving task while we recorded, simultaneously, their prefrontal brain activity 

and saccadic velocity. Saccadic velocity was used as the reference index of fatigue. 

Subjective ratings of alertness and fatigue was also collected during driving. Results 

suggest that the TGAM-based chip EEG device is able to detect changes in mental state 

during driving. Roman et.al: Analysis the physiological signals (EEG, ECG EOG) of 

drowsy and alert drivers described to identify the fatigue level of the drivers. After 

extracted signal from EEG spectrum, blinking frequency and fractal properties were 

utilized to recognize the driver alert/drowsy states.  

 

2.2.2 Vision Sensors 

Vision based intelligent system has been deeply researched for scene analysis. The camera 

information provides un-contact solution for driver condition recognize, and for drive 

environment understanding. The vision-based driver status monitor and sensing system 

for ADAS solution has become a standard equipment for vehicles. (Cyganek et.al, 2014) 

Present a hybrid visual system for monitoring driver's states of fatigue, sleepiness and 

inattention based on driver's eye recognition. Two cameras operating in the visible and 

near infra-red spectra are used in car conditions and processing in daily and night 

conditions. Two classifiers are used, one for detection of eye regions based on the 

proposed eye models specific to each spectrum and the another for eye verification. High 

recognition accuracy and real-time processing performance are verified the potential of 

the system become a part of the advanced driver’s assisting system. A long-range vision-
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based sensing system for mobile robotics was designed using stereo camera (Raia et.al, 

2009). Present a self-supervised learning process for long-range vision that is able to 

accurately classify complex terrain at distances up to the horizon, thus allowing superior 

strategic planning. A deep hierarchical network is trained to extract informative and 

meaningful features from an input image, and the features are used to train a real-time 

classifier to predict travers-ability. The trained classifier possible to identify obstacles and 

paths from 5 to more than 100 m, far beyond the maximum stereo range of 12 m, and 

adapts very quickly to new environments.  

 

2.2.3 Laser Ranger Finder/Lidar  

Laser Range Finder (LRF) and lidar owns the advantage for distance and angle 

measurement. Using the laser information, intelligent system as autonomous vehicle 

possible to obtain 3D surround information and with less effect by illumination condition. 

As the LRF with long range and high resolution many researches have been introduced 

and research both for indoor and outdoor for localization and navigation. HAN et.al: A 

road boundary detection and tracking algorithm was developed using lidar information 

both for structured and unstructured roads. In the research, the road features were 

extracted as line segments in polar coordinates relative to the lidar sensor. And a nearest 

neighbor filter was applied to a vehicle’s local coordinates by tracking the extracted road 

features. The lidar-based system accurately detected the road boundaries regardless of the 

road type. (Giulio et.al, 2016) Proposed a LIDAR-stereo combination to detect 

traversable ground in outdoor applications. Two self-learning classifiers of LIDAR-based 

classifier and stereo vision-based classifier are integrated in the proposed system. The 

applied two classifiers are intended to detect the broad class of drivable ground. Each 
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single-sensor classifier includes two main phases: phase of training and phase of 

classification. At training phase, the classifier learns to associate geometric of 3D data 

with class labels automatically. And then, the algorithm makes predictions based on past 

observations. By statistically combining output of two single-sensor classifiers to exploit 

their individual strengths. Such that the system could reach an overall better performance 

than achieved by single classifier..  

 

2.3 Concluding Remarks 

The HMM method required modeling of human body for accuracy action classify, 

however it is impossible to describe the body using skeleton information during driving. 

The SVM is good for two classes classification, while sub motion during driving could 

be considered as noise to lead the system failure. Deep learning is powerful for action 

recognize and scene recognize, however a large number of training data is required. In 

this research, the vision-based monitor system is proposed using subspace method based 

on PCA, which is utilized to recognize driver fatigue condition and road condition 

according divided by the numbered of classifiers according to the danger of action.  
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Chapter 3 

Development of Hankel based KMSM Algorithm 

 

3.1 Mutual Subspace Method 

Mutual Subspace Method (MSM) (Maeda & Watanabe, 1985) is one of the well-known 

methods for object recognition based on the image sets. In the MSM, a subspace that has 

d-dimensional vectors is selected according to a criterion, such as the cumulative 

contribution rate from the eigenvectors, which are obtained by a Principal Component 

Analysis (PCA) on the entered images, and next, it calculates the similarities 𝜃 of the 

eigenvectors P= {𝑢𝑖} that were registered as the dictionary and the eigenvectors Q= {𝑣𝑖} 

that were obtained from the input data (Fig. 3.1). 

cos𝜃 = max
𝑢𝑖𝜖𝑄

max
𝑣𝑖𝜖𝑃

𝑢𝑇 𝑣                                                  3.1 

where 𝑢𝑖
𝑇𝑢𝑖 = 𝑣𝑖

𝑇𝑣𝑖 = 1, 𝑢𝑖
𝑇𝑢𝑗 = 𝑣𝑖

𝑇𝑣𝑗 = 0, 𝑖 ≠ 𝑗 .0 𝑖, 𝑗 ≤ 𝑑,  and d is the 

dimensionality of the subspace used for recognition. 

 

 

Fig. 3.1 Comparison between two sets of images using MSM 
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Normally, the process of calculating PCA is as follows [Sakano, Mukawa, & Nakamura, 

2005]: First, calculated the covariance matrix C from k feature vectors �⃗�𝑎(𝑎 = 1,… , 𝑘) 

in an n-dimensional feature space 𝑅𝑛. 

𝐶 =
1

𝑘
∑ �⃗�𝑏�⃗�𝑏

𝑇𝑘
𝑏=1                                                       3.2 

Then, a principal component analysis solves the characteristic equation to obtain the 

principal components 𝑣𝑖⃗⃗⃗ ⃗(𝑖 = 1,… , 𝑘) of the distribution.                                                              

λ�⃗� = 𝐶�⃗�                                                             3.3                                       

However, it was assumed that all of the data here were calculated from the data centroid. 

This principal component describes the direction of the largest data variation under a 

linear approximation. The above characteristic equation can be transformed as follows:            

λ�⃗� = [
1

𝑘
∑ (𝑥𝑏⃗⃗⃗⃗⃗ ∙ �⃗�𝑏

𝑇)𝑘
𝑏=1 ] �⃗�                                                3.4  

=
1

𝑘
∑ (�⃗�𝑏�⃗�𝑏

𝑇)�⃗�𝑘
𝑏=1 =

1

𝑘
∑ (�⃗�𝑏 ∙ �⃗�)𝑘

𝑏=1 �⃗�𝑏                                     3.5 

Since �⃗� is in {�⃗�1, … , �⃗�𝑘}, it can be obtained as follows: 

λ(�⃗�𝑚 ∙ �⃗�) = �⃗�𝑚 ∙ 𝐶�⃗�                                                   3.6 

Although MSM could achieve a high recognition rate for linear structures, the 

performance drops significantly when the pattern distributions were compared and had 

highly nonlinear structure. To address this problem, the MSM has been extended to 

KMSM (Sakano, Mukawa, and Nakamura, 2005; Wof & Shashua, 2003). 

 

3.2 Kernel Mutual Subspace Method 

Kernel Mutual Subspace Method (KMSM) is a nonlinear extension of the mutual 

subspace method (MSM) by using the kernel trick. In the KMSM, the PCA was applied 

on the high-dimensional space F to generate a nonlinear subspace that contained the 
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nonlinear distribution of each set of image patterns.  

 

Let xϵ𝑅𝑓 be a vectorized image. In the KMSM, the n-dimensional input patterns 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛} were mapped into a high or infinite-dimensional feature space F via a 

nonlinear map ∅ , 𝐹 = ∅(𝑋).  To perform PCA on the mapped feature space F, the 

covariance matrix need be calculated. The covariance matrix in space F can be written as: 

𝐶̅ =
1

𝑛
∑ (∅(𝑥𝑗⃗⃗⃗⃗ )∅(𝑥𝑗⃗⃗⃗⃗ )𝑇)𝑛

𝑗=1                                          3.7 

Then the principal component in 𝐹 denoted by 𝑉 ∈ 𝐹/{0}, 

λ�⃗⃗� = 𝐶̅�⃗⃗�                                                      3.8 

The expression of Eq. 8 be can described for 𝑅𝑓 as: 

λ(∅(𝑥𝑘⃗⃗⃗⃗⃗) ∙ 𝑉) = (∅(𝑥𝑘⃗⃗⃗⃗⃗) ∙ 𝐶̅�⃗⃗�)                                         3.9 

If the principal component is a linear combination of the data, it is clear that for a certain 

coefficient 𝛼, the following is: 

𝑉 = ∑ 𝛼𝑖∅(𝑥𝑖⃗⃗⃗⃗ )𝑛
𝑖=1                                              3.10 

Combine Eq. 9 and Eq. 10, can obtain 

λ∑ 𝛼𝑖(∅(𝑥𝑘⃗⃗⃗⃗⃗)𝑛
𝑖=1 ∙ ∅(𝑥𝑖⃗⃗⃗⃗ )) =  

1

𝑛
∑ 𝛼𝑖(∅(𝑥𝑘⃗⃗⃗⃗⃗) ∙ ∑ ∅(𝑥𝑗⃗⃗⃗⃗ )𝑛

𝑗=1 (∅(𝑥𝑗⃗⃗⃗⃗ ) ∙ ∅(𝑥𝑖⃗⃗⃗⃗ ))𝑛
𝑗=1        3.11 

Because the dimension of the feature space F can be very high, so the inner products 

calculation is difficult. In thus, the nonlinear map ∅ is defined through a Kernel function: 

𝐾𝑖𝑗 = (∅(𝑥𝑖⃗⃗⃗⃗ ) ∙ ∅(𝑥𝑗⃗⃗⃗⃗ ))                                   3.12 

Eq. 11 can be written as: 

λ∑𝛼𝑖𝐾𝑗𝑖 =

𝑛

𝑖=1

1

𝑛
∑𝛼𝑖(∅(𝑥𝑘⃗⃗⃗⃗⃗) ∙ ∑∅(𝑥𝑗⃗⃗⃗⃗ )

𝑛

𝑗=1

(𝐾𝑗𝑖)

𝑛

𝑗=1

 

=
1

𝑛
∑ ∑ 𝛼𝑖𝐾𝑘𝑗𝐾𝑗𝑖

𝑛
𝑗=1

𝑛
𝑗=1                                           3.13 
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Since the 𝛼𝑖 here are enumerations of coupling coefficients, these can be treated as a 

vector, and Eq. 13 can be written as: 

𝑛λ𝛼 = 𝛼𝐾                                           3.14 

It is apparent that the “kernel trick” can solve the high dimensional inner products 

problem. Therefore, a commonly used kernel function is the Gaussian kernel, which is 

defined as follows:                                           

𝐾𝑖𝑗 = 𝑒𝑥𝑝 (−
||𝑥𝑖−𝑥𝑗||

2

𝜎2
)                                             3.15 

One common approach to human action recognition was to model the motion dynamics 

of the action using the Hidden Markov Model (HMM) (Yamato.et.al, 1992). However, 

the HMM required a large number of action instances samples and complicated parameter 

tuning to achieve high recognition performance. To approximate the dynamical system 

more effectively, a Hankel matrix was used to model the temporal evolution of the 

observed data over time (Moonen.et.al, 1994). A Hankel-based matrix was used for action 

recognition with a linear subspace (Li.et.al, 2011).    

 

3.3 Block Hankel Matrix 

The Hankel matrix contained the sequential images of an action that is described by I = 

{𝑓1, 𝑓2, … , 𝑓𝑛}, where 𝐼 ∈ 𝑅𝑑×𝑛,𝑓𝑖 ∈ 𝑅𝑑×1, n is the image number of the action sequence 

I, and d (d=width×heigh of image) is the dimension of each vector 𝑓𝑖, 𝑖 ∈ {1,2, … , 𝑛} 

(Fig. 3.2).  
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Fig. 3.2 Process of generating a block Hankel matrix from an action sequence 

Corresponding sequential images in action sequence I, the block Hankel matrix 𝐻𝐼 is 

defined as follows: 

𝐻𝐼 = [ℎ1, ℎ2, … , ℎ𝑛−𝑟+1] =

[
 
 
 
 

𝑓1 𝑓2
𝑓2 𝑓3
… …

… 𝑓𝑛−𝑟+1

… 𝑓𝑛−𝑟

… …
𝑓𝑟−1 𝑓𝑟
𝑓𝑟 𝑓𝑟+1

… 𝑓𝑛−1

… 𝑓𝑛 ]
 
 
 
 

                      3.16 

where r is a Hankel block parameter for the Hankel matrix 𝐻𝐼, which determines the 

number of consecutive images that are stacked in each column vector of  ℎ𝑗 , 𝑗 ∈

{1,2, … , 𝑛 − 𝑟 + 1} in the Hankel matrix.  

Each column ℎ𝑗  in 𝐻𝐼 corresponds to each sub sequence 𝑠𝑗 ∈ 𝑆: 
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 ℎ𝑗 = {𝑓𝑖, 𝑓𝑖+1, … , 𝑓𝑖+𝑟}                                                3.17 

Thus, the ℎ𝑗   would be a G× 1  dimensional vector, where G=  𝑑 × 𝑟  and 𝐻𝐼 ∈

𝑅𝐺×(𝑛−𝑟+1).     

           

3.4 Hankel-based Kernel Mutual Subspace Method 

To overcome the limitations of the conventional subspace method in addressing temporal 

information, which is important for a driver’s inattention action recognition, the Hankel-

based KMSM was designed (Fig. 3.3). The procedure of comparing two action sequences 

based on the proposed method generate a block Hankel matrix from each action sequence, 

and by applying the Kernel PCA to the action patterns (sub action sequence) can generate 

a nonlinear subspace. The similarity between the two action sequences is defined based 

on the canonical angles between the two corresponding subspaces. 

 

In the proposed method, a Hankel matrix was used to capture the temporal relations 

among the sequential images of an action. Note that each column vector ℎ𝑖ϵ𝑅
𝐺 in the 

generated Hankel matrix H contains r sub sequence image patterns, including the 

temporal relations. While the Hankel matrix represents the temporal information of an 

action, the subspace generated from the Hankel matrix can also capture sub-temporal 

relations of the action. The distribution of patterns includes the sub-action temporal 

information (Fig. 3.4). 
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Fig. 3.3 Basic idea of the Hankel-based KMSM for action recognition 

 

 

Fig. 3.4 Distributions of training patterns and input patterns for sub action 
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Chapter 4 

Sensors Configuration and Data Acquisition from Action Recognition and 

Environmental Features 

 

4.1 Sensor System Configuration 

In this research, a Kinect and a thermal camera were used to recognize the driver action. 

The Kinect device and thermal camera was installed inside of the tractor and FOV of 

these two sensors were covered for driver area. An RGB camera was used to recognize 

road conditions and road types, which was designed to install on the tractor roof. The 

visible area of the RGB camera covered the road from the front of the tractor. The layout 

of sensor system was configurated as Fig 4.1.  

 

Fig. 4.1 Sensor system configuration 

4.2 Basic Instrumentation 

A YANMA tractor with cabin was used for the driver action recognition experiment. The 

Kinect device and thermal camera were installed back of the steering wheel, with 

direction of towards the driver (Fig 4.2). The tractor with cabin helped to install the device 

and also ensured the device safety. The cabin can also reduce the effect of sunshine to the 

Kinect and thermal camera.  
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For the road environment recognition experiment, a Honda life car (CBA-JB5 model, 

with high of 1500mm) was used for data collection. The small size of the car had the 

advantage to run both public roads and also narrow uneven farmland roads. An RGB 

camera was installed on the car roof on center line direct to the driving direction (Fig 4.3).  

 

 

Fig. 4.2 The experimental tractor 
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Fig. 4.3 The experimental unit for running in the public road 

4.3 Kinect Sensor 

Compared with general RGB cameras, Kinect is a low-cost RGB-D sensor that can 

provide more information, which is composed of a colour camera, an infrared (IR) emitter 

and an IR depth sensor. The Kinect can capture and provide the RGB-image, depth image, 

skeleton joints and human body region (player image), and the driver area in the captured 

image can be automatically separated from the background and cropped. For those 

reasons, the Kinect was widely utilized in human detection and action recognition. In this 

research, the Kinect version1 was used (Fig 4.4), and it can detect object in rang of 

0.5m~4.5m with FOV of 58.5×46.6 degree and 62×48.6 degree for IR camera and RGB 

camera, respectively. The major parameters are listed in Table 4.1.  

 

 

Fig. 4.4 The Kinect device used in this experiment 

RGB camera 
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Table 4.1 Major parameters of Version 1 Kinect device 

Item Parameters 

Color camera resolution 640×480 30fps 

IR camera resolution 320×240 pixels 

Color camera FOV 62×48.6 degree 

IR camera FOV 58.5×46.6 degree 

Min/Max Distance 0.5~ 4.5m  

Tracked joins 20 

 

4.4  Thermal Camera 

The FLIR VUE PRO R 336 thermal camera was used in this experiment to generate 

thermographers. The thermal camera provides high resolution and sensitive infrared 

image. In this research, the thermal camera was used to collect driver action and status, 

as compare with the Kinect RGB image recognition. Also, the thermal camera possible 

to provide a possibility discussion for night or low illumination driver status and 

environment recognition. The major parameter of the thermal camera was provided as 

Table 4.2. 

Table 4.2 Major parameters of FLIR VUE PRO R 336 thermal camera 

Item Parameters 

Lens size 13mm 

FOV 25×19 degree 

Resolution 336×256 30/60Hz 

Pixel pitch 17um  
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Fig. 4.5 Thermal camera, VUE Pro FLR used in the experiment 

4.5 RGB Camera 

A Logitech Pro C920 web camera was equipped on the test vehicle to collect road images. 

It could provide 2 million effective pixels at a maximum 30 frame rate. The major 

parameter of Logitech Pro C920 web camera was provided as Table 4.3. 

 

Table 4.3 Major parameters of Logitech Pro C920 camera 

Item Parameters 

Lens size 13mm 

FOV 78 deg 

Resolution 1080/ 30fps and 720p 30fps 

Focus type Autofocus 
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Fig. 4.6 RGB camera，Logitech Pro C920 

 

4.6 Android System 

For establish a communication network and alarm system, a ZTE android cellphone was 

used (Fig 4.6). By connect WIFI network, the android cellphone could connect with the 

tractor PC and emergency center with a server PC. After installation the developed app in 

the cellphone, the tractor PC could send an alarm message to cellphone and server PC.  

 

    

Fig. 4.7 The ZTE android cellphone system 

4.7 Programming Modules 

The recognition program was corded with MATLAB 2013 on a Windows platform and 

OpenCV library was used for image collection and image processing. The program 
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includes image frame catch, image processing, driver action recognition process, road 

recognition process. The alarm system program was written by Java and Android Studio, 

included message sending and receiving through WIFI network and sound alarm.  

 

4.8 Conclusions 

The designed sensor layout of secure system composed by Kinect, thermal camera and 

RGB camera that could cover driver area and road area. The installation of Kinect and 

thermal camera was fully considered and adjusted without trouble normal driving. The 

installation of RGB camera considered the condition when install on a tractor, with similar 

height and direction.  
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Chapter 5 

Agricultural Farm Environment Monitoring for Recognizing Rural 

Road Classification to Ensure Safety of Driving 

 

Correctly understanding surround environment is the most directly approach to ensure 

driving safety. Under agricultural environment the driving environment is relative 

complex bad condition then public roads, such as road with grass, hole or variance 

obstacles, not clear boundary, and usually curve and narrow roads. Such complex 

condition made it difficult to understand the road condition, but on the other hand, it is 

essential to let the system know how to satisfy current environment. In this research, the 

secure system was composed by driver monitoring system and MRM (minimal risk 

manoeuvre) system. After health risk of tractor driver is detected by driver monitor system, 

the MRM system must take control of tractor to ensure safety. The MRM system includes 

two functions: understanding of environment and tractor action strategy making.  

 

5.1 Agricultural Roads  

By analysing the condition of agricultural road, the roads for running an agricultural 

vehicle has several possibilities to drive through main agricultural road, sub agricultural 

road and road among lands. From the view of safety, Action strategy under different 

environments are analysed as follow:   

In the lands: Stop the tractor mostly in safety action, while driving the tractor to the land 

boundary. In this case emergency assistance can be added. 

On unstructured roads: Road such as cultivation road (Fig 5.1 a), with bad road 

condition. It has a danger to control a tractor driving on unstructured road, the safest way 

is to stop the tractor on the road immediately. 
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On structured roads: Structured agricultural road includes general agricultural road (Fig 

5.1 b), main agricultural road-1 (Fig 5.1 c), and main agricultural road-2 (Fig 5.1 d). Those 

three types of roads usually with heavier traffics, and the most safety action is control 

tractor stop on left road side.  

Thus, in this research the roads were classified into three categories: 

 

Categories 1: Structured and Unstructured roads. 

Categories 2: Curve roads, straight and cross roads under structured roads. 

Categories 3: Curve roads, straight road and cross roads under unstructured roads. 

In the following section, the curve roads and cross roads are described as S road and T 

road, respectively.  

 

 

Fig. 5.1 Types of Agricultural Roads in Japan 
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5.2 Off-line Road Type Recognition System 

The process flow of the KMSM had two components: the learning phase and the 

recognition phase (Fig. 5.2).  

 

Fig. 5.2 Flow of the KMSM for Road Recognition 

 

The learning phase included two stages: First, the system read the collected training road 

images of 𝑇𝑅𝐵 = {𝐼𝑚}𝑚=1
𝑀 , where M is the number of the Classes,  𝑚 ∈ {1,… ,𝑀}, and 

for each 𝐼𝑚= {𝑓1, 𝑓2, … , 𝑓𝑛}, where n is the number of images in each class m. Second, 

by applying the KPCA to the training patterns, a nonlinear subspace can be established as 

a reference subspace for each class. The process of learning process was described by 

algorithm 1 as follow:  

Algorithm 1 Learning phase: 

Input: Training data sets 𝑇𝑅𝐵 = {𝐼𝑚}𝑚=1
𝑀 , where M is the number of the classes.   

For all 𝒎 ∈ {𝟏,… ,𝑴} do 

Under Review and Not Published 
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Calculate Reference Subspace 𝑃𝑚 by applying KPCA on TRB.   

End for 

Save 𝑃 = {𝑃𝑚}𝑚=1
𝑀 . 

The recognition phase included four stages: First, the system read the collected testing 

road image sets 𝑇𝐸𝐵 = {𝐼𝑗}𝑗=1
𝐽

, where J is the number of the test image sets, and for each 

testing image set 𝐼𝑗 = {𝑓1, 𝑓2, … , 𝑓𝑏 }, b is the number of the images in 𝐼𝑗 .  Second, by 

applying the KPCA to the testing patterns, a nonlinear subspace can be established as a 

testing subspace for the testing image set TEB. Finally, the canonical angles of current 

testing subspace and each reference subspace  𝜃𝑚  can be calculated and classify the 

current image set to the class that had the smallest canonical angles (the highest similarity). 

The process of testing process was described by algorithm 2 as follow:  

Algorithm 2 Recognition phase: 

Input: Reference subspaces 𝑃; Testing data sets 𝑇𝐸𝐵 = {𝐼𝑗}𝑗=1
𝐽

, where J is the number of 

the testing image sets in TEB. 

For all 𝑗 ∈ {1, … , 𝐽} do 

Calculate Testing Subspace 𝑄𝑗 by applying KPCA on 𝐼𝑗. 

Calculate the similarities  𝜃𝑚 via (3.1).   

Output: class (𝐼𝑗). 

End for 

5.3 On-line Road Type Recognition System 

In the on-line road recognition process, the subspace patterns trained in the off-line road 

recognition process were utilized, and process of the on-line system included a 

recognition phase and an alarm phase. Considering the lower computation time that is 

required for a real-time system, we ensured the detection accuracy and the system stability; 
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a sliding window with a width of NSW was utilized to perform the classification. To avoid 

a miss-alarm, the system could trigger an alarm only when the system categorized the set 

of incoming images as a risk for NAR times continuously.  

The on-line road recognition process could be described as follows: First, the least NSW 

continuous images were selected as a test image set, after NSW continuous images were 

available from the Kinect. Second, we classified the set of sequential images using the 

KMSM classifier. Finally, we sent alarms when danger road was detected for NAR times 

(Fig. 5.3). 

A user interface was designed, and the information display on the interface included the 

current cropped image, the testing image set, the predicted category, the recognition rate 

(the correct classifications were known during the test), the computational time, and the 

similarity plot (Fig. 5.4). 
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Fig. 5.3 Flow of the on-line operation 
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Fig. 5.4 Designed interface of the on-line operation 

 

5.4 Field Experiment 

5.4.1 Road Database Collection and Reference Subspace 

Experiment road data sets as show in Fig. 5.5 was collected using a 30 fps web camera 

with a resolution of 1080 × 1092 , three kind of agriculture road databases were 

established: structured road and unstructured road database I; S road, straight road and T-

road belong to structured road database II; S road, Straight road and T road belong to 

unstructured road database III. 
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Fig. 5.5 Instance images for type of road 

 

The three kinds of agriculture road databases are generated as follow: 

Step 1: Three videos (video1, video2 and video3) were collected from agricultural road 

at the Utsunomiya area of Tochigi, prefecture Japan. 

Step 2: Converted each of the video to images using downloaded “Free Video to JPG 

Converter”, and extracted each image in every 30 frames. 

Step 3: For each class, selecting good conditional images, which belong to the defined 

class form the converted images according to the step 2.  

Finally, there are 458 and 428 images for structured road and unstructured road in 

database I, respectively; 158, 151 and 149 images for S road, straight road and T road in 

database II, respectively; 134, 147 and 147 images for S road, straight road and T road in 

database III, respectively. 

 

For each reference subspace, odd-numbered images were selected from instance images 

as training data used for establish the reference subspace for offline experiment; all the 
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instance images as training data used for establish the reference subspaces for online 

experiment. Each image was resized to 20× 20 pixels and vectorised into a 400-

dimensional vector.  

 

5.4.2 Off-line Road Type Recognition 

In the off-line experiment, the rest 229 structured road images and 214 unstructured road 

images in database I were used as off-line testing data sets. For database II, the rest 79 S 

road images, 75 straight road images, and 74 T road images were used as off-line testing 

data sets. And for database III, the rest 66 S road images, 73 straight road images, and 73 

T road images were used as off-line testing data sets. In the off-line experiment, every 6 

images were organized as a test set to generated a test subspace through KPCA on each 

test pattern for recognition. 

 

5.4.3 On-line Road Type Recognition 

To simulate the real-time operation, three testing streams were constructed for the three 

databases. In order to improve recognition accuracy, an ideal condition was assumed and 

preproduced the test images by removing all the noise images which not belong to any 

class.  

 

5.4.3.1 Testing Streams Generation 

Test streams 1 (Fig. 5.6) and 2 (Fig. 5.7) for S road, straight road and T road under 

structured road and unstructured road in data base II and database III are generated as 

follow: 

Step 1: Converted video to images using “Free Video to JPG Converter”, and extracted Under Review and Not Published 
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each image every 13 frames. 

Step 2: For each class in database, selecting good conditional images, which belong to 

the defined class in database form the converted images by step 1.  

Step 3: Generate test streams using the selected images. 

Test stream 3 (Fig. 5.8) in database I was generated by combining test stream 1 and test 

stream 1 together. 

 

Fig. 5.6 Test stream 1 in database I 

 

 

Fig. 5.7 Test stream 2 in database II 

 

Fig. 5.8 Test stream 3 in database III 

5.4.3.2 On-line Experiments Setting 

In the on-line experiment, the width of sliding window NSW was set as 4. A sample of 

the testing stream with a sliding window was indicated as Fig. 5.9. For each image in 

three test streams, were resized to 20×20 pixels and then vectorised to 400×1 matrix.  
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Fig. 5.9 Example of test stream and sliding window 

 

5.5 Experiment Results 

 

5.5.1 Off-line Road Type Recognition 

The classification accuracy rate and error classification rate for each database are 

observed in Table 5.1, Table 5.2 and Table 5.3, respectively. The values in black on the 

tables represent the recognition classification rate of road on the vertical direction of the 

matrix, and the values in dark gray in the cell represents the rate of error classification 

into actions on the horizontal direction of the matrix. Overall, the average classification 

accuracy rates were 97.7%, 98.1% and 95.4% for three databases, respectively. The EER 

for three databases were 0.1671, 0.1631 and 0.1231, respectively. 

 

Table 5.1: Confusion matrix for recognition result for struct road and un-struct road 

 Struct road Un-struct road False Negative (FN) 

Struct road 0.996 0.004 0.004 

Un-struct road 0.043 0.957 0.043 

False Positive (FP) 0.043 0.004  
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Table 5.2: Confusion matrix for recognition result for S road, Straight road and T 

road in un-struct road 

 S road Straight road T road False Negative (FN) 

S road 1 0 0 0 

Straight road 0.06 0.94 0 0.06 

T road 0 0 1 0 

False Positive (FP) 0.06 0 0  

 

Table 5.3: Confusion matrix for recognition result for S road, Straight road and T 

road in struct road 

 S road Straight road T road False Negative (FN) 

S road 0.967 0.033 0 0.033 

Straight road 0.015 0.985 0 0.015 

T road 0.09 0 0.91 0.09 

False Positive (FP) 0.015 0.033 0  

 

5.5.2 On-line Road Type Recognition 

The recognition rates for three databases were 100%, 85.5% and 91.55%, respectively; 

And the average computational time was 0.03s, respectively (Fig. 5.10, 5.11,5.12). 
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Fig. 5.10. On line results for structured road and unstructured road 

 

Fig. 5.11. On line results for S road, Straight road and T road in structured road 
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Fig. 5.12 On line result for S road, Straight road and T road in unstructured road 

The similarity values between each class and testing image set for three databases were 

compared (Fig. 5.13, 5.14, 5.15). 

 

Fig. 5.13 Similarity of structured and unstructured roads 
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Fig. 5.14 Similarity of S road, straight road and T road in structured road 

 

Fig. 5.15 Similarity of S road, Straight road and T road in unstructured road 

 

From the results, it was found that that the system was able to recognize the structure road 

and unstructured road with very high accuracy (Fig 5.10). For the classifiers of S road, 

Straight road and T road, higher accuracy under unstructured road (Fig 5.12) was obtained 

then unstructured road (Fig 5.11). This is because, under the structure road the surround 

environment is not qualitative then under the unstructured road. For example, under the 

structure road, the road size, road mark and other vehicles on the road reduces the 

classifiers recognition accuracy. While under the unstructured road, there was less noise 
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information on the road.  

 

5.6 Conclusion 

In conclusion, a vision-based real-time recognition system of driving environment area 

was proposed using the KMSM, where the sequences of images were represented by a 

nonlinear subspace. To evaluate road type classifier, road dataset was established. In 

addition, the validity of the KMSM method was demonstrated through experiments using 

the structure road and unstructured road, S road, straight road and T road under structured 

road and unstructured road both for off-line and on-line experiments. As a result, the off-

line classification accuracy rates were 97.7%, 98.1% and 95.4% for structure road and 

unstructured road, S road, Straight road and T road under structured road and unstructured 

road, respectively. And the on-line classification accuracy rates were 100%, 85.5% and 

91.55%, for structured road and unstructured road, S road, straight road and T road under 

structured road and unstructured road, respectively. The average computational time was 

0.03s. The results showed that the proposed method could satisfy the real-time conditions 

and accuracy requirements for enabling autonomous driving in the recognized driving 

environmental condition. 
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Chapter 6 

Driver Action Monitoring in Farm Environment to Ensure Operator’s 

Safety and Rescue System 

 

6.1 Driver Inattention Action Dataset 

The driver monitoring system was required to detect inattention actions from normal 

driving actions, and the driver inattention action dataset should include typical actions 

during driving. By analyzing the behavior patterns and actions that can possibly cause 

accidents, it could generalize some of the danger actions, such as looking aside, and 

talking on the phone. Additionally, the status of driver distraction and fatigue could finally 

be expressed through body motions, such as nodding and yawning. Thus, a driver 

inattention action dataset was established that consisted of one negative category (normal 

driving actions) and five inattention categories (inattention actions). The inattention 

categories include the following actions: looking aside, talking on the phone, nodding, 

rubbing eyes, and yawning (Fig. 6.1). 

 

Fig. 6.1 The five inattention categories of driver 
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6.2 Off-line Action Recognition System 

The process flow of the Hankel-based KMSM had two components: the learning phase 

and the recognition phase (Fig. 6.2).  

 

Fig. 6.2 Flow of the Hankel-based KMSM for Action Recognition 

The learning phase included three stages: First, the system read the collected training 

action sequence images of each class  𝑚 ∈ {1, … ,𝑀} . Second, for each class a block 

Hankel matrix was calculated. Finally, by applying the KPCA to the generated Hankel 

matrix at the second step, a nonlinear subspace was established as a reference subspace 

for each class. The process of learning process was described by algorithm 3 as follow:  

Algorithm 3 Learning Phase: 

Input: Training data sets 𝑇𝑅𝐵 = {{𝐼𝑗}𝑗=1
𝑁 }𝑚=1

𝑀 , where M is the number of the classes.   

For all 𝒎 ∈ {𝟏,… ,𝑴} do 

Calculate Hankel matrix 𝐻𝑚 via (Eq. 16).   

Calculate Reference Subspace 𝑃𝑚 by applying KPCA on 𝐻𝑚.   

End for 
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Save 𝑃 = {𝑃𝑚}𝑚=1
𝑀 . 

 

The recognition phase included four stages: First, the system read the all of collected 

testing action sequence images of 𝐼𝑗 , 𝑗 ∈ {1, … , 𝐽} , and for each I with frames of 

{ 𝑓1, 𝑓2, … , 𝑓𝑛 }. Second, for each testing action sequences a 𝐺 × (𝑛 − 𝑟 + 1)  -

dimensional block Hankel matrix can be calculated. Third, by applying the KPCA to the 

generated Hankel matrix at the second step, a nonlinear subspace was established as a 

testing subspace for each testing action sequence  𝐼𝑗 . Finally, the canonical angles of 

current testing subspace and each reference subspaces  𝜃𝑚 was calculated and classify 

the current action sequence to the class that had the smallest canonical angles (the highest 

similarity). The process of testing process was described by algorithm 4 as follow:  

Algorithm 4 Recognition Phase: 

Input: Reference subspaces 𝑃; Testing data sets 𝑇𝐸𝐵 = {𝐼𝑗}𝑗=1
𝐽

, where J is the number of 

the testing sequence. 

For all 𝑗 ∈ {1, … , 𝐽} do 

Calculate Hankel matrix 𝐻𝑗 via (Eq. 16). 

Calculate Testing Subspace 𝑄𝑗 by applying KPCA on 𝐻𝑗. 

Calculate the similarities  𝜃𝑚 via (3.1).   

Output: class (𝐼𝑗). 

End for 

 

6.3 On-line Action Recognition System 

In the on-line action recognition process, the subspace patterns trained in the off-line 

action recognition process were utilized, and process of the on-line system included a 
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recognition phase and an alarm phase. Considering the lower computation time that is 

required for a real-time system, we ensured the detection accuracy and the system stability; 

a sliding window with a width of NSW was utilized to perform the classification. To avoid 

a miss-alarm, the system could trigger an alarm only when the system categorized the set 

of incoming images as a risk for NAR times continuously.  

 

The on-line action recognition process could be described as follows: First, the least NSW 

continuous images were selected as a test sub action sequence, after NSW continuous 

images were available from the Kinect. Second, we generated a block Hankel matrix 

using the sub action sequence. Third, we classified the set of sequential images using the 

KMSM classifier. Finally, we sent alarms when inattention action was detected for NAR 

times (Fig. 6.3). A user interface was designed, and the information display on the 

interface included the current cropped image, the testing sub action sequence, the 

predicted category, the recognition rate (the correct classifications were known during the 

test), the computational time, and the similarity plot (Fig. 6.4). 
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Fig. 6.3 Flow of the on-line operation 
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Fig. 6.4 Designed interface of the on-line operation 

 

6.4 Field Experiment 

6.4.1 Driver Inattention Action Dataset Collection and Training Dataset 

The experiment data sets were collected in a tractor driver’s cabin under outdoor 

conditions in different times. Additionally, the numbers of frames in each instance were 

different as each volunteer own their character and habit for actions. 

6.4.1.1 Experiment Data using KINECT Sensor (KN) 

Experiment KN data sets, (Fig.6.5, 6.6) was collected using a 15-fps RGB-D KINECT 

camera (KN) with a resolution of 320× 240. Five subjects in group1 performed each 

category as follow: 24, 24, 23, 16, 16 action sequences for each class were performed by 

five subjects, respectively; Five subjects in group2 performed each category as follow: 

10, 7, 7, 10, 7 action sequences for each class were performed by five subjects, 

respectively. 
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Fig. 6.5 Training and testing driver inattention actions datasets performed by group1 for similar 

subject recognition using KN 

 

 

Fig. 6.6 Testing driver inattention actions datasets performed by group2 for different subject 

recognition using KN 
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Totally, 864 instance samples of depth image sequences for six categories were collected: 

618 instance samples were performed by 5 subjects in group1, and 246 instance samples 

were performed by 5 subjects in group2. For KN training data, odd-numbered samples 

were selected from instance samples which performed by group1, and the number of odd-

numbered samples used for establish the training dataset was 312.  

 

6.4.1.2 Experiment Data using Thermal Sensor (TH) 

Experiment TH data sets (Fig.6.7, 6.8), was collected using a 30fps THERMAL sensor 

(TH, Flir Vue pro 336) with a resolution of 336×256. Five subjects in group 3 performed 

each category as follow: 29, 23, 19, 14, 12 action sequences for each class were performed 

by five subjects, respectively; Five subjects in group4 performed each category as follow: 

6, 11, 10, 11, 9 action sequences for each class were performed by five subjects, 

respectively.  

 

Totally, 864 instance samples of depth image sequences for six categories were collected: 

582 instance samples were performed by 5 subjects in group3, and 282 instance samples 

were performed by 5 subjects in group4. For TH training data, same with experiment data 

I, odd-numbered samples were selected from instance samples which performed by 

group3, and the number of odd-numbered samples used for establish the training dataset 

was 291. 
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Fig. 6.7 Training and testing driver inattention actions datasets performed by group3 for similar 

subject recognition using TH 

 

 

Fig. 6.8 Testing driver inattention actions datasets performed by group4 for different subject 

recognition using TH 



 

57 

 

6.4.2 Off-line Action Recognition 

In the off-line experiment, for experiment KN data, the rest 306 instance samples 

conducted by the 5 subjects in group1 were utilized for similar subjects testing, and 246 

instance samples conducted by the 5 subjects in group2 were utilized for different subjects 

testing; for experiment TH data, the rest 291 instance samples conducted by the 5 subjects 

in group3 were utilized for similar subjects testing, and 282 instance samples conducted 

by the 5 subjects in group4 were utilized for different subjects testing. 

 

The experimental procedure was set as follow: The parameter r in the Hankel matrix was 

empirically set to 4. Each image was resized to 10×10 pixels and vectorised into a 100-

dimensional vector. Thus, the dimension of the column vector in the Hankel matrix was 

400 (100-dimensions×4 frames), which was much lower than the dimension of the other 

existing action features, such as STACOG (Kobayashi & Otsu, 2012). The statistical 

analyses for off-line datasets were performed while training and testing subjects are 

similar and different. The six classes including normal driving actions were considered to 

develop the confusion matrix for determining the false negative and false positive rate for 

each of the classification. 

 

6.4.3 On-line Action Recognition 

To simulate a real-time on-line operation, the testing stream data was constructed by 

combining action sequences from the action instance samples in the six categories. For 

KN action dataset, data performed by subjects in group1 was utilized for similar subjects 

testing and data performed by subjects in group2 was utilized for different subjects testing; 

for TH action dataset, data performed by subjects in group3 was utilized for similar 



 

58 

 

subjects testing and data performed by subjects in group4 was utilized for different 

subjects testing. Additionally, the class of normal driving action sequences was inserted 

before each of the other actions. The numbers in brackets were frame numbers for normal 

driving actions. The total number of frames in the testing stream data (KN) was 999 and 

854 for similar subjects (group1) testing and different subjects (group2) testing, 

respectively (Table 6.1, Table 6.2);  

 

Table 6.1 Frame numbers of each inattention categories in test stream for similar 

subjects testing (KN). 

 Looking aside Talking on the phone Nodding  Rubbing eyes Yawning  

Subject1 (16)/15 (12)/55 (11)/9 (15)/23 (17)/8 

Subject2 (16)/20 (14)/54 (14)/10 (13)/22 (11)/25 

Subject3 (9)/30 (16)/43 (11)/14 (13)/24 (17)/26 

Subject4 (14)/31 (15)/51 (11)/15 (11)/27 (10)/24 

Subject5 (11)/18 (11)/47 (11)/31 (11)/34 (10)/23 

 

Table 6.2 Frame numbers of each inattention categories in test stream for different 

subjects testing (KN). 

 Looking aside Talking on the phone Nodding  Rubbing eyes Yawning  

Subject6 (11)/17 (11)/25 (16)/11 (15)/24 (11)/15 

Subject7 (16)/23 (19)/28 (16)/17 (16)/14 (12)/29 

Subject8 (20)/23 (9)/24 (17)/22 (19)/14 (23)/23 

Subject9 (21)/13 (8)/20 (14)/26 (13)/26 (10)/17 

Subject10 (13)/29 (11)/11 (7)/14 (14)/9 (13)/25 

 

The total number of frames in the testing stream data (TH) was 864 and 798 for similar 
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subjects (group3) testing and different subjects (group4) testing, respectively (Table 6.3, 

Table 6.4). 

 

Table 6.3 Frame numbers of each inattention categories in test stream for similar 

subjects testing (TH). 

 Looking aside Talking on the phone Nodding  Rubbing eyes Yawning  

Subject1 (10)/27 (15)/21 (20)/15 (34)/13 (13)/17 

Subject2 (12)/20 (8)/13 (11)/28 (13)/22 (23)/31 

Subject3 (14)/10 (14)/22 (22)/17 (21)/13 (20)/9 

Subject4 (13)/15 (13)/29 (14)/13 (13)/23 (15)/15 

Subject5 (12)/35 (18)/19 (14)/9 (16)/17 (14)/19 

 

Table 6.4 Frame numbers of each inattention categories in test stream for different 

subjects testing (TH). 

 Looking aside Talking on the phone Nodding  Rubbing eyes Yawning  

Subject6 (12)/23 (19)/20 (14)/24 (22)/14 (19)/18 

Subject7 (17)/12 (11)/22 (15)/13 (8)/18 (7)/16 

Subject8 (12)/13 (23)/24 (20)/13 (10)/20 (22)/9 

Subject9 (9)/21 (10)/21 (16)/10 (16)/10 (16)/22 

Subject10 (17)/25 (17)/21 (14)/8 (15)/7 (15)/18 

 

In the on-line experiment, the width of sliding window NSW was set as 6. A sample of 

the testing stream for one subject and working with a sliding window was indicated (Fig. 

6.9). To reduce the computational time, each image was first resized to 10×10 pixels and 

vectorised. Then, a 400×3 Hankel matrix was generated using Hankel with parameter 
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r=4. Finally, a nonlinear subspace was constructed by applying KPCA to the Hankel 

matrix. 

 

 

Fig. 6.9 Examples of data stream and sliding window. 

6.5 Experiment Results 

6.5.1 Off-line Action Recognition 

The classification accuracy rate and error classification rate for each driver actions in 

similar subjects (group1) testing and different subjects (group2) testing are observed in 

Table 5 and Table 6, respectively. The values in black on the tables represent the 

recognition classification rate of actions on the vertical direction of the matrix, and the 

values in dark grey in the cell represents the rate of error classification into actions on the 

horizontal direction of the matrix. 

 

6.5.1.1 Off-line Action Recognition using Kinect Camera (KN) 

From the KN dataset results (Table 5 and 6), it showed that both in the similar subjects 

(group1) testing and in the different subjects (group2) testing, system could obtain 

relatively satisfactory classification accuracy rate. In the similar subjects (group1) testing 

arrived at a 100% and 100%, for nodding and normal driving, respectively. In the different 

subjects (group2) testing arrived at a 97% and 95%, for nodding and normal driving, 

respectively. As there exist a vast difference of the nodding and normal driving action 
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compared with the other actions.  

 

In the similar subjects (group1) testing, the action of looking aside possessed the lowest 

classification accuracy rate of 78% caused by the miss classification to the class of normal 

driving action; while in the different subjects (group2) testing, the rubbing eyes possessed 

the lowest classification accuracy rate of 61% caused by the miss classification to the 

class of yawning and normal driving action (Table 5 and 6). From the statistical analysis 

it was observed that the action recognition of inattention action was higher except for 

rubbing eyes in the different subjects testing. Overall, the average classification accuracy 

rates were 91.18% and 86.18% for similar subjects (group1) testing and different subjects 

(group2) testing, respectively. The EER for similar subjects testing different subjects 

testing were 0.192 and 0.358, respectively.  

 

Table 6.5 Confusion matrix for recognition result of driver KN inattention dataset 

for similar testing and training datasets on off-line recognition method 

 

Looking 

Aside 

Taking on 

the Phone 

Nodding Rubbing 

Eyes 

Yawning Normal 

Driving 

False Negative 

(FN) 

Looking aside 0.78 0.06 0 0 0.02 0.14 0.22 

Talking on the Phone 0 0.96 0 0 0.04 0 0.04 

Nodding 0 0 1 0 0 0 0 

Rubbing Eyes 0.02 0.02 0 0.86 0.1 0 0.14 

Yawning 0 0.06 0 0 0.86 0.08 0.14 

Normal Driving 0 0 0 0 0 1 0 

False Positive (FP) 
0.02 0.14 0 0 0.16 0.22  
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Table 6.6 Confusion matrix for recognition result of driver KN inattention dataset 

for different testing datasets on off-line recognition method 

 

Looking 

Aside 

Taking on 

the Phone 

Nodding Rubbing 

Eyes 

Yawning Normal 

Driving 

False Negative 

(FN) 

Looking aside 0.85 0.07 0 0 0.03 0.05 0.15 

Talking on the Phone 0 0.85 0 0.07 0.03 0.05 0.15 

Nodding 0.03 0 0.97 0 0 0 0.03 

Rubbing Eyes 0 0.07 0 0.61 0.17 0.15 0.39 

Yawning 0 0 0 0.07 0.9 0.03 0.1 

Normal Driving 0 0 0 0.05 0 0.95 0.05 

False Positive 

(FP) 
0.03 0.14 0 0.19 0.23 0.28  

 

6.5.1.2 Off-line Action Recognition using Thermal Camera (TH) 

From the TH dataset results (Table 7 and 8), it showed that both in the similar subjects 

(group3) testing and in the different subjects (group4) testing, system could obtain 

relatively satisfactory classification accuracy rate. In the similar subjects (group3) testing 

also arrived at a 100% and 100%, for nodding and normal driving, respectively. As there 

exist a vast difference of the nodding and normal driving action compared with the other 

actions. 

  

In the different subjects (group4) testing, the actions of taking on the phone and rubbing 

eyes possessed the lowest classification accuracy rate of 4% and 13% caused by the 

mainly miss classification to the class of yawning and nodding driving action, respectively. 

Overall, the average classification accuracy rates were 92.2% and 47.52% for similar 

subjects (group3) testing and different subjects (group4) testing, respectively.  
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Table 6.7 Confusion matrix for recognition result of driver TH inattention dataset 

for similar testing and training datasets on off-line recognition method 

 

Looking 

Aside 

Taking on 

the Phone 

Nodding Rubbing 

Eyes 

Yawning Normal 

Driving 

False Negative 

(FN) 

Looking aside 0.91 0 0 0 0.02 0.14 0.16 

Talking on the Phone 0 0.89 0 0.09 0 0.02 0.11 

Nodding 0 0 1 0 0 0 0 

Rubbing Eyes 0.02 0.02 0 0.87 0.09 0.03 0.16 

Yawning 0 0 0 0.11 0.85 0.04 0.15 

Normal Driving 0 0 0 0 0 1 0 

False Positive (FP) 
0.02 0.02 0 0.2 0.11 0.23  

 

 

Table 6.8 Confusion matrix for recognition result of driver TH inattention dataset 

for different testing datasets on off-line recognition method 

 

Looking 

Aside 

Taking on 

the Phone 

Nodding Rubbing 

Eyes 

Yawning Normal 

Driving 

False Negative 

(FN) 

Looking aside 0.70 0.02 0.065 0.065 0 0.15 0.3 

Talking on the Phone 0.17 0.04 0 0 0.51 0.28 0.96 

Nodding 0.02 0 0.79 0.04 0 0.15 0.21 

Rubbing Eyes 0.04 0 0.36 0.13 0.235 0.235 0.87 

Yawning 0 0 0.02 0 0.64 0.34 0.36 

Normal Driving 0.09 0.02 0.28 0.02 0.04 0.55 0.45 

False Positive (FP) 0.32 0.04 0.725 0.125 0.785 1.155  

 

6.5.2 On-line Action Recognition 

For KN experiment data, the recognition rate for the on-line experimental results in 

similar subjects (group1) testing and different subjects (group2) testing were 87.02% and 

79.97%, respectively. And the average computation time was 0.07s for each recognizing 
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cycle (Fig. 6.10, 6.11).  

 
Fig. 6.10 On-line experiment (KN) result for similar subjects (group1) for training and testing 

use same datasets (group1). 

 

 

Fig. 6.11 On-line experiment result (KN) for similar subjects (group1) for training and testing 

use different datasets (group2). 
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For TH experiment data, the recognition rate for the on-line experimental results in 

similar subjects (group3) testing and different subjects (group4) testing were 83.24% and 

42.75%, respectively. And the average computation time was 0.08s for each recognizing 

cycle (Fig. 6.12, 6.13) 

 

The similarity values between each class and testing sub-sequence were compared (Fig. 

6.14, 6.15, 6.16, 6.17). The experimental results showed that there exists misclassification 

when a testing sequence is entered from the previous testing sequence, for example when 

a testing sequence of looking aside started at frame No.17 (Fig 6.14 a), the first several 

frames were still recognized as normal driving action. As described above, the 6-width 

sliding window was utilized for classification, and the frames from both classes contained 

in the sliding window at the boundary of the two classes. It showed that with the sliding 

of window, the similarity rate of the previous class decreased, and the similarity rate of 

the next arriving class increased and the next arriving class could be correctly classified 

in 5 frames.  
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Fig. 6.12 On-line experiment (TH) result for similar subjects (group3) for training and testing 

use same datasets (group3). 

 

 

Fig. 6.13 On-line experiment result (KN) for similar subjects (group3) for training and testing 

use different datasets (group4). 



 

67 

 

 

(a) 

 

 

(b) 

 

 

(c) 
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 (d)     

 

 

(e) 

 

Fig. 6.14 Similarity of action sequence for KN datasets when training and Testing are same 

datasets (a) Subject 1, (b). Subject 2, (c) Subject 3, (d) Subject 4, (e) Subject 5. 
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(a) 

 

 

(b) 

 

 

(c) 
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(d) 

 

 

(e) 

 

Fig. 6.15 Similarity of action sequences for KN datasets when training and testing are different 

(a) Subject 6, (b). Subject 7, (c) Subject 8, (d) Subject 9, (e) Subject 10. 
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(a) 

 

(b) 
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(c) 

 

(d) 

 

 

(e) 

 

Fig. 6.16 Similarity of action sequence for TH datasets when training and Testing are same 

datasets (a) Subject 1, (b). Subject 2, (c) Subject 3, (d) Subject 4, (e) Subject 5. 
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 (a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

Fig. 6.17 Similarity of action sequences for TH datasets when training and testing are different 

(a) Subject 6, (b). Subject 7, (c) Subject 8, (d) Subject 9, (e) Subject 10. 

 

From the results, it was observed that for the testing of similar subjects (group1) the 

similarity rate (Fig. 14) was higher than the testing of different subjects (group2) (Fig. 

15); the testing of similar subjects (group3) the similarity rate (Fig. 16) was higher than 

the testing of different subjects (group4) (Fig. 17). According to the intrinsic property of 

the subspace method, the smaller variance of principal component between testing date 
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and training date (reference subspace) can generate higher similarity rate. As each object 

own different individual characteristics for their shape and actions, in the experiment, the 

variance of principal component between testing date and training date in testing of using 

different subjects is larger than testing of using similar subjects.   

 

6.6 Discussion and Conclusions 

6.6.1 Discussion 

The automatic rescue system was developed with high accuracy and real-time 

performance in the recognition of danger or inattention of driving actions. Experiments 

were conducted using KINECT sensor-captured images to confirm the accuracy and 

reliability of the rescue system based on the self-established driver action dataset. The 

inattention action can be recognized according to the behaviours and attitudes of the 

drivers, such as looking aside, talking on the phone, nodding, rubbing eyes and yawning, 

and the performance of action recognition was satisfactory under regular conditions. In 

this research, inattention action recognition was determined using RGB-images, and the 

function of player detection provided by Kinect reduced the complexity of the driver area 

separation from the background. As the most widely used sensor information, the research 

was conducted on action recognition using RGB-image, which is obviously significant. 

An RGB-image is easily affected by the illumination condition, and the IR spectra 

obtained in natural light can also disturb Kinect for the driver area separation. Thus, weak 

lighting conditions were ignored, and a tractor with a cab was used to reduce the 

disturbances in natural light in the experiments.  

 

The challenge in using RGB-images for action recognition was the effect of the different 
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viewpoints and individual characteristics because a conventional subspace-based method 

cannot represent temporal information well. Such a problem was overcome by modifying 

the Kernel Mutual Subspace Method to make it possible to capture the temporal relations 

among the sequential images using the Hankel matrix. In the offline and online 

experiments, the developed Hankel-based KMSM made it possible to classify and 

recognize most of the inattention actions and realized high recognition accuracy. However, 

some of the actions in the subtle motions obtained a low classification rate, owing to 

similarities with others actions, for example, talking on the phone, yawning or checking 

the rear-view mirror under normal driving conditions.  

 

The driver action recognition in the subtle motions is difficult to distinguish and action 

recognition rate was lower. In addition, the training and testing datasets had variations for 

subjects to subjects. To improve further accuracy of recognition of the inattention actions, 

it is meaningful to build a larger dataset by collecting more training data of aged farmers 

under various conditions. In the same time, tractor’s cabin-based training and testing on 

similar subject could have a wider possibility, as the drivers are limited in the farms. In 

further research, the possibility of using depth-images will also be discussed for driver 

inattention action recognition under weak lighting conditions or at night. 

 

6.6.2 Conclusions 

In conclusion, a vision-based real-time recognition system of driver inattention actions 

was proposed using the Hankel-based KMSM, where the sequences of images were 

represented by a nonlinear subspace. By introducing the Hankel, the limitation of the 

subspaces in the conventional KMSM method only encoding the appearance information 
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of the sequential images was overcome.  Furthermore, the temporal information of the 

sub-actions such as Hankel-based KMSM could describe the dynamic properties of short 

sub-actions. In addition, compared with other human action recognition approaches, the 

image-based low-dimensional block Hankel matrix in this research greatly reduced the 

computational complexity, which meets the requirements for real-time recognition. To 

evaluate driver inattention, a driver action dataset was established. In addition, the validity 

of the Hankel-based KMSM method was demonstrated through experiments using the 

driver inattention action dataset for similar subjects and different subjects both for off-

line and on-line experiments. As a result, the off-line classification accuracy rates were 

91.18% and 86.18% for similar subjects testing and different subjects testing, respectively 

for RGB image; and with accuracy of 92.2% and 47.52% for similar subjects testing and 

different subjects testing, respectively for thermal image. And the on-line classification 

accuracy rates were 87.02 and 79.97% for similar subjects testing and different subjects 

testing, respectively RGB image; and with accuracy of 83.24% and 42.75% for similar 

subjects testing and different subjects testing, respectively thermal image. The average 

computational time was 0.07 s and 0.08 for RGB image and thermal image, respectively. 

The results showed that the proposed method could satisfy the real-time and accuracy 

requirements of the rescue system.  
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Chapter 7 

Conclusions 

 

This thesis aimed to develop a driving rescue system for agriculture vehicles to ensure 

driving safety. Series of works including system architecture design, road type classify 

algorithm development, driver inattention actions and fatigue detection recognize 

algorithm development, road and driver action dataset establishment and field 

experiments have been performed. The major contributions of this study and future work 

are drawn as follows; 

 

7.1 Summary of Research Findings  

7.1.1 Designed Driving Rescue System Architecture 

Systematically analyzed the relationship between driver condition, road condition and 

driving safety. Three categories of road condition and five types of inattention actions 

were defined, and MRM was designed regarding the driver status and road condition.  

 

7.1.2 Designed Driving Environment and Driver Status Sensing System 

Machine vision system was incorporated for monitoring road condition and driver status 

to establish a no-contact rescue sensing system. A monocular camera was used for road 

environmental monitoring and types of road recognition; Kinect device and thermal 

camera were used for driver status monitoring. Utilizing the Kinect player extract function, 

a driver can be easily segmented from the image, and the thermal camera ensured the 

effective driver action monitoring even under low illumination condition.  
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7.1.3 Established Road Type and Driver Action Datasets   

For road type datasets, a dataset includes structure roads and unstructured roads, curve 

roads, straight road and cross roads under structured roads classifier. On the other hand, 

curve roads, straight road and cross roads are referred under the classifier of unstructured 

roads. For driver action datasets, dataset included actions of looking aside; talking on the 

phone, nodding, rubbing eyes, yawing and normal driving was established.  

 

7.1.4 Recognition of Road Types Classification Algorithm  

A KMSM based road type classify algorithm was designed for road classification. Using 

the established road type dataset, offline and online experiment was conducted to evaluate 

the effectiveness of the developed algorithm. The off-line classification accuracy rates 

were 97.7%, 98.1% and 95.4% for structured road and unstructured road, S road, straight 

road and T road under structured road and unstructured road, respectively. The on-line 

classification accuracy rates were 100%, 85.5% and 91.55%, for structured road and 

unstructured road, S road, straight road and T road under structured road and unstructured 

road, respectively. The average computational time was noted 0.03s for recognizing the 

each of the classifier. 

  

7.1.5 Development of Driver Action Recognition Algorithm  

To overcome the limitations of the conventional subspace method in addressing temporal 

information, which is important for a driver’s inattention action recognition, the Hankel-

based KMSM was designed. Offline and online experiments were conducted to evaluate 

the effectiveness of the developed algorithm. As a result, the off-line classification 

accuracy rates were 91.18% and 86.18% for similar subjects testing and different subjects 



 

80 

 

testing, respectively for RGB image; and with accuracy of 92.2% and 47.52% for similar 

subjects testing and different subjects testing, respectively for thermal image. The on-line 

classification accuracy rates were 87.02 and 79.97% for similar subjects testing and 

different subjects testing, respectively RGB image; and with accuracy of 83.24% and 

42.75% for similar subjects testing and different subjects testing, respectively using 

thermal image. The average computational time was 0.07 s and 0.08 for RGB image and 

thermal image, respectively. 

 

7.2 Future Work 

To complete the research in this thesis, further attempt will be taken to complete the rescue 

system for the driver and roads as an integrated unit. 

 

7.2.1 Extend the Road Type Datasets and Driver Action Datasets 

Unstructured road under agricultural environment covers large area in Japan. In our 

further research, we will collect most of the types of road structured in rural and semi 

urban areas. As the different area, due to the landform and different crop production and 

operation style, the road image shows different features. As the same reason, driving 

action form additional operators is also required. Because the different persons have 

different features and action characteristics, in our future research, we will collect more 

data in different volunteers to for increasing training datasets of driver action, which will 

help in robust recognition of the accuracy system. 
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7.2.2 Robust Rescue System Development 

The rescue system developed in this research had not considered disturbances such as 

week illumination, backlighting, special temperature, and drive sub motions. From the 

robust point of view the secure system should own performance to cover those conditions. 

For this object, along with extended datasets, other Artificial Intelligence (AI) and deep 

learning solutions are also considered to introduce with the subspace method.  
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