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Abstract

Dynamical systems are universal computers. They can perceive stimuli, remember, learn from
feedback, plan sequences of actions, and coordinate complex behavioural responses. The
Neural Engineering Framework (NEF) provides a general recipe to formulate models of such
systems as coupled sets of nonlinear differential equations and compile them onto recurrently
connected spiking neural networks – akin to a programming language for spiking models of
computation. The Nengo software ecosystem supports the NEF and compiles such models
onto neuromorphic hardware. In this thesis, we analyze the theory driving the success of the
NEF, and expose several core principles underpinning its correctness, scalability, completeness,
robustness, and extensibility. We also derive novel theoretical extensions to the framework
that enable it to far more effectively leverage a wide variety of dynamics in digital hardware,
and to exploit the device-level physics in analog hardware. At the same time, we propose
a novel set of spiking algorithms that recruit an optimal nonlinear encoding of time, which
we call the Delay Network (DN). Backpropagation across stacked layers of DNs dramatically
outperforms stacked Long Short-Term Memory (LSTM) networks—a state-of-the-art deep
recurrent architecture—in accuracy and training time, on a continuous-time memory task, and
a chaotic time-series prediction benchmark. The basic component of this network is shown to
function on state-of-the-art spiking neuromorphic hardware including Braindrop and Loihi.
This implementation approaches the energy-efficiency of the human brain in the former case,
and the precision of conventional computation in the latter case.
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Chapter 1

Introduction

Computation cannot be physically realized without time. Whether we consider the discrete
switching of voltages across transistors in a digital computer, or the continuous flow of charges
across ion channels within the brain – all physical systems, that we currently know of, make
progress on their computations by changing over time. Digital computers pipeline their com-
putations through multiple cores with energetically-expensive access to distant memory, while
our brains consume only twenty watts of power by harnessing the dynamics of a biophysical
substrate. A leitmotif of this thesis is a computational paradigm in between these two extremes:
neuromorphic computing. Here, researchers draw inspiration from how the brain dynamically
performs computations to engineer low-power digital and analog circuits that emulate its
fundamental principles.

The emerging field of neuromorphic computing has already witnessed many successes
backed by large companies, small start-ups, and new research programs being established
at various institutions all around the world. Applied Brain Research (ABR), Intel, IBM, and
many others (QY Research, 2018), are establishing themselves as key players in the field, while
a collaborative landscape is being fostered across a diverse set of academic communities
attempting to use neuromorphic hardware, including the Telluride Neuromorphic Cognition
Engineering Workshop (Cohen et al., 2001), Capo Caccia Cognitive Neuromorphic Engineering
Workshop, Nengo Summer School (ABR’s “Brain Camp”), and Intel’s Neuromorphic Research
Community (INRC).

Despite growing excitement, there exist many challenges when it comes to using neuromor-
phic hardware to perform some desired task. Generally speaking, neuromorphic programming
forces us to rethink our traditional, Von Neumann (1958), understanding of computation,
and redesign our algorithms to leverage distributed networks of noisy, heterogeneous units,
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that locally process their inputs and communicate via spikes – also known as Spiking Neural
Networks (SNNs). These networks serve as powerful models of neural computation, capable in
theory of everything that we can do, while consuming extraordinarily low amounts of energy. Bi-
ological nervous systems already leverage the computational power of SNNs quite successfully.
Thus, our approach is to borrow existing principles and models from neuroscience, exploit
their properties using tools from mathematics and engineering, and use software methods to
synthesize the resulting networks in silico. Moreover, the frameworks and methods that we use
to accomplish this should be extensible—able to incorporate increasingly-sophisticated levels
of biological detail—so long as such details are computationally useful at a functional level, or
shown to benefit some resource-power-accuracy trade-off.

To what end? By virtue of emulating core principles of brain function, we hope to realize
algorithms that consume far less power, and scale more readily to massively-parallelized
computing architectures running in real-time. But such algorithms must also be practically
useful. To flip this on its head: we require frameworks that describe what some hardware is
doing at the lowest level, so we may systematically harness its capabilities to perform useful
computations at the highest level. Analogous to how a single compiler can translate the same
C++ code to dozens of physically distinct digital architectures, we strive to systematically
describe how the same dynamical computations can be flexibly mapped onto distinct spiking
neuromorphic architectures.

The primary goal of this thesis is to explore the above characterization of neuromorphics. In
doing so, we elucidate a general recipe for implementing efficient dynamical computations on
neuromorphic hardware, empower theorists and practitioners with deeper insights into subtle
relationships between network configuration and function, and demonstrate these methods
on state-of-the-art neuromorphic chips: Braindrop (Neckar et al., 2019) and Loihi (Davies et al.,
2018). Ultimately, this unveils a class of computations where neuromorphic hardware excels,
and further automates the process of engineering algorithms for such hardware.

Researchers have already learned a great deal through the co-design of neuromorphic
hardware and spiking algorithms. Theoretical frameworks help guide design decisions, while
hardware constraints demand relevant extensions to theoretical frameworks and software
tools; both processes give-and-take in a dynamic feedback loop. The general approach taken
by this thesis adopts a software stack and nonlinear dynamical systems framework for describ-
ing computations within vector spaces. This approach is known as the Neural Engineering
Framework (NEF; Eliasmith and Anderson, 2003). The general-purpose neural simulator,
Nengo (Bekolay et al., 2014), natively supports NEF networks and a variety of neuromorphic
backends. This software is extended by the methods described in this thesis. The ultimate goal
of this approach is to develop a unified set of tools for constructing artificially intelligent agents,
that scale to the same kinds of tasks that humans can perform, while running on neuromorphic
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hardware consuming several orders of magnitude less power than a traditional computer.
Significant progress has been made in this direction over the past three decades. Although we
still have a long ways to go, this thesis aims to highlight a promising path for neuromorphics.

When confronted with the ambitious goal of artificially reproducing human intelligence,
computer scientists will often point towards the popularity of deep learning (LeCun et al.,
2015) and its recent successes such as AlphaGo (Gibney, 2016). First and foremost, we seek
to embrace the methods of deep learning, by incorporating its architectures and training
methodologies into our toolbox. This is in fact the mandate of Nengo DL (Rasmussen, 2018), a
Python package that combines Nengo and TensorFlow into a hybridized framework that auto-
mates backpropagation across spiking, non-spiking, and NEF-style recurrent neural networks
– broadly referred to as the class of Artificial Neural Networks (ANNs). Deep learning methods
have found enormous success, due in part to the black-box nature of the training procedure,
which requires a programmer to have virtually no knowledge of the underlying problem being
solved. However, we do not believe that deeper networks, better training heuristics, nor larger
datasets, will be enough to achieve our aforementioned goal. Some concerns for conven-
tional deep learning approaches include: the amount of power required to scale traditional
ANNs to the size of the human brain (Furber, 2012), the difficulties tuning hyperparameters at
scale (Bergstra et al., 2015), and the abundance of adversarial attacks on networks trained via
backpropagation (Su et al., 2019). More generally, the “no free lunch theorem” informs us that
a black-box learning algorithm, on its own, will never be enough (Wolpert, 1996); inevitably, it
becomes necessary to incorporate a priori knowledge into the structure of ANNs in a manner
that biases the solution space of the training procedure towards the problems being solved.

But even more fundamentally, the majority of ANNs in use today, including AlphaGo, are
applied to static inputs to produce static outputs. For a board game such as Go, this is forgivable,
as the entire state of the game is encapsulated by the current state of the board itself, and so
there is technically no need to consider any history in order to optimize across future states.1

Nevertheless, this points towards a thematic concern: time is not being treated as a continuous
dimension of computation in many of the most successful methods, which may limit their
applicability to many real-world problems. For instance, convolutional ANNs are most often
deployed in video processing tasks by classifying objects in single frames, sampled at some
discrete interval, and independently from one another. Recurrently connected networks are
an exception that we embrace, but they come with many challenges that we will discuss. In
general, most methods do not respect time as being a physical dimension that underpins the
dynamics of the system’s input, output, or processing units; in typical ANNs, time is not a
variable in the neuron models, synapse models, nor any of the computational elements.

1Practically speaking, there could still be a benefit, for a sub-optimal player, to knowing the history of the game
in order to better predict the opponent’s strategy.
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In contrast, the human brain is a physical system that continuously processes information
over time. This is crucial for a cognitive agent embodied in a dynamic environment wherein all
interactions depend on internally and externally evolving states. The brain naturally learns
from interacting with its environment over many different time-scales. For instance, our
brains are not programmed to recognize static objects at discrete moments in time. Rather,
we have evolved to interact with objects in continuously changing environments, from which
the perception of object recognition emerges. From a very young age, children can intuitively
infer the physics of moving objects, and learn how to interact with those objects to achieve
desired outcomes. This continues through adulthood, up to the level of socially coordinating
our thoughts and behaviours, sculpted by our cumulative experience with the world. This
occurs so naturally that we often take it for granted, but at a very basic level, our brains are
necessarily constructing explicit and implicit dynamical models of reality, and applying these
models to perform behaviourally relevant computations in real-time.

Consider a real-world example such as driving a car. We must constantly integrate new
information with our existing understanding of where we are, where we are headed, and what
might happen along the way. This requires not only an intuitive understanding of the physics
of the car, but models of how other drivers behave on the road in the context of changing
traffic lights and road conditions, all of which play out in parallel while we flexibly plan and
coordinate our actions. Likewise, consider any actively engaging task or hobby that you enjoy.
I speculate this activity requires some degree of mentally or physically coordinated interaction
with the world, on a similar level of dynamic complexity as in the driving example, such as:
playing a video game, participating in a sport, engaging with some form of media, playing
music, drawing, dancing, and so forth. Besides such activities being meaningful, fun, and
beautiful, they all share the common motif of recruiting a variety of systems in a dynamically
coordinated fashion.

To help appreciate how extraordinary such tasks are for the human brain, we should
recognize that the mechanisms involved do not have a perfect memory of past inputs. Each
neuron locally processes some signal by continuously encoding it into spike trains. These
action potentials evoke postsynaptic currents (PSCs) that decay exponentially on the order
of milliseconds. Memories emerge from these dynamics, as changes to activation patterns,
adaptive states, and synaptic weights, all reflect the histories of representations along a myriad
of time-scales. The time-scales over which these mechanisms interface with the world, and
interact with each other, determines, and constrains, all of our perceptions, thoughts, and
actions. Remarkably, this is all accomplished by a collection of approximately one-hundred
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billion neurons, connected by over one-hundred trillion2 synapses, processing these signals
sparsely across space and time, while consuming only twenty watts (Koch, 2004) – about the
same energy as a typical household CFL bulb.

This “signal processing view” of computation is fundamentally different from conventional
views of computation targeted for conventional computers. In the former view, time is intrinsic
to the state of all physical “devices” performing the computation (i.e., neurons and synapses),
which are themselves necessarily tied to the timing and dynamics of the overall function as a
consequence of actually implementing the function themselves. However, in the conventional
view, the time that a computation takes is an implementation detail that is mostly decoupled
from the input-output relation. As such, there is currently an important distinction between
the computational approaches taken by the neuromorphic community and by those who
program traditional digital computers. This is not simply a matter of biological detail, but
more crucially a matter of thinking about the system that is actually solving these tasks as a
collection of signal processors whose dynamics are coupled to the task at hand by the physics
of time. If our aim is to build artificial systems that are as useful, robust, capable, and scalable
as the human brain, then we should strive to understand computation in such terms.

The approach we take considers time as a fundamental starting point, and thus situates dy-
namics front-and-center; we bridge the time-scales of the entire system, down from the levels
of spikes and postsynaptic currents, up to the levels of reaction times and behaviours. This
involves developing an extensible theoretical framework that links together the mechanisms
of an SNN, its parameters, and some desired class of computations. We validate this model
of computation by deploying these SNNs on low-power neuromorphic hardware designed to
emulate key biological principles. Based on these same principles, we develop theory connect-
ing the mathematics of Padé and Legendre, to reveal a novel recurrent architecture that can
predict chaotic time-series with greater memory capacity and performance surpassing state-
of-the-art recurrent neural networks, including Long Short-Term Memory (LSTM), Reservoir
Computing (RC), and “FORCE” networks.

2It is difficult to comprehend the sheer magnitude of this number; one-hundred trillion is more than the
available estimates of the number of galaxies in the observable universe, trees on the earth, fish in the ocean, and
digits of π that have been computed – all combined (at time of writing).
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Chapter 2

Background

One of the earliest contributions to the neural network literature can be traced back to Rosen-
blatt’s invention of the perceptron (Rosenblatt, 1958) based on the model of McCulloch and
Pitts (1943). The perceptron is equivalent to a single-layer, feed-forward, neural network, where
the input vector is multiplied through a weight matrix, and then projected through static non-
linear activation units (e.g., a threshold function, sigmoid function, rectified linear function,
or similar).1 This static nonlinearity is intended to correspond to the abstract behaviour (i.e.,
average activation level) of an artificial “neuron,” while the matrix corresponds to a postsynap-
tic weighting of activations – hence the term “weight matrix.” The output(s) of the network
provide a classification of the input vector – the interpretation of which is task-dependent. The
weight matrix is learned from example data, in a black-box manner, by applying a simple delta
rule that, in effect, performs gradient descent on a loss function across the training data.

A great deal of excitement was fueled by claims that the perceptron would soon “be able
to walk, talk, see, write, reproduce itself and be conscious of its existence” (Olazaran, 1996).
But soon after, a famous book by Minsky and Papert (1969) pointed out a serious limitation of
this architecture: it can only classify linearly-separable patterns – that is, it can only compute
functions whose outputs distinguish its inputs based on whether the vector falls onto one side
of a hyperplane or the other. The XOR function is perhaps the simplest example of a function
that cannot be computed in such a manner. As a brief aside, many have credited this book as
bringing upon the “AI winter” of the 1970s: neural network architectures were soon abandoned
in favour of symbol-based architectures and so-called production systems, in which general
aspects of human-like intelligence are reproduced by the manipulation of abstract symbolic
representations (Olazaran, 1996; Newell et al., 1972).

1A constant bias term is usually added to the weights, to control the activation threshold of each unit.
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Fortunately, additional layers permit the computation of more complicated nonlinear
functions. That is, multi-layer feed-forward networks do not suffer the severe limitation of
requiring linearly-separable output classes. By merely stacking two perceptrons together (i.e.,
introducing a “hidden layer”), the network becomes able to compute any bounded continuous
function—a result known as the universal approximation theorem (Hornik et al., 1989)—
assuming the nonlinear activation units are bounded and continuous themselves. This insight,
together with the stacking of deeper layers to compose increasingly-complicated functions
with fewer neurons, the use of “backpropagation” (Werbos, 1974; Rumelhart et al., 1986)—
performing gradient descent across multiple layers via the chain rule—to learn all of the weight
matrices, combined with increasingly-powerful GPUs to process large datasets, all coalesced
to usher in the revival of AI in the new era of “deep learning” (Sejnowski, 2018).

Deep learning has undoubtedly brought about many rapid and impressive advances to
the field of artificial intelligence. Due to its black-box nature, neither domain expertise nor
understanding of the network’s internal function are required in order to achieve state-of-
the-art performance on a large number of important problems, including: image recognition,
speech recognition, natural language understanding, question answering, and language trans-
lation (LeCun et al., 2015). The basic recipe is conceptually simple: obtain one of the many
popular off-the-shelf toolboxes for deep learning, pick your favourite network architecture, set
its hyperparameters, and then throw as much training data at the network as your GPU(s) can
handle. Deep learning excels at constructing static vector functions, that generalize to new
examples, by automatically discovering the latent (i.e., hidden) representations that are most
relevant to the task at hand. However, the opacity of its optimization procedure comes as a
double-edged sword: while it is easy to apply deep learning to many problems with minimal
hand-engineering, it is unclear even to experts what effect most hyperparameter changes
will have in advance on overall performance (Bergstra and Bengio, 2012). For example, it has
been observed that using a rectified linear (ReLU) activation unit for each nonlinearity can
dramatically reduce the training time on a variety of benchmarks (Glorot et al., 2011), yet, as
far as we know, this observation still does not have any theoretically-grounded framework that
could assist in selecting nonlinearities or related hyperparameters for some given task.

Despite its breakthroughs, the field is well-aware that a feed-forward architecture is in-
capable of learning relationships that span arbitrarily across the input data in time, which
is necessary for tasks involving video, speech, and language understanding with long-range
temporal dependencies (Bengio et al., 1994). Regardless of the depth of the network, a feed-
forward network will always have some finite input response, which leaves a finite “memory”
of previous inputs within the state of the network. In other words, the functions that are
computable with such a network cannot access inputs that go beyond the depth of the network.
The most general solution to overcome this problem is to introduce recurrent connections into
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the network, which transmit current state information back to itself, thus allowing the network
to capture information about previous inputs and reuse it in the future. These networks are
called Recurrent Neural Networks (RNNs).

We begin with a brief theoretical discussion on the computational power of RNNs, followed
by an overview of many of the most popular architectural approaches and methods to building
RNNs. This is not intended to provide a comprehensive record of all such findings, but rather
to help situate the work in this thesis and shine a spotlight on many of the key ingredients that
motivate our eventual approach. Reviews and references that provide more detailed accounts
of these methods and its variants are included throughout. We then describe, in detail, the
three principles of the Neural Engineering Framework (NEF; Eliasmith and Anderson, 2003)
while contrasting this approach with those discussed thus far. This leads into a high-level
overview of a few promising neuromorphic architectures that have been made available to us
through various collaborations: SpiNNaker (Furber et al., 2014), Braindrop (Neckar et al., 2019),
and Loihi (Davies et al., 2018) – all of which support the compilation of NEF networks, and are
the targets of many of our example applications.

2.1 Recurrent Neural Networks

The Recurrent Neural Network (RNN) is the most computationally-powerful brand of neural
network that we know how to physically implement. By using recurrent connections to persist
state information through time, thus endowing the network with an internal memory, RNNs
are able to compute functions outside the computational class afforded by deep feed-forward
networks: dynamical systems – functions whose state evolves nonlinearly according to the
history of its inputs. This enables the network to exploit patterns in the input that span time
along arbitrary temporal scales.

Specifically, RNNs serve as a universal approximator to any finite-dimensional, causal,
discrete-time, dynamical system (Schäfer and Zimmermann, 2006). That is,

x [t +1] = f (x [t ] ,u [t ])

y [t ] = g (x [t ]) ,
(2.1)

where x ∈Rd is a finite-dimensional (d ∈N) state-vector, u is some input vector, and y is some
output vector – all indexed at discrete units of time, t .2 The state updates according to a
nonlinear mixing of itself with the input. The output is a static mapping (i.e., “readout”) of the

2There are similar theorems for continuous time (Funahashi and Nakamura, 1993; Bennett, 1995).
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state. The causality constraint implies that these functions do not require knowledge of future
inputs (although they are free to make predictions). Crucially, an RNN with sufficiently many
nonlinear units can approximate any instantiation of equation 2.1 arbitrarily well, which in
turn serves as a universal model of computation (Turing, 1938).

Likewise, the human brain itself is a highly recurrent system (Dayan and Abbott, 2001).
Assuming its mechanisms obey the laws of physics, it must also necessarily be a dynamical
system (Amit, 1989; McKenna et al., 1994; Port and Van Gelder, 1995). And unless the brain
harnesses quantum physics—which seems to be irrelevant to cognitive function (Litt et al.,
2006)—is a “hypercomputer” or a “super-Turing” computer—which seems to require unphysi-
cal resources (Broersma et al., 2018)—its dynamics must also be finite-dimensional. Causality
follows from assuming the brain does not violate the second law of thermodynamics (Evans
and Searles, 1996). In essence, we have good reason to believe that the brain is a physical
“machine” with finite spatiotemporal resources and limited precision. From this position, it
follows that the class of computations made available by RNNs is at least as large as the class
of computations that can be performed by the brain. Constraints on the physical devices
leveraged by the brain (i.e., constraints on timing, connectivity, precision, and so forth) are
likely to impose limitations that make RNNs strictly more powerful in theory.

In summary, the field of neural network theory has progressed from the perceptron, which
had the problem of not being very powerful, to the multi-layer feed-forward network, which
is a universal approximator to static functions, and finally to the RNN, which is a universal
approximator to physically-implementable dynamical systems, one example of which is the
human brain. Thus, while feed-forward networks are fundamentally incapable of reproducing
human intelligence, RNNs are, at least in theory, up to the task.

In practice, for tasks that involve sequential inputs, such as speech and language, RNNs
are often the best choice (LeCun et al., 2015). Recent instances have demonstrated impressive
human-like intelligence in generating captions from images (Vinyals et al., 2015), recognizing
speech in multiple languages (Amodei et al., 2016), and decoding human emotions from
video (Ebrahimi Kahou et al., 2015). However, the largest RNN that we are aware of to be
successfully trained is a 6.6 million neuron model of human cognition—just shy of 0.01%
the size of the human brain—using the methods of the NEF (Choo, 2018). The next largest
(non-NEF) RNNs that we can find with published resource counts are “Google-scale” deep
LSTM networks consisting of tens of thousands of units in their largest instantiations (Sak et al.,
2014; Wu et al., 2016) – on the order of 105–107 times smaller than the human brain, depending
on how one counts a “neuron” in such a network.

Clearly, there are practical and theoretical challenges in scaling. As informed by the “no
free lunch theorem” for RNNs (Wiklicky, 1994), there exists no universal training algorithm
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that will find the correct solution to all tasks. It is instead necessary to constrain the solution
space with prior knowledge. This has motivated the invention of many different types of RNNs
and training methods, a selection of which are described in the following sections. For more
information we point the reader to a review by Salehinejad et al. (2017).

2.1.1 Backpropagation through time

The traditional approach to build an RNN is to take a single-layer feed-forward network, and
recurrently connect the output of each neuron to all other neurons in the same layer with a
square weight matrix. To simulate the network, the weighted activations propagated by the
recurrent feedback loop are delayed by a single time-step, and added to the weighted inputs
on the next step. To train the network, one applies backpropagation through time (BPTT;
Werbos, 1990). Intuitively, the idea is to “unroll” the network in time, and treat it as an infinitely-
deep feed-forward network where the input at the i th time-step, together with the output
from the (i − 1)th layer, are supplied to the i th layer. Errors in the output of the RNN may
then be backpropagated along the weights through time. This may optionally be stacked to
form multiple layers, akin to a multi-layer feed-forward network where each layer is locally
recurrent (Pascanu et al., 2013a).

This approach also extends to more biologically-plausible realizations of the RNN, in
which the continuous (i.e., real-valued) neural activations are replaced by spiking neurons that
encode signals into binary-valued (i.e., single-bit) events over time, and the weight matrices are
replaced by synaptic filters that appropriately weight and exponentially decay incoming spikes
over time. These networks are named Spiking Neural Networks (SNNs), and are the subject
matter of later sections. The issue in this context is that spikes (i.e., Dirac impulses) are non-
differentiable with respect to time. But recently, many research groups have independently
demonstrated that SNNs can also be trained with backpropagation by softening the gradient
in a variety of creative ways (Esser et al., 2015; Hunsberger and Eliasmith, 2015, 2016; Lee et al.,
2016; Marblestone et al., 2016; Neftci et al., 2017; Bellec et al., 2018; Hunsberger, 2018; Huh
and Sejnowski, 2018; Severa et al., 2018; Rasmussen, 2018; Shrestha and Orchard, 2018; Neftci
et al., 2019)3 although there are challenges in realizing biologically-plausible implementations
that carry this out online (Hunsberger, 2018, submitted). Reviews that focus on feed-forward
architectures are given by Pfeiffer and Pfeil (2018); Tavanaei et al. (2018), while examples
applied to RNNs are demonstrated by Diehl et al. (2016); Huh and Sejnowski (2018); Kim et al.
(2019). It was also recently shown by Chen et al. (2018b) that both RNNs and backpropagation

3Many of these are feed-forward examples, but recurrent spiking networks may be unrolled to support back-
propagation in the same way.
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may be extended to continuous-time (i.e., taking the limit of infinitesimally small time-steps),
consistent with the the NEF and Principle 3 (see section 2.2.3).

While these approaches are theoretically sound, BPTT encounters many problems in prac-
tice (Bengio et al., 1994). Chief among these are the so-called “vanishing and exploding gradient
problems,” in which gradients shrink or grow unboundedly as they are propagated backwards
in time. These problems are intimately related to the “credit-assignment problem,” in which a
learner witnesses a combinatorial explosion of points in time to assign credit to for the current
error; in the case of storing a single bit of information over time, this causes the gradient to be
inherently unstable (Bengio and Frasconi, 1994). This is further connected to the existence of
nonlinear chaos in the dynamics of three (or more) recurrently coupled neurons; any correction
to the trajectory of such networks are exponentially magnified over time (Strogatz, 2015). Thus,
a standard RNN trained by BPTT will often fail to learn tasks that require a long-term memory
– a serious problem for the use-cases that RNNs promise to address. Solutions proposed by
Pascanu et al. (2013b) that involve clipping and constraining the gradients alleviate these
problems to some extent, but the issue still appears in classical architectures for tasks that
we know the brain is capable of solving (Lillicrap and Santoro, 2019). Alternatives to BPTT
include extended Kalman filter-based learning, second-order Hessian-based optimization
methods, Hessian-free optimization, and evolutionary algorithms (Salehinejad et al., 2017) –
but none have been found to be as consistently useful in practice as backpropagation. To face
the problem of learning across longer time-scales, architectural constraints are often imposed
on the RNN, such as those in the following section.

2.1.2 Structured approaches

The Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) network addresses
the problem of storing information across long intervals of time, by incorporating an explicit
memory unit into the network. Rather than a static nonlinearity, the basic computational
element is an LSTM “cell”: a group of five nonlinearities and three multiplicative gates, dy-
namically coupled to one another in a specific manner, such that its default behaviour is to
“store” its input, by propagating an internal state variable back to itself on the next time-step
(i.e., using an internal feedback connection). Multiplicative gating controls whether the input
should be integrated, whether the memory is to decay with some leakage, and whether to
output the contents of the memory (Gers et al., 1999). Importantly, all of these mechanisms are
differentiable, and so BPTT can be applied to automatically learn all of the gating parameters.
Thus, the LSTM may be viewed as a particular way of configuring and initializing an RNN in
a manner that assists BPTT, by biasing it towards latching onto values and persisting them
for long, yet controlled, periods of time. This alleviates the vanishing and exploding gradient
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problems, described by Bengio et al. (1994), by restructuring the gradient that is involved when
integrating over time.

The standard practice is to create layers of LSTM cells, and then stack several of these layers
on top of one another, using weight matrices to fully connect each layer to the next (Graves
et al., 2013). This enhances the temporal complexity of the network’s dynamics through a
composition of time-scales, analogous to the manner in which deep feed-forward networks
provide richer internal representations via composition of spatial scales. Recently, this has
found success in sequence learning, machine translation, and speech (Graves et al., 2013;
Sutskever et al., 2014; Cho et al., 2014b; Bahdanau et al., 2014), leading to a widespread adoption
of LSTM networks as the RNN of choice (LeCun et al., 2015).

A spiking analog to LSTMs have also been proposed by Bellec et al. (2018), in which adaptive
neurons play the functional role of LSTM cells. The intuition behind why this works is that
the adaptive state of the neuron is functionally similar to that of a controlled leaky integrator.
When BPTT is applied to such an SNN, it has been shown to approach the performance of a
non-spiking LSTM network. The structure of LSTM cells have also been compared to that of
cortical microcircuits in biology, providing a post hoc explanation for the utility of LSTMs, and
spiking implementations thereof (Costa et al., 2017; Pozzi et al., 2018).

This success has prompted many variants of LSTMs, including the bidirectional LSTM (Graves
and Schmidhuber, 2005), hierarchical S-LSTM (Zhu et al., 2015), grid LSTM (Kalchbrenner
et al., 2015), phased LSTM (Neil et al., 2016), and others (Salehinejad et al., 2017). At the same
time, this has inspired several related architectures that augment an RNN with differentiable
memory cells to facilitate long-range temporal interactions, including the gated recurrent
unit (GRU; Cho et al., 2014a; Chung et al., 2014), neural Turing machine (Graves et al., 2014),
memory network (Weston et al., 2014), and orthogonal GRU (Jing et al., 2018). The work of
Jozefowicz et al. (2015) explored 10,000 related architectures and 230,000 hyperparameter
configurations via evolutionary mutations to the LSTM’s computational graph and found none
to be consistently better than LSTMs.

In section 6.2.3, we propose a fundamentally new type of memory cell based on our work,
the Delay Network (DN), and compare its performance in terms of memory capacity to LSTMs.
We find that stacked LSTMs are unable to compress continuous-time windows of history. Our
results on a chaotic time-series prediction benchmark suggest that LSTMs, when interleaved
with the DN, and trained via BPTT, acquire an improved ability to learn dynamical systems
described by nonlinear delay-differential equations.
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2.1.3 Randomized approaches

Reservoir Computing (RC) is a strategy for training RNNs, that simplifies the optimization
problem by keeping the recurrent weights fixed. That is, only the static “readout” weights
to a linear output layer are modified, while the recurrent weights are left untrained, thus
sidestepping the issues in BPTT. This is referred to as an Echo State Network (ESN; Jaeger,
2001), or Liquid State Machine (LSM; Maass et al., 2002), depending on whether the neural
nonlinearities are static or spiking models, respectively. The intuition is that randomized
feedback, when initialized in an appropriate manner, causes traces of the input to dynamically
reverberate, or “echo,” throughout the state of the network; a common metaphor is to compare
the neural activity to throwing rocks into a pool of water and observing the ripples interact
through time.4 These traces can then be decoded to reconstruct the output signal in a manner
that approximates a nonlinear transfer function of the input signal. Details are provided in
section 2.2.4 after introducing the NEF.

There are two great insights driving the adoption of RC: (1) randomized feedback provides
an overcomplete basis of nonlinear time-varying signals that can be linearly combined to
approximate some target signal, and (2) by leaving the recurrent weights fixed, the optimiza-
tion procedure is greatly simplified; training the readout weights amounts to a least-squares
problem. However, the benefits of RC do not come without limitations involving memory
capacity (Wallace et al., 2013). In particular, section 6.2.1 compares the performance of RC to
the NEF on a continuous-time memory benchmark, thus highlighting severe scaling problems
with RC, while demonstrating how the NEF solves these practical issues.

2.1.4 Engineered approaches

A unique set of approaches to training RNNs is rooted in the application of engineering and
control-theoretic methods to modelling neurobiological systems (Eliasmith and Anderson,
1999). We call these top-down methods “engineered approaches”. These methods all assume
that some model of the system’s desired dynamics (i.e., x in equation 2.1) are known a priori.
That is, rather than suppose our only knowledge is raw input-output data, many real-world
scenarios provide opportunities to model the dynamical system that actually generated the
data. In practice, this might be some physical model of the dynamical system under consid-
eration, an approximate model that has been identified (Nelles, 2013), or even some partial
observation of the dynamical state. Often, the dynamical system is simply a description of a

4To demonstrate the relevance of this metaphor, Fernando and Sojakka (2003) went so far as to actually
implement an LSM using a bucket of water.
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particular computation that we know to be useful, such as a controller for a robotic arm, or the
examples provided in section 4.2.

Instances of this approach include the Neural Engineering Framework (NEF; Eliasmith
and Anderson, 2003; Duggins, 2017), first-order reduced and controlled error (FORCE; Sussillo
and Abbott, 2009; DePasquale et al., 2018) and its spiking relatives (Thalmeier et al., 2016;
DePasquale et al., 2016), balanced spiking networks (Boerlin and Denève, 2011; Boerlin et al.,
2013; Schwemmer et al., 2015; Alemi et al., 2018), and closely-related methods (Jaeger, 2014;
Gilra and Gerstner, 2017). Reviews of many of these methods are given by Denève and Machens
(2016), Abbott et al. (2016), and Nicola and Clopath (2017). In all cases, these methods provide
a procedure for taking a description of some desired dynamical state-vector, and then training
a recurrent network of spiking or non-spiking neurons, with varying constraints on the target
models’ level of biological detail, to represent that state. We discuss some of the critical
differences below.

It is important to preface our discussion with a reminder that, although all of these ap-
proaches are engineered from a top-down modelling perspective, one can still apply BPTT
(or any other optimization method) to fine-tune the resulting RNN end-to-end from example
input-output pairs – a hybrid approach that is embraced by the NEF, its software implemen-
tation Nengo, and related libraries (Rasmussen, 2018; Hazan et al., 2018). In this context, the
purpose of these engineered approaches is as follows: incorporate prior knowledge of tasks to
dramatically simplify the optimization procedure, provide guarantees regarding scalability and
precision, and place appropriate constraints on the initial configuration of the RNN to assist in
future rounds of optimization. At the same time, this provides greater transparency into the
relationships between network parameters, configuration, and function. This transparency en-
ables theoretical insights into neural computation, and, as we will show in chapter 6, practical
advances on RNN benchmarks that would otherwise be quite difficult to obtain with a pure
black-box approach.

In section 2.2 we provide a detailed account of the NEF, and in section 2.2.4 we draw
architectural comparisons to both RC and FORCE. Its extension, full-FORCE (DePasquale
et al., 2018), may be viewed as an instance of the NEF with full-rank weight matrices (Tripp
and Eliasmith, 2006), where training is performed online rather than offline, and randomized
feedback is thrown in to serve the same purposes as in RC. The crucial difference is that
FORCE networks assert that recurrently connecting the estimate of the target variable back
into the network during both training and inference will improve performance. The methods
of Thalmeier et al. (2016) may be viewed as a means of realizing full-FORCE networks in
biologically-plausible spiking networks using a precise spike-time coding mechanism, that is
similar to Boerlin et al. (2013), but supported by nonlinearities in the synapses. Likewise, Jaeger
(2014) may be viewed as an extension of RC that is essentially an offline variant of FORCE, or a
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non-spiking NEF network (Aubin, 2017). In section 6.2.2, we find that the NEF outperforms
FORCE on a continuous-time memory benchmark, suggesting that FORCE learning may be
insufficient for a large class of memory-based tasks.

Balanced spiking networks also share many commonalities with the NEF, primarily a
procedure for mapping a dynamical state-vector onto a population of spiking neurons using
a low-rank weight matrix that accounts for the dynamics of the neurons and synapses. The
main benefit of the balanced network approach is that precision scales as O (n), compared to
O (p

n
)

for the NEF, where n is the number of neurons, by carefully coordinating the variance
in spike-timing (Boahen, 2017, Figure 11). We discuss some important caveats in section 2.2.4.

Given the subtle distinctions between these overlapping approaches, section 3.2 rigorously
analyzes the suitability of the NEF for universal spike-based computation on neuromorphic
hardware. The NEF is mathematically correct under fairly weak assumptions, which leads to
its scalability, completeness, robustness, and extensibility. These key factors contribute to the
NEF being our tool of choice when it comes to training RNNs for the purposes of deployment
on the neuromorphic hardware summarized in section 2.3.

2.2 Neural Engineering Framework

In this section, we provide a detailed overview of the Neural Engineering Framework (NEF;
Eliasmith and Anderson, 2003) that has been adapted from Voelker and Eliasmith (2018).

The NEF proposes a general approach to model dynamical systems in artificial networks of
spiking neurons. It does so by leveraging neural nonlinearities and weighted synaptic filters
as computational resources. The NEF has been used to construct a wide variety of neural
models, including a functioning 6.6 million neuron model of the human brain, dubbed “Spaun,”
that is capable of performing perceptual, motor, and cognitive tasks (Eliasmith et al., 2012;
Choo, 2018). This model incorporates many kinds of observed neural dynamics, including
self-generated oscillations, sustained activity, and point attractor dynamics.

As well, the flexibility of the NEF has lead to it being deployed on mixed-analog-digital
neuromorphic chips (Choudhary et al., 2012; Corradi et al., 2014; Voelker et al., 2017a; Voelker
and Eliasmith, 2017b; Neckar et al., 2019) and digital architectures (Bekolay et al., 2014; Wang
et al., 2014; Mundy et al., 2015; Knight et al., 2016; Berzish et al., 2016; Wang et al., 2017;
Blouw et al., 2018; Fischl et al., 2018). Consequently, the NEF provides a practical method for
programming neuromorphics, thus helping the field deliver on its promise of a low-energy
computing platform that emulates core principles of nervous systems (Boahen, 2017).

15



Biological brains possess a significant amount of structure, with neuroanatomical con-
straints that differ considerably between functional areas. We interpret this observation prag-
matically, as a call to: (1) incorporate prior knowledge of a desired set of tasks into the network’s
construction, and (2) constrain a network’s function using available models of the underlying
biophysical mechanisms. However, the standard formulation of the NEF makes a number of
simplifying assumptions regarding these mechanisms. For example, the NEF typically assumes
an exponential model of the postsynaptic current (PSC) evoked by an action potential, which
has a biologically-implausible, instantaneous, rise-time. This model is also known as a first-
order lowpass filter. In contrast, the synapse models in mixed-analog-digital neuromorphic
chips are non-ideal, featuring higher-order dynamics due to parasitic capacitances (Voelker
et al., 2017a). Similarly, the synapse models commonly used in biological models incorporate
distinct rise- and fall-times due to separate time-scales of transmitter binding and unbinding,
as well as axonal transmission delays due to the finite-velocity propagation of action poten-
tials (Roth and van Rossum, 2009). In digital hardware, spike-transmission delays are config-
urable (Davies et al., 2018) and necessary at the time-scale of the simulation time-step (Bekolay
et al., 2014). Chapter 5 improves the scope of the NEF, by characterizing the network-level
effects of these higher-order synapse models and delays, and harnesses them to implement
both discrete-time and continuous-time dynamical systems with improved accuracy. Chap-
ter 6 explores a novel theoretical system that equips any RNN—not just NEF-based—with an
enhanced ability to compute nonlinear functions across windows of memory. We find some
connections between this system’s NEF implementation and the neural responses of “time
cells” recorded in the rodent medial prefrontal cortex (mPFC). In this section, we provide the
basic building blocks adapted from the original proposal by Eliasmith and Anderson (2003),
before analyzing its theoretical merits in chapter 3.

In the context of RNNs, the NEF provides generic machinery for training the weights of a
recurrent network of spiking (or non-spiking) neurons in order to implement some particular
dynamical system (Voelker and Eliasmith, 2016). This is made efficient through three important
steps: (1) weight matrices are factored into n × q encoding and decoding matrices, where
q ∈O (1) is the dimensionality of the dynamical state-vector, and n is the number of neurons,
(2) the optimization problem is recast as a batched least-squares problem that may be solved
offline without needing to explicitly simulate the network over time, and (3) the dynamics of
the synapses are leveraged as temporal bases for the overall system. These insights lead to
procedures for training and simulation that are efficiently implemented—scaling as O (n) in
both time and space—by the Nengo software package (Bekolay et al., 2014). Backpropagation
through time can fine-tune the performance of these networks, by use of the Nengo DL
extension (Hunsberger, 2018; Rasmussen, 2018; Blouw et al., 2018), which bidirectionally
integrates Nengo with Google’s machine learning toolkit, TensorFlow (Abadi et al., 2016).
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At the same time, this top-down approach provides considerable transparency into system-
atic relationships between neural nonlinearities, synapse models, time-constants, and network
function. For instance, it becomes feasible to determine the class of functions that are most
accurately supported by a population (i.e., layer) of neurons (Eliasmith and Anderson, 2003,
pp. 185–217). Optimized architectures can therefore be analytically derived for the case of
specific functions, such as multiplication (Gosmann, 2015). It also becomes viable to relate the
time-constants of the low-level dynamical primitives (i.e., neurons and synapses) to the emer-
gent dynamics of the network (Voelker and Eliasmith, 2018). Furthermore, by virtue of having
functional spiking networks grounded in biologically-plausible mechanisms, it becomes possi-
ble to investigate connections between cognitive models of psychological phenomena, neural
data, and the effects of drugs on behaviour and neurodegenerative disorders (Eliasmith, 2013;
Eliasmith et al., 2016; Duggins et al., 2017).

Conceptually, the NEF consists of three mathematical principles used to describe neural
computation: (1) representation, (2) transformation, and (3) dynamics. The NEF is most
commonly applied to building dynamic (i.e., recurrent) spiking neural networks, but also
applies to non-spiking and feed-forward networks. Its primary strengths reside in providing a
well-understood and efficient means of engineering spiking neural models, and programming
neuromorphic hardware, to approximate mathematically-described computations with pre-
cision that scales as O (p

n
)

in the spiking case and O (n) in the non-spiking case (Eliasmith
and Anderson, 2003; Boahen, 2017). We now provide an overview of these methods, applied to
training both feed-forward and recurrent connection weights, with an emphasis on mapping
linear dynamical systems onto SNNs – although these methods extend to nonlinear dynamical
systems as well (Voelker et al., 2017a; Voelker and Eliasmith, 2017b).

2.2.1 Principle 1 – Representation

Let x(t ) ∈Rq denote a q-dimensional continuous-time varying signal, that is to be represented
by a population of n spiking neurons. To describe this representation, we define a nonlinear
encoding and a linear decoding that together determine how neural activity relates to the
represented vector.

First, we choose encoders E = [e1, . . . ,en]T ∈ Rn×q , gains αi > 0, and biases βi (i = 1. . .n),
as parameters for the following encoding:

si (t ) =αi 〈ei ,x(t )〉+βi

ai (t ) =Gi [si (t )]

=∑
m
δ

(
t − ti ,m

)
,

(2.2)
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where si (t ) is the input current to the i th neuron, 〈·, ·〉 denotes a dot product, ai (t ) is the neural
activity generated by the i th neuron encoding the vector x(t) at time t , Gi [·] is the nonlinear
transfer function modelling the spike-generation of a single neuron, δ(·) is the Dirac delta, and
{t }i ,m is the sequence of spike-times generated by the neuron model in response to the input
current.

A common choice of neuron model for Gi [·] is the leaky integrate-and-fire (LIF) neuron
model (Koch and Segev, 1998). This model maintains a one-dimensional voltage trace, vi (t ),
by continuously integrating a current-source si (t ) over time, with some leakage governed by
the time-constant5 τRC – functionally equivalent to a resistor-capacitor (RC) circuit, a first-
order lowpass filter, or a convolution with an exponentially decaying impulse response. An
action-potential, or “spike,” is generated when the voltage reaches a threshold, in which event
the voltage is reset to its resting potential, where it remains clamped for the duration of some
refractory period, τref. After normalizing the range of vi (t ) to the interval [0,1], the subthreshold
dynamics of the LIF neurons are described by the continuous-time dynamical system:

τRCv̇i (t )+ vi (t ) = si (t ), 0 ≤ vi (t ) < 1, (2.3)

where vi (t) → 1 generates a spike at time t , followed by a reset to 0 → vi (t) that lasts τref

seconds. This model is considered to strike a convenient balance between simplicity and
biological realism (Eliasmith and Anderson, 2003, pp. 81–82, 88–89), although the NEF does
not eliminate the possibility of considering significantly more biologically-detailed neuron
models (Duggins, 2017). Likewise, neurons driven by nonlinear conductances, rather than pure
current-sources, can be leveraged by the NEF (Stöckel et al., 2018). Nevertheless, a modelling
competition centered around fitting biological recordings from real pyramidal neurons, using
artificial models of action-potential generation, discovered that simpler models (e.g., non-
leaky integration with an adaptive threshold) are often the most successful at reproducing
precisely-timed spike-trains (Gerstner and Naud, 2009).

The heterogeneous parameters that define the encoding,
{(

ei ,αi ,βi
)

: i = 1. . .n
}
, deter-

mine the variety of nonlinear responses from the population. Typically the length of each
encoder, ‖ei‖2, is fixed to 1, while αi > 0 controls its length. Then ei may be interpreted
geometrically as a “preferred direction” vector, such that its dot product similarity with x(t)
determines the relative magnitude of si (t ). The bias terms βi effectively determine the sparsity
of representation (i.e., which neurons are active for a given x(t)), while the gain terms αi

determine the density of spikes relative to τref (i.e., how many spikes are generated by an active
neuron). These parameters can be randomly sampled from distributions constrained by the
domain of x(t) and the dynamic range of Gi [·], fit from neuroanatomical data (e.g., known

5A time-constant is a physical quantity with a unit of time (e.g., seconds). It is not a dimensionless constant.
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tuning curves, preferred directions, firing rates, sparsity, etc.; see for instance Friedl et al.
(2016)), predetermined using prior knowledge of the desired transformation (Gosmann, 2015),
or trained via backpropagation through time (Rasmussen, 2018). By default, we select these
parameters such that the neural responses are uniformly distributed with respect to x across
the q-dimensional hyperball (Gosmann, 2018, pp. 51–65). In essence, equation 2.2 defines
a high-dimensional nonlinear projection of the vector x(t ), by taking its dot product with an
encoding matrix E , and injecting the result into n heterogeneous spike-generators.

Having defined an encoding, we introduce a postsynaptic filter, h(t ), which behaves as a
model for the synapse by describing the dynamics of a receiving neuron’s current. Specifically,
this filter models the postsynaptic current (PSC) triggered by action potentials arriving at the
synaptic cleft. For now, we set this to be an exponentially decaying PSC with time-constant τ:

h(t ) = 1

τ
e− t

τ , t ≥ 0. (2.4)

This is equivalent (in the Laplace domain) to the canonical first-order lowpass filter (also known
as a “leaky integrator”), with the same dynamics as equation 2.3. The lowpass synapse is the
conventional choice of synapse in the NEF, since it is mathematically tractable while capturing
a central feature of biological synapses and approximating the optimal acausal filter (Eliasmith
and Anderson, 2003, pp. 109–114, 223). In section 5.1, we relax this requirement by considering
more general synapse models that are capable of reproducing a much broader variety of PSCs.

We can now characterize the decoding of the neural response, which determines the
information extracted from the neural activities encoding x(t ). Let D = [d1, . . . ,dn]T ∈Rn×q be
the decoding matrix used to decode a filtered version of x(t ) from the population’s activities,
ai (t ), at time t , as follows:

(x∗h) (t ) ≈
n∑

i=1
(ai ∗h)(t )di

=
n∑

i=1

∑
m

h
(
t − ti ,m

)
di ,

(2.5)

where ∗ is the convolution operator used to apply the synaptic filter. Equation 2.5 takes a
linear combination of the filtered activities, in order to recover a filtered version of the encoded
signal.6 To complete the characterization of neural representation, we must map the encoders,
decoders, and synapse models onto a neural architecture, and solve for the optimal linear
decoders D . This optimization is identical for Principles 1 and 2, as discussed below.

6It is more accurate to apply the filter to both sides, since in general the (time-invariant) decoders alone cannot
compensate for the filter applied to the activities – this instead becomes the responsibility of Principle 3.
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2.2.2 Principle 2 – Transformation

The second principle of the NEF addresses the issue of computing transformations of the
represented signal. The encoding remains defined by equation 2.2. However, we now decode a
filtered version of some function, f :Rq →Rq ,7 by applying an alternate matrix of decoders to
the same filtered spike trains:

D f =
[

df
1, . . . ,df

n

]T ∈Rn×q

(f(x)∗h) (t ) ≈
n∑

i=1
(ai ∗h)(t )df

i

=
n∑

i=1

∑
m

h
(
t − ti ,m

)
df

i .

(2.6)

Now we must solve for D f. For both Principles 1 and 2, we optimize for D f over the domain
of the signal, S = {x(t) : t ≥ 0}, which is typically the unit q-ball {v ∈ Rq : ‖v‖2 ≤ 1} or the unit
q-cube [−1,1]q . This can be done, as is, by simulating the population over time and solving a
least-squares problem. But, in order to do this as efficiently and scalably as possible, we also
reformulate the problem to avoid needing to explicitly simulate the spike-generation. We first
let ri (v) be the limiting average firing rate of the i th neuron under the constant input v ∈ S:

ri (v) = lim
t→∞

1

t

∫ t

0
ai (t ′)d t ′. (2.7)

For non-adaptive neuron models, equation 2.7 reduces to encoding v using a rate model. To
provide an example, we solve for the closed-form solution in the case of the LIF model. To start,
we solve the differential equation 2.3 while holding si =αi 〈ei ,v〉+βi fixed:

vi (t ) = vi (0)+ (si − vi (0))
(
1−e

− t
τRC

)
.

7We may also consider transformations where the range has a different dimension, but the described framework
will suffice for our purposes.
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To determine how much time it takes to generate a spike, we set vi (0) = 0, vi (t) = 1, and
rearrange for t :

1 = 0+ (si −0)
(
1−e

− t
τRC

)
1

si
= 1−e

− t
τRC

lne
− t
τRC = ln

(
1− 1

si

)
t =−τRC ln

(
1− 1

si

)
.

The total time to spike, including the refractory period, is τref + t . And since frequency is the
reciprocal of period, the expected spike-rate in response to si becomes:

ri (v) = 1

τref −τRC ln
(
1− 1

si

) . (2.8)

Equation 2.8 is also known as the rate model for a LIF neuron, as it describes a static nonlinear-
ity whose output is the LIF neuron’s spike rate in response to the input.

For adaptive neuron models, other definitions for ri (v) may be considered, but we limit
our discussion here to the (non-adaptive) spiking LIF model. To account for the variance
introduced by neural spiking, and other sources of uncertainty, we introduce a white noise
process η∼N (0,σ2). The solution to equation 2.6 becomes:

D f = argmin
D∈Rn×q

∫
S

∥∥∥∥∥f(v)−
n∑

i=1

(
ri (v)+η)

di

∥∥∥∥∥
2

2

d q v. (2.9)

Note that this optimization only depends on ri (v) for v ∈ S, as opposed to depending on the
signal x(t). In other words, the optimization is determined strictly by the distribution of the
signal, and not according to its particular dynamics. Since we have replaced the optimization
problem involving spikes (equation 2.6) with one involving static nonlinearities, this sidesteps
the need to explicitly simulate the neurons over time when training. Furthermore, this is a
convex optimization problem, which may be solved by uniformly sampling S (Voelker et al.,
2017b) and applying a standard regularized least-squares solver to the sampled data (Bekolay
et al., 2014). In the context of machine learning, the samples of S are the example inputs
from training data. Nengo also supports alternative decoder solvers that optimize variants of
equation 2.9 (e.g., Friedl et al., 2016; Kauderer-Abrams et al., 2017), and randomized singular-
value-decomposition (SVD) solvers that take O (mn) time and space (Halko et al., 2011) – but
we do not use them here.
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The accuracy of this approach depends on the quality of the following approximation:

x(t ) = v =⇒
n∑

i=1
(ai ∗h) (t )df

i ≈
n∑

i=1

((
ri (v)+η)∗h

)
(t )df

i . (2.10)

In plain words, this presupposes that substituting a filtered spike-train with its correspond-
ingly filtered (but noisy) rates does not change the optimal set of decoders for a target set of
postsynaptic currents. A subtle, yet critical, observation is that we do not require the spike
rates of individual neurons to reflect their idealized instantaneous rates. Rather, we exploit
the fact that filtering and weighting spikes across the entire population will satisfy such an
approximation (Eliasmith and Anderson, 2003, pp. 132–136).

In section 3.1.5, we discuss how our adoption of equation 2.10 has lead many to mischarac-
terize the NEF as using a “rate code,” which comes with significant baggage. We suggest that
the NEF should instead by characterized as mapping latent state-variables onto postsynaptic
currents, and to label this as a “postsynaptic current code”; this code can exhibit repeatedly pre-
cise spike-times, facilitate rapid transmission of information, and does not demand excessive
pool sizes or long time-constants, contrary to commonly-held beliefs that have carried over
from rate-coding paradigms. In the NEF, individual neurons are free to spike much slower than
their ideal rate models, while remaining silent across intervals of time that far exceed the time-
constant of the synapse. In section 3.2.1, we provide a novel proof that justifies the correctness
of this technique much more generally. Perhaps surprisingly, this optimization procedure is
mathematically correct for Poisson-spiking models and simple integrate-and-fire models, even
as the frequency of the state-vector goes towards infinity, and as the time-constants of the
filters approach zero (see Figure 5.4).

It remains to map these encoding and decoding parameters onto a neural architecture.
Equations 2.2 and 2.6 are used to derive a connection weight matrix between layers that
implicitly computes the desired function f(x) within the latent state-space Rq . Let ωi j be the

“weight,” or coupling strength, between the j th presynaptic neuron and the i th postsynaptic
neuron. Specifically, the weight matrix W = [ωi j ] ∈ Rn×n , which maps activities from the

j th presynaptic neuron to the i th postsynaptic neuron (disregarding the gain and bias, for
notational simplicity), is given by:

W = E
(
D f

)T
. (2.11)

To project activities from one population to another (or back to itself), they are decoded from
an n-dimensional neuron space into the q-dimensional state-space, and then encoded back
into the n-dimensional neuron space. Thus, by linearity, the process of decoding (equation 2.6)
and then encoding (equation 2.2), is equivalent to taking the dot product of the weight matrix
W with a vector of neural activations. Consequently, the matrices E and D f are a low-rank
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factorization of W . Moreover, we remark that by linearity, the addition of multiple connections
has the effect of adding together their transformations in state-space. Similarly, any linear
transformation of the nonlinear function T f(x), T ∈Rq×q , may be implemented by the decoders
D fT or by the encoders ET —both are optimal and equivalent to one another—without needing
to solve for a new set of weights. Although this assumes linear synapses, the computations
of nonlinear conductance-based synapses may be exploited by the NEF to encode nonlinear
functions of the decoded variables across multiple pre-populations (Stöckel et al., 2018).

This factorization has additional consequences for the computational efficiency of neural
simulations. The crucial difference between the factorized and non-factorized forms is that it
takes O (

qn
)

operations per simulation time-step to implement this dot product in the factored
form of equation 2.11, as opposed to O (

n2) operations for a full weight matrix. Since q is
typically held constant, this yields a factor O (n) improvement in simulation time. Similarly,
this factorizations yields an O (n) reduction in memory, which significantly improves the
scaling of neuromorphics (Mundy et al., 2015). In essence, this factorization provides a way to
describe the network’s latent state-vector x(t ). This, in turn, enables useful computations that
nonlinearly transform the state-vector with O (

τ
p

n
)

precision in the presence of spike-noise
(see Eliasmith and Anderson (2003, p. 47–48) and section 3.2.2).

2.2.3 Principle 3 – Dynamics

Principle 3 is a method of harnessing the dynamics of the synapse model for network-level
information processing. We begin by focusing our discussion of NEF dynamics on the neural
implementation of continuous, linear time-invariant (LTI) systems (see Figure 2.1):

ẋ(t ) = Ax(t )+Bu(t )

y(t ) =C x(t )+Du(t ),
(2.12)

where the time-varying signal x(t) represents the system state, ẋ(t) its time-derivative, y(t)
the output, u(t ) the input, and the time-invariant matrices (A,B ,C ,D) fully describe the sys-
tem (Brogan, 1991). This form of an LTI system is commonly referred to as the state-space
model, but there are many other equivalent forms, which we refer to later.

For LTI systems, the dynamical primitive—that is, the source of the dynamics—is the
integrator (see Figure 2.1). However, in the model that we consider (see Figure 2.2), the
dynamical primitive at our disposal is the leaky integrator, given by the canonical first-order
lowpass filter modelling the synapse (repeating equation 2.4, for clarity):

h(t ) = 1

τ
e− t

τ =L−1
{

1

τs +1

}
, (2.13)
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∫
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A

D

u x y

Figure 2.1: Block diagram for an LTI system. The integrator is driven by the signal ẋ(t).
Reproduced from Voelker and Eliasmith (2018, Figure 1).

τB + 1

τs +1
C +

τA+ I

D

u x y

Figure 2.2: Block diagram for an LTI system, equivalent to Figure 2.1, with the integrator
replaced by a first-order lowpass filter. The lowpass is driven by the signal τẋ(t )+x(t ) to ensure
that it implements the same system as in Figure 2.1. Reproduced from Voelker and Eliasmith
(2018, Figure 2).
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where L−1{·} denotes the inverse Laplace transform, and the latter representation is referred to
as a transfer function.8 Our approach is to represent the state-vector x(t) in a population of
spiking neurons (Principle 1; equation 2.2), such that this same vector is obtained by filtering
an appropriate transformation with a leaky integrator (Principle 2; equation 2.6). Thus, the
goal of Principle 3 is to determine the transformations required to implement equation 2.12,
given that the required x(t) is obtained by some convolution with a leaky integrator, rather
than the perfect integrator depicted in Figure 2.1.

Principle 3 states that in order to implement equation 2.12 in a population of neurons that
represents x(t), we must compensate for the effect of “replacing” the integrator with a leaky
integrator (compare Figures 2.1 and 2.2) by driving the synapse with τẋ(t)+x(t) instead of
only ẋ(t ). This compensation is achieved as follows: implement the recurrent transformation
(τA + I )x(t), and the input transformation τBu(t), but use the same output transformation
C x(t ), and the same passthrough transformation Du(t ) (Eliasmith and Anderson, 2003, pp. 221–
225). Specifically, this may be implemented in a spiking dynamical network by representing
x(t ) via Principle 1 and then using Principle 2 to decode the needed transformations.

The resulting model is summarized in Figure 2.2. Notably, both systems compute the exact
same signals x(t ) and y(t ); the difference is the dynamical primitive, and the transformations
needed to account for this change. The neural architecture that realizes this model consists of
a population of neurons representing x(t), recurrently coupled to itself, with weights imple-
menting the above transformations determined by equation 2.11, and each synapse filtering its
spike-trains via convolution with equation 2.13. The outcome is that the desired state-vector,
x(t ), is linearly projected onto the postsynaptic current of each neuron. We depict and compare
this architecture to related work in the following section.

The correctness of this “mapping” procedure relies on three assumptions: (1) the synapse
model is equation 2.13, (2) the network is simulated in continuous time (or the discrete
time-step is sufficiently small), and (3) the necessary representations and transformations are
sufficiently accurate, such that the approximation error from equation 2.6 is negligible. In other
words, assuming n is sufficiently large, the system depicted in Figure 2.1 may be implemented
by a continuous-time SNN that realizes the model of Figure 2.2. In section 5.1, we provide a
novel proof of this fact, and extend Principle 3 to relax the first and second assumptions. In
section 3.2.1, we provide rigorous criteria for satisfying the third assumption.

Principle 3 is useful for accurately implementing a wide class of dynamical systems—
integrators, oscillators, attractor networks, controllers, and even continuous memories (see
chapter 6)—to solve specific problems that frequently arise in neural modelling (e.g., Eliasmith

8For comparison, the transfer function of an integrator is L {1} = 1

s
.
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and Anderson, 2000; Singh and Eliasmith, 2004; Eliasmith, 2005; Singh and Eliasmith, 2006). We
provide details on such examples in section 4.2. Furthermore, the class of state-space models
is isomorphic to the class of all finite-dimensional causal linear filters, or equivalently all
rational (finite-order) proper transfer functions, which is a large and useful class of dynamical
systems employed widely in control applications (Brogan, 1991). Given the ability of Principle 2
to compute nonlinear functions (i.e., equation 2.6), Principle 3 also naturally generalizes to
nonlinear dynamical systems, as illustrated in section 5.1.3.

2.2.4 Relationships to other approaches

Conventional RNNs are notoriously difficult to train and interpret in practice (Bengio et al.,
1994). The paradigm of Reservoir Computing (RC; Jaeger, 2001; Maass et al., 2002) has managed
to overcome some of these limitations, by driving a fixed and randomly-connected ensemble
of neurons, and learning the desired output via linear decoding. The First-Order Reduced and
Controlled Error (FORCE; Sussillo and Abbott, 2009) method improves the performance of
RC networks, by simultaneously re-encoding the learned output back into the reservoir, and
training this feedback loop online using recursive least-squares (RLS; Haykin, 1991). Despite
the success of these approaches, it remains difficult to interpret the high-dimensional repre-
sentations employed by the reservoir, or to incorporate prior knowledge into the reservoir to
improve task performance. Full-FORCE (DePasquale et al., 2018) solves the latter problem, by
allowing the desired state-vector to be encoded into the network in the form of “hints” during
training, but does so without accounting for the dynamics introduced by the synaptic τ, or
carefully attending to the choice of encoding parameters, as in the NEF.

In all of these cases, however, random feedback ultimately leads to an inefficient use of
neural resources for dynamical systems that are predominantly low-dimensional. That is, if we
know the dynamics of the system that we would like to implement, then the NEF already does
just that. Many have argued that dynamics in biological systems are unions of low-dimensional
attractor manifolds (Sussillo and Barak, 2013; Cunningham and Byron, 2014; Waernberg and
Kumar, 2017). The NEF imposes such a low-dimensional structure on the weight matrices
themselves. Learning these dynamics is a somewhat separate matter; the NEF does not
limit itself to situations where the dynamics are known a priori. Techniques from system
identification (Nelles, 2013), optimization in the time-domain using a teacher signal (Duggins,
2017), and backpropagation through time (Rasmussen, 2018), may all be applied to learn the
dynamics from raw data. Likewise, Nengo supports the use of random feedback and online RLS
learning with full weight matrices, with or without spikes, thus reducing the NEF network to a
full-FORCE network. The NEF is compatible with all such methods, but makes a preference
for those that are amenable to theoretical analysis while being scalable and efficient in time
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Figure 2.3: Comparing the recurrent architectures of (a) Reservoir Computing (RC), (b) First-
Order Reduced and Controlled Error (FORCE), and (c) the Neural Engineering Frame-
work (NEF). Blue weights are fixed and randomly chosen. Orange weights are learned either
online or offline. Each ensemble is a pool of synapses and neurons that filter and nonlinearly
encode the weighted activities. The input to each network is omitted for simplicity.

and space. We find the approach of introducing random high-dimensional feedback to be
inefficient and unnecessary for our purposes (section 6.2.1), and furthermore re-encoding
the target output into the network as a teaching signal can be counter-productive (i.e., reduce
accuracy) even in simple cases (section 6.2.2).

We now consider the architectural relationships in considerable detail, focusing on the
one-dimensional input-output case for notational convenience. In the case of RC networks
(see Figure 2.3a), they make a conceptual separation between a fixed reservoir of randomly-
connected neural units, and a learned readout. The reservoir is driven by encoding the input
signal, u(t ) ∈R, using a random vector, ein ∈Rn . The units within the reservoir are recurrently
connected using a random matrix, W ∈ Rn×n , and a feed-forward readout vector, d ∈ Rn , is
optimized to decode some target, y(t ) ∈R. Intuitively, the reservoir expands the input into a
set of nonlinear temporal basis functions—referred to as echoes—while the readout combines
these dynamical traces to approximate the desired target. Since the readout is typically a linear
combination of the reservoir’s activity, the decoders may be learned via least-squares regression.
This is equivalent to the optimization performed by the NEF on the output transformation,
but using data that is collected by explicitly simulating the network over time. In contrast, the
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reservoir is left untrained with dynamical properties that remain fixed, independently of the
desired task.

While RC solves the issue of training RNNs, the problem of efficient scaling remains. Indeed,
as noted by RC theorists, “just simply creating a reservoir at random is unsatisfactory” and
“setting up the reservoir such that a good state expansion emerges is an ill-understood challenge
in many respects” (Lukoševičius, 2012b). Generally, the computational power of RC relies upon
having a sufficiently large reservoir that represents a high-dimensional superset of the required
dynamics, ultimately resulting in an inefficient use of resources for many systems (Wallace
et al., 2013). This becomes problematic when considering the time and memory required to
simulate RC networks, which scales as O (

n2), thus making large-scale simulations of the brain
computationally prohibitive. In section 6.2.1 we show that rate-based reservoirs (ESNs) can be
outperformed in accuracy, time, and memory, by spiking NEF networks of the same size.

The First-Order Reduced and Controlled Error (FORCE; Sussillo and Abbott, 2009) method
extends ESNs by learning a low-rank component of the recurrent weight matrix. This can be
decomposed into a separate feedback loop, that autoencodes the desired output back into
the network (see Figure 2.3b). Specifically, the recurrent weights include an additional outer-
product term, edT ∈ Rn×n , where e ∈ Rn is a fixed random vector, and d ∈ Rn is the same
decoding vector from before. By design, these weights decode an approximation of the desired
output, y(t ), and subsequently encode it back into the reservoir, alongside the random mixing
from W . This additional loop improves the performance the network, assuming the underlying
dynamics are at least partially driven by a static function of the filtered and randomly encoded
target signal. However, this is not always the case. In section 6.2.2, we show that this method
of re-encoding the output signal does not always improve task performance. This discussion
extends to the full-FORCE method (DePasquale et al., 2018), which learns a full-rank matrix
that encodes the same state as in FORCE, but using additional degrees of freedom, similar to
Tripp and Eliasmith (2006).

The Neural Engineering Framework (NEF; Eliasmith and Anderson, 1999, 2003) provides
an alternative method for building dynamical neural networks (see Figure 2.3c). Rather than
relying on random feedback, or always re-encoding the output (in the case of FORCE), the NEF
optimizes the recurrent weights to represent the desired dynamical state. This can be under-
stood as constructing an RC network with an optimized reservoir, although the approaches
were developed independently. In the NEF, the desired dynamical state, x(t) ∈ Rq , is either
expressed in closed form as a set of dynamical equations (in continuous-time or discrete-time),
or provided via time-series data as is more typical within RC. Then, the recurrent weight matrix
is factored into EDT ∈Rn×n , where E ∈Rn×q is a fixed encoding matrix, D ∈Rn×q is a learned
decoding matrix, and a filtered combination of input and recurrent activations represent x(t ).
A central observation made by the NEF is that the optimal D can be determined from x(t ), the
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Recurrence Readout Simulation

Method Online Offline Online Offline Explicit Implicit

RC × × × X X ×
FORCE X ∼ X ∼ X ×
Full-FORCE X ∼ ∼ X X ×
NEF ∼ X ∼ X ∼ X

Table 2.1: Summary of the characteristics of each training method. Tildes (∼) denote less-
commonly advertised, but sensible, use-cases (see text for details).

selection of neuron models, the models of postsynaptic current (PSC), and whether the simula-
tion is analog or digital (Voelker and Eliasmith, 2018). In the same way as FORCE, the NEF may
include d as a column of D , and e as a column of E , to re-encode y(t ) – equivalent to asserting
that a filtered version of y(t ) is a dimension of x(t ). This assumption is made if and only if it is
helpful (e.g., to perform integration; Singh and Eliasmith, 2004). If all relevant state-variables
are identified, and all target models are ideally leveraged, then the high-dimensional dynamics
introduced by W serve absolutely no purpose. To this point, we find that even the expansion
of the input signal into a rich set of nonlinear temporal basis functions can be accomplished
by an optimally-designed, closed-form, dynamical system (see section 6.1.1).

Now we shift focus to discuss the method(s) of training in some detail (see Table 2.1). Within
the NEF, the important distinction between ESNs and LSMs is captured simply by the choice of
Gi [·] (see equation 2.2). In either case, we can identify the neural activity of the reservoir with
ai (t ), where x(t ) is some unknown (latent) state that depends on both u(t ) and the dynamical
properties of the reservoir. Note that characterizing x(t ) is precisely the problem faced when
trying to understand what information RC networks are representing. Regardless, the linear
readout amounts to the following approximate nonlinear function of x(t ):

y(t ) ≈
n∑

i=1
(ai ∗h)(t )df

i . (2.14)

This has the same form as equation 4.8 from Principle 2 of the NEF. The important difference
lies in how the decoders D f are trained. Rather than solving for D f using equation 2.9, the
network is explicitly simulated to obtain the exact temporal basis functions. In general, the RC
training method relies on explicit simulation, since x(t ) is unknown. In the NEF the simulation
is typically implicit within Principle 2, but can also be made explicit in exactly the same
manner (Friedl et al., 2016; Duggins, 2017).
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The NEF, by default, avoids explicit simulation because it is more costly (especially as the
time-step becomes small), which is of practical importance when engineering large-scale net-
works (e.g., Eliasmith et al., 2012). However, the method does have the benefit of automatically
refining any additional, non-Gaussian, error in the decoding introduced by the substitution
of equation 2.7. Furthermore, the readout can learn to compensate for other sources of error
and even mischaracterizations of the state-variable. On the one hand, this can simplify the
engineering work involved in training the network, while on the other hand it can mask the
effects of costly modelling mistakes.

For the non-adaptive, non-spiking, case the explicit training method adds absolutely
no improvement, assuming the representation has been correctly characterized. Overall,
the explicit training methodology is only suitable for black-box applications where there is
little-to-no visibility into the latent dynamical state-variables that generated the data, or for
when randomized high-dimensional feedback makes it generally intractable to analytically
determine the trajectory of the network’s dynamics.

From the perspective of RC, the NEF provides a way to solve for the recurrent connection
weights by imposing a low-dimensional dynamical state x(t) on the reservoir. This can be
thought of as building a structured reservoir that is optimized for a restricted subset of functions.
Specifically, we may include a set of temporal basis functions (that incorporate prior knowledge
of the desired function) using Principle 3, and then apply any training method to this specially
constructed reservoir. The readout may still capture unanticipated nonlinear relationships
between the state and the target, and this readout may still be trained from data. The NEF
provides a way to understand the resulting computations, and to systematically relate the
dynamics of the state-variables to the parameters of the computational models. This allows us
to, for instance, understand the network-level effects of including different synapse models.
Furthermore, this reduces the cost of simulation time and memory by a factor of O (n) for
constant dimensionality, since the number of connection weights for RC scale as O (

n2).

The balanced SNN approach of Boerlin and Denève (2011); Boerlin et al. (2013) requires
a separate discussion. These methods are closer to the NEF in that they begin with a model
of the desired dynamics, and then map that system onto a latent representation within an
SNN using factored weight matrices. These methods do not rely on randomized feedback,
nor explicit simulation of the network over time to train its parameters. Rather, they derive a
closed-form solution for the parameters. These parameters, in effect, deterministically control
the spike-timing of each neuron, in such a way that the population collaboratively keeps any
deviations from its ideal state bounded above by the peak magnitude of a single filtered and
weighted spike, n−1. In particular, each neuron’s spike signals a constant deviation from the
ideal, which causes all neurons to instantly update their local state to track the global error.
The outcome is precision that scales as O (n), that is, linearly in the number of neurons, or the
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total number of spikes (Boahen, 2017). However, this scheme applies only to linear dynamical
systems, relies on near-instantaneous communication between all neurons with a sufficiently
small time-step, and requires linear neurons with relatively minimal leakage and no refractory
period (Boerlin et al., 2013).9

The work has been extended to support more biologically-plausible mechanisms, but the
scaling becomes O (p

n
)

as in the NEF (Schwemmer et al., 2015, Figure 12d). In general, it is
unclear how far these assumptions can be relaxed before scaling regresses to O (p

n
)
, which

is of relevance when considering our targets of modelling biological systems and compiling
onto neuromorphic hardware – both of these targets regularly violate the above assumptions.
As we show, the NEF can account for and remain robust to non-idealities, such as discrete
time-steps, higher-order synapses, and detailed neural dynamics. We find that some of the
remaining differences between the statistics of spike-trains, and the number of spikes required
to achieve some level of precision, can be made up for in the NEF by delaying spikes a variable
length of time that is sensitive to the global error (unpublished) – but we cannot currently
offer a biologically-plausible explanation to learn such a mechanism. Nevertheless, we believe
further investigation into these areas of research are of utmost importance for determining the
computational-theoretic limits of SNN precision with respect to some target set of dynamical
primitives, and for maximizing the efficiency of information transmitted per spike (Eliasmith
and Anderson, 2003, pp. 92–127).

Returning to the literature on RNNs and backpropagation, there exists a range of meth-
ods designed to convert a conventionally-trained deep network, that uses static non-spiking
(i.e., rate-based) nonlinearities, into an equivalent SNN (Cao et al., 2015; Rueckauer et al.,
2017; Yousefzadeh et al., 2019, and various methods mentioned in section 2.1.1). This comes
with some minor loss in precision due to spike-variability. However, these methods on their
own do not address the difficulties in training RNNs. Moreover, they do not immediately
extend to recurrent SNNs, that is, unless the RNN has been trained with the same filter as
the SNN. But of equal importance, is that common to all of the methods mentioned above
are limitations regarding the nonlinearities employed by both networks. In particular, they
commonly assume rectified linear activation units, corresponding to specifically-engineered
integrate-and-fire units in the SNN, which limits the applicability of these methods in the
context of biologically-grounded models and implementation on neurormorphic hardware.

9We thank Daniel Rasmussen for having implemented these methods in Nengo (unpublished), which served
to validate these criticisms and to inform this discussion through additional experimentation.
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2.3 Neuromorphic Computing

The term neuromorphic computing—also known as neuromorphic engineering—refers broadly
to the use of specialized hardware to emulate computational principles of biological nervous
systems (Mead, 1989; Liu et al., 2002). Here, we focus more specifically on the synthesis
of Spiking Neural Networks (SNNs)—in both analog and digital hardware—for low-power,
dynamical, brain-like, computation (Boahen, 2017).

This section provides a brief overview of the landscape of neuromorphic hardware, with
an emphasis placed on state-of-the-art hardware made available to the Centre for Theoretical
Neuroscience, at the University of Waterloo, for academic research, namely: SpiNNaker (Furber
et al., 2014), Braindrop (Neckar et al., 2019), and Loihi (Davies et al., 2018). At the same time, this
overlaps with the efforts of many companies, including: Applied Brain Research (ABR), Intel,
IBM, Numenta, Qualcomm, BrainChip, General Vision, HRL Laboratories, Brain Corporation,
Knowm, Samsung, and Vicarious FP (QY Research, 2018; Crunchbase, 2018) – although we
focus primarily on ABR’s marriage of Nengo and the NEF with neuromorphic hardware from
Stanford’s Brains in Silicon Lab (i.e., Braindrop) and Intel (i.e., Loihi). A non-exhaustive list of
other architectures, many of which implement NEF networks, are provided in section 2.3.4.

Coming from a purely computational-theoretic perspective, there is nothing special about
neuromorphic hardware; alternative hardware architectures cannot move beyond what is
already Turing-computable. There is no logical nor physical reason to believe that neurons
and synapses somehow enable new computations that were previously unable to be emulated
using available technology. Instead, neuromorphic architectures aim to implement specific
classes of algorithms, realized via massively-parallelized event-driven computations that are
sparse in both space and time, using dramatically less power (Tang et al., 2017).

The human brain has been estimated to consume as little as 10–20 fJ10 on average per
“synaptic event” (Cassidy et al., 2014; Boahen, 2017), totalling approximately 20 W across its
~1011 neurons and ~1014 synapses (Koch, 2004). After more than 30 years of work (Cassidy
et al., 2013), the state-of-the-art in neuromorphic computing is on the verge of reaching this
level of performance, with Braindrop, Loihi, and TrueNorth (Merolla et al., 2014), each coming
within a factor of 101–103 for roughly equivalent measures of energy per synaptic operation
and typical network configurations (Neckar et al., 2019). Such potential energy savings are not
only tremendous, but a prerequisite to reach the exascale (1018) level of computation achieved
by the human brain – unless one has access to a super-computing cluster powered by a nuclear
power plant producing on the order of 109 watts (Furber, 2012; Benjamin et al., 2014). However,
such power measurements are not straight-forward to interpret, as there are many other factors

10One femtojoule (fJ) is equivalent to 10−15 joules (J).
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such as the cost of scaling, flexibility of the hardware, and open questions surrounding whether
the energy per synaptic event is the best metric for evaluating system performance, and how
much speed, accuracy, and biological detail is necessary (Eliasmith, 2013) – all of which make
fair benchmarking an incredibly challenging problem (Stewart et al., 2015).

However, improved power-efficiency often comes with the costs of reduced programma-
bility and narrowed application spaces; the more you know about the problem that you are
trying to solve, the more that can be “baked in” to the hardware to save energy and space, while
sacrificing flexibility. This fundamental trade-off between being able to solve fewer problems
more efficiently, versus more problems less efficiently, is one that the community as a whole is
still trying to navigate. It appears likely there will be no one-size-fits-all solution, and rather a
variety of strategies will be needed to mirror the degrees of architectural specificity observed
in the human brain. Yet, there are many common features between neuromorphic hardware
architectures, including: dynamic spike-generation, massive parallelism, memory colocated
with computational elements, heterogeneity, sparsity, structured connectivity, minimization
of spike traffic and synaptic events, and real-time interfacing. These features are anticipated
to provide robust, scalable, and energy-efficient solutions to the domain of tasks where our
brains excel: processing sensory information, language, cognition, and motor behaviours – all
dynamically coupled to the time-scales of our environment.

To fully unlock the potential of such hardware, we require significant advances at the
intersection of computer science, computational neuroscience, cognitive modelling, electrical
engineering, physics, and mathematics. This involves discovering new algorithms, developing
new frameworks, and training the next generation of programmers to think differently about
problems – but the benefits are far-reaching: real-time computation that can in principle scale
up to the perceptual, cognitive, and motor capabilities of the human brain, without requiring
the energy production of a nuclear power plant.

In chapter 5, we summarize some of the main challenges surrounding the use of neu-
romorphic hardware, and demonstrate how the NEF solves many of these problems. More
generally, we provide a theoretical framework and extensions to formally understand the class
of computations that neuromorphic hardware enables, given its computational elements and
constraints, including resource budget and desired precision. A novel class of algorithms in-
volving temporal computations are explored and analyzed in detail in chapter 6. Applications
running on neuromorphic hardware are provided in chapter 7.

33



2.3.1 SpiNNaker

The SpiNNaker11 project formally began in 2005 as a collaboration between several universities
and industrial partners, housed at the University of Manchester, with the primary goals of
simulating large-scale SNNs in real-time, and investigating new architectures which “lead
to fundamentally new and advantageous principles for energy-efficient massively-parallel
computing” (University of Manchester, 2012; Furber et al., 2014). Secondary goals include a
balance between power, cost, and programmability, in order to make SpiNNaker accessible to
a wide range of researchers spanning neuroscience and cognitive modelling communities.

The basic building block of SpiNNaker is a chip multiprocessor (CMP) containing 18
ARM968 cores and 128 MB SDRAM (Painkras et al., 2013; Furber et al., 2013). Each core was
prescribed to simulate 103 spiking neurons and 106 synapses, although Nengo’s integration
doubled this target by achieving 2,000 neurons per core through the use of factorized weight
matrices (Mundy et al., 2015). Each CMP is fully digital, locally synchronous, clocked at some
frequency (e.g., 200 MHz), and allotted some amount of wall time (e.g., 1 ms) to complete each
time-step. Thus, both neural and synaptic elements are virtualized (i.e., reusing the same
shared silicon) by simulating as many of them as possible within each core given the allotted
wall time. The limiting factor in scaling each core is predominantly the amount of available
SDRAM split between cores, and the volume of spike traffic transmitted between CMPs. The
architecture scales up to 216 CMPs—over 109 neurons and 1012 synapses—asynchronously
connected to one another through a 2D triangular toroidal mesh. An instantiation that realizes
their initial target of 1% of the human brain, using 106 cores, was finally reached as of 2018.

Studies involving power-usage are surprisingly scarce, but one such study demonstrated
that scaling to one quarter of a million neurons required less than 30 W of power, in the
worst-case (Stromatias et al., 2013), or on the order of 105–106 times more power than a
human brain of the same size.12 This is a significant improvement upon high-performance
computing (HPC) architectures, which devour at least 108 times more power than a human
brain (Furber, 2012). However, a more recent study by van Albada et al. (2018) concluded
much more conservatively that SpiNNaker is still a factor of 107–109 away from the efficiency
of the mammalian brain.13 In this scenario SpiNNaker was outperformed by NEST running
on an HPC cluster, and likewise a smaller-scale implementation of an associative memory on
SpiNNaker performed comparably to NEST on an Intel Core i7-4710MQ processor (Stöckel et al.,
2017a). Similarly, Knight and Nowotny (2018) found that GPUs improved both the simulation

11SpiNNaker stands for “Spiking Neural Network Architecture.”
12The human brain has 400,000 times as many neurons, and uses 20 W of power.
13The lower-bound on this estimate comes from a hypothetical extrapolation of their results. Furthermore, the

range becomes 108–1010 if using the estimate of 10–20 fJ per synaptic event for the brain.
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time and energy-to-solution for cortical circuit simulations, compared to SpiNNaker and CPU-
based HPC hardware. Meanwhile, Sugiarto et al. (2016) estimated that both SpiNNaker and an
FPGA provide a 102–103-fold improvement over both CPUs and GPUs, on an image processing
task. Clearly it matters what one is actually scaling towards.

Nengo has been ported to SpiNNaker (Galluppi et al., 2012; Mundy et al., 2015) and used
to run the major components of the Spaun brain model in real-time (Mundy, 2016). This
goal represents a 104-fold speedup over a conventional X86 CPU implementation (Stewart
and Eliasmith, 2014). This implementation required significant work by Mundy (2016) to
leverage the flexibility of the SpiNNaker architecture, and so we do not go into detail here.
General support has also been added for both supervised learning (Davies et al., 2013) and
unsupervised learning (Knight et al., 2016) to learn human-scale vocabularies online using
Nengo. Meanwhile, Nengo has also been deployed on a prototype autonomous robot equipped
with a SpiNNaker board to sense and act in real-time (Galluppi et al., 2014). PyNN has also
been ported over to SpiNNaker, further highlighting the flexibility of the architecture (Rhodes
et al., 2018). Several other applications of SpiNNaker are reviewed by Rhodes et al. (2018),
independently of Nengo.

The next generation of SpiNNaker, dubbed SpiNNaker 2, is currently in development with
a prototype chip available for testing (Liu et al., 2018). The hardware promises to improve
upon the speed- and power-efficiency of the first generation by use of improved fabrication
processes, advanced per-core power management techniques (Hoeppner et al., 2019), and
specialized hardware acceleration for the exponential function (Partzsch et al., 2017). Liu et al.
(2018) deploys a deep neural network on the prototype SpiNNaker 2 test chip, realizing power
improvements on the order of 102 versus a traditional X86 CPU implementation. Yan et al.
(2019) demonstrates a structural plasticity learning rule on the same prototype to validate its
power management and hardware acceleration. Nengo may be supported at the same time as
the actual chip [personal communication].

2.3.2 Braindrop

Braindrop (Neckar et al., 2019) is a mixed-signal—both analog and digital—neuromorphic
architecture that attempts to realize the energy-efficiency of the human brain, without sac-
rificing the flexibility required to simulate functional large-scale cognitive systems such as
Spaun (Eliasmith et al., 2012). This project was a five year collaboration between Stanford, Yale,
and the University of Waterloo, and was made possible in this time frame by building upon
many of the tools and lessons learned from its predecessor, Neurogrid (Benjamin et al., 2014).

Both Neurogrid and Braindrop take a dynamical systems-based approach (Arthur and

35



Boahen, 2011; Gao et al., 2012) to realize network-level computation. In particular, the device-
level physics of subthreshold analog circuits (Andreou et al., 1991)—emulating the behaviours
of neurons and synapses—are leveraged by weighting the digital communication of spikes, to
engineer dynamical systems (Dethier et al., 2011). It is argued that an appropriate mixture of
analog computation for nonlinear encoding—sparsifying signals across both space and time—
and digital communication for spike transmission, is responsible for the energy-efficiency of
mammalian brains (Boahen, 2017). This hypothesis makes such architectures a natural target
for NEF networks, in particular due to its modelling of the dynamical primitives encoding
signals into spikes, and its efficient procedures to solve for the weights in the communication
fabric.

The NEF has been deployed on Neurogrid primarily to implement control algorithms (De-
thier et al., 2011; Choudhary et al., 2012; Menon et al., 2014). However, the use of Neuro-
grid requires advanced calibration (Kauderer-Abrams and Boahen, 2017) and temperature-
compensation techniques (Kauderer-Abrams et al., 2017) in order to tame the analog variability
– both of which contribute to it being difficult to use in practical applications.14

Braindrop is designed explicitly with Nengo and the NEF in mind, by way of a novel
mapping (Voelker et al., 2017a; Neckar et al., 2018), accompanied by a number of inventive
solutions including: temperature-invariance (Kauderer-Abrams et al., 2017; Reid et al., 2019;
Benjamin and Boahen, 2019), H-tree routing (Fok and Boahen, 2018), sparse encoding by
spatial convolution (Feinstein, 1988; Neckar et al., 2019), and decoding by accumulative spike-
thinning (Fok et al., 2019). Of key notability is the fact that Braindrop, in essence, implements
a factorization of the weight matrices akin to equation 2.11, which has cut down on area
requirements for SRAM and permitted the sharing of synaptic circuitry across neurons, in turn
leading to an estimate of 381 fJ per equivalent synaptic operation for network configurations
typical in Spaun. A significant amount of detail addressing the design of the chip is available in
Neckar (2018); Fok (2018); Neckar et al. (2019). The success of this project has prompted the
formation of a start-up company, Femtosense, named after the mere femtojoules that synapses
consume to sense and react (Crunchbase, 2018).

As stated above, the design of Braindrop is informed by many of the lessons learned from
Neurogrid. Detailed models have been studied at the circuit level (Benjamin and Boahen, 2019)
and NEF-related methods have been employed at the network level (Voelker et al., 2017a; Reid
et al., 2019), in order to simultaneously tame and account for the non-idealities introduced
by transistor mismatch, parasitic capacitances, and temperature variation. In chapter 5, we

14For example, a live demonstration that used Neurogrid to control a robotic arm, which had previously worked
within an air-controlled climate, no longer functioned in the conference hall as it was bombarded by the warmth
of onlookers [personal communication].
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expose a few of these extensions at a theoretical level. In chapter 7, we provide applications
that demonstrate robust dynamical computation on Braindrop.

2.3.3 Loihi

Loihi (Davies et al., 2018) is Intel’s fully digital, barrier-synchronized, neuromorphic archi-
tecture, that promotes significant flexibility in its SNN feature set, while being optimized for
low power consumption. It consists of 128 “neuromorphic cores” operating asynchronously
from one another. Each core time-multiplexes 1,024 neural units—configurable as sets of
trees of dendritic compartments to form neurons—in a pipelined manner. In contrast to
SpiNNaker, barrier messages are by default transmitted between cores in order to keep the
system synchronized to a global time-step. This has the advantage of provably guaranteeing
globally deterministic behaviour, but the disadvantage of always waiting on the slowest core.
Nevertheless, when compared to a globally-clocked system, this has the advantage of each
time-step only taking as long as it needs.15

By virtue of being fully digital and barrier-synchronized, there exists far fewer challenges
presented to its users when compared to solutions in the mixed-signal, purely analog, or
fully asynchronous digital domains; in particular, the behaviour of the chip is guaranteed
to be reliable and predictable. When compared to simulating SNNs on traditional hardware
(e.g., an x86 CPU), the challenges that remain include quantization (i.e., truncation) of real
values (e.g., weights, synaptic states, and neuronal states) due to the limited bit-precision of
fixed-point numbers (1–9 bits), and constraints on connectivity and memory. The Nengo-Loihi
emulator (GitHub, 2019b), developed by Applied Brain Research (ABR), accurately reproduces
many of these limitations using detailed software models of the underlying hardware (Blouw
et al., 2018). In addition, software tools exist to map SNNs onto Loihi while optimizing for
power-efficiency with respect to the constraints imposed by the hardware (Lin et al., 2018a,b).

Loihi supports a broad variety of features that make it accessible to a wide range of re-
searchers experimenting with the synthesis of large-scale SNNs. For example, stochastic noise
can be added to internal states, discrete delays may be introduced to spikes and PSCs, synapses
can have higher-order dynamics, dendritic trees may be constructed by repurposing the neural
units within each core, neuron models may include adaptive terms, learning rules are de-
scribed using a general template, and finally there is support for several weight compression
formats, spike multicast, and closed-loop control via embedded x86 cores (Davies et al., 2018).

15One algorithmic time-step may take longer than the next, if for example learning rules are applied irregularly,
or depending on relative workloads.
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The flexibility and digital nature of Loihi comes at the cost of increased power-consumption
relative to fully analog or mixed-signal architectures. Simulations from Davies et al. (2018,
Table 2), compared in Neckar et al. (2019, Table 3), indicate that Loihi consumes on the
order of 23.6 pJ16 per synaptic operation – or two orders-of-magnitude more than Braindrop’s
equivalent measure. Regardless, the analog variability intrinsic to Braindrop changes the scope
of target applications, and moreover the first demonstration of Loihi represents a three orders-
of-magnitude improvement over a comparable solution running on a CPU. We speculate that
the power-efficiency of Loihi, relative to Braindrop, can be improved by supporting factored
weight matrices, and refining the architecture according to the network topology and particular
feature set leveraged by the example application.

ABR has ported Nengo over to Loihi and used the NEF to simulate a nonlinear adaptive
controller on a robotic arm (DeWolf et al., 2016, and personal communication). However,
since Loihi does not support the use of factored weight matrices at the hardware level, a
substantial benefit of the NEF—namely, a linear reduction in the number of multiplies and
memory accesses per time-step—is not leveraged at the hardware level. As a way to resolve
this at the software level, Nengo currently creates intermediate populations to represent latent
variables explicitly in spikes, which has the adverse effects of amplifying representational error,
increasing the number of neurons, and introducing additional rounds of filtering between
layers. Alternatively, weight matrices can be left unfactored and fully-connected, but this
misses out on potentially dramatic savings.

Nengo DL (Rasmussen, 2018) has been used to implement a fully-connected deep network
performing keyword spotting, on Loihi, while outperforming state-of-the-art hardware in
energy cost per inference (Blouw et al., 2018). Tang et al. (2019) implemented a simultaneous
localization and mapping (SLAM) algorithm for robotic navigation on Loihi. After extensive
review of the literature, we have found these two papers to be the only currently published
examples, outside of Intel’s demonstration of sparse pattern representation (Tang et al., 2017;
Davies et al., 2018), to deploy an SNN on the physical chip.

It is currently unclear how important or useful each of Loihi’s features are relative to one
another, and especially in the context of target applications. We believe that an important
avenue of research, and the role of Nengo and the NEF in this context, is to facilitate such
exploration, by systematically harnessing relevant features for useful computation, which can
then feed back into the co-design of future iterations (as was the case for Neurogrid and Brain-
drop). Generally speaking, specific classes of computations that leverage particular subsets of
features will encounter distinct trade-offs when it comes to resource usage, precision, energy-
to-solution, and time-to-solution; mathematical frameworks, such as the NEF, participate by

16One picojoule (pJ) is equivalent to 10−12 J, or 103 fJ.

38



providing a unified way of characterizing such trade-offs. A primary focus of chapters 5–7 is to
take a concrete step in these directions by explicitly incorporating some of Loihi’s features into
the NEF and demonstrating dynamical systems functioning on the physical hardware.

2.3.4 Others

The literature on neuromorphic computing is extensive17, dating back to the late 80’s and
recently inspiring a renewed interest from many historically-separate communities. This has
resulted in a number of architectures mentioned below, which were not made available to
us, to be considered outside the scope of this thesis. A number of excellent review articles
by experts widely regarded to have advanced the field, are made available by Bartolozzi et al.
(1999), Indiveri et al. (2011), Cassidy et al. (2013), Thakur et al. (2018), and Rajendran et al.
(2019). A review that considers the role of biomimicry—the emulation of nature’s solutions in
order to solve real-world problems—in the context of power-efficient SNNs and neuromorphic
computing, is provided by Krichmar et al. (2018).

Some of the earliest examples of neuromorphic engineering date back to the work of
Sivilotti et al. (1985); Mead and Mahowald (1988); Boahen et al. (1989); Mahowald and Douglas
(1991). Many of these techniques have since been refined, extended, and scaled up to showcase
a large variety of analog, digital, and mixed-signal systems (excluding those mentioned thus
far): Spikey (Pfeil et al., 2013), BrainScaleS (Schemmel et al., 2010; Aamir et al., 2018a,b),
DYNAPs (Moradi et al., 2018), IBM’s TrueNorth (Merolla et al., 2011, 2014; Esser et al., 2016),
Sydney’s DeepSouth (Thakur et al., 2018), ODIN (Frenkel et al., 2018), ROLLS (Qiao et al.,
2015; Glatz et al., 2018), COLAMN (Wijekoon and Dudek, 2012), STPU (Smith et al., 2017),
DANNA (Daffron et al., 2016; Mitchell et al., 2018), and many other related prototypes (e.g.,
Glackin et al., 2009; Moradi and Indiveri, 2011; Brink et al., 2013; Moradi and Indiveri, 2014;
Park et al., 2014; Azghadi et al., 2015; Binas et al., 2016; Kim et al., 2018; Chen et al., 2018a;
Zheng and Mazumder, 2018; Larras et al., 2018).

Among these systems, a number support the compilation of NEF networks, including a
VLSI prototype (Corradi et al., 2014), several FPGA implementations (Naylor et al., 2013; Wang
et al., 2014; Berzish et al., 2016; Wang et al., 2017) including ABR’s own FPGA backend (GitHub,
2019a), several GPUs (Bekolay et al., 2014; Rasmussen, 2018; Blouw et al., 2018), and most
recently, TrueNorth (Fischl et al., 2018).

An emerging framework called the Neural and Synaptic Array Transceiver (NSAT; Detorakis
et al., 2018), which focuses on data-driven autonomy via online learning on neuromorphic

17See Schuman et al. (2017) for a survey that references nearly 3,000 other papers.
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hardware, has been validated on a field-programmable gate array (FPGA). Likewise, an engine
that repurposes generic computational elements in order to flexibly support a variety of net-
work topologies at scale, has been used to implement polychronous SNNs on an FPGA (Wang,
2013; Wang and van Schaik, 2018).

There also exist multiple proposals to leverage memristors as an alternative hardware prim-
itive for SNN computation in mixed-signal neuromorphic architectures, due to their compact
and non-volatile (i.e., maintains memory without power) properties (Payvand et al., 2018).
Several investigations are currently underway to explore the practical challenges associated
with these proposals (e.g., Chang et al., 2013; Kudithipudi et al., 2016; Cady et al., 2018; Boybat
et al., 2018).

Likewise, many other unconventional substrates for SNNs are actively being explored, such
as nanoscale spintronic oscillators and multiferroic devices (Torrejon et al., 2017; Hoppen-
steadt, 2017; Manipatruni et al., 2018), analog non-volatile memory (Ambrogio et al., 2018),
organic electronics (van De Burgt et al., 2018), phase-change oxides (Zhao and Ravichandran,
2019), photonics (Tait et al., 2018; Shainline, 2018), and superconducting circuits based on
quantum phase-slip junctions (QPSJs; Cheng et al., 2019).
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Chapter 3

Analysis of the Neural Engineering
Framework

In this chapter, we provide a thorough examination of the Neural Engineering Framework (NEF;
Eliasmith and Anderson, 2003) that is not currently published elsewhere. The goals are two-
fold: (1) explore the consequences of its computational principles at a theoretical level, and in
doing so challenge some common myths that have become associated with the NEF since its
inception, and (2) assess its suitability as a framework for deploying SNNs on neuromorphic
hardware by proving its correctness, scalability, completeness, robustness, and extensibility.1

3.1 Computational Sub-Principles

In this section, we focus primarily on the third principle of the NEF, and elucidate some
high-level observations, or “sub-principles,” that follow from its adoption. In doing so, we
expose some important insights, including the effects of structuring deep RNNs, a framework
to understand the roles of dynamical primitives, the observation of chaos in simple NEF
networks, its strategy for neural encoding, and a relationship between the energy of synaptic
events and signal bandwidth.

1To help delineate separate considerations, some sub-sections are significantly shorter than others.
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3.1.1 Reducibility to a single layer

In section 2.2, we focused primarily on a single recurrently connected population of neurons.
However, any multi-layer NEF network, where each layer may be recurrent, with feed-forward
connections and feedback connections optionally included between any two layers – may be
rewritten as a single recurrently connected population. Indeed, even for models as complex as
Spaun (Eliasmith et al., 2012; Choo, 2018), the Nengo builder strips away the model specifi-
cation, and leaves only channels that transmit spikes, and transfer functions that operate on
these spikes (Bekolay et al., 2014; Gosmann and Eliasmith, 2017). The topology of the network
reflects spatial and organizational structure (e.g., hierarchies), which may be used to constrain
and inform the design of biologically-grounded models and to aid in understanding function.
The mechanisms underneath are mere signals and operators, all coupled to one another to
implement some dynamical system.

To examine some of the consequences of this observation, we assume without loss of gen-
erality that there are m layers, and that each layer uses n neurons to represent a q-dimensional
state-vector. The procedure for rewriting the network is as follows:

1. Stack all of the populations together into a single layer that consists of nm neurons.

2. Stack all of the state-vectors together into one vector, x(t ) ∈Rqm , to represent the global
state-space.

3. Construct the encoding matrix, E ∈Rnm×qm , by inserting the encoding matrix from the
i th population into the (i ,i )th block, such that E is in block-diagonal form (note: there
are m ×m blocks and each is n ×q).

4. Construct the decoding matrix, D f ∈ Rnm×qm , by inserting each decoding matrix D fi , j

into the (i , j )th block, where fi , j is the function computed between the i th presynaptic

population and the j th postsynaptic population.

Then Principles 1–3 apply in the same way to this single population, while being functionally
equivalent to the original network.

This reveals that the problem of constructing and training arbitrary network topologies may
be reduced to the special case of a single layer. Conversely, we do not lose any computational
power by limiting our focus to a single layer. However, the encoding matrix is extremely sparse
with (m − 1)/m percent of its coefficients set to zero. Likewise, the block-structure of the
decoding matrix is isomorphic to the graph structure of the original network.
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This characterizes the functional role of network structure as: partitioning the global state-
space into a union of state-vectors with a range of time-constants, sparsifying its encoders,
and rearranging the decoders into a block-structure that mirrors the interactions between
subspaces. In terms of computation, the network structure dramatically reduces the time
and memory requirements that would otherwise be needed for a full-rank nm ×nm matrix
multiplication. In terms of training, the challenges involved in globally optimizing an RNN
may be viewed under the lens of identifying relatively low-dimensional subspaces acting along
various time-scales and their interactions with one another.

3.1.2 Heterogeneity of dynamical primitives

We make the observation that neurons (equation 2.3), synapses (equation 2.4), and even the
functional behaviour of entire recurrent networks (equations 2.1 and 2.12), are all described
in terms of differential equations. These dynamical systems, each of which can be thought of
as a primitive for use in some larger computation, all have distinct filtering properties, linear
and nonlinear transfer functions, and internal states that evolve over time in response to some
input in order to produce some output.

A central insight from deep learning is that a variety2 of static nonlinear functions, when
structurally composed, enhance the spatial complexity of network function. An analogous
insight in the above context is that a variety of transfer functions, when temporally composed,
enhance the temporal complexity of network function. In particular, the time-constants of
synaptic currents, membrane leakages, and recurrent network dynamics – all act along different
time-scales. In effect, NEF networks compose rich temporal functions by leveraging dynamical
primitives that are heterogeneous in time. A compelling example is provided in section 6.2.3,
where we apply BPTT to a deep recurrent NEF network to predict a chaotic time-series.

3.1.3 Duality of macroscopic and microscopic dynamics

As a corollary to the previous observation, once all primitive operations are expressed in the
same language (i.e., differential equations), they become both composable and interchangeable.
To the point of interchangeability, one can implement a lowpass filter by using a single synapse,
or by training a population to emulate the same dynamical system via Principle 3.3 To the

2The variety of nonlinear responses comes from the distribution of weights and biases, analogous to the
heterogeneity obtained in equation 2.2 via encoding vectors, gains, and biases.

3As inconsequential as this point might sound, a potent example is when one student, who had been working
with Nengo for many years, used a network containing hundreds of neurons to implement the same computation
as a single alpha synapse. This was due to not having them described in the same language.
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point of composability, one can substitute the transfer function of a single synapse with that of
an entire recurrent network.

We illustrate both points with a specific example by considering the following architecture:

A → (B → B) → A,

where A and B are separate neural ensembles and “→” denotes a synaptic weight matrix. That
is, B is locally-recurrent, and A is globally-recurrent via the outer loop through B . We may
encapsulate H = B → B as a dynamical primitive, and then re-interpret the whole system as:

A →H A,

where “→H ” denotes some weight matrix where the synapse model has been replaced by H
– akin to a “virtual” synapse, whose dynamics are implemented by B under the hood. This
is simply a mathematical “trick,” but the practical consequence is that we may use the same
theory and the same tools to understand the composition and substitution of these systems.
This is made possible since we employ a common language and framework for describing and
leveraging dynamical systems.

In section 5.1.1, this idea forms the core idea for our proofs that extend Principle 3. In
section 6.2.7, we demonstrate a method of systematically harnessing miniature delays in axonal
spike-transmission to improve the accuracy of longer network-level delays.

3.1.4 Unpredictability, chaos, and strange attractors

An apparent misconception associated with NEF networks is that we already “understand” the
computations being engineered into the network, and therefore have nothing to learn from
such simulations. But just because a network’s function can be written down using equations,
does not mean that its effects are fully understood ahead of time. For example, the NEF
has been used to construct chaotic systems, such as the Lorenz strange attractor (Eliasmith,
2005). This deterministic system is fully described by a three-dimensional nonlinear dynamical
system. However, due to the nature of such chaotic systems, arbitrarily small perturbations
in state-space diverge exponentially over time up to the diameter of the attractor (Strogatz,
2015, pp. 328–330). This leads to a fundamental inability to predict the trajectory of any
physical instantiation of the system; the time-horizon that can be predicted, within some given
tolerance, scales only logarithmically with the precision of the observer.

More to the point, this accusation is theoretically equivalent to suggesting the same of any
algorithm or computer program for that matter. Even though any computer program can be
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written down using a finite set of symbolic expressions, and realized as a discrete sequence
of steps that dynamically evolve a set of registers—such as the machine of Turing (1938)—
does not mean that we know what that program will compute ahead of time on any given
input. The assertion that the behaviour of certain programs are in essence “unpredictable”
corresponds with the notion of undecidability in formal theories of computation; informally,
most non-trivial programs need to be run in order to see what they will do with their inputs.

This discussion extends to dynamical systems, where chaos and undecidability are also
interwoven (Moore, 1991). For example, suppose we take the linear time-invariant (LTI)
system of equation 2.12 and then include saturation within each of the state-variables (such
that their absolute magnitudes cannot exceed one). Surprisingly, this is a sufficient route to
chaos. The inclusion of this single nonlinearity spawns attractors with properties that are
undecidable (Blondel et al., 2001); basic questions about the system’s response cannot be
resolved in a finite number of steps (Bennett, 1990). This example is of special interest to
us since the LIF neuron (equation 2.3) exhibits a similar saturation effect, namely r (v) ≤ τ−1

ref,
where the upper-bound is approached as x(t ) ∈Rq extends beyond the representational range
established by the encoding parameters selected by Principle 1. It follows that even the most
basic spiking instantiation of Principle 3 must, in general, be simulated in order to determine
its behaviour whenever the input signal drives the state-space outside the range of neural
representation. Notably, this saturation effect is exploited to overload working memory with
sequential items in the Spaun model (Eliasmith et al., 2012), which suggests that the model
behaviour is chaotic at multiple levels of analysis.

Perhaps even more surprisingly, one does not need to invoke any saturation to observe
chaos, at the level of individual spiking neurons, in NEF networks implementing linear dynam-
ics. For example, consider the one-dimensional, autonomous (i.e., no input), integrator:

ẋ(t ) = 0,

implemented as an SNN using Principle 3 of the NEF (A = B = D = 0, C = 1). This is perhaps the
simplest recurrent network that one can imagine; a line attractor without input, that is to hold
its initial state indefinitely. Nevertheless, as shown in Figure 3.1, the neural states display the
tell-tale signs of a strange attractor (cf. Strogatz, 2015, Figure 9.3.5). Specifically, let v1(t ),v2(t ) ∈
Rn be two voltage vectors (see equation 2.3) from two separate, but deterministic simulations,
of the exact same network (n = 10, τ= 5 ms, dt= 0.1 ms, down-sampled every 20 ms). The first
simulation is initialized to the default of x1(0) = 0, while the second is initialized to x2(0) = 10−15.
Now let:

∆(t ) = x1(t )−x2(t )

δ(t ) = v1(t )−v2(t ),
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Figure 3.1: An autonomous scalar integrator—the simplest possible recurrent SNN, built using
the NEF—exhibiting chaotic neural dynamics. (Left) Two deterministic simulations of the exact
same network. One is initialized to x1(0) = 0, and the other to x2(0) = 10−15. Both simulations
fall into the same apparent strange attractor, close to zero. (Right) Plotting the difference
in representational states (∆) and neural states (δ) on a logarithmic scale. The neural states
diverge exponentially quickly—leaping 30 orders of magnitude in 3 seconds—according to

‖δ(t )‖ ≈O
(
eλt

)
. The representational difference ∆ is essentially zero until δ hits the diameter

of the attractor. It is physically impossible to predict the future state of this system beyond a
time-scale of O (

λ−1)≈ 0.1 seconds (see text for details).

be the difference in representational state and neural state, respectively. We find that∆ remains
bounded above by the accuracy of neural representation, as expected. However, δ diverges
exponentially over time, consistent with the neural states being within a strange attractor
(the Lyapunov exponent λ ≈ 8.9 s−1 gives the exponential rate of divergence); the voltage
vectors are tracing out a fractal manifold embedded within an n-dimensional space that
cannot be predicted beyond a time-horizon on the order of O (

λ−1)≈ 0.1 s. Despite this, the
NEF is capable of taming the chaos at the neural level and providing a robust estimate at the
population level, due to the correspondence between each apparent strange attractor and a
stable point in representational space (Eliasmith and Anderson, 2003, p. 237). In section 3.2.4,
we remark that this leads to the NEF being robust to a distinctly different type of error.

At a high level, the NEF may be used to implement arbitrary algorithms encoded as dy-
namical systems (see section 3.2.3), which implies that it is not exempt from computability
theory. Networks can perform interesting tasks via algorithmic manipulations of inputs and
states (Choo, 2018). Then, as is the case for any Turing machine, the network must in general be
simulated to carry out the computations of said algorithm. At the same time, the NEF provides
a framework—akin to having a programming language for some model of computation—to
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understand the dynamical transformations being performed, examine relationships between
structure and function, relate these functions to neurobiological systems, and compile them
onto neuromorphic hardware.

3.1.5 Coding by postsynaptic currents

A long-standing debate in neuroscience has traditionally revolved around the question of
whether biological neurons transmit information using a “rate code” in which the information
is encoded by the firing rates of individual neurons (Adrian, 1928), or a “spike-timing code”
in which information is encoded by the precise temporal patterns of spike trains (Rieke and
Warland, 1997) or likewise their temporal order in relation to one another (Thorpe and Gautrais,
1998). However, there is historically little consensus between neuroscientists as to what exactly
constitutes a rate code (Eliasmith and Anderson, 2003, pp. 89–91).

Gerstner (1999) reviews at least three different ways to define a rate code, and notes that in
many important ways they are consistent with that of a timing-based code. Fairhall et al. (2001)
models the adaptive dynamics of neurons in the fly visual system and concludes that principles
of its code depend on the time-scale of interest. Brette (2015) argues that which code the brain
uses is irrelevant, and that we ought to instead consider questions that address the causal role
of neural activity. Eliasmith and Anderson (2003) likewise proposes that we should focus on the
physical instantiation, and functional consequences therein, of any given approach to neural
coding, rather than resorting to semantic labels that are ultimately irrelevant.

Nevertheless, many have mislabelled the NEF as employing a rate-coding scheme [personal
communication], including Lagorce and Benosman (2015) and Frady and Sommer (2019) for
two recent examples – we refer to these two below, to illustrate why this accusation constitutes
a damaging use of semantics. Specifically, this mischaracterization has lead to the misapplica-
tion of many criticisms (Gautrais and Thorpe, 1998) that stem from the original proposal of
Adrian (1928), namely the need to average spike rates over long windows of time. We find this
important to clarify because it leads to imprudent conclusions or “myths” about the NEF such
as those claimed by Lagorce and Benosman (2015) and Frady and Sommer (2019):

1. The NEF does not exhibit precise sequences of action-potentials.

2. The NEF does not support high-speed neural computation.

3. The NEF does not display rhythmic activity.

4. The NEF requires very large numbers of neurons to compute simple functions.
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Figure 3.2: Demonstrating the irrelevance of identifying a “spike-time code” versus a “rate
code” in the context of a standard NEF-optimized network. We define this as a “postsynaptic
current code” instead. (Left) An ensemble of LIF neurons are trained to oscillate at approxi-
mately 3.5 Hz. (Right) Spike rasters of 50 randomly selected neurons, ordered by their encoding
vector’s polar angle. Each neuron spikes only 0, 1, or 2 times per oscillation, and at a precise
moment in time—on the order of milliseconds (see inset)—before remaining silent for another
couple hundred milliseconds. Thus, the precise spike-timing of each individual neuron re-
liably conveys information about the state-space of the oscillation, despite never explicitly
incorporating such a requirement about timing into the training procedure.

We now challenge each claim in turn. For the first three, we refer to the same simulation
depicted in Figure 3.2. This simulation applies the NEF, as described in section 2.2, to the case
of an autonomous two-dimensional oscillator (n = 5,000, τ= 0.1 s, dt= 1 ms). The encoding
parameters are randomly tiled across the two-dimensional state-space such that each neuron
only responds to 25% of the state’s projection onto its encoder (i.e., uniform [0.5,1) intercepts),
and each neuron would fire at a rate of 20–40 Hz if encoding a constant state with maximal
similarity to its encoder. As we explain, the firing statistics are not at all characterized by
20–40 Hz spike-trains. We omit the first 1.2 seconds of simulation to avoid initial transients.

1. The NEF can exhibit repeatedly precise sequences of action-potentials. See Figure 3.2 in-
set. When comparing the spike-trains between two separate oscillations at the same phase,
not only is the order of spiking consistent, as in rank order coding (Thorpe and Gautrais, 1998),
but also the precise spike-timing (± a couple milliseconds).
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2. The NEF readily supports high-speed neural information processing. In our example,
neurons respond quickly to encode the rapidly-fluctuating oscillatory state, and do so without
any system-level “delay” or undesired filtering.4 As will be explained in section 3.2.1, the
precision of a feed-forward network scales as O (

τ
p

n
)
. Thus, one is free to set the synaptic

time-constant arbitrarily small, so long as the number of neurons are increased in proportion.
We have verified this both theoretically and numerically in section 5.2.2. This enables arbitrarily
fast transmission of information throughout the network assuming the criteria of Theorem 3.2.1
is met (also see Figure 5.4). Yet, even when constrained to longer time-constants, section 6.2.5
demonstrates a novel deep NEF network that is capable of instantaneously propagating low-
frequency stimuli through 8 layers of synaptic filters (τ= 0.1 s).

3. The NEF examples that invoke Principle 3 all display rhythmic activity. The NEF was
designed as a toolkit for modelling dynamic rhythmic activity (Eliasmith and Anderson, 1999)
such as the central pattern generator driving lamprey locomotion (Eliasmith and Anderson,
2000). Indeed, Figure 3.2 clearly displays rhythmic activity at both the population level (see
left) and the activity level (see right). The properties of these rhythms can be understood as
arising from the dynamics of the postsynaptic currents, in response to the neural encoding of
the state-vector governed by some underlying set of differential equations.

4. The NEF can compute difficult functions with any number of neurons. See Figure 3.1 for
an example of ten spiking LIF neurons implementing a line attractor (τ= 5 ms), or section 6.2.3
for a six neuron cell that outperforms LSTM cells. No matter how complex the function, the
mandate of the NEF is to leverage its neuron models as a basis for that function. Sometimes this
can be done with sufficient accuracy using a single neuron, and in other cases one might need
a few million or even more. In general, the feed-forward precision scales as O (

τ
p

n
)

while the
dynamical precision scales as O (

θ
p

n
)
, where θ is the time-constant of the dynamical system

(under fairly weak assumptions; see section 3.2.1). But one cannot consider the questions of
resource usage and functional precision within a vacuum. One must resolve such questions
with respect to the device-level models of the physical hardware implementation as well as
the intended target application. Some advances in this direction are underway (Schwemmer
et al., 2015; Thalmeier et al., 2016). But many other considerations such as weight factorization,
mechanistic constraints, and the energy consumed by different synaptic or neural operations,
may all play a role. If one is interested in constructing functioning dynamical SNNs using

4The postsynaptic filters are leveraged to participate in the required computation (see Principle 3; section 2.2.3).
There is no unwanted phase-shift.
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neuromorphic hardware, we suggest that one considers all such factors in the context of the
target application before labelling an approach as being unequivocally inferior.

The confusion surrounding rate coding in the NEF has essentially risen from the adoption of
equation 2.10. However, as we have said, this merely reformulates the optimization procedure
to be more efficient, without sacrificing correctness as proven in section 3.2.1. We remark that,
in Figure 3.2, the firing statistics are completely unlike their rate model counterparts, despite
the target postsynaptic currents and overall system dynamics remaining the same. That is,
each neuron only fires at an average rate of 3 Hz across the simulation, much slower than the
20–40 Hz rate that they would fire at for constant inputs. Likewise, the postsynaptic impulse

response that results from a single spike, decays to a factor of e− 10
3 ≈ 3.5%, before that same

neuron triggers another spike, on average. In general neither the average rates, inter-spike
intervals, nor spike times tell the entire story.

But then how does equation 2.10 hold if each neuron is not spiking at its intended rate? Our
proposal to resolve this seemingly paradoxical situation is to first establish a new label: “post-
synaptic current code.” This code does not care about the spike-rates of individual neurons; it
is only sensitive to how well the weighted and synaptically-filtered spikes, when pooled across
the entire population, approximate some desired set of postsynaptic currents (corresponding
to an affine transformation of the required state-vector; Tripp and Eliasmith, 2006). This is
summarized by taking the encoding equation 2.2 and decoding equation 2.6 which fold into
the weight equation 2.11 – and combining them in a similar manner to Stöckel et al. (2018):

αi 〈ei ,x(t )〉+βi ≈
n∑

j=1

∑
m
ωi j h

(
t − t j ,m

)
. (3.1)

In plain words, the represented state-vector is linearly projected onto the postsynaptic current
of each neuron. Nothing needs to change about our exposition of the NEF in order to accom-
modate this viewpoint of how it codes information. How this works in light of equation 2.10
requires careful proof (Theorem 3.2.1), and the subtleties surrounding why this can matter are
challenging to grasp. But as our example illustrates, the NEF cannot be adhering to any single
definition of rate or timing code. Rather, it is representing desired transformations by mapping
latent state-variables onto postsynaptic currents. In the following sections, we tease apart the
NEF’s coding principles, sources of error, and scaling properties.

If one is still unconvinced, then, as mentioned in section 2.2.4 when comparing the NEF
to RC and FORCE, one may forgo equation 2.10 and perform the optimization directly in
the spiking time-domain (Friedl et al., 2016; Duggins, 2017), or even apply backpropagation
through time (Rasmussen, 2018). But the fact of the matter is that this becomes unnecessary
(and inefficient) for a large class of interesting systems and models that we wish to explore.
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3.1.6 Energy-minimization via low-frequency representation

We define a low-frequency representation as one in which the represented vector, x(t ), carries
its information within frequencies on the order of the cutoff frequency of the synaptic filter.
That is, (2πτ)−1 Hz, where τ is the synaptic time-constant of equation 2.13 in seconds.5 Such
representations are known to be ubiquitous in biological systems (Pulvermüller et al., 1997;
Singer, 1999; Szendro et al., 2001). The NEF provides a basic theoretical explanation for this
observation from the perspective of energy-minimization.

As discussed in the previous section, and described by equation 3.1, the state-vector x(t ) is
projected onto postsynaptic currents. To analyze the frequency content of this code, we apply
the Laplace transform to both sides of equation 3.1, and substitute the synapse model from
equation 2.13:

αi 〈ei ,L {x(t )} (s)〉+βi ≈
n∑

j=1

∑
m
ωi jL

{
h

(
t − t j ,m

)}
(s)

=
n∑

j=1

∑
m
ωi j

e−t j ,m s

τs +1

= (τs +1)−1
n∑

j=1
ωi jL

{
a j (t )

}
(s)︸ ︷︷ ︸

Gi (s)

.

(3.2)

Gi (s) is defined as the Laplace transform of the weighted combination of presynaptic (unfil-
tered) spike-trains. The magnitude of |G(2πi f )|, evaluated at real frequencies f , is the unitless
(dimensionless) measure of energy required to drive all of the synapses of the i th postsynaptic
neuron, in order to generate such a PSC. Rearranging equation 3.2 yields:

Gi (s) ≈ (τs +1)
(
αi 〈ei ,L {x(t )} (s)〉+βi

)
. (3.3)

The transfer function (τs +1) is a highpass filter that linearly amplifies the frequencies of its
input. Specifically, our dimensional analysis identifies the following asymptotic relationship:

|Gi (s)| ≈O (|τs|‖L {x(t )} (s)‖2) , (3.4)

where the Big O constants involve the length of the encoder (typically unit-length) and the
gains and biases (unitless).6

5For example, a typical time-constant of τ = 5 ms would imply that most information is present within a
frequency band of < 32 Hz.

6If a physical quantity is normalized to some constant range then it becomes unitless.
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From equation 3.4 it directly follows that, in order to represent x(t ) with an absolute power
of one (unitless) at a frequency of f , via the postsynaptic current code (i.e., linear projection
onto each PSC), the relative amount of energy needed to drive all of the synapses of the
postsynaptic neuron scales as O (

2πτ f
)
. Therefore, for a fixed energy budget, the frequencies

that can be successfully transmitted using this code scale by the inverse law (which happens to
be the cutoff frequency of the filter):

O (
(2πτ)−1) . (3.5)

In this context, the role of neural coding is to sparsify signals across time while allowing
for their accurate reconstruction, consistent with notions from compressed-sensing, sparse
coding, and sigma-delta modulation frameworks (Coulter et al., 2010; Chklovskii and Soudry,
2012; Yoon, 2017). The fidelity with which this can be achieved depends on factors such as the
total energy available to drive all of the synapses and the useful frequencies within the signal
being reconstructed. The NEF provides a way to formalize such relationships in the context of
large-scale functional models, thus making predictions relevant to biological modellers, and
establishing trade-offs relevant to neuromorphic engineers. We provide additional examples
of such trade-offs in the following sections.

3.2 Suitability for Neuromorphic Hardware

In the prospectus of Boahen (2017), the NEF is recognized as a suitable framework for neu-
romorphic engineering. Many of these reasons have already been mentioned in earlier dis-
cussions, and have been validated by recent deployments of the NEF on Braindrop (Neckar
et al., 2019), Loihi (Blouw et al., 2018), and TrueNorth (Fischl et al., 2018). This section aims to
theoretically formalize the criteria that we currently view as being of utmost importance for
neuromorphics – specifically, how the NEF is correct, scalable, complete, robust, extensible,
and thus ultimately, useful.

3.2.1 Correctness

In the original formulation of the NEF (Eliasmith and Anderson, 2003), there exists three
sources of error in the neural representation:

1. “static distortion” arising from the use of decoders; that is, the linear combination of
nonlinear basis functions to approximate some desired transformation,
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2. “spiking noise” arising from the use of discontinuous spikes; that is, the substitution of a
continuous non-spiking model with a spiking model that produces variable PSCs, and

3. “state discrepancy” arising from the substitution of a stateless model with a stateful
model.

The first two sources of error have already been studied extensively throughout Eliasmith and
Anderson (2003) and Bekolay et al. (2014). We review these findings below. However, as far
as we know, the third has not received formal attention. A proof is found in Eliasmith and
Anderson (2003, pp. 132–136, appendix C.1) that addresses the same issue from the perspective
of including noise within the neuron model, and the contents herein may be viewed as an
updated treatment of that study.

Figure 3.3 illustrates all three types of error within a single feed-forward simulation. The
network is a one-dimensional communication channel ( f (x) = x, n = 100, τ = 50 ms, dt =
10−5 s, τRC = 20 ms, τref = 2 ms) with maximum firing rates of 10–20 Hz and intercepts uniformly
distributed across [−1,−0.5). Low firing rates are needed to expose the third source of error,
which is normally masked by the other two at high firing rates for reasons that will become clear.
The population, initially at rest, encodes a constant input signal of u(t) = 1, that is directly
mapped onto the PSCs without additional filtering. We also duplicate the population, use the
same decoders, but replace its neuron model with the corresponding continuous-valued rate
model given by equation 2.8. For notational simplicity, dTa refers to the filtered and decoded
spike-trains (i.e., the spiking solution), x̂ denotes the filtered and decoded rate model (i.e., the
non-spiking solution), and x = u ∗h is the ideally filtered input signal (i.e., the desired output).
We now describe each source of error in greater detail.

Static distortion

The optimization problem described by equation 2.9 can be understood as fitting n non-
orthogonal static basis functions, ri , to some desired static function, f (Broomhead and Lowe,
1988). Assuming relatively weak conditions on each ri , namely monotonicity and continuity,
any continuous f may be approximated arbitrarily well by a linear combination of these basis
functions (Hornik et al., 1989), as in equation 2.6.

Specifically, for a given f , a linear increase in the number of basis functions will reduce
the root-mean-squared error (RMSE) of the fit by the same factor. This particular RMSE is
named static distortion, since it corresponds to the difference between the two static (i.e., non-
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Figure 3.3: Visualizing the three sources of error in a standard NEF network. (a) A single
simulation with arrows pointing to each type of error (b, c, d). (b) Static distortion describes
the difference between the linear combination of rate models and the desired static function.
(c) Spiking noise describes the difference between the spiking model and rate model. (d) State
discrepancy provides an instantaneous statistic capturing the difference between the spiking
noise and a true Gaussian distribution (p-values < 10−6). See text for details.
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temporal) functions. We commonly refer to the RMSE as simply the “error” throughout,7 and
define “precision” to be the reciprocal of error. Thus we say that the precision of a non-spiking
network scales as O (n).

Figure 3.3 (b) visualizes the static distortion in two different ways. The bottom plot, x
versus x̂, compares the ideal against the approximation, and includes the dashed line x = x for
reference. The upper plot, x versus x̂ −x, provides a closer look to demonstrate that the error is
continuous and with a mean close to zero. The root-mean-squared value of the latter curve is
the static distortion.

Spiking noise

By separating out the static distortion and looking at the difference dTa − x̂, we can isolate the
role of equation 2.10 in the approximation error. This is the difference between the spiking and
non-spiking estimates, using the same set of basis functions. We refer to this as the spiking
noise, since it corresponds to the variability in the estimate that is introduced by filtered spikes.

The variability in spike-trains across the population leads to an additional error term that

scales as
(
τ
p

n
)−1

. The τ−1 term comes from the variance of the filter’s impulse response –

supposing equation 2.4 is applied to both the decoded spikes and the encoded input. The
p

n
−1

term follows from the convergence rate of the central limit theorem (CLT; Berry, 1941; Esseen,
1942), and assuming the spiking noise is Gaussian and independent. Under these assumptions,
the spike noise asymptotically dominates the static distortion, and the SNN’s feed-forward
precision scales as O (

τ
p

n
)
. However, in the context of Principle 3, the transformations of the

signals are scaled by τθ−1, where θ is the time-constant of integration for the desired dynamical
system, which results in a cancellation and the recurrent SNN having precision that scales as
O (

θ
p

n
)
.

Figure 3.3 (c) visualizes a kernel density estimate (KDE; Waskom et al., 2015) of this error (t >
0.15 s). A Kolmogorov-Smirnov (KS) test of dTa − x̂, versus a zero-mean Gaussian distribution
with equal variance, produces a KS-statistic of ≈ 0.034 (p-value < 10−6). The KS-statistic is
defined as the maximal discrepancy between the empirical cumulative density function (CDF)
and the model CDF (i.e., the supremum of their absolute difference; Massey Jr, 1951). In this
case, the distribution of spike noise is at most 3.4% different from a true Gaussian distribution.
This justifies the usage of the white noise term η in equation 2.9, since it captures ≈ 96.6% of
the statistical variance between the filtered and decoded spiking and non-spiking models. But

7Eliasmith and Anderson (2003) use “error” to refer to mean-squared error (MSE), rather than the RMSE. This
may lead to confusion when comparing across sources.
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why is there a difference? In theory it should approach 0 for sufficiently many samples, due to
the CLT, but unfortunately it does not; there is a remaining systematic bias that never scales
away (also see Figure 5.5). It turns out that our assumption of independent Gaussian noise was
not entirely correct – an oversight that we will rectify at the end of this section. But first, this
motivates the discovery of a third and final source of error, that we now describe and analyze
in detail.

State discrepancy

Intuitively, unbiased variability in spike-trains is achieved by all of the neurons being inde-
pendently and uniformly ready to spike. Looking at the “transient” portion (t < 0.05 s) of
Figure 3.3 (a), we see that all of the neurons are initially at rest, and thus physically cannot
spike in time to keep up with the target. This results in a period of time in which the error is
quite large. The error is overall the smallest towards the end of the simulation, at which point
we say the neural states have “mixed” together. We formalize these ideas by appealing to the
inter-spike interval (ISI) in a manner that will turn out to be quite important.

We define a neuron’s relative “ISI position” (ISIP), gi , to be its normalized position within
the inter-spike interval that corresponds to the instantaneous firing rate of the ideal rate model.
For this, we fix our analysis at any given moment in time and determine the next spike time.
To give an example, consider the LIF neuron’s current state (although this same approach
extends more generally to other neuron models) to have a voltage of vi , remaining refractory
period of 0 ≤ ρi ≤ τref, input current of si , and a corresponding instantaneous target rate of ri .
In the same way that we derived the rate model of the LIF neuron (see derivation leading to
equation 2.8), we may derive the neuron’s ISIP according to how far along it is within the ideal
ISI normalized by its length, r−1

i :8

gi (vi ,ρi ) = 1−
(
ρi +τRC ln

(
1+ 1− vi

si −1

))
ri

= 1−
ρi +τRC ln

(
1+ 1−vi

si−1

)
τref +τRC ln

(
1+ 1

si−1

) .
(3.6)

For example, gi (0,τref) = 0, since the neuron is at the very beginning of its ISI. Likewise,
gi (1,0) = 1, as it has just spiked.

8If ri = 0 then the neuron will not be active (and does not need to be), and so we can simply ignore it; the
discussion, analysis, and results do not change.
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Definition 3.2.1. The state discrepancy, at some chosen moment in time, is the KS-statistic
between the empirical ISIP distribution across the population, {gi : i = 1. . .n}, and a true
uniform distribution, U [0,1].

In Figure 3.3 (d), we measure this value empirically across all of neurons, and at each
time-step in the simulation, using a centered window of width 25 ms to smooth the estimate.
We see that the magnitude of the KS-statistic corresponds very closely to the error between
the ideal and the spiking solution. Although here we are looking at just a constant input for
ease of visualization, we find that this statistic correlates highly (Pearson correlation coefficient
R = 0.90, p-value < 10−6) with the spiking noise across a wide range of input frequencies (see
Figure 3.4). This is surprising since the definition of state discrepancy does not invoke any
usage of decoders, spikes, or filters in its construction; it merely describes how different the
distribution of relative ISI positions are from that of a uniform distribution.

We now prove that our definition of state discrepancy is indeed the correct one, and in
doing so provide a sufficient criteria for scaling away this source of error. Specifically, this
remaining source of error—state discrepancy—is tamed by minimizing the difference (KS-
statistic) between a uniform distribution and the actual neuron’s “readiness to spike,” as
characterized by its ISIP (e.g., equation 3.6 for the case of a LIF model).

Theorem 3.2.1 (Scaling of feed-forward precision in the Neural Engineering Framework). Let

µ(t) =
n∑

i=1
(ai ∗h) (t)df

i −
n∑

i=1
(ri (x)∗h) (t)df

i be the spiking noise. If the ISIPs, gi , are uniformly

and independently distributed, then:

1. E
[
µ(t )

]= 0; hence the expected spike noise is exactly zero at all times (no systematic bias),

2.
√
V

[
µ(t )

] =O
((
τ
p

n
)−1

)
is the standard error, or root-mean-squared error; hence the

precision scales as O (
τ
p

n
)

at all times.

We prove each statement, in order, after a few remarks. We prove something slightly
more general, and without invoking asymptotics until the very end. We also do so without
assuming any particular neuron model – only that it has a well-defined ISIP. We shift our frame
of reference, without loss of generality, such that we are currently observing t = 0. We then
forecast the system out into the future, assuming the representation is held constant. But this
does not make any assertions about the causal dynamics of the representation. This is because
the statements in this theorem are only interested in the distribution of a statistic at arbitrarily
small values of t → 0+ with respect to the shifted time frame. Hence, our work provides a
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more general result than what is needed. In order to give a concrete result, we suppose the
synapse model is equation 2.4, but this is not a hard requirement. Likewise, we initialize the
synapses to 0, without loss of generality by linearity. To remove boilerplate in the notation
we substitute ri ← ri (x(t)). We have verified each of the following equations with numerical
experiments (not shown).

Preliminaries

Let ỹi (t ; ti ) = (ai ∗h) (t) be the fast-forward simulation of the i th neuron up to time t ≥ 0,
supposing ti =

(
1− gi

)
r−1

i is the next spike-time (0 ≤ ti ≤ r−1
i ) by our definition of the ISIP. Let

Ti be the random variable whose realizations are ti . Hence, Ti ∼U [0,r−1
i ], with a probability

density function (PDF) and cumulative density function (CDF) described by:

fTi (ti ) = ri ⇐⇒ P (Ti ≤ ti ) = ti ri . (3.7)

By enumerating over the spike-times, we have:

ỹi (t ; ti ) = ∑
0≤ j≤ri ·(t−ti )

(δ j /ri+ti ∗h)(t )

= ∑
0≤ j≤ri ·(t−ti )

1

τ
e− t−( j /ri +ti )

τ

= ∑
0≤ j≤ri ·(t−ti )

1

τ

e−(riτ)−1︸ ︷︷ ︸
ci

ri ·(t−ti )− j

,

where 0 < ci < 1 is an important constant that we remark is dimensionless (i.e., unitless), and
also time-invariant (i.e., depends only on ri and τ). We then re-arrange as follows:

=⇒ ỹi (t ; ti ) = cri ·(t−ti )+1
i

τ

∑
1≤ j≤ri ·(t−ti )+1

(
c−1

i

) j
(note: altered index)

= cri ·(t−ti )+1
i

τ

(
1

ci

) (
1
ci

)bri ·(t−ti )+1c−1

1
ci
−1

(geometric series)

= cei (t ;ti )
i − cri ·(t−ti )+1

i

τ(1− ci )
(3.8)

where:
ei (t ; ti ) = ri · (t − ti )−bri · (t − ti )c

0 ≤ ei (t ; ti ) < 1,
(3.9)

58



is a type of truncation error. Equation 3.8 provides a closed-form solution for ỹi . In addition,
the lower/upper bounds of ei (t ; ti ) supply its upper- and lower-envelopes, respectively:

ci − cri ·(t−ti )+1
i

τ(1− ci )
< ỹi (t ; ti ) ≤ 1− cri ·(t−ti )+1

i

τ(1− ci )
.

Now, the analysis proceeds in the following manner. We pick our t , and then sample our ti .
This determines ei (t ; ti ) for each neuron, by a cyclic rotation ri ti (modulo 1) from equation 3.9.
We then define a new random variable Ỹi (t) = ỹi (t ;Ti ), which one can understand as being
distributed by “mapping” the random variable Ti through the function ỹi for some chosen t .
Realizations of this random variable correspond directly to (ai ∗h) (t ) by construction.

Proof of zero-mean error

We apply the law of the unconscious statistician (LOTUS) to Ỹi (t ):

E
[
Ỹi (t )

]= ∫
D

ỹi (t ; ti ) fTi (ti )d ti , where D is the domain of Ti

=
∫

D

cei (t ;ti )
i − cri ·(t−ti )+1

i

τ(1− ci )
fTi (ti )d ti , by equation 3.8

= 1

τ(1− ci )

(∫ 1

0
cei (t ;ti )

i dei (t ; ti )−
∫ r−1

i

0
cri ·(t−ti )+1

i (ri )d ti

)

= 1

τ(1− ci )

(
(−riτ)e−ei (t ;ti )/(riτ)

∣∣∣1

ei (t ;ti )=0
− (riτ)cri ·(t−ti )+1

i

∣∣∣r−1
i

ti=0

)
= ri

(1− ci )

(
(1− ci )−

(
cri t

i − cri t+1
i

))
= ri · (1−e−t/τ). (3.10)

Therefore, by linearity of expectation, the expected error at time t is:

E
[
µ(t )

]= E[
n∑

i=1
(ai ∗h) (t )df

i −
n∑

i=1
(ri ∗h) (t )df

i

]

=
n∑

i=1
ri · (1−e−t/τ)df

i −
n∑

i=1
(ri ∗h) (t )df

i

= 0.

(3.11)

This completes our proof of the first statement.
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Note that we have not needed to use our assumption about the independence of samples.
However, to obtain a closed-form solution for the variance, we will need to assume that gi ,
and thus ti , are independently sampled (i.e., the voltage vectors and refractory periods are not
coupled with one another across time), as is the case for typical NEF networks. Boerlin et al.
(2013) have shown that if the neural states do have a mechanism for collaborating in a global
manner, then they can synchronize their activity; this corresponds to a means of dependent
sampling that reduces the following variance.

Proof of spiking variance

To compute V
[
Ỹi (t )

]= E[
Ỹi (t )2]−E[

Ỹi (t )
]2

we rewrite the second moment:

E
[
Ỹi (t )2]= E

(
cei (t ;Ti )

i − cri ·(t−Ti )+1
i

τ(1− ci )

)2
=

(
1

τ(1− ci )

)2 (
E

[(
cei (t ;Ti )

i

)2
]
−2E

[
cei (t ;Ti )+ri ·(t−Ti )+1

i

]
+E

[(
cri ·(t−Ti )+1

i

)2
])

and then separately determine each expectation. The PDFs of cei (t ;Ti )
i and cri ·(t−Ti )+1

i are both
riτ/x over their respective domains. This can be seen directly:

∂

∂x
P

(
cei (t ;Ti )

i ≤ x
)
= ∂

∂x
P (ei (t ;Ti ) ≥−riτ ln x)

= ∂

∂x
(1− (−riτ ln x))

= riτ/x.

and the proof for cri ·(t−Ti )+1
i is analogous. As an aside, these two facts can be used to give

a slightly different derivation for equation 3.10. Applying LOTUS to each of these random
variables gives:

E

[(
cei (t ;Ti )

i

)2
]
=

∫ 1

ci

riτ

x
x2 d x = riτx2

2

∣∣∣1

x=ci

= riτ
(
1− c2

i

)
2

E

[(
cri ·(t−Ti )+1

i

)2
]
=

∫ c
ri t
i

c
ri t+1
i

riτ

x
x2 d x = riτx2

2

∣∣∣c
ri t
i

x=c
ri t+1
i

= riτ
(
1− c2

i

)
c2ri t

i

2
.

To compute the remaining expectation, we require further insight into ei (t ;Ti ) = ri · (t − ti )−
bri · (t − ti )c. Define ki (t ) = bri tc as the spike index of t . Recall that t is fixed in this discussion.
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The congruence relation ti = t −ki (t )/ri ≡ t (mod r−1
i ) is also a discontinuity in ei (t ; ti ) with

respect to ti ; that is when the spike becomes aligned with t in the current interval. Namely, if
0 ≤ ti ≤ t −ki (t)/ri , then bri · (t − ti )+1c = bki (t )+1c = ki (t)+1. Likewise, if t −ki (t)/ri < ti ≤
r−1

i , then bri · (t − ti )+1c = ki (t ). We now apply LOTUS once more, along with the above facts
to split up the integral.

E
[

cei (t ;Ti )+ri ·(t−Ti )+1
i

]
=

∫ r−1
i

0
c2(ri ·(t−ti )+1)−bri ·(t−ti )+1c

i (ri )d ti

= ri

(∫ t−ki (t )/ri

0
c(2ri t−ki (t )+1)−(2ri ti )

i d ti +
∫ r−1

i

t−ki (t )/ri

c(2ri t−ki (t )+2)−(2ri ti )
i d ti

)

= ri c2ri t−ki (t )+1
i (τ/2)

(
e2ti /τ

∣∣∣t−ki (t )/ri

ti=0
+ ci e2ti /τ

∣∣∣r−1
i

ti=t−ki (t )/ri

)
= ri c2ri t−ki (t )+1

i (τ/2)
(
c−2ri ·(t−ki (t )/ri )

i −1+ c−1
i − c−2ri ·(t−ki (t )/ri )+1

i

)
= riτ(1− ci )

(
cki (t )+1

i + c2ri t−ki (t )
i

)
/2

Substituting all of these expectations into the initial formula yields:

V
[
Ỹi (t )

]= ri

(
1− c2

i

)(
1+ c2ri t

i

)
2τ (1− ci )2 −

(
cki (t )+1

i + c2ri t−ki (t )
i

)
τ(1− ci )

− ri ·
(
1− cri t

i

)2


Asymptotic analysis reveals that this scales as O (

τ−2) as τ→ 0+. As well, we use the fact that
regularized least-squares finds df

i that are independently distributed according to N (0,σ2)
where σ=O (

n−1) – i.e., variance scales as O (
n−2). Finally we use equation 3.10 in the second

step below, and then leverage the property that for any two uncorrelated zero-mean variables,
A and B , we have V [AB ] =V [A]V [B ]. Therefore,

√
V

[
µ(t )

]=
√√√√V

[
n∑

i=1
(ai ∗h) (t )df

i −
n∑

i=1
(ri ∗h) (t )df

i

]

=
√√√√V

[
n∑

i=1

(
Ỹi (t )−E[

Ỹi (t )
])

df
i

]

=
√

nV
[
Ỹ·(t )

]
V

[
df·

]
=

√
nO (

τ−2
)O (

n−2
)

=O
(

1

τ
p

n

)
.
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Satisfying the uniform ISIP criteria

Theorem 3.2.1 has important consequences for the correctness of NEF networks and the
precision of neural computation in general. Assuming neural states remain distributed in a
manner that satisfies the criteria of uniform ISIPs, then equation 2.10, which forms the basis
for the efficient training of NEF networks, is mathematically correct. Thus, precision continues
to scale (i.e., error converges to zero by the CLT), even as: (1) the number of neurons goes
towards infinity (see Figure 5.5), and (2) for arbitrarily high-frequency stimuli (see Figure 5.4).
This ensures that the NEF, and its postsynaptic current coding scheme (see section 3.1.5), is
asymptotically correct – even when encoding arbitrarily high-frequency signals into spikes
with arbitrarily small synaptic time-constants and low firing rates. We summarize many of
these scaling properties in section 3.2.2.
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Figure 3.4: Relationship between state discrepancy (KS-statistic; definition 3.2.1) and represen-
tational error induced by filtered spikes (RMSE), for sinusoidal stimuli of varying frequencies.
(Left) Empirical distribution of ISI positions (equation 3.6) is compared to the ideal uniform
distribution using the KS-statistic (p-values < 10−6). (Right) The RMSE is highly correlated
with the KS-statistic, with a Pearson correlation coefficient of R = 0.90 (p-value < 10−6).

However, in the NEF, when using LIF neurons, this criteria is violated as the frequency of the
represented signal increases. To demonstrate, Figure 3.4 simulates a communication channel
(n = 2,500, dt = 0.1 ms, τ = 1.6 ms, τRC = 20 ms, τref = 2 ms), with tuning curves uniformly
distributed to achieve maximum firing rates of 50–100 Hz, in order to encode sinusoid stimuli
of increasing frequencies (visualizing 95% confidence interval, bootstrapped across 5 random
configurations at each frequency). For 0 Hz (constant) inputs, the ISIP distribution is uniform
(KS-statistic < 0.0002), as we should expect (i.e., the neural states remain independently mixed
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for a constant input). However, as the frequency increases, so does the state discrepancy (see
left). Likewise, the state discrepancy is highly correlated (R = 0.90) with the RMSE of the spike
noise (see right). Even though the state discrepancy is < 6% for input frequencies up to 100 Hz,
it is important to remind the reader that this is a systematic error that does not scale away
with higher neuron counts. On the one hand this makes theoretical predictions regarding the
information-processing capabilities of LIF neurons for stimuli with various statistics, and in
particular suggests a nonlinear transfer function that may have some functional relevance –
but, on the other hand, here we are interested in understanding how this formalism relates to
minimizing error and maximizing information throughput.

In order to scale away the state discrepancy, we note that the uniform ISIP assumption may
be satisfied in a number of ways, many of which are validated in section 5.2.2:

1. The state of the system is initialized such that gi is uniform. For the case of the LIF
model, one can invert equation 3.6 and solve for (vi ,ρi ) from a uniform sample, and
then use this to initialize the state of each neuron. We do so in many of our experiments
(including Figure 3.4) in order to remove the initial transient that would otherwise be a
statistical anomaly (see Figure 3.3 (d)). Given a constant representation, the neural states
naturally remain mixed due to heterogeneity in the encoding. However, this does not
guarantee invariance over time for time-varying stimuli; leakage in the model as well as
rapid inhibition can skew the ISIPs back towards zero.

2. The neuron model is replaced by a spiking rectified linear (ReLU) unit, also known as
a (non-leaky) integrate-and-fire neuron. This model rectifies its input current, such
that its state only evolves in one direction. This can also be achieved by setting τRC to
be sufficiently large and lowering the neuron’s voltage floor, as in Boerlin et al. (2013).
Incidentally, Eliasmith and Anderson (2003, pp. 238–239) discovered that an integrator’s
performance was improved by increasing τRC, but attributed this improvement to static
distortion being minimized by linear tuning curves, instead of having reduced the overall
state discrepancy (also see Eliasmith and Anderson, 2003, appendix F.1).

3. Noise is introduced to the neuron model, to maintain a uniform subthreshold state (Elia-
smith and Anderson, 2003, pp. 132–133). Indeed, this is the same assumption made by
Eliasmith and Anderson (2003, p. 134) in their assessment of the quality of spiking neural
representation.

4. The neuron model is replaced by its Poisson-spiking counterpart; that is, any static
nonlinearity supplied to a Poisson spike-generator. Due to the memoryless nature of the
Poisson process, at any given moment in time, the model is always uniformly ready to
spike with the ideal probability (see section 5.2.2).
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Future work is required for more biologically-detailed neuron models and synapses. We conjec-
ture that the role of many adaptive mechanisms in biological systems is to invariantly maintain
the uniform ISIP criteria with respect to the time-varying statistics of the represented signal.
Such mechanisms would facilitate efficient coding by maximizing information throughput for
a fixed energy-budget (see section 3.1.6 and Eliasmith and Anderson (2003, pp. 127, Table 4.1)).

3.2.2 Scalability

In this section we summarize the general trade-offs associated with scaling NEF networks.
Some application-specific trade-offs are discussed in section 6.2.

Table 3.1 provides a comprehensive list of all such trade-offs that we are aware of to date.
This includes guarantees on training time, resources for simulation, precision (in spiking,
non-spiking, feed-forward, and recurrent architectures), energy usage, dimensionality, and
finally relationships between signal bandwidth, synaptic time-constants, and neuron counts.
For the scaling of spiking networks, we assume that the uniform ISIP criteria of Theorem 3.2.1 is
satisfied. References to relevant sections and literature are included in the right-hand column.

As a brief but important aside, the trade-offs that involve time do so by fixing some
time-scale of interest. That is, one chooses some unit associated with τ (e.g., seconds), or f
(e.g., Hertz), and so forth. In theory, and in practice, the relative time-scales are what end
up being important in determining the behaviour of the system. For example, if one were to
slow down all of the time-constants in the network (τ, τRC, τref, dt) by a factor of 10, while
increasing all of the rates in the network by the same factor, this would automatically be
equivalent to speeding up the stimulus’ frequency (reciprocal of time) by a factor of 10 in the
original network. Nothing else needs to be changed in order to compress or expand our per-
spective of time; weights, neuron counts, and decoded quantities are all unitless. This simply
follows from dimensional analysis and consistent usage of time-constants and frequencies
throughout, which highlights the importance of taking physical dimensions into consideration
throughout each level of analysis. In theory, this means these trade-offs can be applied to
any time-scale, although in practice biological and hardware constraints often determine the
relevant time-scales.
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3.2.3 Completeness

Continuous-time dynamical systems, such as those implemented by the NEF, serve as powerful,
universal models of computation (Bennett, 1995). For example, a dynamical system describing
the motion of a particle in three-dimensional space, consisting of a finite number of equa-
tions, is capable of simulating a Turing machine (Moore, 1990). Such systems are physically
implementable, while being undecidable in the sense that virtually every question about their
long-term behaviour is impossible to predict, even with perfect knowledge (Moore, 1991).

As established in the previous sections, the NEF may be used to train a network to ap-
proximate any continuous-time dynamical system arbitrarily well, with precision scaling in
the number of neurons. Therefore, it follows that the class of NEF networks are equivalent in
power to a Turing machine. The same can be said for continuous-time RNNs and other SNN
models (Funahashi and Nakamura, 1993; Thalmeier et al., 2016). In theory, this means that
these methods have the potential to implement arbitrary algorithms in distributed networks of
computing elements.

In some ways, the universality of continuous-time dynamical computations should not
come as a surprise, as a Turing machine is nothing more than a discrete-time dynamical
system with an unbounded (but finite for decidable tasks) number of state-variables (Turing,
1938). Early work by Voelker and Eliasmith (2014) provided a constructive proof of Turing-
completeness in the NEF, by using the Semantic Pointer Architecture (SPA; Eliasmith, 2013) to
process the instructions of algorithms encoded into graphs that were sufficiently powerful to
emulate multiple pushdown automata.

There is extensive literature on computability in both physical and non-physical substrates,
leveraging dynamics that are either discrete or continuous in space and time. However, these
theoretical results do not have much to say in practice about the constraints that a certain
task will impose on the system, the resources needed by an optimal solution, or likewise the
algorithms that demand the least amount of power according to the physical devices leveraged
by the model of computation.

We see these concerns as being in the realm of what should, and can, be addressed by
frameworks, methods, and tools (e.g., NEF and Nengo) that aim to expose and leverage some
underlying model of computation. Thus, we do not take Turing-completeness to be the
ultimate arbiter of whether some model of computation is suitable for describing the brain.
Rather, we take this discussion as theoretical justification for the expressive power of dynamical
systems, and therefore the utility in having well-understood tools for realizing them in neuro-
morphic hardware. The following sections are concerned with the robustness and extensibility
of these tools.
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3.2.4 Robustness

Many different notions of robustness in the NEF have already been studied by Eliasmith
and Anderson (2003), Eliasmith et al. (2012), and Eliasmith (2013). Robustness to sources
of variability and modelling errors in particular are essentially built-in to the framework.
The NEF uses variable spikes to encode information, and heterogeneous basis functions for
transformation, with zero-mean error (see Theorem 3.2.1). This enables the network’s function
to remain robust to randomly dropped or delayed spikes, weights that are quantized, perturbed,
or sparsified, the removal of neurons, intrinsic noise, and similar sources of variability.

But in addition, there is a distinctly different kind of robustness that, to our knowledge,
has not been discussed in the literature. As demonstrated in section 3.1.4, every non-trivial
recurrent NEF network is naturally chaotic at the level of individual neurons. Yet, in spite
of this chaos, the network functions correctly at the level of its state-space representation.
Robustness to chaos has an important practical consequence: small measurement errors in the
state of individual neurons—arising either from mechanisms in the system that rely on noisy
observations, or through modelling errors of the mechanisms themselves—may be tamed at
the population level. For example, an NEF integrator can be supplied a white noise process, of
sufficiently small amplitude (relative to the radius of its stable point), and it will remain within
the strange attractor corresponding to its fixed point, indefinitely. This enables a working
memory that can persist states for long periods of time even in the presence of noise (Singh
and Eliasmith, 2004).

In contrast, the methods of Boerlin et al. (2013) are not robust to such noise models, since
they treat any noise as being a part of the signal. To be precise, if one constructs an integrator
using their methods, and provides the same white noise process described above, then it
will compute the exact integral of white noise: a random walk (not shown). After a sufficient
amount of time, the state of the system will have completely wandered off from where it had
started, with no way of remembering the value that it was supposed to store. This occurs even
when the input is filtered using a lowpass synapse with an arbitrarily long time-constant; its
integral is still a transient stochastic process.

We take this to be of importance in the context of biological modelling and neuromorphic
hardware, since there is usually some undesirable signal, error, noise, or likewise, that must
eventually be accounted for in some manner. Integrating zero-mean error is not a general
solution (although it may be sufficient in some contexts in conjunction with saturation effects).
The NEF accounts for this by explicitly incorporating a noise model into the training procedure
(see equation 2.9) and implicitly establishing an array of fixed points in state-space (Eliasmith
and Anderson, 2003, p. 237). In addition, the NEF is robust to the use of a number of different
neuron models and synapse models, as is the focus of extensions discussed below.
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3.2.5 Extensibility

As stated in section 2.3, NEF networks have been deployed on a number of different backends,
including: SpiNNaker (Mundy et al., 2015), Neurogrid (Dethier et al., 2011), Braindrop (Neckar
et al., 2019), Loihi (GitHub, 2019b), TrueNorth (Fischl et al., 2018), a VLSI prototype (Corradi
et al., 2014), several FPGA implementations (Naylor et al., 2013; Wang et al., 2014; Berzish et al.,
2016; Wang et al., 2017; GitHub, 2019a), and several GPUs (Bekolay et al., 2014; Rasmussen,
2018; Blouw et al., 2018). This would not have been possible if not for the extensibility of the
NEF – that is, its flexibility in accounting for various non-idealities (e.g., Voelker et al., 2017a).

Our work in this direction is the topic of chapter 5. Of particular focus are the higher-
order synapses with variable time-constants on Braindrop, and the configurably-delayed
axons on Loihi. Our extensions can successfully leverage both to improve network-level
computation. The focus of chapter 7 is then to showcase several recurrent SNNs deployed
on both architectures, while using the same high-level model description for each network.
The machinery of the NEF and Nengo, together with the extensions in this thesis, take care
of compiling the model description onto the hardware while respecting its constraints and
leveraging its dynamical primitives (Neckar et al., 2019).
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Chapter 4

Methodology

This chapter is devoted to a brief overview of our methods, namely the software tools that we
use, and our approaches to modelling useful computations as dynamical systems. Additional
details are the focus of later chapters.

4.1 Software

The simulations in this thesis make extensive use of the following Python software packages
(versions listed when important):

• Nengo 2.8.0 (Bekolay et al., 2014); to construct and simulate NEF models on the CPU,
which depends on NumPy for its algebraic routines,

• Nengo-Loihi 0.5.0 (Blouw et al., 2018; GitHub, 2019b); to compile Nengo models onto
the Loihi emulator and hardware (courtesy of ABR),

• Nengo-Brainstorm (pre-release; Neckar et al., 2018, 2019, courtesy of Terry Stewart); to
compile Nengo models onto Braindrop, which depends on PyStorm (courtesy of the
Boahen Lab),

• Hyperopt 0.0.2 (Bergstra et al., 2015); to optimize the hyperparameters associated with
RC networks,

• Keras 2.2.4 (Gulli and Pal, 2017); to train LSTMs and some custom RNNs,
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• TensorFlow 1.12.0 (Abadi et al., 2016); as a backend for Keras,

• Seaborn (Waskom et al., 2015); to generate figures, which depends on Matplotlib and
Pandas for plotting and formatting data, respectively.

We do not take credit for any of the above software. However, we have created the Python
package, NengoLib 0.5.1 (Voelker and Eliasmith, 2016; Voelker, 2019; Voelker and Eliasmith,
2019, patent pending), open-sourced on GitHub, to make the contributions of this thesis
publicly available. Code, LATEX, and instructions for reproducing figures, are located at: https:
//github.com/arvoelke/phd/. Unless stated otherwise, all simulations use a time-step of
dt= 1 ms, and assume the input signal is held constant across each time-step, also known as
the “zero-order hold” (ZOH) assumption. Experiments that implement the methods of Boerlin
et al. (2013) in Nengo are currently unpublished (provided by Dan Rasmussen).

NengoLib includes the core code for most of the extensions discussed in chapter 5 and the
networks discussed in chapter 6. It has been used by publications including Knight et al. (2016),
Friedl et al. (2016), Voelker et al. (2017a), Voelker and Eliasmith (2017b), Voelker and Eliasmith
(2018), and Neckar (2018). In addition, we use it to construct RC, FORCE, full-FORCE, and
Nengo networks—each in spiking and non-spiking mode, and in an analogous manner to one
another—in order to facilitate meaningful comparisons between these architectures. A core
feature of this software is a toolkit for constructing and analyzing linear time-invariant systems,
in a number of representations (state-space, transfer function, zero-pole-gain), while being
compatible with the synapses of Nengo. This unifies the language used to build, describe, and
analyze LTI networks, synapses, and subthreshold neural dynamics. We now summarize some
additional features of this software that are used throughout.

State-space realizations

This section has been adapted from Voelker and Eliasmith (2018, appendix A.3). The state-
space model (equation 2.12) is not a unique description of the input-output behaviour of an
LTI system. In general, one may consider any invertible matrix T with the same shape as A, and
observe that the state-space model (T AT −1,T B ,C T −1,D) has the same transfer function as
(A,B ,C ,D). Thus, the state-space model is only unique up to a change of basis. However, in the
NEF, the basis T may be “absorbed” into the representation of x(t ) by using the encoders ET in

Principle 1, which, in turn, results in the decoders D f(T −1)T from Principle 2. In other words,
considering an alternative state-space model is equivalent to considering a change of basis for
the representation. Nevertheless, in practice, when aiming to accurately represent x(t ) using
few neurons, it is important to balance the relative range of values within each dimension,
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such that a typical trajectory for x(t ) stays within the space represented by the distribution of
encoders, consistent with the samples of S (see equation 2.9), and the dynamic range of each
neuron.

For this, there is a feature to balance the range of values by numerically computing the T
that results in a “balanced realization” of (A,B ,C ,D) (Laub et al., 1987; Perev, 2011). We then
set the encoders to be unit-length and axis-aligned, and optimize each dimension indepen-
dently by using the methods from section 2.2.2. There is also the support to normalize each
dimension by a diagonal transformation T with the i th diagonal equaling max

t
|xi (t )|−1 where

xi (t ) is obtained by simulating the ideal system directly on a randomly sampled input. Finally,
NengoLib supports a diagonal transformation T with the i th diagonal corresponding to the
reciprocal of two times the sum of the Hankel singular values (Glover and Partington, 1987) of
the subsystem corresponding to xi (t). This has the effect of bounding the absolute value of
each dimension above by 1 in the worst case (Khaisongkram and Banjerdpongchai, 2007).

In general, we find that each of the above methods to normalize state-space models typically
improves the robustness of our networks across a wide range of parameters, but one is never
strictly better than all others in every situation.

Random sampling

Many common routines in Nengo employ the use of high-dimensional random sampling (Voelker
et al., 2017b; Gosmann, 2018), in particular the uniform sampling of encoders ei from the
surface of the hypersphere, and the uniform sampling of evaluation points from S (typically
the interior of the hyperball).

Considering the NEF’s optimization problem from equation 2.9, Monte Carlo (MC) sam-

pling S introduces O
(
m− 1

2

)
error into the integral, where m is the number of samples, but

this can be improved to Õ (
m−1)—effectively squaring m—by the use of quasi-Monte Carlo

methods (Fang and Wang, 1994; Knight et al., 2016). For this, NengoLib overloads Nengo’s
default versions of these distributions, with its own method of uniformly scattering the samples
using quasi-MC sampling. Specifically, we take a scattered sample from the hypercube, and
then apply the inverse transform method with a spherical coordinate transform (Fang and
Wang, 1994) to map samples onto either the hyperball or hypersphere. This supports the use of
any number of quasi-MC methods for sampling from the cube, although we have implemented
the most promising ones: Sobol sequence and R2 (Sobol, 1967; Roberts, 2018).

We find that quasi-MC sampling the encoders also improves the representation at low
numbers of neurons on average, by ensuring a better tiling or coverage of the encoded space.
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For efficient coding in higher dimensions, methods of randomly sampling points from the
Leech lattice—a 24-dimensional Lattice built from 196,560 unit-length vectors, with beautiful
mathematical properties regarding their similarity in relation to efficient sphere-packing
and error-correction codes (Conway and Sloane, 1999)—used by Knight et al. (2016) are also
available in NengoLib.

4.2 Dynamics as a language

As discussed in section 3.2.3, dynamical systems represent a complete (i.e., universal) model of
computation. But how are useful high-level computations embedded into such systems? To
this end, we are interested in developing a language for describing useful algorithms within the
dynamical modelling framework of the NEF, and libraries for combining these models within
Nengo.

Early work by Eliasmith and Anderson (2003) has shown that many important neurobio-
logical systems, such as the nuclei involved in horizontal eye control, may be modelled as an
integrator. That is, some velocity signal, indicating a desired direction, is represented by one
population and then integrated by another. Such systems are describable as a one-dimensional
linear time-invariant system (see equation 2.12), such as the one demonstrated in section 3.1.4
using ten spiking neurons. When extended to higher dimensions, this same system is capable
of storing multiple items in series, and has consequently been applied to build sophisticated
models of working memory (Singh and Eliasmith, 2004; Choo, 2010).

Oscillatory dynamics (e.g., relaxation oscillators), such as those modelled in Eliasmith and
Anderson (2000) have utility in generating rhythmic activity to support various computations.
For example, theta oscillations in the range of 4–12 Hz, through a phenomenon known as
phase precession, have been shown to support the encoding of spatial information using
Nengo (O’Keefe and Recce, 1993; Orchard et al., 2013). Likewise, a bank of oscillators can be
used to facilitate motion processing in the early visual system (Hurzook, 2012).

Attractor networks describe a much broader class of nonlinear dynamical systems that cap-
ture many important phenomena observed in neurobiological systems (Amit, 1989; Eliasmith,
2005). When oscillations, integrators, and point attractors, are all combined, networks may
generate complex trajectories through space (Ijspeert et al., 2013; DeWolf and Eliasmith, 2017).
By arranging all of these building blocks in an engineered fashion, together with feed-forward
synaptic dynamics coupling various modules, complex systems such as Spaun may carry out
end-to-end cognitive tasks and even learn to follow general sets of instructions (Eliasmith
et al., 2012; Choo, 2018). The role of chapter 6 is to unveil another class of dynamical systems
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for continuous nonlinear memory, that connects with “time cell” data from the neuroscience
literature, and naturally fits into this framework. But first, we describe a few concrete examples
to help illustrate the universality of dynamical descriptions of computation, in a number of
distinct contexts.

4.2.1 Winner-take-all

Winner-take-all (WTA) circuits essentially engineer a “max” function that pools across spatial
dimensions. These systems may be described in state-space using nonlinear differential
equations, that compete with one another in order to resolve the correct solution over time,
as in an attractor network (Usher and McClelland, 2001; Gosmann et al., 2017). Here, we are
interested in a very different kind of WTA circuit that must compute its max across temporal
dimensions. We call this circuit a “peak detector”.1 Specifically, we suppose the input vector,
u ∈Rm , is supplied online, one dimension at a time, such that:

u[k] = (u[k],u[k −1], . . . ,u[k −m])T

for some (possibly infinite) number of samples, m ≥ 1. In this context, determining the
maximum of u[k] is equivalent to the task of tracking the peak of the past history of the
discrete-time signal, u[k] (see Figure 4.1), at a sampling interval of dt. In other words, the
problem of tracking the maximum across time, is equivalent to a WTA mechanism where the
input dimensions are provided sequentially, as opposed to being provided all at the same
moment in time (as is usually the case).

In the limit of dt→ 0, the desired continuous-time dynamical system is:

ẋ(t ) = f (x(t ),u(t )), f (x,u) = θ−1 [u −x]+ (4.1)

where [·]+ denotes positive half-wave rectification. θ > 0 is a time-constant that determines
how quickly the state should adjust to the positive difference. Note that in a purely continuous-
time system, assuming no noise, θ can be made arbitrarily small, in order to track the peak
arbitrary quickly. However, since we have a discrete sampling time, our desired dynamical
system is:

x[k +1] = f̄ (x[k],u[k]), f̄ (x,u) = θ̄−1 [u −x]++x (4.2)

where θ̄ > 0 is a (dimensionless) discrete time-constant. Equation 4.2 is related to equation 4.1
by θ̄ = θ (dt)−1, assuming Euler integration. Note that θ̄ = 1 will give a perfect peak detector,
assuming no noise.

1This problem was proposed by Jan Gosmann (unpublished).
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Figure 4.1: An ideal “peak detector” implemented as a discrete-time dynamical system. This is
equivalent to performing a winner-take-all across data provided sequentially.

In Figure 4.1, we implement a peak detector by using Nengo directly as a dynamical systems
simulator. This does not use any neurons, but rather digitally implements equation 4.2 with
θ̄ = 1 by coupling each variable in the correct way:

with nengo.Network() as model:

u = nengo.Node(stim) # stim defines the test input signal

peak = nengo.Ensemble(1, dimensions=2, neuron_type=nengo.Direct())

nengo.Connection(u, peak[1], synapse=None)

function = lambda x: (x[1] − x[0]).clip(min=0) + x[0]

nengo.Connection(peak, peak[0], synapse=~z, function=function)

We remark that ~z is a dynamical primitive in NengoLib that implements a single time-step
delay, in correspondence with the Z-transform in signal processing. This illustrates the utility
of discrete-time dynamical systems, the flexibility of this framework for describing useful
computations, and the versatility of Nengo as a programming tool for simulating such systems.
Both continuous-time and discrete-time versions of this system may be implemented using
spiking neurons as well (not shown). In chapter 5 we will address the implementation of such
systems—with both discrete- and continuous-time dynamics—using populations of spiking
neurons in analog and digital hardware.
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4.2.2 Unsupervised learning

This section has been adapted from Voelker et al. (2014), and discusses the dynamics of an
unsupervised learning rule used by Voelker and Eliasmith (2014), Trujillo (2014), and Aubin
et al. (2017). This has been implemented on SpiNNaker (Knight et al., 2016), and is discussed
in some detail by Aubin (2018). Here we expose the dynamics of this learning rule, while
highlighting its function for sparsifying across space in large-scale models.

Associative memories have been an active area of research over the last forty years (Will-
shaw et al., 1969; Kohonen, 1972; Hopfield, 1982) because they form a central component of
many cognitive architectures (Pollack, 1988; Anderson and Lebiere, 1998). We focus specifically
on associative memories that store associations between arbitrary pairs of neural states. When
a noisy version of an input state vector is presented to the network, it must output a “clean”
version of the associated state vector. Stewart et al. (2011) has built such a memory network,
possessing a number of desirable properties including: high accuracy, a fast, feed-forward
recall process, and efficient scaling, requiring a number of neurons linear in the number of
stored associations. These memories have played a central role in several cognitive models
including Spaun, as well a proposal for human-scale, biologically-plausible knowledge repre-
sentation (Crawford et al., 2015). However, these memories are constructed using an offline
optimization method that is not biologically-plausible.

We describe a method for building large-scale networks for online learning of associations
using spiking neurons. Connection weights can be arrived at through a biologically-plausible,
online learning process featuring a novel synaptic learning rule inspired in part by the well-
known Oja learning rule (Oja, 1989). We call this rule the Voja learning rule (for “vector
Oja”). Although the network itself is feed-forward, the dynamics that carry out the important
computations are embedded within the learning rules that modify its synaptic weights online.
We now describe the learning rule.

Given a learning rate η, an input vector x encoded by the activity of the input layer, the
filtered activity a(t) of neurons in the middle layer, and the matrix E whose rows are the
“preferred direction” vectors of the middle layer neurons, we modify the preferred direction
vectors of the middle layer neurons according to the dynamical system:

Ė = η
(
a(t )xT−a(t )E

)
= ηa(t )


xT

...
xT

−E

 . (4.3)

To understand the effect of this rule over time, we set Ėi = 0 and solve for the fixed point. This
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gives ai (t )x = ai (t )ei , and thus, for a particular x, convergence is characterized by:

[ėi = 0] ⇐⇒ [ai (t ) > 0 =⇒ ei = x]. (4.4)

This defines an attractor landscape whose set of fixed points correspond to the set of inputs
presented over time. In plain words, the encoding vectors of the neurons that become active
will, over time, become more active and store the input within its encoder. The effect of this
rule is to self-organize a sparse representation, such that a subset of neurons fire only when x,
or a similar enough (i.e., noisy) version of it, is presented (see Figures 4.2 and 4.3). The preferred
direction vectors of each neuron are embedded within the synaptic weights projecting from the
previous layer. Thus, this can be realized as a local learning rule by multiplying the decoders
through and expressing the update as its weight with the j th presynaptic neuron (Knight et al.,
2016):

ω̇i j = ėi ·d j = ηai (d j ·x−ωi j ). (4.5)

In effect, this rule achieves some useful computation—the unsupervised learning of inputs—by
implementing a dynamical system within the state of each synapse. The networks of Knight
et al. (2016); Aubin et al. (2017) learn to associate each input vector with a distinct output
vector, by combining this rule with a supervised learning rule discussed below.

4.2.3 Supervised learning

This section has been adapted from preliminary work by Voelker (2015b) and Voelker and
Eliasmith (2017a). This approach highlights the utility in shifting perspectives in learning to that
of a dynamical system embedded within some larger function. In particular, online learning is
nothing more than a dynamical system mapped onto localized computations manipulating
state-variables within a network. We illustrate this by unifying Nengo’s supervised learning and
the NEF’s dynamical systems framework at a theoretical level, and then leverage the resulting
relationship in a practical spiking example with online learning.

The NEF typically learns its connection weights offline, but Nengo also supports a number
of biologically-plausible supervised and unsupervised learning rules to learn these weights
online (Bekolay, 2011). Prescribed Error Sensitivity (PES; Bekolay et al., 2013) is a biologically-
plausible Hebbian supervised learning rule that is frequently used within Nengo models. PES
modifies the connection weights between populations of neurons to minimize an external
(i.e., supervised) error signal. It is equivalent in function to a single-layer application of
gradient descent, applied online (i.e., stochastically) to its current input and supervised output.
This learning rule has been used to model episodic memory (Trujillo and Eliasmith, 2014),
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Figure 4.2: The effect of Voja on the encoders of a 2-dimensional population, over time. Each
point corresponds to the encoder of one of 100 neurons. Four input vectors are chosen of
the form (±1/

p
2, ±1/

p
2), and their areas of attraction within the unit circle are indicated

by shaded regions (c = 0.6). As the simulation progresses, from left to right, each encoder
converges to one of the possible inputs. Reproduced from Knight et al. (2016).

Figure 4.3: Input vector clustering of a 3-dimensional ensemble, presented with 6 evenly
spaced x. (a) The initial clustering, before any input has been given. (b) Each input vector has
been shown for two seconds of simulation time, with intercepts set to cos(π/6). Gray plates
show the area of attraction for each input vector. (c) Same as b, with intercepts chosen to give
pi = 1/6. (d) Same as b, with intercepts set to cos(π/3). Reproduced from Voelker et al. (2014).
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hierarchical reinforcement learning (Rasmussen et al., 2017), adaptive motor control (Komer,
2015; DeWolf et al., 2016), and many other tasks (Aubin, 2018; Choo, 2018). The PES learning
rule is also partially supported by Loihi [personal communication].

We solve the discrete dynamical system for the case of constant inputs and no noise, to
show that the decoding vectors given by the NEF have a simple closed-form expression in
terms of the number of simulation time-steps. Moreover, with γ= (1−κ‖a‖2) < 1, where κ is
the learning rate and a is the vector of firing rates, the error at time-step k is the initial error
times γk . Thus, γ > −1 implies exponential convergence to a unique stable solution, γ < 0
results in oscillatory weight changes, and γ≤−1 implies instability.

Lemma 4.2.1 (Dynamics of discrete unfiltered supervised learning). (Voelker, 2015b) Let γ=
(1−κ‖a‖2) < 1, and e0 = y∗−d[0]T a, then:

d[k] = d[0]+e0
a

‖a‖2
(1−γk ), k ∈N, (4.6)

and so the error at time-step k is y∗−d[k]T a = e0γ
k . In particular, if γ>−1, then d[∞] exists

and is given by the unique solution,

d[∞] = d[0]+e0
a

‖a‖2
. (4.7)

On the other hand, if γ≤−1 then the system is unstable. The proof is given by Voelker (2015b).

Continuing this work, we solve for the dynamics of PES, while filtering the error with an arbi-
trary linear synapse model. For the most common case of a lowpass filter, the continuous-time
weight changes happen to be characterized by a second-order bandpass filter with frequency

ω=
√
τ−1κ‖a‖2 and bandwidth Q =

√
τκ‖a‖2, where τ is the exponential time constant, κ is

the learning rate, and a is the activity vector. Therefore, the error converges to zero, yet oscil-
lates if and only if τκ‖a‖2 > 1/4. This provides a heuristic for setting κ based on the synaptic
τ, and a method for engineering remarkably accurate decaying oscillators using only a single
spiking leaky integrate-and-fire neuron.

Lemma 4.2.1 fully characterized the discrete-time dynamics of PES under the restricted
setting of a constant input signal, constant reference signal, and no noise. Due to the absence
of noise, no filter was required for the error signal. However, for spiking networks considered
in practice, a lowpass is applied to the error to filter out spike-noise (e.g., DeWolf et al., 2016;
Rasmussen et al., 2017), We now relax the assumption of a constant reference signal, and
apply an arbitrary linear filter to the error signal. For simplicity, we do so for the case of a
continuous-time simulation, but our analysis can also be applied to the discrete-time setting
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via the Z-transform. To keep our analysis tractable, we still assume a constant input signal,
and briefly discuss implications for the general dynamic setting.

We begin by formulating a mathematical description of the network, present our theoretical
results, prove them mathematically, validate them with numerical simulations, and demon-
strate the utility of this analysis by engineering oscillators with predetermined frequencies
and decay rates. Finally, we conclude by discussing some implications for learning spiking
dynamical networks online.

Prescribed Error Sensitivity

r(t)

y(t)x

– h(t)

d(t)

e(t)

a

+

Figure 4.4: Network diagram used to analyze the PES rule. A constant input x is represented by a
population of n spiking neurons with the activity vector a ∈Rn . A dynamic reference signal r (t )
determines the error e(t ) = (

(y − r )∗h
)

(t ) (equation 4.10), which in turn drives y(t) towards
r (t ) by modulating the connection weights via PES (equation 4.9). These learned connection
weights decode y(t) via the decoders d(t) ∈Rn (equation 4.8). A linear filter h(t) models the
post-synaptic current induced by each spike. Reproduced from Voelker and Eliasmith (2017a,
Figure 1).

Consider a network containing a population of n spiking neurons, encoding the constant
scalar input x. Let a ∈Rn be the average (i.e., rate) activity of each neuron in response to this
encoding.2 This vector is determined by the first principle of the NEF, and remains fixed for
constant x. The decoders d(t ) ∈Rn determine the scalar output y(t ) via the dot product:

y(t ) = aTd(t ). (4.8)

The PES rule learns these decoders, online, according to the following dynamics:

ḋ(t ) =−κe(t )a, (4.9)

2Here on, we assume that a 6= 0, otherwise PES will have no effect.
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where κ> 0 is the learning rate,3 and e(t ) is the chosen error signal:4

e(t ) = (
(y − r )∗h

)
(t ), (4.10)

where r (t ) is the reference (i.e., ideal) output, and h(t ) is some arbitrary linear filter modeling
the post-synaptic current (PSC) induced by a spike arriving at the synaptic cleft. Typically, h(t )
is a first-order lowpass filter with time constant τ> 0 (i.e., equation 2.13):

h(t ) = 1

τ
e− t

τ ⇐⇒ H(s) = 1

τs +1
. (4.11)

The final network is summarized in Figure 4.4. This also naturally extends to the case where x
and y are vectors (using a population code), but we consider the scalar case for simplicity.

Now, we aim to characterize the dynamics of e(t) in response to the control signal r (t).
Alternatively, we could characterize the dynamics of y(t) or d(t), but the former is easier to
work with, while describing the latter via equations 4.8 and 4.9 (i.e., by integrating e(t )).

Theorem 4.2.2 (Dynamics of supervised learning with continuous filtered feedback). (Voelker
and Eliasmith, 2017a) Let φ= τκ‖a‖2. For the network described in Figure 4.4, we have:

e(t ) = (r ∗ f )(t ), (4.12)

where:
F (s) = −s

sH(s)−1 +κ‖a‖2
, (4.13)

hence F (s) is the transfer function from R(s) to E(s). For the case of a first-order lowpass filter
(equation 4.11),

=⇒ F (s) = −s

τs2 + s +κ‖a‖2
= −(

κ‖a‖2
)−1

s(
1
ω2

)
s2 +

(
1
ωQ

)
s +1

(4.14)

ω=
√
τ−1κ‖a‖2 = τ−1

√
φ (4.15)

Q =
√
τκ‖a‖2 =√

φ. (4.16)

Thus, F (s) is a second-order Q-bandpass filter with frequency ω in radians per second (
ω

2π
is the

frequency in hertz) (Zumbahlen et al., 2011, pp. 8.9–8.10). The poles of F (s) are:

s = −1±√
1−4φ

2τ
. (4.17)

3κ is automatically scaled by n−1 in Nengo, to balance the linear scaling of ‖a‖2.
4Signs are flipped in Voelker (2015b); equations 4.9 and 4.10 are consistent with Nengo.
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Since φ> 0, this system is exponentially stable, and, moreover, the impulse response, f (t), is a
decaying oscillator if and only if φ> 1/4.

Proof. We begin by transforming equations 4.8–4.10 into the Laplace domain:

Y (s) = aTD(s)

sD(s) =−κE(s)a

E(s) = (Y (s)−R(s)) H(s).5

Substituting the first two equations into the last, yields:

E(s) =
(
aTD(s)−R(s)

)
H(s)

=
(
−aTs−1κE(s)a−R(s)

)
H(s)

=−κ‖a‖2s−1H(s)E(s)−R(s)H(s)

⇐⇒ (
1+κ‖a‖2s−1H(s)

)
E(s) =−R(s)H(s)

⇐⇒ E(s) = R(s)

( −H(s)

1+κ‖a‖2s−1H(s)

)
= R(s)

( −s

sH(s)−1 +κ‖a‖2

)
= R(s)F (s).

Equations 4.12 and 4.13 follow from the convolution theorem. Equations 4.14–4.16 are
verified by substituting H(s)−1 = τs +1 into equation 4.13.

The poles of the system (equation 4.17) are obtained by applying the quadratic formula
to the denominator polynomial from equation 4.14 (τs2 + s +κ‖a‖2). Exponential stability is
implied by both poles being strictly in the left half-plane. Lastly, f (t ) oscillates if and only if the
poles are complex, if and only if the discriminant (1−4φ) is negative, if and only if φ> 1/4.

Validation

We construct the network from Figure 4.4 using Nengo, with only n = 1 spiking leaky integrate-
and-fire neuron (mean firing rate of 262Hz),6 τ= 0.1s (equation 4.11), x = 0, and κ such that
φ> 1/4. We construct the transfer function from equation 4.14 using NengoLib:

5This has nice form since a is a constant – otherwise multiplication of two time-varying signals becomes a
complex integral in the Laplace domain.

6Spikes are used in place of a in equations 4.8 and 4.9.
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import nengolib

from nengolib.signal import s

H = nengolib.Lowpass(tau)

F = −s / (s/H + kappa*a.dot(a))

where tau ← τ is the time constant of the synapse, kappa ← κ is the learning-rate supplied
to Nengo (divided by n), and a ← a is the NumPy array for the population’s activity. We
evaluate (r ∗ f )(t ) using F.filt(r, dt=dt), and compare this to the e(t ) obtained numerically
in simulation. The filt method automatically discretizes F (s) according to the simulation
time-step (dt = 1ms) using zero-order hold (ZOH).7

In Figure 4.5, we confirm that (r ∗ f )(t ) approximates the numerical e(t ) given white noise
r (t ). In Figure 4.6(Top), we exploit our knowledge of the impulse response, f (t ), to engineer
a number of decaying oscillators by controlling r (t). In Figure 4.6(Bottom), we evaluate
np.abs(F.evaluate(freqs)) at a variety of frequencies (freqs) to visualize the bandpass
behaviour of each filter.
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Figure 4.5: Comparison of the analytical error (equation 4.14) to the numerical e(t ) obtained
by simulating the network from Figure 4.4 (κ = 10−3). The control signal r (t) is randomly
sampled white noise with a cutoff frequency of 10Hz. The normalized root-mean-square error
is approximately 3.7%. Reproduced from Voelker and Eliasmith (2017a, Figure 2).

7Technically, for a discrete-time simulation, the problem and results should have been formulated in the
discrete-time domain using the Z -transform to begin with, as opposed to discretizing at the end, but the difference
is quite subtle.
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Figure 4.6: Harnessing the dynamics of PES with various κ to engineer decaying oscillators
with predetermined frequencies (ω) and bandwidths (Q), using only a single leaky integrate-
and-fire neuron. The time constant of the first-order lowpass filter is fixed at τ= 0.1s, while
κ is set to achieve the desired ω via equation 4.15. (Top) Once every second, r (t) is set to
a unit-area impulse. Consequently, e(t) oscillates according to the impulse response, f (t).
(Bottom) Visualizing the ideal frequency response of F (s) (equation 4.14). Dashed lines at ω
(equation 4.15) align with the peak of each bandpass filter, or equivalently the frequency of
each oscillation. The width of each filter is proportional to the decay rate Q−1 (equation 4.16).
Reproduced from Voelker and Eliasmith (2017a, Figure 3).

Discussion

Since φ = τκ‖a‖2 > 1/4 if and only if the weights oscillate, this motivates a simple heuristic

for setting the learning rate to prevent oscillatory weight changes: set κ ≤ 1

4τ‖a‖2
, where

‖a‖2 is maximal over all possible activity vectors. In this case, equation 4.14 factors into a
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(differentiated) double-exponential:

F (s) = −τ1τ2s

τ(τ1s +1)(τ2s +1)
= (−τ1τ2τ

−1s
)( 1

τ1s +1

)(
1

τ2s +1

)
,

that is, two first-order lowpass filters chained together, where:

(τ1,τ2) = 2τ

1∓√
1−4φ

,

by equation 4.17. In other words, the non-oscillatory regime (0 <φ≤ 1/4) of PES is character-
ized by the dynamics of a double-exponential. We remark that τ1 = τ2 = 2τ (i.e., an alpha filter)
directly on the point of bifurcation from double-exponential to oscillatory behaviour (φ= 1/4;
see Figure 4.7).

In all applications involving online learning (that we are aware of) oscillatory weight
changes are viewed as problematic, and so the relevant constants (τ, κ, and ‖a‖2) are tweaked
until the issue disappears. In contrast, we have shown that not only can the relationship
between these constants and the oscillations be fully understood, but they can be harnessed
to engineer bandpass filters (with respect to the transformation r (t) 7→ e(t)) with specific
frequencies (ω) and bandwidths (Q). More generally, the PES learning rule can be used to
construct dynamical systems whose transfer function (equation 4.13) depends on H(s), κ, and
‖a‖2. As we used only a single spiking neuron, the accuracy of these systems rely solely on
the accuracy of the PES implementation, the model of H(s), and the constancy of (a∗h)(t ) in
practice (i.e., given spiking activity).

Although we have analyzed the continuous-time setting, the same proof technique can be
applied to the discrete-time domain by use of the Z -transform. Likewise, although we have
assumed x is a constant, we can apply a “separation of time-scales” argument (i.e., assuming
x(t ) changes on a slower time-scale than f (t )) to carry this same analysis over to dynamic x(t ).
By equation 4.17, this analysis holds approximately for x(t ) with frequencies ¿ (4πτ)−1 Hz, by
applying a time-varying filter to d(t ) that depends on the current activity vector. Incidentally,
this bound is only half that of our definition of low-frequency representation from section 3.1.6.

In conclusion, we have extended our previous analysis of PES to include linearly filtered
feedback and a dynamic reference signal. This fully characterizes the rule in the context of
NEF networks representing a constant value, as a transfer function from the reference signal
to the error signal. This transfer function may then be readily analyzed and exploited using
linear systems theory, to instantiate oscillators using far fewer resources (i.e., a single neuron
coupled with a local learning rule) than what would be needed to achieve the same level of
precision with a recurrent SNN implementing the same dynamical system. This demonstrates
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a more general principle of recurrently coupling available dynamical primitives in biological
models (here, a PSC that is integrated by an online learning rule) to improve network-level
computations.

Many other aspects of NEF networks may also be analyzed from a dynamical systems
perspective. For instance, the dynamics of the representational error, the chaotic dynamics
of voltage traces, or the undecidable attractor dynamics induced by neural saturation (see
section 3.1.4). We do not go into detail here. We mention this because, similar to our lessons
learned in the above discussion, it may become important to have the ability to systematically
characterize and subsequently leverage the dynamics that are already naturally present in the
network’s function.
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Figure 4.7: Visualizing the poles of F (s) (equation 4.17) by sweeping κ > 0 (while ‖a‖2 and

τ= 0.1s remain fixed). Arrows follow the direction of increasing κ. When φ≤ 1

4
, the dynamics

of PES are a double-exponential. The learning rule becomes an alpha filter when the two

poles collide: φ= 1

4
⇐⇒ s =− 1

2τ
(marked by a solid circle). When φ> 1

4
, the weight changes

become oscillatory (due to complex poles). As κ increases, the oscillatory frequency, ω, scales

as O (p
κ
)
. As κ decreases, the first pole converges to s =−1

τ
(marked by a solid x) while the

second pole cancels the zero at s = 0. Reproduced from Voelker and Eliasmith (2017a, Figure 4).
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4.2.4 Optimization

There is extensive literature on the general topic of implementing optimization algorithms
in the form of dynamical systems, dating back at least to the work of Brockett (1991). Voelker
(2014) noticed that the “hill climbing” algorithm may be cast as a dynamical system, and
leveraged this to construct an SNN that locally searches across an error landscape. This
observation naturally extends to any gradient-based algorithm, since these algorithms are
expressed as state-vectors that update continuously according to some (possibly nonlinear)
function of the state of the system. Instances of this include gradient descent, feedback
alignment (?), Bayesian inference, and expectation-maximization (Sharma et al., 2017).

Apart from what has been done in the NEF, there exist many other dynamical systems that
solve optimization problems, that could just as easily be realized using Principle 3, including:
compressed sensing (Kim et al., 2007), sparse coding (LASSO; Shapero et al., 2014; Tang et al.,
2017), dictionary learning (Lin and Tang, 2018), Hopfield networks (Hopfield, 1982; Frady
and Sommer, 2019), non-negative similarity matching (Pehlevan, 2019), and various other
algorithms related to eigenvalues, independent component analysis, and non-negative matrix
factorization. But rather than focusing on any one of these algorithms in particular, we turn
our efforts to developing a comprehensive understanding of how the NEF may be extended to
implement all of them.
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Chapter 5

Extensions to the Neural Engineering
Framework

Rapid growth in the field of neuromorphic engineering—over the past 30 years (Mead and
Mahowald, 1988)—has accelerated the production of a large variety of neuromorphic architec-
tures, each with distinct constraints and trade-offs that impact the degree of programmability
and performance as a function of energy-consumption (section 2.3). Among these consider-
ations, are issues involving: discretization (in time), quantization (truncation of both neural
states and weight matrices), connectivity constraints, memory constraints, volume of spike
traffic, external input-output bandwidth and delays, thermal variability, transistor mismatch,
conversion of analog signals to digital pulses, and the introduction of higher-order dynamics
throughout. The NEF already solves many of these problems in theory with varying degrees of
success in practice. The focus of this chapter is to expose our novel contributions to solving
these problems in the context of extending the scope of Principle 3. The goal is to bolster up
the NEF with a variety of additional methods and techniques for analyzing and leveraging
spiking dynamical computations.

5.1 Synapses

This section has been adapted from the works of Voelker and Eliasmith (2016, patent pending),
Voelker et al. (2017a), Voelker and Eliasmith (2017b), Voelker and Eliasmith (2018), and Voelker
and Eliasmith (2019, patent pending). Here, we focus on a dynamical primitive of SNNs known
as the synapse model, h(t), and address many of the differences that emerge between the
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idealization made by the NEF and the realities imposed by neuromorphic hardware (and often
too, the brain). This leads to several high-level results that exploit their higher-order dynamics,
account for time-constant mismatch, leverage their heterogeneity, and solve for optimal filters.

5.1.1 Linear transfer functions

We build a comprehensive theory, adapted from Voelker and Eliasmith (2018), for including
arbitrary linear synapse models in the neural architecture. This is applied to the case of
implementing linear systems, but many of these same techniques also carry over to later
sections in the case of nonlinear systems.

Consider the linear time-invariant (LTI) system (repeating equation 2.12, for clarity):

ẋ(t ) = Ax(t )+Bu(t )

y(t ) =C x(t )+Du(t ).
(5.1)

This state-space model is related to its transfer function, F (s), which uniquely characterizes its
input-output response in the Laplace domain according to

F (s) =L{
f (t )

}
(s) = L{

y(t )
}

(s)

L {u(t )} (s)
= Y(s)

U(s)
,

by the following equation (Brogan, 1991):

F (s) =C (sI − A)−1B +D . (5.2)

Now let F (s) be the transfer function for the linear dynamics that we wish to implement
(derived by equations 5.1 and 5.2), and let H(s) be the transfer function for an arbitrary linear
synapse model (H(s) = L {h(t )}). As stated in section 2.2.3, introducing the synapse model
means replacing the integrator (s−1) with H(s). This is equivalent to replacing s with H(s)−1.
Notably, substituting H(s) for the integrator results in the transfer function F

(
H(s)−1), which

no longer implements the original, desired dynamics F (s). However, we would like to ensure
that the new dynamics match the originally specified F (s). The key insight is that we can
determine a new function, F H (s), such that F H (

H(s)−1) = F (s). That is, we can solve for a
function that provides the original dynamics when implemented using the transfer function
H(s) as the dynamical primitive. This is formalized by the following definition:

Definition 5.1.1. A function F H (s) maps F onto H if and only if it satisfies:

F H
(

1

H(s)

)
= F (s). (5.3)
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B H + H(s) C H +

AH

D H

u x y

Figure 5.1: Block diagram for an LTI system, equivalent to Figure 2.1, with the integrator
replaced by a more general linear filter H(s). The state-space model

(
AH ,B H ,C H ,D H )

is
obtained from some transfer function F H (s) that maps F onto H , as defined in the text. This
generalizes Figure 2.2 to arbitrary linear synapse models. Reproduced from Voelker and
Eliasmith (2018, Figure 7).

This definition compactly expresses the notion of a “change of dynamical primitive”, in
that F (s) is mapped from the canonical primitive, s−1, onto some new primitive, H (s). Trivially,
F (s) maps itself onto s−1. Non-trivial examples are given below.

Once we identify a F H (s) that maps F onto H , any state-space model
(

AH ,B H ,C H ,D H )
that satisfies

F H (s) =C H (
sI − AH )−1

B H +D H (5.4)

will implement the desired dynamics when using H(s) as the dynamical primitive, by equa-
tions 5.2 and 5.3 (see Figure 5.1).

Therefore, supposing F H (s) satisfies definition 5.1.1, and that it is convertible to a state-
space model (equation 2.12), then Figure 5.1 is just another form of Figure 2.1, but with the
integrator replaced by the synapse. Note that this construction, on its own, does not specify
how to find a satisfying F H (s), nor whether such a function exists, nor whether it can be
converted to a state-space model. We provide several examples leading to such a specification
at the end of this section.

Before proceeding, we remark that the above theory directly carries over from the continuous-
time domain to the discrete-time domain. The discrete-time formulation of an LTI system is
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similar to equation 2.12, but increments time in steps of length dt:

x[t +dt] = Āx[t ]+ B̄u[t ]

y[t ] = C̄ x[t ]+ D̄u[t ],
(5.5)

where the discrete state-space model
(

Ā, B̄ ,C̄ ,D̄
)

fully defines the system. The discrete-time
equivalent to the Laplace transform is the Z-transform, named for its use of the variable
z to denote the complex frequency domain. In this domain, z−1 plays the role of s−1, by
performing a discrete shift forwards, one step in time (i.e., a delay of one time-step), instead
of integration. A well-known result is that the transfer function of this discrete LTI system—
defined as the ratio of the Z-transform of the output to the Z-transform of the input—is equal
to F (z) = C̄ (zI − Ā)−1B̄ + D̄, analogously to equation 5.2. Consequently, all of the previous
discussion carries over to discrete LTI systems. In particular, for a discrete synapse expressed
using the Z-transform, H(z), we have the analogous definition:

Definition 5.1.2. A function F H (z) maps F onto H if and only if it satisfies:

F H
(

1

H(z)

)
= F (z). (5.6)

Given some F H (z) that maps F onto H , any state-space model
(

ĀH , B̄ H ,C̄ H ,D̄ H )
that

satisfies
F H (z) = C̄ H (

zI − ĀH )−1
B̄ H + D̄ H (5.7)

will implement the desired dynamics F (z) when using H (z) as the dynamical primitive. Hence,
the task of determining F H (·) is identical for both continuous- and discrete-time domains—it
is only F (·) and H(·) that differ.

Continuous lowpass synapse

The first example we consider demonstrates that our new theory recovers the standard form
of Principle 3 from the NEF (see section 2.2.3). For the case of a continuous-time first-order
lowpass filter (equation 4.11), H(s) = (τs +1)−1, let:

F H (s) :=C (sI − (τA+ I ))−1 (τB)+D

=C

((
s −1

τ

)
I − A

)−1

B +D .
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Then,

F H (τs +1) =C

((
(τs +1)−1

τ

)
I − A

)−1

B +D

= F (s),

which satisfies definition 5.1.1. Therefore, by equation 5.4,

AH = τA+ I , C H =C ,

B H = τB , D H = D .
(5.8)

This completes our novel proof of Principle 3 from section 2.2.3.

Discrete lowpass synapse

When simulating any NEF network on a digital computer, we necessarily use time-steps
of finite length dt > 0 to advance the state of the network, updating at discrete moments
in time (Bekolay et al., 2014). For instance, Nengo currently uses a default of dt = 1 ms,
and implements a zero-order hold (ZOH) discretization of the synaptic filter. Implementing
ZOH means that all continuous-time signals are held constant within each time-step. This
discretization of equation 4.11 gives:

H(z) = 1−a

z −a
, a := e− dt

τ .

If our desired transfer function is expressed in continuous-time, F (s), then we should also
discretize it to F (z) = C̄ (zI − Ā)−1B̄ + D̄, with the same time-step, and again using ZOH dis-
cretization for consistency. Let,

F H (z) := C̄

(
zI − 1

1−a

(
Ā−aI

))−1 (
1

1−a
B̄

)
+ D̄

= C̄
(
(z(1−a)+a) I − Ā

)−1
B̄ + D̄ .

Then,

F H
(z −a

1−a

)
= C̄

((z −a

1−a
(1−a)+a

)
I − Ā

)−1
B̄ + D̄

= F (z),
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which satisfies definition 5.1.2. Therefore, by equation 5.7,

ĀH = 1

1−a

(
Ā−aI

)
, C̄ H = C̄ ,

B̄ H = 1

1−a
B̄ , D̄ H = D̄ ,

(5.9)

provides an exact implementation of the desired system for digital architectures, regardless of
the simulation time-step (assuming ZOH).

Delayed continuous lowpass synapse

Next, we consider a continuous-time first-order lowpass filter with a time-delay of λ:

H(s) = e−λs

τs +1
. (5.10)

This same model has been proposed by Roth and van Rossum (2009, equation 6.2) as a more
realistic alternative to equation 4.11, that includes an axonal transmission delay of length
λ (on the order of τ) to account for the finite-velocity propagation of action potentials. By
commutativity of convolution, modeling the delay in the synapse (as in equation 5.10) is
equivalent to modeling the delay in spike propagation. Equation 5.10 may also be used to
account for feedback delays within some broader setting (e.g., when the feedback term is
computed via some delayed system).

In the mammalian cortex, λ is known to range between 0.1–44 ms while being precise and
reproducible (Lagorce and Benosman, 2015). In analog circuitry, λ grows in proportion to the
square of the wire length, and is necessarily introduced by the pulse-extension of digital-to-
analog converters (Voelker et al., 2017a). This delay term may also be configured on digital
architectures such as Loihi (Davies et al., 2018).

Letting d := λ

τ
e
λ
τ , and W0(·) denote the principal branch of the Lambert-W function (Cor-

less et al., 1996), we invert y := H(s)−1 as follows:

y = (τs +1)eλs

⇐⇒ λ

τ
e
λ
τ y =

(
λs + λ

τ

)
eλs+λ

τ

⇐⇒ W0(d y) =λs + λ

τ

⇐⇒ 1

λ
W0(d y)− 1

τ
= s,
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where the second-last line assumes that |η| <π and λRe[s]+λ
τ
>−ηcotη, where η :=λIm[s], in

order forλs+λ
τ

to be within the principal branch (Corless et al., 1996, equation 4.4).1 Therefore,

F H (s) := F

(
1

λ
W0(d s)− 1

τ

)
(5.11)

=⇒ F H (H(s)−1) = F H (y) = F (s).

As a demonstration of how we might use this mapping, suppose the desired transfer
function for our system is a time-delay of θ seconds, F (s) = e−θs (equation 6.2). In this setting,
we are attempting to “amplify” a delay of λ seconds in the synapse into a system delay of

θ seconds at the network level. Letting c := e
θ
τ and r := θ

λ
, and then substituting F (s) into

equation 5.11, provides the required function:

F H (s) = exp

{
−θ

(
1

λ
W0(d s)− 1

τ

)}
= c exp{−r W0(d s)} = c

(
W0(d s)

d s

)r

.

This may be numerically converted into a state-space model, of arbitrarily chosen dimension-
ality q , via the

[
q −1/q

]
Padé approximants of the following Maclaurin series:

F H (s) = cr
∞∑

i=0

(i + r )i−1

i !
(−d s)i . (5.12)

To our knowledge, there is no closed-form expression for the Padé approximants of equa-
tion 5.12, but there are methods to compute them accurately and in O (

q2) time (Sidi, 2003).
Given these approximants, we may follow the same procedure that we use in section 6.1.1 (see
equation 6.3) to obtain an LTI system in the form of equation 2.12. In section 6.2.7, we use
this approach to improve the accuracy of the delay network demonstrated in section 6.1.1. We
remark that each of d , c, and r are dimensionless (i.e., unitless) constants that can be used to
relate measurable properties of a biological system that may be governed by this description to
the necessary network-level computations.

Coordinate transformation

Before proceeding with the general solution, we introduce some useful intermediate results:

1A simpler (but only sufficient) condition is Re[s] ≥−1

τ
and |Im[s] | < π

2λ
. Thus, it suffices to consider input

frequencies < 1

4λ
Hz.
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Lemma 5.1.1 (Transforming coordinates between dynamical systems). Let f(t) and g(t) be
infinitely time-differentiable signals, that are related by:

f =
∞∑

i=0
ci g(i ), (5.13)

for some coordinates {c}i , c0 6= 0. Then this dynamical system is equivalent to:

g =
∞∑

i=0
bi f(i ), (5.14)

where the coordinates {b}i are defined by the recursive transformation:

bi = c−1
0


1 i = 0

−
i−1∑
j=0

b j ci− j i ≥ 1.
(5.15)

Corollary 5.1.1.1. Let:

Hc (s) = 1∑∞
i=0 ci si

, Hb(s) = 1∑∞
i=0 bi si

,

where b is defined by equation 5.15. Then equation 5.13 is equivalent to F (s)Hc (s) =G(s) and
similarly equation 5.14 is equivalent to G(s)Hb(s) = F (s), and moreover:

Hc (s)Hb(s) = 1, (5.16)

hence Hc (s) and Hb(s) are each other’s reciprocals. Furthermore, the coordinate transformation
equation 5.15 is its own inverse.

Proof. Noting that g(0) = g, rearrange equation 5.13 as:

g = c−1
0 f+

∞∑
i=1

(−c−1
0 ci )g(i ). (5.17)

Differentiate each side an infinite number of times, to obtain the following set of equations
that hold for all j ∈N:

g( j ) = c−1
0 f( j ) +

∞∑
i=1

(−c−1
0 ci )g(i+ j ). (5.18)

Now recursively substitute equation 5.18 into equation 5.17 for all occurrences of g(i ), i ≥ 1
until we are only left with f( j ) terms for j ≤ i , and take the limit as i →∞. This is equivalent to
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treating equation 5.18 as a recursive function in j and then evaluating g(0). Although this is
infinitely generative from a bottom-up perspective, we are ‘allowed’ to do this because each
substitution of equation 5.18 increases the order of g by 1 (hence it terminates top-down).
Another way to view this is we pick some finite k in order to gather all occurrences of f(k) in the
infinite expansion. After repeating this for all k →∞, we get something of the form:

g =
∞∑

k=0
b̃k f(k).

Now, all that remains is to show that b̃k = bk from equation 5.15 in order to match equation 5.14.
We do this inductively in a way that parallels the recursive structure of the substitution proce-
dure.

For the base case (k = 0) it should be clear that b̃0 = c−1
0 = b0 since this is the only way

to construct f(0). For the inductive case (k ≥ 1), the only way to construct f(k) is through
the substitution of g(k) in equation 5.18. Furthermore, this occurs for all 0 ≤ j ≤ k − 1. In
particular, for every such j , we have the coefficient (−c−1

0 ci ) multiplied by g(i+ j ) to yield c−1
0 f(k)

where k = i + j . Finally, this occurs b̃ j c0 times since it is mirrored by each occurrence of f( j ).

Putting this all together, we get b̃k =
k−1∑
j=0

−c−1
0 ck− j b̃ j = c−1

0

k−1∑
j=0

−b j ck− j = bk (by the inductive

hypothesis).

The coordinate transformation equation 5.15 is equivalent to taking the Padé approxi-
mants (Padé, 1892) for the special case of when the numerator is p = 0. To be precise,

q∑
i=0

ci si ≈ 1∑q
i=0 bi si

has the same optimal approximation from equation 5.15 as taking the [0/q] Padé approximants:

{b}i=0...q = [
0/q

] q∑
i=0

ci si .

This can be seen through equation 5.16 and verified by comparing the algorithm for the
extended Euclidean algorithm for the polynomial GCD, in this special case, to the algorithm
for equation 5.15. That is, they both implement long division. We remark that the coordinate
transformation equation 5.15—that is, the algorithm for finding the Padé approximants when
p = 0—is its own inverse. That is, we may convert back and forth using the same transformation
without any loss of information.
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We may also interpret equation 5.15 as a discrete dynamical system by realizing that b is
the discrete convolution of itself with c. With some work, we can show that this is the same
as stating that Z {b}Z {c} = 1, or equivalently in the time-domain, {b}i=0...q is the impulse-
response of the following discrete transfer function:

H q
c→b(z) = zq∑q

i=0 ci zq−i
,

and likewise, H q
b→c (z) has the impulse-response {c}i=0...q . Furthermore,

lim
q→∞H q

c→b(z)H q
b→c (z) = 1,

analogously to equation 5.16. Lastly, we note that the above Lemma and Corollary also apply
to the case where derivatives are replaced by discrete time-shifts and the Laplace transform is
replaced by the Z-transform.

General linear synapse

Finally, we consider the general class of all linear synapse models of the form:

H(s) = 1+∑p
i=1 bi si∑q

i=0 c̃i si
, (5.19)

That is, a rational function with real polynomial coefficients of potentially infinite order. The
only constraint is that b0 6= 0 (coefficients may be normalized to put it into this form where
b0 = 1). This encompasses the class of nearly all linear filters, and, as far as we know, all
linear synapse models used in the literature. For instance, this includes the first-order lowpass
synapse that is standard in the NEF. It also includes the second-order alpha synapse, (τs +
1)−2 (Rall, 1967)—the convolution of two exponentials with identical time-constants—which
is commonly used in biological models (Destexhe et al., 1994b; Mainen and Sejnowski, 1995;
Koch and Segev, 1998; Destexhe et al., 1998; Roth and van Rossum, 2009). The alpha synapse
essentially filters the spike-trains twice, to produce PSCs with finite (non-instantaneous) rise-
times. In addition, equation 5.19 includes a generalization of the alpha synapse, the double-
exponential synapse, (τ1s +1)−1(τ2s +1)−1 (Wilson and Bower, 1989)—the convolution of two
exponentials with time-constants τ1 and τ2—which has different rise- and fall-times to account
for the separate time scales of rapid transmitter binding followed by slow unbinding (Destexhe
et al., 1994b; Häusser and Roth, 1997; Roth and van Rossum, 2009). The double-exponential is
also a suitable model to account for parasitic capacitances in neuromorphic hardware (Voelker
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et al., 2017a). Furthermore, equation 5.19 includes a higher-order generalization of the alpha
synapse, the gamma kernel, (µ−1s+1)−k (De Vries and Principe, 1992, equation 19). Finally, this
class contains more exotic models, such as the Q-bandpass synapse model, (ω2s2 + (ωQ)−1s +
1)−1, whereω is the peak frequency in radians per second, and Q is inversely proportional to the
bandwidth. Such synapses have been used to model bandpass filtering from mechanoreceptors
in the fingertip (Friedl et al., 2016) or from rods in the retina (Armstrong-Gold and Rieke, 2003).

As well, in the following section we demonstrate that equation 5.19 may be used to
model synapses with pure delays, which proves a complete connection to ZOH discretization.
This same technique permits us to model, for instance, synapses with pulse-extended re-
sponses (Voelker et al., 2017a). Similarly, the delayed lowpass (equation 5.10) may be expressed
in the form of equation 5.19. Finally, any linear combinations of the aforementioned synapse
models will also be a member of this class. Nonlinear synapse models, such as conductance-
based synapses (e.g., Destexhe et al., 1994a, equation 6), are the active subject of study in the
NEF (Stöckel et al., 2017b; Stöckel et al., 2018).

The first step is to apply Corollary 5.1.1.1 to the numerator {b}p
i=0 in order to rewrite the

transfer function in the following form:

H(s) = 1∑k
i=0 ci si

, (5.20)

where k is potentially infinite. Now we state and prove the main theorem of this section.

Theorem 5.1.2 (General state-space solution to leverage postsynaptic currents). To map F
onto equation 5.20, we let:

AH =
k∑

i=0
ci Ai , C H =C ,

B H =
(

k−1∑
j=0

s j
k∑

i= j+1
ci Ai− j−1

)
B, D H = D.

(5.21)

This satisfies the required identity, F H (H(s)−1) = F (s) (equation 5.3).
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Proof. (
k−1∑
j=0

s j
k∑

i= j+1
ci Ai− j−1

)
(sI − A) =

k−1∑
j=0

k∑
i= j+1

s j ci Ai− j−1(sI − A)

=
k∑

i=0

i−1∑
j=0

s j ci Ai− j−1(sI − A)

=
k∑

i=0
ci

(
i−1∑
j=0

s j+1 Ai−( j+1) − s j Ai− j

)

=
k∑

i=0
ci

(
si Ai−i − s0 Ai−0

)
=

(
k∑

i=0
ci si

)
I −

k∑
i=0

ci Ai

= H(s)−1I − AH .

We then complete the proof by substituting this result and the state-space model into our
expression for the mapped transfer function from equation 5.4:

F H (H(s)−1) =C H (H(s)−1I − AH )−1B H +D H

=C (H(s)−1I − AH )−1

(
k−1∑
j=0

s j
k∑

i= j+1
ci Ai− j−1

)
B +D

=C (sI − A)−1B +D

= F (s).

An alternative derivation may also be found in section 5.1.3. An interesting insight gained
with this solution is that it is not, in general, the case that B H is time-invariant, since it depends
on the time-differential, s, for values of k ≥ 2. As a result, solutions will often not be a typical
state-space model in the form of equation 2.12.

Nevertheless, such solutions can still be implemented, as is, in practice. Since s j is the
j th-order differential operator, this form of B H states that we must supply the j th-order input
derivatives u( j ), for all j = 1. . .k −1. When k = 1, this is trivial (no derivatives are needed).

For k ≥ 2, let us first define B H
j :=

(
k∑

i= j+1
ci Ai− j−1

)
B . Then equation 5.21 shows that the ideal
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state-space model must implement the input transformation as a linear combination of input

derivatives,
k−1∑
j=0

B H
j u( j ). If the derivatives of the input are available to the model, then the F H (s)

we described may be used to precisely implement the desired F (s).

However, if the required derivatives are not included in the neural representation, then it is
natural to use a ZOH method by assuming u( j ) = 0, for all j = 1. . .k −1:

B H = B H
0 =

(
k∑

i=1
ci Ai−1

)
B , (5.22)

with AH , C H , and D H as before (see equation 5.21). This is now an equivalent model to equa-
tion 5.21 assuming ZOH, and in the form of the standard state-space model (equation 2.12). In
section 5.1.2, we characterize the dynamics of this new system in terms of F and H (indepen-
dently of the chosen state-space model) for general inputs. We find that equation 5.22 adds
k−1 new dimensions, for every dimension in F , to the state underlying the resulting dynamical
system. In the following section, we show that the our results yield a novel derivation of ZOH
discretization for LTI systems.

To our knowledge, this specific state-space architecture has not been explored in theory or
in practice. Given that equation 5.21 requires the input derivatives to accurately compute low-
dimensional network-level dynamics, this strongly suggests that it is important to represent
and compute derivatives in neural systems. Methods of computing derivatives have been
explored by Tripp and Eliasmith (2010) within the NEF. As well, it has long been suggested that
adaptive neural mechanisms (e.g., synaptic depression or spike-rate adaptation) may also play
a fundamental role in computing such derivatives (Abbott and Regehr, 2004; Lundstrom et al.,
2008). However, there has typically been less emphasis placed on understanding temporal
differentiation in comparison to other temporal operators, such as integration (Tripp and
Eliasmith, 2010).

Finally, we again note that these results translate directly to the discrete-time domain. The
required state-space matrices are the same as in equation 5.21, but with (c̄i ) corresponding
to the coefficients of H(z), bars affixed to each state-space matrix, and z substituted for s in
B̄ H . However, the z j operator is a shift backwards by j time-steps (i.e., an acausal lookahead),
and so the ZOH assumption is instead u[t + jdt] = u[t ] for all j = 1. . .k −1. Thus, the discrete
analog to equation 5.22 is:

B̄ H =
(

k−1∑
j=0

k∑
i= j+1

c̄i Āi− j−1

)
B̄ . (5.23)
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Relationship to discretization

There is an interesting connection between definition 5.1.1 and the well-known problem of
discretizing a linear dynamical system. A discrete LTI system (equation 5.5) is identical to
a continuous LTI system (equation 2.12), with three adjustments: (1) the integrator s−1 is
replaced by a time-delay of dt seconds, (2) the input signal is sampled every dt seconds, and
(3) the output signal is sampled every dt seconds. Focusing on point 1, this is precisely the
notion captured by definition 5.1.1 with respect to:

H(s) = e−dts = 1

edts
= 1∑∞

i=0
dti

i ! si
,

by the Maclaurin series of ex . That is, a synapse model that represents a pure delay of λ= dt

without any additional filtering. This is in the form of equation 5.20 with ci = dti

i !
as k →∞.

These coefficients are also the [0/∞] Padé approximants of
∞∑

i=0

(−dt)i

i !
si , and likewise the result

of the coordinate transformation equation 5.15.

If we make the ZOH assumption—that the input signal is held piecewise-constant over each
continuous-time interval of length dt—then u( j ) = 0 for all j ≥ 1. Therefore, by equation 5.22,
an equivalent state-space model is:

AH =
k∑

i=0
ci Ai =

k∑
i=0

(Adt)i

i !
= e Adt, C H =C ,

B H =
(

k∑
i=1

ci Ai−1

)
B = A−1 (

AH − I
)

B , D H = D ,

which is precisely the discrete state-space model (Ā, B̄ ,C̄ ,D̄) obtained by ZOH discretiza-
tion (Brogan, 1991). The discrete signals in equation 5.5 correspond with points 2 and 3.

This connection helps to illustrate the scope and consistency of our theory. In particular,
the important procedure of discretizing linear state-space models may be viewed as a special
case of accounting for changes in dynamical primitives. Furthermore, as one should hope, the
ZOH assumption recovers the correct result, which is normally proven by integrating the linear
differential equations over the interval [0,dt].
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5.1.2 Approximating derivatives

In the previous section, we discovered that higher-order synapses must be driven with higher-
order derivatives of the state-vector, in order to cancel out the additional rounds of integration
and successfully encode x. These computations could be facilitated by adaptive mechanisms
in more biologically-realistic neuron models (Lundstrom et al., 2008), approximated at the
population level (Tripp and Eliasmith, 2010), computed using models of the system’s Jacobian,
modelled from the input’s dynamics, or obtained directly from sensors that represent such
derivatives. If none of these cases are possible, we resort to the following analysis of what can
be done.

Zero-order assumption

This section has been adapted from Voelker and Eliasmith (2018, appendix A.4). The approach
that we take here is to apply the ZOH assumption and pretend that the higher-order derivatives
are all zero. We then examine the consequences of making this assumption.

Consider the F H determined by equation 5.22, when the derivatives of the input signal are
completely inaccessible. Let F̂ (s) := F H (H(s)−1) be the dynamics of the implemented system
for this particular F H . Due to the ZOH assumption, F̂ 6= F in general, and so F H does not
technically map F onto H (see definition 5.1.1). To be clear, F̂ (s) = F (s) for s = 0, but not
necessarily for s 6= 0. Thus, it is important to characterize the difference between F̂ and F for
general inputs.

To do so, we can examine the poles of the transfer function F (s) = C(s)

D(s)
, which are defined

as the complex roots of D(s). The poles of a system fully define the dynamics of its state (up to
a change of basis). For instance, each pole λ corresponds to a time-constant of

(−λ−1) in the
system’s dynamics. A system is exponentially stable if and only if Re[λ] < 0 for all poles λ ∈C,
since all time-constants will be positive. Furthermore, λ ∈ sp(A) if and only if λ is a pole, where
sp(A) denotes the eigenvalues of the state-space matrix A.2 Therefore, we may characterize the
poles of F̂ in terms of the poles of F , in order to understand the behaviour of the implemented
system.

We begin by deriving the poles of F H , recalling that AH =
k∑

i=0
ci Ai . Let v 6= 0 be an eigenvec-

2Note that sp(A) = sp(T AT −1) for any invertible matrix T with the same shape as A.
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tor of A with eigenvalue λ, so that:

Av =λv =⇒ AH v =
k∑

i=0
ci Ai v =

(
k∑

i=0
ciλ

i

)
v.

Hence, sp
(

AH )={
k∑

i=0
ciλ

i : λ ∈ sp(A)

}
is the full set of eigenvalues for AH . This is also true for

equation 5.21, since AH is identical, but we do not need this fact.

The denominator of F̂ may now be written as
∏

λ∈sp(A)

(
H(s)−1 −

k∑
i=0

ciλ
i

)
. Therefore, the

poles of F̂ are the roots of the q polynomials:

P(φ) :=
k∑

i=0
ci

(
φi −λi

)
, λ ∈ sp(A).

A trivial set of roots are φ=λ, and thus each pole of F is also a pole of F̂ , as desired. However,
for a synapse of order k, there will also be k −1 additional poles for every pole of F . For this
system to behave as F given low-frequency inputs, we must have the old poles dominate the
new poles. That is, we require Re[λ] À Re

[
φ

]
for all φ 6=λ.

To provide a specific example, let us consider the double-exponential synapse, H(s)−1 =
(τ1s +1)(τ2s +1),

=⇒ P(φ) = τ1τ2φ
2 + (τ1 +τ2)φ− (τ1τ2λ

2 + (τ1 +τ2)λ) = 0

⇐⇒ φ=
−(τ1 +τ2)±

√
(τ1 +τ2)2 +4τ1τ2

(
τ1τ2λ2 + (τ1 +τ2)λ

)
2τ1τ2

= −(τ1 +τ2)± (2τ1τ2λ+ (τ1 +τ2))

2τ1τ2
.

In this instance, the ‘+’ case gives back the known poles, φ=λ, and the ‘−’ case provides the

new poles, φ=
(
−τ1 +τ2

τ1τ2
−λ

)
. Consequently, the poles of F̂ are the poles of F , duplicated and

reflected horizontally about the real line−b, where b := τ1 +τ2

2τ1τ2
(and the imaginary components

are unchanged).

Interestingly, b may be rewritten as
(τ1 +τ2

2

)
/
√
τ2

1τ
2
2, which is the ratio of the arithmetic

mean to the geometric mean of {τ1,τ2}, which may in turn be interpreted as a cross-entropy
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expression (Woodhouse, 2001). Regardless, F̂ behaves like F when
(−Re[λ]−1)À b−1. We note

that b−1 is largest for the case of the alpha synapse (b−1 = τ), and smallest for the case of the
lowpass synapse (b−1 → 0 as τ2 → 0).

Taylor-series approximation

Another way to avoid needing the derivatives is to work out a different approximation when
attempting to satisfy definition 5.1.1. Here we use an example discussed in Voelker and
Eliasmith (2016) and explore some consequences. This method is very similar to that of the
delayed lowpass example in section 5.1.1.

Considering the alpha synapse:

H(s) = 1

(τs +1)2
= 1

τ2s2 +2τs +1

we can observe that:

F H (
H(s)−1)= F (s) ⇐⇒ F H (s) = F

(p
s −1

τ

)
.

Hence this satisfies our requirement for F H mapping F onto H . However, challenges arise when

obtaining its state-space matrices via equation 5.2, as, in general, the expression F

(p
s −1

τ

)
is

not necessarily proper and finite-dimensional (rational in s). For instance, with the integrator,

F (s) = 1/s ⇐⇒ F H (s) = τp
s −1

is infinite-dimensional (irrational in s). We cope with this by taking the Taylor series approxi-
mation (

p
s −1)/τ≈ (s −1)/(2τ), which yields the first-order approximation:

F H (s) ≈ F

(
s −1

2τ

)
= 2τ

s −1
. (5.24)

This system does have finite-dimensional state-space matrices that may be extracted via
equation 5.2 to implement an approximation of the dynamical system with respect to the alpha
synapse. But what is the approximation error? The main insight is that we may convert back to
the world of F (s) to reveal the dynamics that we’ve actually implemented:

F (s) = F H (
H(s)−1)≈ 2τ

(τs +1)2 −1
= 2τ

τs(τs +2)
= 1

s
(
τ
2 s +1

) .
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This reveals that, instead of the integrator, we have implemented an integrator convolved with
a lowpass with a time-constant of τ/2. More generally, one can apply a Taylor series or the Padé
approximants to any irrational solution to equation 5.3, and then work backwards through the
mathematical machinery to see how the dynamics have been altered from their intended state.

Lagrange–Bürmann approximation

Our last approach will build upon the previous approach more generally, and without needing
to explicitly work out a solution to equation 5.3. In general, we are trying to find an F H (s) such

that F H (H (s)−1) = F (s). However, it may not be clear how to do this for general H (s)−1 =
k∑

i=0
ci si ,

since the inverse of H(s)−1 does not necessarily exist. Fortunately, we can use a powerful
tool named the Lagrange–Bürmann inversion theorem to approximate the inverse of H(s)−1.
Essentially it is a way to get the Taylor series of the inverse of some function around a point
without explicitly constructing the inverse. Applying it here around the zero frequency:

f (s) := H(s)−1 =
k∑

i=0
ci si

gn := lim
s→0

[
∂n−1

∂sn−1

(
s

f (s)− c0

)n]
F H (s) ≈ F

( ∞∑
n=1

gn
(s − c0)n

n!

)
(5.25)

in some neighbourhood of s = 0. Any finite truncation of the series gn yields a finite-dimensional
and proper approximation of the required F H (s) assuming the same of F (s).

For example, returning to the alpha example, we have the first-order approximation:

f (s) = (τs +1)2

g1 = lim
s→0

(
s

s(τ2s +2τ)

)
= 1

2τ

=⇒ F H (s) ≈ F

(
s −1

2τ

)
which is identical to equation 5.24 in the case of the integrator. For more general H(s)−1 =

k∑
i=0

ci si , we have g1 = 1

c1
as our first approximant,

=⇒ F H (s) ≈ F

(
s − c0

c1

)
=C (sI − (c1 A+ c0I ))−1 (c1B)+D . (5.26)
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Although here we have shown just the first-order solution to make this concrete, the advantage
of this method is that, through the use of symbolic differentiation, one may extend equa-
tion 5.25 out to any finite order for any rational and finite F (s) and H(s). In other words, this
math does not need to be figured out by hand; this procedure may be automated up to any
chosen dimension by Lemma 5.1.1 and equation 5.25. The main difficulty with this approach
compared to others is that it will effectively expand the dimensionality of the state-vector that
is to be represented (similar to equation 5.12).

5.1.3 Nonlinear state-spaces

This section has been adapted from the work of Voelker et al. (2017a), which in turn extends
the work of Voelker and Eliasmith (2017b) in applying the NEF to the mixed-signal synapses of
Braindrop (Neckar et al., 2019). Here we derive two theorems for nonlinear systems, by taking
a subtly different perspective than that of the previous section. This generalizes the approach
taken in Voelker and Eliasmith (2017b), which considered the special case of a pulse-extended
(i.e., time-delayed) double-exponential synapse.

We wish to implement some desired nonlinear dynamical system,

ẋ(t ) = f (x,u), (5.27)

using equation 5.20 (rewritten from the form of equation 5.19) as the synaptic filter, h(t).
Letting w(t ) = f h(x,u) for some recurrent function f h and observing that x(t ) = (w∗h)(t ), we
may express these dynamics in the Laplace domain:

X(s)

W(s)
= 1∑k

i=0 ci si

⇐⇒ W(s) = X(s)
k∑

i=0
ci si =

k∑
i=0

ci

[
si X(s)

]
⇐⇒ w(t ) =

k∑
i=0

ci x(i )

since s is the differential operator. This proves the following theorem:

Theorem 5.1.3 (Nonlinear solution to leverage continuous postsynaptic currents). Let the
function computed along the recurrent connection be:

f h(x,u) =
k∑

i=0
ci x(i ) (5.28)
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where x(i ) denotes the i th time-derivative of x(t), and ci are given by equation 5.20. Then the
resulting dynamical system is precisely equation 5.27.

For the discrete case, we begin with some desired nonlinear dynamics expressed over
discrete time-steps:

x[t +d t ] = f̄ (x,u), (5.29)

using equation 5.20 (with s replaced by z; the coordinate transformation still applies) as the
synaptic filter h[t ], followed by an analogous theorem:

Theorem 5.1.4 (Nonlinear solution to leverage discrete postsynaptic currents). Let the function
computed along the recurrent connection be:

f̄ h(x,u) =
k∑

i=0
c̄i x[i ] (5.30)

where x[i ] denotes the i th discrete forwards time-shift of x, and c̄i are likewise read from the
denominator of H(z). Then the resulting dynamical system is precisely equation 5.29.

The proof for the discrete case is nearly identical. For sake of completeness, let w[t ] =
f̄ h(x,u) for some recurrent function f̄ h and observe that x[t ] = (w∗h)[t ]:

X(z)

W(z)
= 1∑k

i=0 c̄i zi

⇐⇒ W(z) = X(z)
k∑

i=0
c̄i zi =

k∑
i=0

c̄i

[
zi X(z)

]
⇐⇒ w[t ] =

k∑
i=0

c̄i x[i ]

since z is the forwards time-shift operator.

Continuous lowpass synapse

For standard Principle 3, we have H(s) = 1

τs +1
=⇒ k = 1, c0 = 1 and c1 = τ,

=⇒ f h(x,u) = c0x(0) + c1x(1) = x+τẋ = τ f (x,u)+x. (5.31)

Note that equation 5.31 is consistent with equation 5.8 and with Principle 3 from the NEF.
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Discrete lowpass synapse

For the discrete case of Principle 3, we have H(z) = 1−a

z −a
, where a = e−dt/τ =⇒ k = 1, c̄0 =

−a(1−a)−1, c̄1 = (1−a)−1,

=⇒ f̄ h(x,u) = c̄0x[0] + c̄1x[1] = (1−a)−1( f̄ (x,u)−ax). (5.32)

Note that equation 5.32 is consistent with equation 5.9.

Continuous double-exponential synapse

For the double exponential synapse:

H(s) = 1

(τ1s +1)(τ2s +1)
= 1

τ1τ2s2 + (τ1 +τ2)s +1
(5.33)

=⇒ f h(x,u) = x+ (τ1 +τ2)ẋ+τ1τ2ẍ

= x+ (τ1 +τ2) f (x,u)+τ1τ2

(
∂ f (x,u)

∂x
· f (x,u)+ ∂ f (x,u)

∂u
· u̇

)
. (5.34)

In the linear case, this simplifies to:

f h(x,u) = (
τ1τ2 A2 + (τ1 +τ2)A+ I

)
x+ (τ1 +τ2 +τ1τ2 A)Bu+τ1τ2B u̇.

General linear synapses

Consistent with what was found in section 5.1.1, Theorems 5.1.3 and 5.1.4 require that we
differentiate the desired dynamical system. For the case of nonlinear systems, this means (if
k ≥ 2) determining the (possibly higher-order) Jacobians of f , as shown in equation 5.34. For
the special case of LTI systems, we can determine this analytically to obtain a closed-form
expression. By induction it can be shown that:

x(i ) = Ai x+
i−1∑
j=0

Ai− j−1Bu( j ).
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Then by expanding and rewriting the summations:

f h(x,u) =
k∑

i=0
ci x(i )

=
k∑

i=0
ci

[
Ai x+

i−1∑
j=0

Ai− j−1Bu( j )

]

=
(

k∑
i=0

ci Ai

)
︸ ︷︷ ︸

Recurrent Matrix

x+
k−1∑
j=0

(
k∑

i= j+1
ci Ai− j−1

)
B︸ ︷︷ ︸

Input Matrices

u( j ). (5.35)

The discrete case is identical:

f̄ h(x,u) =
(

k∑
i=0

c̄i Āi

)
︸ ︷︷ ︸

Recurrent Matrix

x+
k−1∑
j=0

(
k∑

i= j+1
c̄i Āi− j−1

)
B̄︸ ︷︷ ︸

Input Matrices

u[ j ]. (5.36)

This gives a matrix form for any LTI system with a kth order synapse, provided we can deter-
mine u( j ) or u[ j ] for 0 ≤ j ≤ k −1. Again, equation 5.35 is consistent with equation 5.21 and
equation 5.22, as is equation 5.36 with equation 5.23.

Pulse-extended double-exponential

Finally, we show how this all connects to the higher-order dynamics of the pulse-extended
double-exponential synapses in Braindrop (Voelker et al., 2017a). Specifically, due to parasitic
capacitances in the analog circuitry, a double-exponential (τ1, τ2) emerges, and, due to the
pulse-extension from digital-to-analog (i.e., spike-to-synapse) conversion, a pulse is generated
that is modelled as a box-filter with finite width, ε, and height, γ. This model is summarized
by Voelker et al. (2017a, equation 8):

H(s) = γ (1−e−εs) s−1

(τ1s +1)(τ2s +1)
(5.37)

Now we apply Lemma 5.1.1 in the following context:

f = (εγ)−1 (x+ (τ1 +τ2)ẋ+τ1τ2ẍ) ,

ci = (−ε)i

(i +1)!
,
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where g from the lemma is the signal that will be be used to drive the pulse-extender to satisfy

f =
∞∑

i=0
ci g(i ). We now apply a fourth-order truncation to the coefficients:

c0 = 1, c1 =− ε
2

, c2 = ε2

6
, c3 =− ε

3

24
, ci ≈ 0 ∀i ≥ 4.

And then the coordinate transformation of equation 5.15 yields:

b0 = 1, b1 = ε

2
, b2 = ε2

4
− ε2

6
= ε2

12
, b3 = ε3

24
− ε3

12
+ ε3

24
= 0,

and so:

g =
∞∑

i=0
bi f(i )

= f(0) + ε

2
f(1) + ε2

12
f(2) + . . .

= (εγ)−1 (
x+ (τ1 +τ2 +ε/2)ẋ+ (τ1τ2 + (ε/2)(τ1 +τ2)+ε2/12)ẍ

)+ . . . (5.38)

which is a refined version of, and alternate derivation for, Voelker et al. (2017a, equation 11).

5.1.4 Accounting for mismatch

This section has been adapted from Voelker and Eliasmith (2017b) which abstracts the ap-
proach taken by Voelker et al. (2017a) to account for time-constant variability in Braindrop.
Specifically, due to transistor mismatch in analog hardware, a variety of synapse models emerge
with log-normal distributions in time-constants (Benjamin and Boahen, 2019). Assuming these
can be accurately measured, we show how they can be accounted for by Principle 3.

Now the i th postsynaptic neuron has a distinct synaptic filter, hi (t ), shared across each of
its synapses, as is the case in Braindrop (Neckar et al., 2019):

Hi (s) = 1∑ki
j=0 ci j s j

. (5.39)

Recalling the intuition behind Principle 3, our approach is to separately drive each synapse
hi with the required signal f hi (x,u) such that each PSC becomes a projection of the desired
representation x. Thus, the connection weights to the i th neuron should be determined by
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solving the decoder optimization problems for f hi (x,u) using the methods of section 2.2.3
with respect to the synapse model hi . This can be repeated for each postsynaptic neuron, to
obtain a full set of connection weights. While correct in theory, this approach displays two
shortcomings in practice: (1) we must solve n optimization problems, where n is the number
of postsynaptic neurons, and (2) there are O (

n2) weights, which eliminates the space and time
efficiency of using factorized weight matrices.

Instead, we solve both issues simultaneously by taking advantage of the linear structure
within f hi that is common between all hi . Considering Theorem 5.1.3, we must drive the i th

synapse with the function:3

f hi (x,u) =
ki∑

j=0
ci j x( j ).

Let d j be the set of decoders optimized to approximate x( j ), for all j = 0. . .k, where k = max
i

ki .

By linearity, the optimal decoders used to represent each f hi (x,u) may be decomposed as:

d f hi =
ki∑

j=0
ci j d j .

Next, we express our estimate of each variable x( j ) using the same activity vector a:

x( j ) ≈ aTd j .

Now, putting this all together, we obtain:

aTd f hi =
ki∑

j=0
ci j aTd j ≈

ki∑
j=0

ci j x( j ) = f hi (x,u). (5.40)

Therefore, we only need to solve k +1 optimization problems, decode the “matrix representa-

tion”
[

x(0),x(1), . . . ,x(k)
]

, and then linearly combine these k +1 different decodings as shown in

equation 5.40—using the matrix of coefficients ci j —to determine the input to each synapse.
This approach reclaims the advantages of using factorized connection weight matrices, at the
expense of a factor O(k) increase in space and time efficiency. Since Braindrop supports an
efficient way of structuring the linear operations between pools (Neckar et al., 2019, Figure 5),
we use this technique to account for time-constant mismatch in our simulations in section 7.1.

3We do this for Theorem 5.1.3 in particular, but this naturally applies to all other methods as well (both linear,
nonlinear, discrete, and continuous).
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5.1.5 Harnessing temporal heterogeneity

The methods in the previous section essentially “tame away” the heterogeneity in synaptic
time-constants by correcting for the individual scaling factors, and in effect encoding the
same state-vector across all synapses. However, we may also consider leveraging this temporal
heterogeneity as a basis for dynamical computation. The intuition is as follows: a variety of
encoding vectors in the NEF afford heterogeneity across space, while a variety of encoding
filters afford heterogeneity across time.

Consider a connection between populations where the i th postsynaptic neuron has a
distinct filter applied to its input current, referred to as an “encoding filter”, he

i (t ), and the j th

presynaptic neuron has a distinct filter applied to its spike-trains, referred to as a “decoding
filter”, hd

i (t). By linearity of encoding and decoding, the synapse model for the individual

connection from the j th presynaptic neuron to the i th postsynaptic neuron becomes:

hi j (t ) = (he
i ∗hd

j )(t ). (5.41)

If, for example, he
i and hd

j are lowpass filters, then hi j will be the double-exponential synapse.
If further they are identical, then this becomes the alpha synapse.

This can be interpreted as a generalization of the NEF, which normally supposes hi j (t ) =
h(t ) for all i and j within the same ensemble. Furthermore equation 5.41 can be interpreted as
a factorization of the individual synapses, analogous to the factorization of connection weights
ωi j =

〈
ei ,d j

〉
. In other words, we are supposing that the filters across all of the synapses may

be factored (with rank one, but this can be generalized further to each spatial dimension), as is
the case for the connection weights themselves. To be clear, the input current to the i th neuron
(equation 2.2) is now:

si (t ) =αi

([
ei

T

(∑
j

(a j ∗hd
j )d j

)]
∗he

i

)
(t )+βi (5.42)

=αi
∑

j
ωi j (a j ∗hi j )(t )+βi . (5.43)

However, equation 5.42 is more space- and time-efficient to implement than equation 5.43
for low-dimensional encoders and decoders, since the inner summation (which is also the
decoded vector being represented) does not depend on i .

In order to solve for the decoders d which approximate this function, it suffices to explicitly
simulate the ensemble on some training signal x(t ), determine the corresponding target signal,
and then solve for the linear decoders which minimize the root mean-square-error (RMSE) as
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usual in the NEF. This simulation involves encoding x(t ) through the encoding filters he
i (t ) and

encoding vectors ei , simulating the neuron models, and finally applying the decoding filters
hd

i (t ) to each spike train.

In Friedl et al. (2016), we use this technique to train a neuromorphic touch sensor to classify
18 metal surface textures scanned online. The architecture of the network is depicted in Fig-
ure 5.2. Encoding and decoding filters are employed throughout multiple levels of the network
to improve performance. First, the input is encoded by nonlinear second-order differential
filters, whose distribution of parameters are optimized to closely fit that of mechanoreceptor
responses collected from human subjects (Kim et al., 2010). We also use adaptive neurons
to improve the efficiency of this code. Second, a hidden layer uses a heterogeneous bank of
decaying oscillators (i.e., bandpass filters) to extract a high-dimensional frequency represen-
tation from the previous layer. The decoding weights are optimized from the data using a
support vector machine (SVM) to solve the least-squares problem as a classification problem
instead. We find through cross-validation that the network performs best when it contains a
wide variety of filters facilitating a rich feature expansion in time.

5.1.6 Solving for optimal filters

Now we consider the problem of analytically solving for the optimal linear filter, together with
the optimal linear decoders, within the same least-squares optimization problem. This is useful
for situations when we have freedom over the form of the synaptic filter (e.g., Loihi) and would
like to find the best synapse(s) to represent some particular target signal (either feed-forward
or recurrently). We begin by considering the architecture from Figure 5.3. In the scalar case,
x(t) is the known target representation, which as usual we may think of as the PSC without
loss of generality, by moving the filtering to occur before the encoding vector, gain, and bias,
by linearity. As usual, ai (t ) is the spike-train of the i th neuron encoding x(t ). The scalar b is a
free parameter scaling the input signal u(t ). The decoders di are free parameters decoding the
activities. Lastly, we’ll suppose the synapse has the form:

H(s) = 1

1+∑k
i=1 ci si

, (5.44)

where k ∈N≥1 is fixed and ci (1 ≤ i ≤ k) are free parameters for the chosen recurrent synapse.
We fix c0 = 1 so that H(0) = 1 ⇐⇒ its impulse response has an integral of 1. This means that
the PSC is normalized (it is free to be scaled by di ), and finite (i.e., not a perfect integrator).
Lemma 5.1.1 may be used to put more general synapses into this form.
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Figure 5.2: Architecture of the surface texture classifier. Three sensors are encoded into the
spiking activity of mechanoreceptor neurons. A hidden layer extracts nonlinear features of its
spike trains in the frequency domain using a bank of bandpass filters. A recurrently connected
output (feedback arrows omitted) represents the classification scores, lowpass filtered over
time. Weights are determined using the NEF. Reproduced from Friedl et al. (2016, Figure 1).
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b H(s)

n∑
i=1

ai (t )di

u(t ) w(t ) x(t )
+

Figure 5.3: Architecture used to formulate the optimization problem that simultaneously
solves for the decoding weights and the optimal linear filter.

We define w(t ) as the signal driving the synapse. Our goal is to satisfy:

X (s)

W (s)
= H(s)

⇐⇒ x(t )+
k∑

i=1
ci x(i )(t ) = b ·u(t )+

n∑
i=1

ai (t )di

⇐⇒ b ·u(t )+
k∑

i=1
ci

(
−x(i )(t )

)
+

n∑
i=1

ai (t )di = x(t ).

We then rewrite this problem in matrix form AD = Y , where:

A = [
u(t ) −x(1)(t ) . . . −x(k)(t ) a1(t ) . . . an(t )

]
, D =



b
c1
...

ck

d1
...

dn


, Y = [

x(t )
]

,

and each row of A and Y correspond to an evaluation point t from the dataset. This problem is
now in the same form as the least-squares optimization problem of equation 2.9, written in
matrix form for a sampled set of evaluation points.

For vector representations, x(t), we can repeat this independently for each dimension,
to solve for a decoding matrix and a vector of synapses. Furthermore, if we substitute this
target with the desired postsynaptic current, αi 〈x(t ),ei 〉+βi —analogous to a core idea from
the methods of Tripp and Eliasmith (2006); Stöckel et al. (2018)—then we can repeat this
optimization procedure for each neuron to obtain a full weight matrix and an individual

114



synaptic filter for each neuron, while maintaining the desired encoding. This can be used to
fully leverage hardware where synapses are configurable at the postsynaptic neuron level, in
order to improve overall accuracy.

Since our A matrix contains spikes, we should regularize the system by filtering the columns
of both A and Y by some filter (e.g., lowpass). Improved accuracy for sparse datasets may be
achieved via generalized Tikhonov regularization. For example, by choosing some Bayesian
prior over the poles of H (s)4 and mapping this to its corresponding distribution over ci (1 ≤ i ≤
k). This results in a regularization matrix with block-structure, with one block imposing the
usual diagonal L2-regularization on the entries corresponding to the di parameters, and the
other imposing some correlation structure on the ci parameters given the chosen prior on the
unknown time-constants of h(t ).

This same method also applies to the discrete-time domain to solve for the optimal digital
filter (not shown). In general, this provides a way of rolling an unknown set of synapse models,
H(s) or H(z), into the NEF’s least-squares optimization problem – rather than assuming just a
single synapse is fixed a priori.

5.2 Neurons

Although the majority of this chapter has focused on extending the NEF to a variety of synapse
models, we acknowledge the importance of embracing intrinsic neural dynamics as a useful
computational resource as well. On the one hand, Eliasmith and Anderson (2003, appendix F.1)
argue that synaptic dynamics dominate that of LIF dynamics at the network level. But on the
other hand, there is significant evidence that intracellular dynamics in more sophisticated
neuron models play an important functional role in improving signal-to-noise (Eliasmith and
Anderson, 2003, chapter 4) and in supporting network-level computations (Izhikevich, 2007).
As stated in section 2.2.4, and demonstrated in section 5.1.5, one can explicitly simulate the
spike-generation and solve for the decoders over time, thus allowing the optimization to exploit
any relevant correlation structures in spike-timing across neurons and any information carried
by the individual spike-timing of each neuron. However, such black box approaches do not
assist the modeller, a priori, in picking the optimal neuron model for some useful function,
configuring its parameters, and so forth. Rather, it becomes something of an art; making
intuitive judgements about which neurons are doing what, and sweeping over various combi-
nations of models and parameter settings with evolutionary search algorithms or similar. Work
that considers the use of teaching signals to train recurrent networks of biophysically-detailed

4The time-constants of h(t ) are equal to −p−1
i where pi is the i th pole of H(s).

115



neurons to implement integration, is a topic of active exploration (Duggins, 2017; Duggins
et al., 2017). Making progress within a mathematical framework proves to be challenging, due
to the intractability of nonlinear dynamical systems in general. We discuss the work that we
have carried out in this direction, and highlight some promising directions for future work.

5.2.1 Adaptive models

In a report by Hunsberger (2016), it was shown that adapting neurons can be successfully de-
composed into a linear-nonlinear model. That is, a linear filter followed by a static nonlinearity.
Likewise, Lundstrom et al. (2008) have shown that pyramidal neurons can be decomposed in
the same way, where the linear filter is a fractional differentiator of the form H (s) = sα for some
α. Such decompositions are extremely beneficial to the NEF, since they enable the modeller
to then conceptually absorb that filter into the higher-order dynamics of the synapse model,
and then apply any of our results from section 5.1 with respect to the new filter and the static
nonlinearity that remains.

In general, the field of systems identification (Nelles, 2013) is concerned with learning
the parameters of dynamical models, represented in various forms, that capture the essential
underlying input-output response of some observed dynamical system, such as an adaptive
neuron. Indeed, expressions such as the Volterra series, or its model form as a principal
dynamic mode (PDM) decomposition (Eikenberry and Marmarelis, 2015), provide ways to
characterize and then potentially leverage the principal dynamics of any given model.5 Our
proposed recipe is as follows:

1. Identify the behaviour of the neuron model, G [·], using some other model representation,
such as a linear-nonlinear model or a PDM model. This model should capture the output
response of the model, with respect to a typical input, and up to some degree of tolerance.

2. Extend the NEF with respect to this new model specification.

For the case of a linear-nonlinear model, this second step is accomplished by section 5.1.
For more complicated model representations, such as PDM, we are less certain about what
can be done. Essentially, this is about meeting in the middle, between what we know how to
describe, and what we know how to exploit. The question then becomes: how complicated
may the models in the first step become, before the second step too becomes intractable? We

5We remark that any nonlinear dynamical system can in theory be expressed arbitrarily well using the Volterra
series – analogous to the Taylor series approximation of any function.
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conjecture that this problem—assuming it is well-defined—is generally undecidable. Still, we
view this as the penultimate goal of the NEF, and find it fruitful to pursue in specific cases.

Returning to the case of adaptive neurons, we can still say more. Consider the model
used by Nengo (Camera et al., 2004). This model describes an additional state-variable, ki (t ),
for each neuron, that is equal to a lowpass filtered version of its own spike-train with some
time-constant, τadapt. It then subtracts a scaled version, αadaptki (t ), from its own input current,
which results in the effect where: the more it spikes, the more it inhibits itself in the future. This
description suggests a natural decomposition of the adaptive LIF: express it as a LIF neuron,
that is recurrently coupled to itself with weight ωi ,i =−αadapt and a synaptic filter described by
a lowpass with a time-constant of τadapt, also known as an autapse. This provides an equivalent
model description that the NEF can fully leverage. Specifically: include a recurrent diagonal
weight matrix, where the i th diagonal is αadapt, and use a synapse model with time-constant
τadapt. This then cancels out the adaptive term, and reduces the architecture back to the case
of a LIF neuron. Using this technique, we have verified that Principle 3 can be implemented
for the case of an adaptive LIF population with equivalent accuracy to that of its dual LIF
population (not shown). Although this may seem like a pointless exercise, as we have merely
gone around in a circle and back to where we started, this reveals an important equivalence
relation, namely: the adaptive LIF is equivalent to a LIF model with a diagonal inhibitory
feedback loop. A crucial observation here is that a diagonal matrix cannot be factored any
further (it is full rank). In the context of the NEF, this implies that the network-effect of adaptive
LIF models is to expand the dimensionality of the dynamical state-space from q to n, where
the additional dimensions emerge from a sparse (1/n)-encoding with itself. This provides an
explanation for the computational power of adaptive LIF neurons in the context of Principle 3,
but only gets us so far due to the difficulty in analyzing an n-dimensional nonlinear dynamical
system for large values of n. We have found, however, that this diagonal matrix can in many
cases be approximated by the product of two low-rank matrices—analogous to encoders and
decoders—whose state-space essentially represents a projection of the population’s adaptive
state, while maintaining essential properties of the network-level dynamics. This highlights
a promising avenue for future research, namely the characterization of this additional state-
vector and its subsequent harnessing for particular classes of dynamical systems.

5.2.2 Poisson models

Recalling our analysis from section 3.2.1, the NEF must cope with three sources of error in
the neural representation: (1) “static distortion” arising from the use of decoders, (2) “spike
noise” arising from the use of discontinuous spikes, and (3) “state discrepancy” arising from
the substitution of a stateless model with a stateful model. The first two issues are resolved by
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scaling up the neuron count or total number of spikes, but the third is not, unfortunately. For
the latter issue, the intuitive goal is for our neurons to be “uniformly ready to spike” at every
given moment in time. We formalized this with our definitions of ISIP and state discrepancy
(definition 3.2.1), and then proceeded to prove that the error converges to zero if the ISIPs are
uniformly distributed (Theorem 3.2.1). The issue with LIF neurons is that, for non-constant
inputs, this requirement is systematically violated (see Figure 3.4). Each neuron is biased away
from the uniform distribution, tending towards the start of its ideal ISI (see Figure 3.3(d)), due
primarily to leakage. This observation goes well beyond the scope of the LIF model, to any
neuron model that has some internal memory or state that might lead it to violate the criteria
of uniformity.

This discussion motivates the search for a “memoryless” spiking neuron model – one that
cannot be biased towards a non-uniform probability of being ready to spike by its prior inputs
or absence thereof. The exponential distribution is the only such continuous-time probability
distribution. This distribution describes the arrival time between Poisson events. Therefore, a
Poisson-spiking model is the only probabilistic type of neuron model that satisfies our criteria
for eliminating this source of error. We thus consider Poisson-spiking neurons where the
number of spikes within a given time-step follows a Poisson distribution with a rate given by
some desired static response curve (here, equation 2.8) evaluated at the input current.

Poisson-spiking models have numerous benefits:

1. Cheap to simulate in both space and time, as they require no additional memory or
updates to state.

2. May be applied to any static response curve without loss of generality.

3. There is no latency when processing inputs that jump discontinuously, and more gen-
erally when processing high-frequency input signals, as there is no start-up transient
or requirement to initialize the model; the expected spike rate of each neuron always
equals the desired instantaneous rate.

4. By solving the state discrepancy problem, the performance continues to scale with the
number of neurons.

5. Scaling holds even with arbitrarily low firing rates, thus promoting a reduction in total
power by way of fewer spikes needed to achieve high levels of precision in certain cases.

Integrate-and-fire (i.e., non-leaky LIF, or “ReLU”) spiking neurons also share benefits 3, 4, and
5 – assuming its voltages are initialized to vi (0) ∼ U [0,1] at the beginning of the simulation.
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Benefits 1 and 2 are lost, however, as the ReLU is a rectified linear (and unbounded) curve
which may not provide the most efficient basis for some static nonlinearities, and it requires
additional memory to maintain the state-variable (voltage) over time.

We validate these claims in Figures 5.4 and 5.5 by using each type of LIF model—Poisson-
spiking, non-leaky, adaptive, and regular-spiking—evaluating the root-mean-squared error
(RMSE) against the filtered ideal. In all cases the maximum firing rates of the neurons are
limited to 20–40 Hz, and the states of the neurons are initialized to be mixed (i.e., uniform
ISIPs). In both figures we display 95% confidence intervals bootstrapped from 10 trials in each
condition.

In Figure 5.4, we demonstrate that precision remains constant for both Poisson-spiking
and non-leaky neurons, even at frequencies greater than six times that of the maximum firing
rates of any given neuron. For this, we set n = 50 f , τ = 10 f −1 ms, and dt = 1 f −1 ms, as we
scale the frequency of the sinusoid, f Hz. This choice of scaling is informed by equation 3.4,
which tells us that we should balance τ = f −1 to keep O (

2πτ f
)

fixed, while increasing n in
proportion to f to scale the total number of spikes with frequency. Due to the variability in a
Poisson process, it is sub-optimal for constant inputs. However, performance remains constant
at higher frequencies.

In Figure 5.5, we demonstrate that the precision continues to scale as O (
τ
p

n
)

for both
Poisson-spiking and non-leaky neurons, but not for the other two. For this, we fix f = 10 Hz,
τ = 1 ms, and dt = 0.1 ms, as we scale the neuron count. This demonstrates that Poisson
spiking models (and ReLU) solve the state discrepancy problem, and thus continue to scale in
accuracy with neuron count at increasingly-greater signal frequencies relative to the individual
firing rates. The properties of the Poisson neuron model make it particularly appealing for
neuromorphic architectures such as SpiNNaker 2. Specifically, SpiNNaker 2 has specialized
hardware for computing exponentials (Partzsch et al., 2017) and uniform samples (Liu et al.,
2018), and the architecture benefits enormously from the reduction of memory requirements
and spike-traffic (Stromatias et al., 2013; Mundy et al., 2015). Since the Poisson spike-generator
can be applied to any desired static response curve, this method can be applied to whatever is
cheap to compute while still providing a suitable nonlinear basis for the desired transformation.

Despite the poor performance of the adaptive LIF model in these experiments, this could be
an artifact of the particular adaptive mechanism (subtracting from its input current) combined
with the statistics of the input signal (pure sinusoid). Adaptive neurons may still play an impor-
tant role in efficient neural coding and the NEF, in particular by the complementary means of:
(1) expanding the dimensionality of the dynamics, (2) providing higher-order encoding filters,
(3) adjusting the static nonlinearities over time, and (4) maintaining the invariance of the ISIP
criteria with respect to the statistics of the input signal using fewer spikes.
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Figure 5.4: Scaling of LIF performance with frequency, for each type: Poisson-spiking, non-
leaky (i.e., integrate-and-fire), adaptive, and regular-spiking. The input is a sinusoid with
frequency f Hz. Due to the memoryless property of the Poisson process, and the uniformity of
non-leaky LIF, both outperform regular LIF with constant precision as f →∞ (Theorem 3.2.1),
assuming n and τ are scaled appropriately with frequency (see text for details).
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Figure 5.5: Scaling of LIF performance with neuron count ( f = 10 Hz), for each type: Poisson-
spiking, non-leaky (i.e., integrate-and-fire), adaptive, and regular-spiking. Regular-spiking
LIF plateaus in performance for large numbers of neurons, due to the state discrepancy
(definition 3.2.1). The precision of integrate-and-fire and Poisson-spiking both scale as

p
n as

n →∞ (Theorem 3.2.1), since each neuron is always ready to spike with the ideal probability.
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Chapter 6

Delay Networks

This chapter has been adapted from, while significantly extending, the work of Voelker (2015a);
Voelker and Eliasmith (2016, 2018, 2019, patent pending).

A particularly important dynamical system that has not been discussed before in the
NEF literature is the pure continuous-time delay line. In order to implement such a system,
one must represent a rolling window of input history, or, in other words, one must buffer
the input signal into a memory that continuously slides alongside the current input. In this
chapter, we provide a novel derivation of an optimal low-dimensional linear approximation to
a continuous-time delay, and then realize this Delay Network (DN) using the NEF in a recurrent
spiking network. We then investigate its computational properties, proving that the resulting
network implements a well-defined nonlinear encoding of its input across the delay interval
– isomorphic to a high-dimensional projection of the shifted Legendre polynomials. This
network uses a scale-invariant representation, with a level of accuracy that depends on the
input frequency, chosen dimensionality (i.e., the order of the approximation), and particular
synapse model. To our knowledge, this work is the first to demonstrate that such a temporal
code may be accurately implemented using a spiking dynamical network.

Reservoir Computing approaches, such as Liquid State Machines (Maass et al., 2002) and
Echo State Networks (Jaeger, 2001), may be used to approximate a delay line. However, since
these networks use randomly chosen feedback weights, we show in section 6.2.1 that they
do so with relatively poor accuracy despite extensive hyper-optimization. Such networks
instead represent a random variety of nonlinear memory traces (Lukoševičius, 2012b). Discrete
approaches to short-term memory, such as those taken by White et al. (2004) and Ganguli et al.
(2008), while optimal in an information-theoretic sense, rely fundamentally on single time-step
delays between rate-based neurons. In contrast, the method that we propose here works
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independently of the simulation time-step, and is optimal assuming the population of spiking
neurons—coupled with some model of the synapse—accurately represents a low-dimensional,
low-frequency, vector space. Furthermore, we use our extensions from section 5.1, which
improves our understanding of the relationship between synapse models and network-level
computations.

We also find that the delay-line is a difficult function for FORCE networks to learn (sec-
tion 6.2.2); re-encoding the delayed output as a teaching signal ends up “confusing” the net-
work. Furthermore, we find that our network, when expressed as an RNN cell (without spikes),
outperforms equivalently-sized stacked LSTMs on computing long delays, and predicting the
Mackey-Glass dataset—a difficult chaotic time-series benchmark—in training time, inference
time, and test accuracy. We then reveal some connections between the neural responses within
our delay network, and “time cells” in the neuroscience literature. Lastly, we discuss a number
of theoretical applications that are directly supported by, and extend, the computations of the
delay network.

To begin, consider a continuous-time delay line of θ seconds:

y(t ) = (u ∗δθ)(t ) = u(t −θ), θ > 0, (6.1)

where δθ denotes the Dirac delta shifted forwards in time by θ. This system takes a time-varying
scalar signal, u(t ), and outputs a purely delayed version, u(t −θ). The task of computing this
function both accurately and efficiently in a biologically-plausible, spiking, dynamical network,
is a significant theoretical challenge, that, to our knowledge, has previously remained unsolved.

The continuous-time delay is worthy of detailed consideration for several reasons. First, it
is non-trivial to implement using continuous-time spiking dynamical primitives. Specifically,
equation 6.1 requires that we maintain a rolling window of length θ (i.e., the history of u(t),
going θ seconds back in time). Thus computing a delay of θ seconds is just as hard as computing
every delay of length θ′, for all 0 ≤ θ′ ≤ θ. Since any finite interval of R contains an uncountably-
infinite number of points, an exact solution for arbitrary u(t) requires that we maintain an
uncountably-infinite amount of information in memory. Second, the delay provides us with
a window of input history from which to compute arbitrary nonlinear functions across time.
For instance, the spectrogram of a signal may be computed by a nonlinear combination of
delays, as may any finite impulse response (FIR) filter. Third, delays introduce a rich set of
interesting dynamics into large-scale neural models, including: oscillatory bumps, traveling
waves, lurching waves, standing waves, aperiodic regimes, and regimes of multistability (Roxin
et al., 2005). Fourth, a delay line can be coupled with a single nonlinearity to construct a
network displaying many of the same benefits as Reservoir Computing (Appeltant et al., 2011;
Bai and Yi, 2018).
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Many learning algorithms also tend to rely on sliding windows of input history. For in-
stance, Leng et al. (2013) and Izzeldin et al. (2011) improved their neural networks’ accuracy
by incorporating sliding windows into their learning rules – but they did not offer any neural
implementation for the component that performs the required buffering. Similarly, Ferreira
and Ruano (2009) found sliding windows to be beneficial for the online learning of process
models, in which the parameters of a nonlinear time-varying system are identified.

The computational power of delays is explained more abstractly by Takens’ embedding
theorem (Takens, 1981; Noakes, 1991).1 This theorem provides a very deep connection between
delays and dynamical systems, specifically: any chaotic attractor, with finite box counting
dimension, k, can be reconstructed by a static nonlinear projection of 2k different delays of just
one of its internal state variables. In other words, a basis of delays, when applied to just a single
observed variable, provides enough information to infer its entire unobserved state. These
insights have practical applications to time-series forecasting in the natural sciences (Sugihara
et al., 2012). And, in particular, this provides theoretical grounding for why delays might
be computationally useful in biological systems; their dynamics support the inference of
high-dimensional states from low-dimensional observations over time.

Our delay network is also somewhat analogous to an autoencoder (Gulli and Pal, 2017)
from machine learning. However, rather than compressing the input into a low-dimensional
space that allows for it to be reconstructed spatially, we do this temporally. This leads to a
number of applications that can, in effect, mentally travel back in time using just a handful of
latent state-variables embedded within a spiking network. The resulting representations are
fully interoperable with the semantic pointer architecture (SPA; Eliasmith et al., 2012), and thus
afford the same manipulations as semantic pointers in Spaun, namely: binding into working
memory, compressing information from cortex, internally routing information, and driving
motor actions (Eliasmith, 2013).

At a higher level, any physical realization of a delay must necessarily be modelling the
statistics of its input in some way. This is because it is physically impossible to buffer arbitrary
signals in continuous time (details in section 6.1.1), and thus some sacrifice must be made. In
essence, this sacrifice amounts to a sparse coding mechanism, in which a low-dimensional rep-
resentation is constructed that maps onto the infinite-dimensional time window (Blumensath
and Davies, 2009). Spikes in a neural network are akin to such a compression mechanism in
time, as are decoders in space. Our solution leverages both methods of sparsification, but not
in a way that one might come to expect from information theory or other approaches involving
discrete samples; our NEF-based approach finds the optimal system for linearly mapping
continuous-time windows onto a low-dimensional manifold.

1We thank Peter Suma for pointing out this connection.
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6.1 Derivations

It is impossible in practice (i.e., given finite-order continuous-time resources) to implement an
arbitrary delay. For instance, a white noise signal contains an uncountably-infinite amount
of information within any finite window, that cannot be compressed any further (Cover and
Thomas, 2012). We instead approximate u(t) as a low-frequency signal, or, equivalently,
approximate equation 6.1 as a low-dimensional system expanded about the zeroth frequency
in the Laplace domain. Our choice of a zero-frequency approximation is informed by our
analysis from section 3.1.6, which suggests that neural systems require energy that grows
linearly in the representational frequency.

6.1.1 Optimal approximation

We begin by transforming equation 6.1 into the Laplace domain, L{
y(t )

}=L {u(t )}L {δθ(t )},
and then using the fact that L {δθ(t )} = e−θs to obtain:

F (s) := L{
y(t )

}
L {u(t )}

= e−θs , (6.2)

where F (s) is known as the transfer function of the system, defined as the ratio of the Laplace
transform of the output to the Laplace transform of the input. Equation 6.2 should be un-
derstood as an equivalent way of expressing equation 6.1 in the Laplace domain, where the
variable s denotes a complex frequency. Notably, we have not made any sacrifices at this point,
as the ideal system is a linear dynamical system. Thus far, we have only described the transfer
function that we would like the network to implement.

The state-space model discussed in section 2.2.3 (equation 2.12) is related to its transfer
function by equation 5.2. Conversely, a transfer function can be converted into a state-space
model satisfying equation 5.2 if and only if it can be written as a proper ratio of finite poly-
nomials in s (Brogan, 1991). The ratio is proper when the degree of the numerator does not
exceed that of the denominator. In such a case, the output will not depend on future input,
and so the system is causal. The degree of the denominator corresponds to the dimensionality
of the state-vector, and therefore must be finite. These two conditions align with physically
realistic constraints where time may only progress forward, and neural resources are limited.

However, the pure delay (equation 6.2) has infinite order when expressed as a ratio of
polynomials in s, and so the system is irrational, or infinite-dimensional. Consequently, no
finite state-space model will exist for F (s), which formalizes our previous remark that an
exact solution is impossible for finite, continuous-time systems. To overcome this, we must
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approximate the irrational transfer function e−θs as a proper ratio of finite-order polynomials.
We do so using its Padé approximants—the coefficients of a Taylor series extended to the ratio
of two polynomials—expanded about s = 0 (Padé, 1892; Vajta, 2000):

[
p/q

]
e−θs = Bp (−θs)

Bq (θs)
,

Bm(s) :=
m∑

i=0

(
m
i

)
(p +q − i )!

(p +q)!
si .

(6.3)

This provides the transfer function of order p in the numerator and order q in the denominator
that optimally approximates equation 6.2 for low-frequency inputs (i.e., up to order p +q).

After choosing 0 ≤ p ≤ q , we may numerically find a state-space model (A,B ,C ,D) that
satisfies equation 5.2 using standard methods,2 and then map this system onto the synapse
using Principle 3. However, naïvely applying this conversion leads to numerical issues in the
representation (i.e., dimensions that grow exponentially in magnitude), due in part to the
factorials in equation 6.3.

To overcome this problem, we derive an equivalent yet normalized state-space model that
we have not encountered elsewhere. We do so for the case of p = q −1, since this provides the
best approximation to the step-response (Vajta, 2000). We symbolically transform equation 6.3
into a normalized state-space model that avoids the need to compute any factorials. We begin
by expanding equation 6.3:

[q −1/q]e−θs =
∑q−1

i=0

(
q −1

i

)
(2q −1− i )!(−1)iθi si

∑q
i=0

(
q
i

)
(2q −1− i )!θi si

=
1

θq (q−1)!

∑q−1
i=0

(q−1)!
(q−1−i )!i ! (2q −1− i )!θi si (−1)i

sq + 1
θq (q−1)!

∑q−1
i=0

q !
(q−i )!i ! (2q −1− i )!θi si

=
∑q−1

i=0 ci si

sq +∑q−1
i=0 di si

,

where di := q(2q −1− i )!

(q − i )!i !
θi−q and ci := (−1)i

(
q − i

q

)
di .

2For instance, the function tf2ss in MATLAB or SciPy.
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This transfer function is readily converted into a state-space model in controllable canoni-
cal form:

A =


−dq−1 −dq−2 · · · −d0

1 0 · · · 0

0
. . . . . .

...
0 0 1 0

 ,

B = (
1 0 · · · 0

)T
,

C = (
cq−1 cq−2 · · · c0

)
,

D = 0.

To eliminate the factorials in di and ci , we scale the i th dimension of the state-vector by dq−1−i ,
for all i = 0. . . q−1, which is equivalent to transforming the system using a diagonal state-space
transformation. This is achieved without altering the transfer function by scaling each (B) j by
dq−1− j , each (C )i by 1/dq−1−i , and each (A)i j by dq−1−i /dq−1− j , which yields the equivalent
state-space model:

A =


−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . . . . .

...
0 0 vq−1 0

 ,

B = (
v0 0 · · · 0

)T
,

C = (
w0 w1 · · · wq−1

)
,

D = 0,

(6.4)

where vi := (q + i )(q − i )

i +1
θ−1 and wi := (−1)q−1−i

(
i +1

q

)
, for i = 0. . . q −1. This follows from

noting that v0 = dq−1 and vi := dq−1−i /dq−i for i ≥ 1.

A similar derivation applies to the case where p = q , although it results in a passthrough
(D 6= 0) which is suboptimal for step-responses. For brevity, we omit this derivation, and
instead simply state the result:

A =


−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . . . . .

...
0 0 vq−1 0

 ,

B = (−v0 0 · · · 0
)T

,

C = (
2(−1)q 0 2(−1)q 0 · · · · · ·) ,

D = (−1)q ,

where vi = (q + i +1)(q − i )

i +1
θ−1, for i = 0. . . q −1.

In either case, A and B depend on the delay length solely by the scalar factor θ−1. For this
reason, and to keep quantities dimensionless, we often make the substitution x(t ) ← θx(t ) to
express the system in an alternative form (Neckar et al., 2019):

θẋ(t ) = Ax(t )+Bu(t ), A =


−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . . . . .

...
0 0 vq−1 0

 , B = (
v0 0 · · · 0

)T
, (6.5)
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where vi := (q + i )(q − i )(i +1)−1 no longer depends on θ. As a side-effect, we may control the
length of the delay by adjusting the gain on the integration time-constant (i.e., by scaling the
input and feedback signals). The NEF can be used to build such controlled dynamical systems,
without introducing multiplicative dendritic interactions or implausible on-the-fly connection
weight scaling (Eliasmith and Anderson, 2000).

This model is now equivalent to equation 6.3, but without any factorials, and in the form of
equation 2.12.3 The choice of q corresponds to the dimensionality of the latent state-vector
x(t) that is to be represented by Principle 1 and transformed by Principle 2. Principle 3 may
then be used to map equation 6.4 onto a spiking dynamical network to accurately implement
an optimal low-frequency approximation of the delay.

To demonstrate, we implement a 1 s delay of 1Hz band-limited white noise using 1,000
recurrently connected spiking LIF neurons representing a 6-dimensional vector space (see
Figure 6.1). The connections between neurons are determined by applying Principle 3 (sec-
tion 2.2.3) to the state-space model derived above (equation 6.4, q = 6) via the Padé approxi-
mants of the delay. The normalized root-mean-squared error (NRMSE; normalized so that 1.0
would correspond to random chance) of the output signal is 4.8%. This is achieved without
appealing to the simulation time-step (dt= 1 ms); in fact, as shown in section 6.2.7, the network
accuracy improves as dt approaches zero due to the continuous-time assumption mentioned
in section 2.2.3 (and relaxed in section 5.1.1).

6.1.2 Temporal representation

Although the delay network has its dynamics optimized for a single delay θ > 0, we may still
accurately decode any delay 0 ≤ θ′ ≤ θ from the state of the same network, as intuitively it
needs to be holding onto this memory. In other words, the network is representing a rolling
window (i.e., history) of length θ. To compute these other delays, we must approximate e−θ′s

with a transfer function

Fθ→θ′(s) := C(s; θ,θ′)
D(s; θ)

of order [p/q], such that the denominator D(s; θ) (which provides us with the recurrent trans-
formation up to a change of basis) depends only on θ, while the numerator C(s; θ,θ′) (which
provides us with the output transformation up to a change of basis) depends on some relation-
ship between θ′ and θ.

3In section 4.1, we mention NengoLib’s features for several other state-space realizations.
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Figure 6.1: Delay of 1 s implemented by applying standard Principle 3 to equation 6.4 using
q = 6, dt= 1 ms, 1,000 spiking LIF neurons, and a lowpass synapse with τ= 0.1 s. The input
signal is white noise with a cutoff frequency of 1 Hz. The plotted spikes are filtered with the
same τ= 0.1 s, and encoded with respect to 1,000 encoders sampled uniformly from the surface
of the hypersphere (sorted by time to peak activation). Reproduced from Voelker and Eliasmith
(2018, Figure 3).
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From equation 6.3, we may write the denominator as:

D(s; θ) =
q∑

i=0
di (θ)si , di (θ) :=

(
q
i

)
(p +q − i )!

(p +q)!
θi .

We then solve for the numerator, as follows:

[p/q]e−θ′s =
∞∑

i=0

(−θ′s)i

i !
= C(s; θ,θ′)

D(s; θ)

⇐⇒ C(s; θ,θ′) =
( ∞∑

i=0

(−θ′s)i

i !

)(
q∑

j=0
d j (θ)s j

)
+O (

sp+1) .

By expanding this product and collecting like terms, the correct numerator up to order p ≤ q is:

C(s; θ,θ′) =
p∑

i=0
ci (θ,θ′)si , ci (θ,θ′) :=

i∑
j=0

(−θ′)i− j

(i − j )!
d j (θ).

Therefore, the optimal readout for a delay of length θ′, given the dynamics for a delay of length
θ, is determined by the above linear transformation of the coefficients

(
d j (θ)

)p
j=0.

We remark that ci (θ,θ) =
(

p
i

)
(p +q − i )!

(p +q)!
(−θ)i , since Fθ→θ(s) = [p/q]e−θs , by uniqueness of

the Padé approximants, and by equation 6.3. As a corollary, we have proven that the following
combinatorial identity holds for all p, q ∈N and i ∈ [

0,min{p, q}
]
:(

p
i

)
=

i∑
j=0

(−1) j
(

q
j

)(
p +q − j

i − j

)
.

For the case when p = q −1, we may also apply the same state-space transformation used
to derive equation 6.4 to obtain the normalized coefficients for the C transformation (i.e., with
A, B , and D unchanged):

wq−1−i =
(

i∑
j=0

(−θ′)i− j

(i − j )!

(
q
j

)
(2q −1− j )!

(2q −1)!
θ j

)(
(q − i )!i !(2q −1)!

θq (q −1)!q(2q −1− i )!
θq−i

)

=
i∑

j=0

(
q
j

)(
(2q −1− j )!

(i − j )!(2q −1− i )!

)(
(q − i )!i !

q !

)(
θ j−i

)
(−θ′)i− j

=
(

q
i

)−1 i∑
j=0

(
q
j

)(
2q −1− j

i − j

)(−θ′
θ

)i− j

, i = 0. . . q −1.
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Figure 6.2: Decoding a rolling window of length θ. Each line corresponds to a different delay,
ranging from 0 to θ, decoded from a single Delay Network (q = 12). (Left) Error of each delay,
as the input frequency, f , is increased relative to θ. Shorter delays are decoded more accurately
than longer delays at higher frequencies. A triangle marks θ = f −1. (Right) Example simulation
decoding a rolling window of white noise with a cutoff frequency of θ−1 Hz. Reproduced from
Voelker and Eliasmith (2018, Figure 4).

From this, we see that different decodings require different linear output transformations (C )
for each θ′, with the following coefficients:

wq−1−i =
(

q
i

)−1 i∑
j=0

(
q
j

)(
2q −1− j

i − j

)(−θ′
θ

)i− j

, i = 0. . . q −1. (6.6)

The underlying dynamical state remains the same. To be clear, the q-dimensional state-vector
of the delay network represents a rolling window of length θ. That is, a single delay network
with some fixed θ > 0 may be used to accurately decode any delay of length θ′ (0 ≤ θ′ ≤ θ) by
taking a linear transformation of its state-vector according to the coefficients of equation 6.6.

In Figure 6.2, we take different linear transformations of the same state-vector, by evaluating
equation 6.6 at various delays between 0 and θ, to decode the rolling window of input from the
state of the system.4 This demonstrates that the delay network compresses the input’s history
(lasting θ seconds) into a low-dimensional state. In Figure 6.3, we sweep equation 6.6 across
θ′θ−1 to visualize the temporal “basis functions” of the delay network. This provides a means
of understanding the relationship between the chosen state-space representation (i.e., the

4The optimization problem from equation 2.9 need only be solved once to decode x(t ) from the neural activity.
The same decoders may then be transformed by each C without loss in optimality (by linearity).
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Figure 6.3: Temporal basis functions for the Delay Network (q = 12). Each line corresponds to
the basis function of a single dimension (i ) ranging from 0 (darkest) to q −1 (lightest). The i th

basis function is a polynomial over θ′θ−1 with degree i (see equation 6.6). The state-vector of
the Delay Network takes a linear combination of these q basis functions in order to represent a
rolling window of length θ. Reproduced from Voelker and Eliasmith (2018, Figure 5).

q-dimensional x(t )) and the underlying window representation (i.e., the infinite-dimensional
u(t)). In particular, each basis function corresponds to the continuous window of history
represented by a single dimension of the delay network. The instantaneous value of each
dimension acts as a coefficient on its basis function, to contribute to the representation of the
window at that point in time. Overall, the entire state-vector determines a linear combination
of these q basis functions to represent the window. An intriguing consequence of this and
equation 6.6, is that the temporal code employed by this network—in terms of the basis
functions that it takes to reconstruct the window—is a linear transformation of the shifted
Legendre polynomials up to the same order, as detailed in section 6.1.3. Thus the network
projects its input onto the Legendre basis over time.

The encoder of each neuron can also be understood directly in these terms as taking
a linear combination of the basis functions (via equation 2.2). Each neuron nonlinearly
encodes a projection of the rolling window onto some “preferred window” determined by
its own encoder. Since the state-vector is encoded by heterogeneous neural nonlinearities, the
population’s spiking activity supports the decoding of nonlinear functions across the entire
window (i.e., functions that we can compute using Principles 1 and 2). Therefore, we may
conceptualize the delay network as a temporal coding of the input stimulus, which constructs
a low-dimensional state—representing an entire window of history—to encode the temporal
structure of the stimulus into a nonlinear high-dimensional space of neural activities. We
discuss this in more detail in the following sections.

To more thoroughly characterize the delay dynamics, we analyze the behaviour of the delay
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Figure 6.4: Impulse response of the Delay Network with various orders (q) of Padé approxi-
mants. (Top) The state-vector x(t) projected onto its first three principal components. (Bot-
tom) The length of the curve x up to time t , computed using the integral ∫ ‖ẋ(t )‖ (normalized to
1 at t = θ). This corresponds to the distance travelled by the state-vector over time. The dashed
line marks the last inflection point, indicating when x(t) begins to slow down. Reproduced
from Voelker and Eliasmith (2018, Figure 6).

network as the dimensionality is increased (see Figure 6.4). Specifically, we perform a standard
principal component analysis (PCA) on the state-vector for the impulse response, and vary the
order from q = 3 to q = 27. This allows us to visualize a subset of the state-vector trajectories,
via projection onto their first three principal components (see Figure 6.4 (Top)). The length
of this trajectory over time distinguishes different values of q (see Figure 6.4 (Bottom)). This
length-curve is approximately logarithmic when q = 6, convex when q ≤ 12, and sigmoidal
when q > 12. To generate this figure we use a delay of θ = 10s, but in fact this analysis is
scale-invariant with time. This means that other delays will simply stretch or compress the
impulse response linearly in time (not shown).

We remark that the delay network is scale-invariant with the delay length over input fre-
quency, that is, the accuracy for a chosen order is a function of f ×θ (see units in Figure 6.2 for
instance), where f is the input frequency. More specifically, for a fixed approximation error,
the delay length scales as O (

q f −1). We elaborate on these properties in section 6.1.5, and
demonstrate our extensions to harnessing arbitrary linear synapse models to improve accuracy
in section 6.2.7.
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Figure 6.5: Temporal basis functions for the Legendre state-space realization of the Delay
Network (q = 12). Each line corresponds to the basis function of a single dimension (i ) ranging
from 0 (darkest) to q −1 (lightest). The i th basis function is the shifted Legendre polynomial
over θ′θ−1 with degree i (see equation 6.7). The state-vector of the Delay Network takes a
linear combination of these q basis functions in order to represent a rolling window of length
θ. These polynomials are a linear transformation of the same polynomials from Figure 6.3.

6.1.3 Padé–Legendre basis

In this section, we reveal a deep connection between the work of Legendre (1782) and Padé
(1892). Specifically, the Padé approximants of the delay have an elegant state-space realization
whose corresponding temporal basis functions are the shifted Legendre polynomials:

P̃i (r ) = (−1)i
i∑

j=0

(
i
j

)(
i + j

j

)
(−r ) j =Pi (2r −1) , r = θ′

θ
, (6.7)

where Pi (r ) is the i th Legendre polynomial (Rodrigues, 1816). These classical polynomials,
shown in Figure 6.5, are uniquely defined as the set of orthogonal polynomials over the domain
0 ≤ r ≤ 1 scaled such that P̃i (1) = 1. The Legendre polynomials have numerous applications in
the physical sciences, for example in the solution to Schrödinger’s equation for the hydrogen
atom (Hermann and Fleck Jr, 1988), and in describing the function basis for a population of
LIF tuning curves (Eliasmith and Anderson, 2003, p. 202).

Although previous connections have been made between these same polynomials and
parameter identification in time-delay systems (Hwang and Chen, 1985), we believe this work
is the first to discover a simple LTI system—derived by the Padé approximants—that projects a
rolling window of its input history onto the shifted Legendre basis. To solve for this system,
we determine the state-space transformation of equation 6.4 that rotates equation 6.6 into
the form of equation 6.7. This is made possible by an inductive procedure and via linear
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independence of equation 6.6. This results in the following state-space realization of the Padé
approximants for the delay transfer function, [(q −1)/q]e−θs :

θẋ(t ) = Ax(t )+Bu(t )

A = [a]i j ∈Rq×q , ai j = (2i +1)

{−1 i < j

(−1)i− j+1 i ≥ j

B = [b]i ∈Rq×1, bi = (2i +1)(−1)i , i , j ∈ [0, q −1].

(6.8)

To provide an example, for the case of q = 6, we have the following state-space matrices with
linear scaling in dimension and alternating signs in B and in the lower triangle of A:

A =



−1 −1 −1 −1 −1 −1
3 −3 −3 −3 −3 −3

−5 5 −5 −5 −5 −5
7 −7 7 −7 −7 −7

−9 9 −9 9 −9 −9
11 −11 11 −11 11 −11

 , B =



1
−3

5
−7

9
−11

 . (6.9)

For the special case of q = 1, this reduces to the first-order lowpass θẋ(t)+ x(t) = u(t), as in
equation 2.13 (τ← θ). For q > 1, the q th dimension recursively extends the system for q −1 to
represent a q th-order polynomial of history. In general, the crucial result is that the state-space
of this LTI system optimally reconstructs its input history via the shifted Legendre polynomials:

u(t −θ′) ≈
q−1∑
i=0

P̃i

(
θ′

θ

)
xi (t ), 0 ≤ θ′ ≤ θ. (6.10)

This is proven by applying a state-space transformation to the polynomials of equation 6.6.5

In summary, equation 6.8 has an identical transfer function to that of equation 6.4—namely,
the Padé approximants of a pure delay—while providing a state-space that reconstructs the
previous θ seconds of input via the Legendre polynomials up to order q .

Figure 6.6 illustrates equation 6.8, discretized using Euler’s method, with q = 6 dimensions.
This design exploits the alternation of signs, and reuses the intermediate computations within
the upper and lower triangles of A, by decomposing them into two separate cascading chains

5Cuius rei demonstrationem mirabilem sane detexi hanc marginis exiguitas non caperet. ~ Pierre de Fermat
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Figure 6.6: Circuit diagram that represents an efficient implementation of the Legendre real-
ization of the Delay Network (q = 6). Large circles correspond to each dimension of x. Small
circles indicate elements that add (arrow head) or subtract (circular head) their inputs. The
i th dimension scales its input (triangular head) by dt(2i +1)θ−1, for i = 0. . . q −1. Recurrent
self-loops, from each dimension back to itself, are omitted for simplicity.

of summations that are then combined by a feedback loop. These same computations are also
reused to implement Bu by supplying u to the appropriate intermediate nodes. Increasing the
dimensionality of the system by one requires appendingO (1) wires, adders, and state-variables,
to the existing circuitry. In total, this circuit requires O (

q
)

wires, adders, and state-variables,
thus making it linearly scalable in both space and time (see section 6.1.5).
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6.1.4 Nonlinear characterization

A delay is a linear dynamical system. However, by virtue of encoding the delay network’s
state-vector into a heterogeneous population of neurons—as in the first two principles of the
NEF—the network also affords the computation of arbitrary nonlinear functions across the
rolling window. Recall that a continuous-time rolling window of length θ > 0, which here we
denote as

[
u(t −θ′) : 0 ≤ θ′ ≤ θ]

, u(·) ∈R, may be temporally compressed into a low-dimensional
state x(t) ∈ Rq , by the following linear time-invariant dynamical system that approximately
delays an input signal by θ seconds (repeating equation 6.5, for clarity):

θẋ(t ) = Ax(t )+Bu(t ), A =


−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . . . . .

...
0 0 vq−1 0

 , B = (
v0 0 · · · 0

)T
,

where vi := (q + i )(q − i )(i +1)−1, for i = 0. . . q −1. This compression is derived by applying
Padé approximants to e−θs about the complex point s = 0, which yields an optimal low-degree
polynomial expansion of L{u}(s) about its zeroth frequency. The state x(t) represents the
rolling window via a linear combination of time-invariant polynomial basis functions:

u(t −θ′) ≈
q−1∑
i=0

Pq−i−1,q

(
θ′

θ

)
xi (t ), 0 ≤ θ′ ≤ θ. (6.11)

Repeating the equation for these polynomials (equation 6.6), for completeness:

Pi ,q (r ) =
(

q
i

)−1 i∑
j=0

(
q
j

)(
2q −1− j

i − j

)
(−r )i− j . (6.12)

A set of polynomials {P}i ,q are shown in Figure 6.3. This system implicitly projects its window
of history onto a linear transformation of polynomials up to some chosen order. In summary,
equation 6.11 determines a linear map from the q-dimensional state, x(t), to the infinite-
dimensional rolling window, [u(t −θ′) : 0 ≤ θ′ ≤ θ], such that equation 6.11 is the optimal
pseudo-inverse of the linear compression defined by equation 6.5.

Moreover, every point along the window, along with its Taylor series expansion up to order
q , as well as any other integral transform across the rolling window (e.g., Laplace transform),
may be expressed using equation 6.11 and equation 6.12 as a fixed dot product with x(t ). To
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solve for this, let k(θ′) (0 ≤ θ′ ≤ θ) be any desired kernel (e.g., Fourier transform), then:

(u ∗k)(t ) =
∫ θ

θ′=0
u(t −θ′)k(θ′)dθ′

≈
q−1∑
i=0

(∫ θ

θ′=0
k(θ′)Pq−i−1,q

(
θ′

θ

)
dθ′

)
︸ ︷︷ ︸

ki

xi (t )

= 〈x(t ),k〉 ,

(6.13)

where k = [
k0, . . . ,kq−1

]T ∈ Rq is defined above independently of time. Hence, any integral
transform is simply a dot product with x(t ). Similarly, one may obtain Taylor expansions by tak-
ing dot products with vectors derived by repeatedly differentiating both sides of equation 6.11
with respect to θ′ (not shown). Analogous statements hold for the Legendre realization from
the previous section, whose set of polynomials are shown in Figure 6.5.

Crucially, such dot products are precisely what the encoders ei compute in equation 2.2.
This implies that the PSC of any neuron, by itself, necessarily represents a particular con-
volution6 across the window, equivalent to the heterogeneous encoding filters proposed in
section 5.1.5. The nonlinearity of each neuron thus provides a nonlinear function of some
finite-width filter (Principle 1). More generally, the state x(t) is encoded by a heterogeneous
population of neurons, which allows for arbitrary nonlinear functions across the window,

y(t ) = f (x(t )) ≈ f
([

u(t −θ′) : 0 ≤ θ′ ≤ θ])
to be decoded from its activity (Principle 2). For example, Figure 6.7 visualizes f within the
space of x ∈R3 for the autocorrelation function, y(t ) = u(t −θ)u(t ).

6.1.5 Scalability considerations

In this section we address several fundamental questions regarding the scalability, or memory
capacity, of the Delay Network (DN) with respect to q , θ, and the complex frequency of the input
signal, s = 2πi f , for some real frequency, f . For the time being, we disregard the error arising
from neural representation by assuming we can make n sufficiently large (see section 3.2.2).
This means we match the model description precisely, even when considering more elaborate
neuron or synapse models (see chapter 5). The only source of error remaining is our use of Padé

6There are infinitely many, since the system is overcomplete when working backwards from k 7→ k(·), but we
can enforce uniqueness by imposing L2-regularization, for instance.
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Figure 6.7: Visualizing the autocorrelation function y(t ) = u(t −θ)u(t ) with q = 3. Each point
along the surface of the unit-sphere is x(t), and is coloured according to its corresponding
value of y(t ) obtained from equation 6.11. A slice of the shell is cut away for visualization.
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Figure 6.8: Visualizing the error in the Delay Network, |Eq (2πi f ·θ)| (see equation 6.14), while
varying the dimensionless quantity f ·θ (input frequency multiplied by delay length), and the
order of approximation, q .

approximants to render equation 6.2 finite-dimensional. This error term may be expressed in
the Laplace domain as follows:

Eq (θs) = [q −1/q]e−θs −e−θs , (6.14)
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where [q −1/q]e−θs is defined by equation 6.3 (see Figure 6.8).7 By linearity of the Laplace
transform, it suffices to consider the error at individual frequencies s in order to fully charac-
terize the error of the entire system for any given input. More precisely, by the convolution
theorem, we can interpret equation 6.14 as a linear filter in the s-plane, to reveal how each
input frequency is amplified, attenuated, or phase-shifted, to contribute to the spectrum of
the overall error.8

Dimensional analysis quickly reveals an important property of this error: the dimensionless
quantity, θs (i.e., the product of time and frequency), fully determines the error (for fixed q).
In other words, the “difficulty” of computing a delay is a function of the length of the delay
multiplied by the frequency of the input signal being delayed. For instance, delaying a 10 Hz
signal for 0.1 s has the same approximation error as delaying a 0.1 Hz signal for 10 s. This is
seen by simply rescaling the time-axis by a factor of 100. This is also consistent with the results
from Figure 6.2.

This is deeply connected to the observation that in equation 6.4, the delay length θ scales
inversely with the gain on A and B . The identification of this control factor can be derived
from a more general property of the Laplace transform, F (θs) = θ−1L{

f (t/θ)
}

(s) for all θ > 0,
meaning that the time-scale of any linear filter is rescaled by a gain on the integration. We can
exploit this fact more generally to modulate the time-scale of any linear filter on-the-fly (in this
case affecting the length of delay; results not shown).

Next, as shown in Figure 6.8, the radius of convergence for the Padé approximants increases
linearly with q . Thus, scaling q by some factor means that either the frequency of the input
signal or the length of the delay can be scaled by the same factor, while achieving the same
error. When θs is outside the radius of convergence, the absolute error is bounded between 0
and 2. This fact simply comes from the observations that e−θs is a unit-length complex number,
and [q −1/q]e−θs is complex with magnitude less than 1. Thus, by the triangle inequality, the
magnitude of their difference is bounded above by 2. In the limit as θs →∞, the magnitude of
the error converges to 1 as [q −1/q]e−θs → 0.

We may interpret these results in the context of equation 6.14 as a linear filter. When θs is
small (within the radius of convergence, which scales linearly with q), an input frequency at s
radians is delayed almost perfectly for θ seconds. Outside the radius of convergence, the error
contains frequencies that are phase-shifted and multiplied (with magnitude bounded above
by 2) versions of the input frequencies in that range. As θs increase further, the error contains
input frequencies that are simply phase-shifted, without any change in magnitude.

7For example, |E21(2πi ·5)| ≈ 0.003 implies that a 21-dimensional DN delays a 1 Hz signal for 5 s with 0.3% error.
8Only frequencies that are present within the input can become present in the error.
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Lastly, as revealed by equation 6.12, and as shown in Figure 6.3, the basis functions are
also dimensionless, in the sense that they are defined over the range r ∈ [0,1] which maps
onto the time-interval (t −θ′) ∈ [t −θ, t ], where θ′ = rθ, for any θ > 0. This has numerous
consequences that are intertwined: (1) the relationship between the input signal and its state-
vector is scale-invariant; scaling the input length by some factor, and the delay length by the
same factor, results in the exact same state-vector corresponding to a rescaled input history, (2)
we can perform computations on the representation of the DN, independently of scale; see
section 6.2.4 for an example, and (3) we can reinterpret the same state-vector with respect to
any time-scale without changing the state-vector.

Figure 6.9: Scaling the Delay Network to q = 10,240 dimensions, simulated for 1,024,000,000
time-steps (θ = 5,120 s, dt= 10−5 s). The input signal is u(t) = 1, and so y(t) ≈ u(t −θ) is the
Heavide step function centered at t = θ. Each state-variable approximates the integral of a
Legendre polynomial, and y(t ) =∑

i
xi (t ) sums across all dimensions at each moment in time.

Figure 6.9 reveals that the delay network scales to over 104 dimensions to efficiently main-
tain information across a simulation lasting more than 109 time-steps. This is demonstrated
by implementing the design from Figure 6.6 in C++, which takes O (

q
)

time and memory per
simulated time-step using a traditional CPU.

Taking neural constraints into consideration, we do need to factor θs into its dimensional
quantities. As shown in section 5.2.2, the frequency of the state-vector being represented can
matter. This concern is resolved by the use of Poisson spiking, integrate-and-fire neurons, or
any other solution to state discrepancy (section 3.2.1). As well, longer values of θ are more
susceptible to the integration of spiking noise, in the form of “drift.” Lastly, when discretizing
the system in time (e.g., ZOH) or using a non-canonical realization (e.g., balanced), larger values
of q require denser interconnectivity (q × q transform matrices) between all q dimensions,
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leading to O (
q2) time and memory requirements. Such considerations are addressed in

section 6.2.5 by stacking multiple DNs together to form a Deep Delay Network (DDN).

To summarize, the properties of scaling θ are physically coupled to considerations of which
input frequencies need to be delayed, and to what degree of precision. The accuracy is a
function of θs. And, for a fixed level of precision, θs scales linearly with q . In all cases, the
representation employed by the DN (i.e., the linear relationship between the input history and
the state-vector) is scale-invariant in θ.

6.2 Applications

We have developed rigorous theory to understand the Delay Network (DN) in terms of its linear
dynamics, and its nonlinear encoding of time, and used the NEF to present a spiking example
in Figure 6.1. Now, we turn to several concrete applications that are of relevance to those
studying reservoir computing, FORCE learning, deep RNNs and stacked LSTMs, as well as the
cognitive modelling and computational neuroscience communities at large.

6.2.1 Reservoir computing

Here we show that the NEF provides a principled way to optimize a particular RNN architecture,
by mapping the desired dynamical state onto a latent representation within a factorable con-
nection weight matrix (also see sections 2.1.4 and 2.2.4). This enables us to train networks that
outperform Reservoir Computing (RC) methods—using either spiking (LSM; Maass et al., 2002)
or rate-based (ESN; Jaeger, 2001) neurons—in memory capacity and nonlinear computation,
while reducing the simulation time and space requirements by a factor of O (n). Our approach
can learn both online and offline, readily incorporates detailed synapse models, supports
various spiking and rate-based neuron models, and may be compiled onto analog and digital
neuromorphic hardware.

Linear benchmark

Training a network to implement a delay is a natural way to measure the dynamical system’s
memory capacity—its ability to maintain a history of its input signal—which is needed to
compute any function over past inputs. Indeed, this task was considered by ESNs in one of the
earliest demonstrations of the RC paradigm (Jaeger, 2002). In its purest analog form, a delay line
is attempting to encode an infinite amount of information, which is why it is a challenging and

141



useful benchmark to consider. Theoretical and experimental results in the past have pointed
to the limited capability of random feedback to maintain memory (Joshi and Maass, 2005;
Mayor and Gerstner, 2005; Dambre et al., 2012; Wallace et al., 2013; Inubushi and Yoshimura,
2017; Schuecker et al., 2018), in particular finding that linear feedback maximizes memory
capacity (Mitra and Stark, 2001)—as derived in section 6.1.1, and considering the linearity of
a delay line—while being at odds with the nonlinearities that are required to support useful
computations across the memory.9 This is consistent with our findings below. Moreover, the
DN poses a natural way out of this predicament, by using nonlinearities to approximate the
required linear feedback, without sacrificing the ability to nonlinearly transform the window
(section 6.1.4 and below).

For our benchmark task, weights were trained and validated using randomly sampled
25 Hz band-limited white noise inputs. In addition, full-spectrum white noise was added to
the network during both training and testing. Accuracy was measured by normalizing the
root-mean squared error against the root-mean squared target (NRMSE; Lukoševičius, 2012b).
As well, 95% confidence intervals were bootstrapped and plotted using Seaborn (Waskom et al.,
2015). We ported a Python implementation of the ESN from Lukoševičius and Jaeger (2009) to
Nengo, and implemented it analogously to the DN. Nengo allows us to consider populations
of either spiking LIF neurons or non-spiking neurons with various rate curves, without any
additional changes to the model specification. In particular, LSMs were implemented by
replacing the tanh units with LIF spiking neurons, making them comparable to our NEF
networks but with full-rank weight matrices.

The hyperparameters of each method were optimized using 200 iterations of Hyper-
opt (Bergstra et al., 2013) with 3 trials per iteration, to maximize the validation error for
200 ms delays (see Table 6.1). Hyperparameters include an overall gain on the recurrent feed-
back matrix (gain), a normalization factor for the input (radius), time-constants on both the
readout and recurrent filters (τreadout, τrecurrent), L2-regularization parameters for applicable
least-squares problems (σ2

readout, σ
2
recurrent), and the dimensionality of the delay network (q).10

In all cases, we construct a reservoir of 1,500 neurons, and then train separate linear
readouts to approximate various delays ranging from 100–200 ms (dt= 1 ms). For the NEF case,
the prescribed dynamical system is a θ = 200 ms delay, implemented by mapping equation 6.4
onto a discretized lowpass (see equation 5.9). In section 6.2.3 we show that the delay length
can be trained from raw data.

9We thank Kwabena Boahen for pointing out this connection and a few of these references.
10Hyperopt was used to the benefit of LSMs and ESNs. All hyperparameters (apart from q) had minimal effect

on the DN’s performance compared to the usual defaults in Nengo.
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u[t ] h[t ] x[t ] y[t ]B̄ H

ĀH

Figure 6.10: Delay Network (DN) model for a digital architecture. The synapse h[t ] is driven by
ĀH x[t ]+ B̄ H u[t ] to yield the state x[t ]. This state is nonlinearly encoded by a heterogeneous
population of neurons and subsequently decoded to estimate the desired y[t ].

Importantly, the same networks are used to compute all of the different delays reported.
We thus conceptualize the DN as an optimized “low-dimensional reservoir.” Compiling all of
the equations of this network, for clarity (see Figure 6.10):

vi = (q + i )(q − i )

i +1
θ−1, i = 0. . . q −1

A =


−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . . . . .

...
0 0 vq−1 0

 ∈Rq×q

B = (
v0 0 · · · 0

)T ∈Rq

Ā =
∞∑

i=0
ci Ai =

∞∑
i=0

(Adt)i

i !
= e Adt

B̄ =
( ∞∑

i=1
ci Ai−1

)
B = A−1 (

Ā− I
)

B

a = e− dt
τ

ĀH = 1

1−a

(
Ā−aI

)
B̄ H = 1

1−a
B̄ .

(6.15)

We remind the reader that A and B may be transformed by any of the state-space realizations
from section 4.1, or starting with the Legendre realization from section 6.1.3, before proceeding
with the remaining numerical machinery. The final matrices (ĀH , B̄ H ) determine the transfor-
mations to be implemented using Principles 1 and 2 of the NEF, which in turn will nonlinearly
encode x[t ] by our extensions to Principle 3.
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Figure 6.11: Performance from training various linear readouts to compute delays of 25 Hz
band-limited white noise (bootstrapped across 10 trials). Each line corresponds to a single
reservoir of 1,500 neurons, either randomly connected (in the case of ESNs and LSMs), or
specifically engineered (in the case of the NEF).
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Figure 6.12: Cost of simulating each RC network as the reservoir size is increased (bootstrapped
across 10 trials). Conventional RC approaches require O (

n2) space and time, while the NEF
improves this to O (n) for constant dimensionality.
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As shown in Figure 6.11, the NEF’s performance is slightly better than ESNs for both LIF
rate neurons and tanh rate neurons, and significantly better than LSMs for spiking LIF neurons.
This demonstrates that, in terms of memory capacity, the DN as a low-dimensional reservoir
not only outperforms RC in the rate-based case, but even performs comparably to ESNs when
using spikes. The task is shown to be completely outside the grasp of LSMs (exceeding 90%
error), due to the difficulty of the computation and the unreliability of randomized spiking
feedback; Hyperopt minimizes both the gain and regularization hyperparameters of the LSM
to keep its output close to zero, as this minimizes validation error.11 The success of the
DN should not be surprising given that we have mapped the ideal delay’s dynamics onto
the reservoir. Nevertheless, as we will show below, the readouts are capable of computing
nonlinear functions across the delay interval, from the same reservoir. Informally, assigning
some particular dynamics to the reservoir does not disable the network from computing other
similar functions (thereby permitting nonlinear combinations of such functions to be trained
from data).

These networks were also simulated while varying the number of neurons from 100 to
2,500, in order to measure the real-time cost of simulation (see Figure 6.12). We again note
that traditional RC suffers from scaling issues since the recurrent weight matrices have O (

n2)
coefficients. Consequently, the NEF is more resource efficient than these RC methods by a
factor of O (n). RC networks often include a sparsity constraint of 20% connectivity, which is
still O (

n2), in order to improve performance (Lukoševičius, 2012a,b). We also considered ESNs
with constant sparsity that balance resource constraints with NEF networks, but found that
they did not perform comparably (not shown). Furthermore, we found that the ESN breaks
down for numbers of neurons as few as q neurons, while in fact q linear rate neurons (with
linearly independent encoders) will suffice to perfectly implement equation 6.4, as q linear
state-variables are in exact correspondence with the ideal linear system (after the appropriate
discretization of equation 5.9) (see section 6.2.2).

Another key finding is that, as shown in Table 6.1, Hyperopt discovers that a radius of ≈ 24.3
performs the best with the ESN. This has the effect of scaling the domain of the tanh curve
from [−1,1] to ≈ [−0.04,0.04], which importantly is well-approximated by a straight line, that
is, tanh x ≈ x across this domain. Thus, Hyperopt is indirectly leveraging the fact that the ESN’s
memory capacity is maximized when its neurons are linear, consistent with Dambre et al.
(2012). Crucially, this limits the ability of the ESN to perform nonlinear computations across
the delay interval, as we now show.

11As additional validation, lower input frequencies or shorter delay lengths were possible with the LSM.

145



ESN LSM NEF with
Rate LIF

NEF with
Rate Tan

NEF with
Spiking LIF

Gain 1.33 3.15×10−3 - - -
Radius 2.43×101 1.36 4.64 1.29×101 5.77×10−1

τreadout 6.87×10−3 6.04×10−2 6.06×10−2 8.73×10−2 2.18×10−2

τrecurrent 2.14×10−3 6.91×10−2 6.26×10−2 9.37×10−2 7.40×10−2

σ2
readout 2.96×10−6 3.29×10−2 2.06×10−3 4.80×10−3 4.50×10−2

σ2
recurrent - - 2.00×10−4 3.98×10−4 3.76×10−2

q - - 20 26 23

Table 6.1: Hyperopt parameters for the linear benchmark in section 6.2.1.

Nonlinear benchmark

To demonstrate our ability to compute nonlinear window functions, we consider the function
from section 6.1.4, y(t) = u(t − θ)u(t), visualized in the context of a DN’s state-vector in
Figure 6.7. When integrated over time, this is the autocorrelation of u with lag θ, which has
numerous applications in signal processing (e.g., detecting repeating events). We fix θ = 0.1 s
across all experiments. To compute this function accurately, we sample a proportion of the
encoders from the diagonal combinations of Pi ,d (0) and Pi ,d (1) (Gosmann, 2015). However,
the particular choice of function is not of importance, as the training can be data-driven, or
analyzed using theory from sections 6.1.2 and 6.1.4.

Each input u(t ) is sampled white noise, band-limited with a cutoff frequency of 30 Hz. To
optimize for the decoders, we map q-dimensional evaluation points onto desired target outputs
using equation 6.11, and apply Nengo’s regularized least-squares solver, which bypasses the
need to explicitly simulate the network on any input signals.

To implement this system as a spiking (or non-spiking) recurrent neural network, we use the
same set of transformations from equation 6.15. The model architecture of this delay network
is, again, depicted in Figure 6.10, whose representation and transformations are realized using
the NEF. For this experiment, we considered the use of both sigmoidal (non-spiking) neurons,
and spiking LIF neurons.

We again used Hyperopt (Bergstra et al., 2015) to explore the space of model hyperparame-
ters (e.g., q , τ, input gain, recurrent gain, L2-regularization) across 100 iterations containing 10
trials each. Each network consisted of 1,000 neurons, simulated with a time-step of dt= 1 ms.
Each trial used a training signal of length 10,200, a testing signal of length 2,200, and the first
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200 outputs were discarded. We then cross-validated the best set of hyperparameters (in terms
of mean NRMSE across all test signals) using another 25 trials.

We obtain a mean NRMSE of 5.9% for the sigmoid DN, 51.8% for the spiking DN, and
84.3% for the tanh ESN. Reducing the input frequency from 30 Hz to 15 Hz improves the ESN’s
accuracy to be on par with the non-spiking DN, and thus we attribute this difference to the
inherent difficulty of autocorrelating a high-frequency signal (relative to θ) using random
feedback weights, as opposed to using optimally derived weights as in the DN. In addition,
trials took on average 5.10 s for the sigmoid DN, 6.44 s for the spiking DN, and 17.7 s for the
ESN. This difference is a consequence of not simulating the DN for training, and from using
factorized weight matrices (i.e., encoders and decoders) to simulate the DN. These results are
consistent with that of the linear benchmark, except for the additional observation that here
the spiking DN outperforms the rate ESN. This is because, as explained previously, the ESN’s
memory capacity requires linear tuning, which is at odds with the nonlinearities required by
functions such as autocorrelation. LSMs were again unable to perform the task.

6.2.2 Force learning

We also compared our NEF solution to both FORCE (Sussillo and Abbott, 2009) and full-
FORCE (DePasquale et al., 2018) networks (also see sections 2.1.4 and 2.2.4). FORCE networks
take the same essential ingredient of RC networks, namely the inclusion of high-dimensional
random feedback, except they make an important addition to the model: the target output
is learned—online via RLS—to be simultaneously re-encoded back into the network (see
Figure 2.3). Full-FORCE takes this a step further, by using the (pre-filtered) currents from from
the previous FORCE network as a training signal for a separate “full-FORCE” network. In the
first step, the FORCE network does not do any online learning, but instead receives the exact
ideal teaching signal. The second step then allows for additional degrees of freedom to be
optimized, to find the full weights that reconstruct the ideal currents from the first network
– again, online using RLS. This is similar in many ways to Tripp and Eliasmith (2006), but
maintains the same idea as in FORCE, in particular the re-encoding of the target state. The
main difference from FORCE is that instead of learning a low-rank (one-dimensional) decode-
encode of the target, full-FORCE learns a full-rank approximation to an encoding of that same
target.

For this experiment, we first ported the same implementation described in DePasquale
et al. (2018) to Nengo, and verified that it is works as intended (using the same models and
parameters) by teaching the network to produce decaying oscillations in response to unit
impulses. We compared this to the standard FORCE approach—which we refer to as “classic-
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FORCE”—and verified that it performed slightly worse than the full-FORCE network, but
still better than an equivalent reservoir computer. Since Nengo allows for the substitution of
various spiking and non-spiking neuron models, we further validated both implementations
with spiking neurons as well, and obtained reasonable levels of accuracy, similar to DePasquale
et al. (2016); Thalmeier et al. (2016); Nicola and Clopath (2017).

However, we found that simply modifying the target signal to be a delayed version of its
low-frequency input signal, posed a significant challenge to these networks. Thus, the learning
rate was lowered from 1 to 10−3, and the time-step set to dt= 5 ms, which we found to help
regularize the solution. We thus also considered a baseline approach: we took the original
FORCE network, but removed the feedback loop that re-encodes the learned output. This
makes it equivalent to an ESN with a slightly different method of distributing the weights, while
learning the decoders online. We refer to this last method as “no-FORCE”.

We now compare all three of these to an idealized NEF implementation of the DN (equa-
tion 6.4), consisting of just n = 6 linear units, coupled to one another by the discretized
mapping of equation 5.9, as summarized by equation 6.15 (q = 6). In this scenario, the only
error that remains is that of equation 6.14 arising from the use of Padé approximants to render
the delay line finite-dimensional. Each FORCE network consists of n = 500 non-spiking tanh
neurons (and O (

n2) weights). The network is given 10 s of training data per trial. In all cases,
the training and test signals are randomly sampled 1 Hz band-limited white noise signals, with
5 s of test data per trial. We compare all four networks by sweeping θ across 0.01–1 s, with 10
trials at each value of θ (bootstrapped 95% confidence intervals).

The results in Figure 6.13 illustrate that the NEF’s six rate neurons outperform all of the
FORCE networks. The full-FORCE network performs well relative to classic-FORCE and no-
FORCE for short delays (θ < 0.1 ms). For longer delays (θ > 0.1 s), the classic-FORCE network
performs well relative to the other two, but still with error-rates approaching 100% as θ→ 1 s,
or 200 time-steps. This reveals a situation in which training the network to re-encode its target
output can hinder performance. The NEF solution proposes a means of understanding this
phenomenon. In particular, the target output is only one dimension among six orthogonal
dimensions that must all be encoded into the state of the network. Focusing on this one
dimension and letting the randomized feedback attempt to fill in the rest, leads to competing
objectives between the low-dimensional linear feedback required for optimal memory capacity
and the high-dimensional chaos induced by nonlinear random feedback.
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Figure 6.13: Comparison of several FORCE learning methods versus the NEF on a delay task.
Networks are trained to delay a time-varying input by θ seconds. Each FORCE network consists
of 500 tanh neurons, while the NEF network is 6 linear neurons. See text for details.

6.2.3 Long short-term memory

Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber, 1997; Gers et al., 1999) net-
works address the problem of storing information across long intervals of time by using an
explicit memory unit to alleviate the vanishing and exploding gradient problems (Bengio et al.,
1994; Bengio and Frasconi, 1994). Each memory unit implements a small-scale dynamical
system—similar in spirit to equation 6.15—referred to as an “LSTM cell,” with a number of free
parameters that control its nonlinear transfer function. This is replicated n times to create a
single layer. Each layer is then stacked k times to form a “stacked LSTM,” with each consec-
utive layer representing increasingly higher-order dynamical transformations of its previous
inputs (Graves et al., 2013).

Since all of these mechanisms are differentiable, backpropagation through time (BPTT)
may be applied end-to-end from raw data to optimize all of the parameters in a black-box
manner (see section 2.1.1). There are many variants of LSTMs, but they support essentially
the same class of computations (Jozefowicz et al., 2015). Recently, they have found numerous
successes in sequence learning, machine translation, and speech (Graves et al., 2013; Sutskever
et al., 2014; Cho et al., 2014b; Bahdanau et al., 2014), leading to a widespread adoption of LSTM
networks as the RNN of choice (LeCun et al., 2015).
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However, we find that when given a continuous-time delay task, the performance of stacked
LSTMs suffer catastrophically in the number of time-steps that roll through the memory.
This motivates the substitution of each “LSTM cell” with our Delay Network (DN)—explored
extensively throughout this chapter—and its subsequent training via backpropagation in an
equivalent manner. We now discuss these experimental results.

Memory capacity

Our first set of experiments are designed to evaluate the memory capacity of stacked LSTMs
relative to stacked Delay Networks of equivalent resource usage. For this, we use an off-the-
shelf implementation of a stacked LSTM (Keras; Gulli and Pal, 2017), and construct k = 3 layers
with n = 50 cells each. Each layer is fully-connected to the next, and uses all of the default
settings (e.g., tanh activations). The final layer likewise consists of a tanh activation unit for
each output.

To evaluate the continuous-time memory capacity, the input data is white noise, band-
limited to 30 Hz, starting at 0, and normalized to an absolute range of [−1,1]. The output data
is a 50-dimensional vector representing a uniform arrangement of delayed inputs between
0–0.2 s.12 The data set consists of 256 samples, each 1 s long. This data is randomly partitioned
into 50% training and 50% testing. The training data is further partitioned into a separate
random 25% sample used to report validation accuracy during training. Backpropagation
through time is carried out using the Adam optimizer (Kingma and Ba, 2014) with respect to
the MSE loss function. Training is parallelized using Keras and TensorFlow (Abadi et al., 2016)
across four Nvidia Titan Xp GPUs (12 GB each).13

We found that, for a time-step of dt= 2 ms, backpropagation could find adequate param-
eters to solve this task – that is, the LSTM could in fact accurately represent the entire delay
interval consisting of θ̄ = 100 time-steps with an NRMSE of about 10% (not shown). However,
after decreasing the time-step, by an order of magnitude, to dt= 200µs—while increasing the
length of data by the same factor so that the data still represents the exact same 1 s signals—the
performance collapses; accuracy exponentially decays as a function of delay length across the
θ̄ = 1,000 time-step window (see Figure 6.14 (b)).

We then took the exact same code and network specification – but replaced each LSTM
cell with a “Delay Network (DN) cell”, defined as follows. We consider the q-dimensional LTI

12Therefore, the highest frequency component oscillates at most six times, within any given delay interval.
13This took approximately 14 hours in our largest experiment, in stark contrast to the sub-second time that it

takes to train a spiking delay network using Nengo.
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system described by equation 6.5, with a balanced state-space (section 4.1), and discretized
using Euler’s method:

x[t +1] = θ̄−1 (Ax[t ]+Bu[t ])]+x[t ].

This discretization assumes θ̄ is sufficiently large, such that dt≈ θ̄−1. This “trick” enables us to
include θ̄ as a free parameter, unique to each cell, and backpropagate along it – thus learning
the delay length of each cell. The unit of this discretized θ̄ is the number of time-steps. This is
repeated across all cells within the same layer, while sharing the (A,B) matrices across each
cell within the same layer (akin to weight-sharing in a convolutional neural network). Finally
a tanh nonlinearity is added to each unit, that receives input from all state-variables across
the same layer, thus supporting nonlinear computations across a mixture of scaled Legendre
bases (see sections 6.1.3 and 6.1.4). For small values of q , the DN cell is roughly comparable to
the resource requirements of the original stacked LSTM model, using q state-variables, O (

q2)
multiply-adds, and 1 nonlinearity with qn weights, per cell.

Each DN cell receives a one-dimensional input. The trainable parameters are the weights
between layers, and the delay lengths θ̄ within each cell. In this experiment, we disable training
on the shared (A,B) weights. The overall architecture remains fixed with n cells stacked k
times. The final output layer consists of linear activation units, since tanh has already been
applied at this point. Finally, we fix q = 9, initialize the encoding weights of each cell to 1 for
the first layer and n−1 for all subsequent layers (i.e., the reciprocal of the fan-in), distribute
θ̄ values according to U [100,1000], and set the weights projecting to each tanh using the C
matrix from equation 6.5 with zero weights for all other state-variables from outside the cell. In
other words, each cell is initialized to approximate tanhu[t − θ̄], where u[·] is the cell’s mean
input. Backpropagation then refines the values of θ̄ and learns to mix weighted nonlinear
combinations of inputs and outputs between layers.

Running the exact same code and analysis, on the exact same training, validation, and
testing data, reveals a dramatic difference in training time between the two approaches. We
found that the stacked DN takes 52.5 s per epoch to train, compared to 102.6 s per epoch
for the stacked LSTM. Furthermore, the DN outperforms the LSTM in every measure of ac-
curacy. Figure 6.14 (a) demonstrates nearly three orders of magnitude reduction in MSE
across both training and validation, while converging much more rapidly to the ideal solution.
Figure 6.14 (b) displays the NRMSE on the test data as a function of delay length (unit of
time-steps). We see that the DN architecture achieves nearly uniform accuracy across the
delay interval, while the equivalently-sized LSTM cell architecture approaches 100% error rates
towards the end of the window. This illustrates that the stacked LSTM struggles to memorize
low-frequency signals (relative to the time-step) across long intervals of time. In contrast, this
task is natural for the stacked DN, as its state represents a q-degree polynomial expansion of
input history (see Figure 6.3). We now proceed to demonstrate that backpropagation enables
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Figure 6.14: Performance of a stacked LSTM versus a stacked Delay Network (DN) on a delay
task. (a) Training and validation rapidly converge for the DN but not for the LSTM. (b) Testing
NRMSE is nearly uniform across the delay interval for the DN, but grows exponentially for
LSTMs (linear on a log-scale) up to a maximum of 100% error. See text for details.

stacked DNs to outperform stacked LSTMs even on tasks that are not readily supported by the
initial configuration of the network.

Predicting chaotic time-series

To asses the performance of each network on a continuous-time prediction task, we consider a
synthetic dataset called Mackey-Glass (MG; Mackey and Glass, 1977): a chaotic time-series
described by a nonlinear delay-differential equation.14 The MG data is generated using a
discrete time-delay of τ̄= 17 (each time-step is 1 unit of time). The desired output is a look-
ahead (prediction) of 15 time-steps in advance (see Figure 6.15). We simulate this for 5,000
time-steps after removing the first 100 step transient. We repeat this 128 times, each time
starting from initial random conditions. The entire dataset is then centered to have a global
mean of zero. Next, the dataset is randomly split into 32 training examples, 32 validation
examples, and 64 testing examples.

We use the same networks from the previous experiment, but with k = 4 layers of n = 100
cells each. For the DN cells, we make all parameters trainable (including the A, B matrices
shared across cells within the same layer). We set q = 6 and initialize θ̄ ∈U [25,50] to account

14Our code was adapted from the 2015 Deep Learning Summer School: https://github.com/mila-iqia/
summerschool2015/blob/master/rnn_tutorial/synthetic.py.
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Figure 6.15: Example test case from the Mackey-Glass (MG) dataset (τ̄= 17). x is the input. y is
the correct prediction 15 time-steps into the future. We plot x versus the difference between the
required prediction and the input, y−x, which also shows a two-dimensional delay-embedding
of the attractor. The signal consists of 5,000 time-steps (0 is lightest, 4,999 is darkest), with a
line connecting adjacent time-points.

for the shorter time-scale of this dataset. We initialize the remaining weights using standard
Keras weight initializers.

To successfully solve this problem, the RNN must implicitly do two things. First, it must
model the dynamics of the state-trajectory to infer the underlying state from a one-dimensional
observation. A theorem due to Takens (1981) states that this is made possible by delaying the
input some constant number of times (dependent on τ̄) and then finding the correct static
nonlinear transformation of this “delay embedding.” Second, it must predict the future state of
this trajectory using its estimate of the current state. The last step is generally infeasible due
to the chaotic nature of the MG system; any finite error in the state estimate is exponentially
magnified over time (the “butterfly effect”; also see section 3.1.4). This makes a look-ahead
of 15 steps particularly challenging for a relatively small network, as its reconstruction of the
chaotic manifold must become exponentially more precise to see linear payoffs in accuracy.
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Method NRMSE Parameters
Training time
(s / epoch)

LSTM 7.084% 282,101 50.0
DN 6.783% 270,769 30.5
Hybrid 6.097% 291,285 40.5

Table 6.2: Test accuracy and training time for various RNNs on the Mackey-Glass (MG) dataset.

This insight motivates the inclusion of a third “hybrid” method that interleaves the two
previous methods. Specifically as in ‘2121’, where ‘2’ is the DN cell and ‘1’ is the LSTM cell.
All three methods are trained across 500 epochs using the Adam optimizer. In this case, to
minimize overfitting, we keep only the model from the epoch that has the highest validation
score.

Test performance and training times are summarized in Table 6.2. We see that the DN
outperforms the LSTM in accuracy and training time. We suspect that this is because the
DN more readily supports a delay-embedding within its 6-dimensional state. However, the
hybrid method outperforms both in accuracy and the LSTM in training time. Thus, the LSTM
cell affords some dynamical primitive that may be leveraged by networks of DN cells (and
vice-versa). This suggests that LSTMs and DNs may have complementary functions as building
blocks within deep RNNs. And, as shown in our first experiment, the DN provides improved
scaling through time with respect to lower frequencies across longer continuous time-intervals.

6.2.4 Detecting patterns

We now demonstrate an application of our theory of temporal representation in the delay
network (section 6.1.2). Specifically, we show that the delay network can detect the existence
of repeating patterns in its stimulus. Given an arbitrary scalar signal, u(t ), we define a measure
of k-periodicity for natural k ∈ N≥1, with respect to some finite interval length θ > 0, and
sub-interval length γ= θk−1, as follows:

pk (t ) =
√√√√ 1

γ

∫ γ

τ=0

(
1

k

k−1∑
i=0

u
(
t −θ+ iγ+τ))2

dτ. (6.16)

This can be computed directly by: (1) partitioning the last θ seconds into k equally sized
segments of length γ, (2) averaging them all together to obtain a superimposed signal of
length γ, and (3) taking its root mean square (RMS). When pk (t ) is large relative to the overall

154



RMS, this means that the k segments constructively interfere and thus all segments contain
approximately the same pattern. When pk (t) is maximal (i.e., equal to the RMS of the input
signal), we refer to the signal as being periodic, since each of the k segments must be exact
copies of one another. Lower values of pk (t ) imply some amount of deconstructive interference
within the superposition, and thus we refer to such signals as being aperiodic.

We now present a method that can efficiently compute pk (t) with a SNN, by leveraging
the computational properties of the DN. This has applications as a general low-power signal
processing tool, and for modelling how nontrivially-repeating patterns could be detected by
neural mechanisms in a robust and flexible manner.

Our goal is to recast equation 6.16 to be in terms of the DN’s state-vector, x(t) ∈ Rq . We
claim that we may compute pk (t) by taking the L2-norm of the state-vector after a linear
transformation:

pk (t ) ∝∼‖Pk x(t )‖ (6.17)

Pk = Zk

k

k−1∑
i=0

e Aiγ, (6.18)

where A is the recurrent state-space matrix from the balanced realization of equation 6.4,15

and Zk ∈Rq×q is a “zooming matrix” computed by:

Zk = B(0,1)+B(1−1/k,1), (6.19)

where (·)+ denotes the Moore-Penrose pseudo-inverse, B(·, ·) ∈Rm×q is a matrix corresponding
to a slice of the realized basis functions (equation 6.12), sampled along m points, as in:

B(a,b) =

Pq−1,q (a) · · · P0,q (a)
...

...
...

Pq−1,q (b) · · · P0,q (b)

T . (6.20)

and T is the similarity transform for the balanced realization. A visualization of Zk is provided
in Figure 6.16, using a diagonal transformation to reveal its checkerboard structure. Specifically,
setting k = 5, q = 20, and with T taken by a diagonal realization that normalizes the system’s
Hankel singular values, and the Moore-Penrose pseudo-inverse taken while truncating the
singular values below a cutoff ratio of 10%.

15The proportionality ∝ in equation 6.17 refers to a constant scaling in the balanced realization, while the
approximation ∼ comes from the use of Padé approximants to render the system finite-dimensional, and from
assuming the DN mapping is unitary. See text for details.
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Figure 6.16: Visualizing the “zooming matrix”, Z5 ∈ R20×20 (see equation 6.19). This matrix
linearly transforms the state-space of the Delay Network (DN) to “zoom in” on the oldest
segment of input history partitioned into k = 5 segments.

We sketch a constructive proof of this claim. Since the buffered window of input history is a
linear transformation of the DN’s state-vector, we start by constructing a linear transformation
of x(t) that contains the average of all segments. The matrix e Aiγ provides a linear transfor-
mation that emulates the effect of holding the input signal at zero for iγ more seconds – a
mathematical fast-forwarding of the system assuming no input. This can be seen by solving
the differential equation ẋ = Ax with the initial condition x0 = x(t ). Thus, e Aiγx(t ) provides the
state-vector that corresponds to some input signal where the i th segment (ordered by seniority)
has been shifted back in time to become the oldest segment. Note that e0 = I , and so the oldest

segment (i = 0) is not shifted. More generally, k−1
(
I +e Aγ+ . . .+e A(k−1)γ

)
linearly transforms

the state-vector to correspond to an input signal where the oldest segment is the average of all
segments.

Next, we must “zoom in” on the oldest segment. This zooming operation can be accom-
plished by yet another linear transformation. In particular, Zk is a linear transformation that
takes us from a state-vector representing the entire interval of length θ to a state-vector repre-
senting the oldest sub-interval of length γ. This is derived by observing that B(1−1/k,1) maps
x(t ) onto the window of input history across the sub-interval [t −θ, t −θ+γ]—sampled along
m points—by construction. Then B(0,1)+ reinterprets this sampled signal as a state-vector in
the context of the full interval [t −θ, t ]. To determine these matrices numerically, m should be
sufficiently large so as to approximate the limit as m →∞ within some tolerance.16

This same technique works without loss of generality to zoom in on any slice of the window,

16We found m = 1,000 to be sufficient for our experiments.

156



and reinterpret that segment of input as a new state-vector. This is a specific instantiation of the
more general observation that the relationship between the state-vector and the input history
is linear, and so any linear operation across the window (e.g., slicing, shifting, convolution,
integral transforms, etc.) must also be linear with respect to the state-vector. Moreover, by
the scale-invariance of the delay network (see section 6.1.5), all of the matrices (e.g., Zk , B(·, ·),
Pk ) are independent of θ. That is, these matrices only need to be precomputed once for some
choice of k and q , and applied to any θ.

The last fact that we need is that the balanced realization is approximately unitary, in the
sense that ‖x(t)‖ is proportional to the RMS of its corresponding window of history. This
conveniently implies that it suffices to take the L2-norm of the resulting state-vector, as in
equation 6.17, in order to obtain a proportional estimate of the RMS, pk (t ), from equation 6.16.
This completes our proof sketch. To summarize, since the superimposed-averaging computa-
tion is a linear transformation of the input window, it can be recast as a linear transformation
of the state to provide a new state-vector corresponding to the averaged segment. And since
the L2-norm of a balanced state reflects the RMS of its corresponding input signal, the former
behaves as a proxy for the latter.
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Figure 6.17: The Delay Network (DN) detecting repeating patterns over time, tested against
1,000 randomly generated input signals. The x-axis is the computed by the DN. The y-axis is
the true measure of the input signal’s k-periodicity—how closely it resembles some segment
repeated k times—pk (t ) (see equation 6.16), for two classes of input signals (500 periodic, and
500 aperiodic), for k ∈ {2,3,4,5}. The DN perfectly separates the two classes in all cases.

We validate the above derivation by fixing θ = 0.24 s, q = 20, and then sampling white noise
signals band-limited at 22 Hz (such that the error in the Padé approximants, equation 6.14, is
bounded above by 5%) with RMS=1 from the two possible classes: periodic and aperiodic. The
periodic signals are generated by repeating a segment of length γ, k times, while the aperiodic
signals are random across the interval of length θ. In each case, the system of equations 6.4 are
balanced and simulated using zero-order hold (ZOH) with a time-step of dt= 1 ms, to obtain
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the value of x(t ) at t = θ. The simulated value of ‖Pk (t )‖ (equation 6.18) is then compared to
the ideal value of pk (t ) (equation 6.16). The results in Figure 6.17 empirically validate the claim
of equation 6.17 for k ∈ {2,3,4,5}, by demonstrating that ‖Pk x(t )‖ proportionally-approximates
the true k-periodicity.

Crucially, nothing has changed about the DN in order to support this form of temporal
pattern recognition. The computation is merely a fixed linear transformation of the state, which
is already being computed by the DN, followed by a nonlinear L2-norm operation. Thus, in
order to detect temporal patterns, computations such as measures of k-periodicity are realized
as fixed linear transformations between the DN and additional pools of neural nonlinearities
via Principles 1 and 2 of the NEF.

6.2.5 Deep delay networks

We now consider an architecture that stacks multiple DNs on top of one another, to form a
Deep Delay Network (DDN) chaining multiple delays together. This is the same as considering
a single “column” from the architecture explored in section 6.2.3, although here we analyze it
theoretically. For simplicity, we consider the case where each delay has the same length, γ, and
each layer has the same dimensionality, q . Thus, k layers result in an overall delay of length
θ = kγ, and represent kq dimensions in total.

The state-vector of the i th layer, is denoted xi (t), where i = 0 corresponds to the deepest
layer (i.e., the last delay), and i = k − 1 corresponds to the shallowest layer (i.e., the first
delay). We note that such an architecture realizes an alternative solution to computing the
k-periodicity in section 6.2.4; in particular, since xi (t ) corresponds to the i th segment of input
history, we have:

Pk x(t ) = 1

k

k−1∑
i=0

xi (t ),

where Pk is the matrix defined by equation 6.18, and x(t ) is the state-vector for an overall delay
of length θ.

We now determine the error in the overall delay by extending our analysis from section 6.1.5.
Since each layer implements the transfer function [q −1/q]e−γs (equation 6.3), by the convolu-
tion theorem, the overall filter is the product of each transfer function. Therefore, the error is
characterized by the filter:

Eq,k (θs) = (
[q −1/q]e−γs)k −e−θs . (6.21)

When k = 1, this reduces to equation 6.14.
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Figure 6.18: Visualizing the error in the Deep Delay Network (DDN) of width q and depth k
(see equation 6.21) for two different resource-cost functions. (Left) Fixing the number of
dimensions, kq , to be constant. Smaller k scales further in this case. (Right) Fixing the density
of connections, kq2, to be constant. Smaller q is more accurate in this case.

To gain insights into potential trade-offs between k and q , we require additional constraints
to keep the comparison meaningful. If our main constraint is the number of neurons, then
resource usage scales as O (

kq
)

given a constant level of accuracy per dimension. However,
if our main constraint is the number of multiply-adds and memory usage (i.e., connection
density), then these scale as O (

kq2) assuming the use of factorized connection-weight matri-
ces (as in the standard NEF formulation, and as realized on both SpiNNaker and Braindrop,
but not Loihi) and assuming the use of balanced state-space realizations. O (

kq2) is also the
number of internal cell parameters that need to be learned in the architecture of section 6.2.3,
since these are shared across all columns. In both cases, we evaluate Eq,k (θs) while varying
(q,k) in such a way that keeps the resource-cost fixed (see Figure 6.18).

Depending on which resource-cost function is considered, we obtain very different trade-
offs for the amount of error at some desired operating point θs (see Figure 6.8). In the former
case of minimizing neural resources, we should set k = 1 and minimize q such that θs falls
within the radius of convergence. This should come as no surprise, as the DN has been derived
to optimally approximate the delay line, and so there is no benefit to adding additional layers if
we are free to scale q . However, for the latter case of minimizing connectivity or the number of
trainable parameters, then we should primarily minimize q and maximize k. In other words,
deeper delay structures provide a considerable payoff when the cost is O (

kq2).

Furthermore, note that in Figure 6.18, the error oscillates with dampened amplitude beyond
the radius of convergence for larger k. This can be seen from equation 6.21 by noticing that
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[q −1/q]e−γs is a complex number with magnitude less than 1, that is then exponentiated
to the power of k. By the same triangle-inequality argument in section 6.1.5, this effectively
regularizes the error k times towards 1 outside the radius of convergence.

The final consideration that should be made in picking (q,k) is in determining the ideal
nonlinear support for any function(s) to be computed across the window of history. Since
each dimension is encoded by a heterogeneous pool of neural nonlinearities, this supports
the decoding of nonlinear functions with respect to the coefficient on the corresponding basis
function (equation 6.12) via Principles 1 and 2. Deeper networks effectively partition the basis
functions into individual segments of input history, which enhances the complexity of the
nonlinearities with respect to each segment, while limiting nonlinear interactions between
segments. All of this should be systematically taken into account when choosing the state-
space realization, the delay lengths of each layer, the dimensionality of each layer, and the
number of layers.

6.2.6 Acausal deconvolution

In general, if one takes a communication channel, f (u) = u, constructed using normal NEF

methods, and stacks it k times, then the i th layer will represent L−1
{

H(s)kU (s)
}

(t), that is,

the input u(t ) convolved k times with h(t ). This is demonstrated in Figure 6.19 (Top), which
encodes a 10 Hz band-limited white noise signal through 8 layers of 2,500 spiking LIF neurons
(τ= 100 ms). As we see, deeper layers become progressively more lowpass-filtered in time. This
has the often17 undesirable effect of losing information within the frequency content of the
input. This phenomenon contributes to the misconception that the NEF does not support
high-speed transmission of information through networks, as discussed in section 3.1.5.

To solve this problem, we are free to scale τ arbitrarily small, so long as n is scaled as O (
τ−2)

(see Theorem 3.2.1) to maintain the same level of feed-forward precision. Alternatively, if τ
is fixed, then one can use Principle 3 to implement a lowpass filter (θs +1)−1 with arbitrarily
small θ, which likewise requires O (

θ−2) neurons (see Table 3.1). Our solution can be viewed as
a generalization of the latter.

A natural solution falls out of the DN, given by equation 6.11: the current value of u(t) is
represented by the population that encodes x(t ). It is not obvious that this should be the case, as
u(t ) has been filtered by the synapse model (e.g., a lowpass filter) to produce a filtered version
(e.g., phase-shifted) of its input. Nevertheless, the state-vector is reconstructing an unfiltered

17Goldman (2009) has shown that repeated lowpass filtering can be usefully exploited to implement an integra-
tor, by summing across all of the filters.
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version of the window of input history, which includes the current moment in time. Such a
reconstruction is also known as a deconvolution operation (i.e., the inverse convolution), and
is an acausal operation in general. That is, to perform deconvolution in general for arbitrary
inputs, one requires future knowledge of the input. The same applies to constructing Taylor
series approximants at the current moment in time.

The low-frequency approximation of the DN essentially models the statistics of the input,
and provides a robust estimate of the current u(t ) from the spiking activity of the population. As
can be seen in Figure 6.3 at θ′ = 0, the transformation to do so (ignoring alternative state-space
realizations) is simply a summation across the state:

u(t ) ≈
q−1∑
i=0

xi (t ). (6.22)

We use this fact in Figure 6.19 (Bottom) to instantaneously propagate the input through 8
layers, using the same neurons and synapses as in (Top). The difference between these two
simulations is that the recurrence, local to each layer, effectively undoes the filtering by using
its internal model of the input’s history. This demonstrates the utility in including recurrence
at each layer, not only to support dynamical computations, but to maintain the frequency
content of the input signal while facilitating high-speed computation through deep neural
structures.

6.2.7 Higher-order synapses

This section has been adapted from Voelker and Eliasmith (2018), and applies the extensions
from section 5.1 to the case of the delay network from section 6.1.

We begin by making the practical point that it is crucial to account for the effect of the
simulation time-step in digital simulations, if the time-step is not sufficiently small relative
to the time scale of the desired network-level dynamics. To demonstrate this, we simulate a
27-dimensional delay network using 1,000 spiking LIF neurons, implementing a 0.1 s delay of
50 Hz band-limited white noise. We vary the simulation time-step (dt) from 0.1 ms to 2 ms.
The accuracy of our extension does not depend on dt (see Figure 6.20 (Left)). When dt= 1 ms
(the default in Nengo), the standard Principle 3 mapping (equation 5.8) obtains a NRMSE of
1.425 (43% worse than random chance), versus 0.387 for the discrete lowpass mapping which
accounts for dt (equation 5.9)—a 73% reduction in error. As dt approaches 0 the two methods
become equivalent.

More to the point, we can analyze the delay network’s frequency response when using a
continuous lowpass synapse and an axonal delay of λ (equation 5.10) instead of the canonical
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Figure 6.19: Demonstrating the ability of the Delay Network (DN) to approximate a synaptic
deconvolution operation, realizing a pure communication channel. The test input u(t) is
a white noise signal band-limited at 10 Hz. (Top) A standard feed-forward communication
channel, implemented by decoding the identity function at each layer. (Bottom) A recurrent
communication channel, implemented by a Deep Delay Network (DDN; section 6.2.5) approx-
imating u(t) at each layer. Each layer is a DN with θ = 50 ms and q = 6. In either case, there
are 8 layers of 2,500 spiking LIF neurons, with each layer communicating spikes to the next
through a lowpass synapse with time-constant τ= 100 ms.

lowpass (equation 4.11) as the dynamical primitive. This provides a direct measure of the
possible improvement gains when using the extension. Figure 6.20 (Right) compares the use
of Principle 3 (which accounts for τ but ignores λ), to our extension (which fully accounts for
both; see equation 5.12) when λ = τ. The figure reveals that increasing the dimensionality
improves the accuracy of our extension, while magnifying the error from Principle 3. In the
worst case, the Principle 3 mapping has an absolute error of nearly 1015. In practice, saturation
from the neuron model bounds this error by the maximum firing rates. Regardless, it is clearly
crucial to account for axonal transmission delays to accurately characterize the network-level
dynamics.

In neuromorphic hardware such as Loihi, delays are configurable on a per-axon or per-
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Figure 6.20: Comparing standard Principle 3 to our NEF extensions. (Left) Error from mapping
a 27-dimensional 0.1 s delay onto 1,000 spiking LIF neurons, while varying the simulation
time-step (dt). The input to the network is white noise with a cutoff frequency of 50 Hz. Unlike
our extension, the standard form of Principle 3 does not account for dt. A dashed vertical
line indicates the default time-step in Nengo. Error bars indicate a 95% confidence interval
bootstrapped across 25 trials. (Right) Mapping the delay system onto a delayed continuous
lowpass synapse (with parameters τθ−1 = 0.1 and λτ−1 = 1). The order of the delay system
(q) is varied from 6 (lightest) to 27 (darkest). Each line evaluates the error in the frequency

response,
∣∣∣e−θs −F H (H(s)−1)

∣∣∣, where F H is determined by mapping the delay of order q onto

equation 5.10 using one of the two following methods. The method of our extension—which
accounts for the axonal transmission delay—has monotonically increasing error that stabilizes
at 1 (i.e., the high frequencies are filtered). The standard Principle 3—which accounts for τ but
ignores λ—alternates between phases of instability and stability as the frequency is increased.
Reproduced from (Voelker and Eliasmith, 2018, Figure 8).
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Figure 6.21: The pure delay mapped onto spiking networks with various synapse models
(with parameters q = 6, τθ−1 = 0.1, λτ−1 = 1, τ1 = τ, and τ1τ

−1
2 = 5). (Left) Error of each

mapping in the frequency domain. This subfigure is scale-invariant with θ. (Right) Example
simulation when θ = 0.1s and the input signal is white noise with a cutoff frequency of 15 Hz,
corresponding to the triangle (over 1.5) from the left subfigure. We use a time-step of 0.01 ms
(10µs) and 2,000 spiking LIF neurons. Reproduced from (Voelker and Eliasmith, 2018, Figure 9).

synapse basis (Davies et al., 2018). We would not only like to account for the existence of such
delays, but leverage them as dynamical primitives for higher-order computation. Thus, to
more broadly validate our NEF extensions, we map the delay system onto: (1) a continuous
lowpass synapse; (2) a delayed continuous lowpass synapse; and (3) a continuous double-
exponential synapse (see section 5.1.1). We apply each extension to construct delay networks
of 2,000 spiking LIF neurons. To compare the accuracy of each mapping, we make the time-
step sufficiently small (dt = 10µs) to emulate a continuous-time setting. We use the Padé
approximants of order [5/6] for both equations 5.12 and 6.3. For the delayed lowpass, we again
fix τθ−1 = 0.1 and λτ−1 = 1. For the double-exponential, we fix τ1 = τ and τ1τ

−1
2 = 5. Expressing

these parameters as dimensionless constants keeps our results scale-invariant with θ.

Figure 6.21 reveals that axonal delays may be effectively “amplified” 10-fold while reducing
the NRMSE by 71% compared to the lowpass (see Figure 6.21 (Right); NRMSE for lowpass=0.702,
delayed lowpass=0.205, and double-exponential=0.541). The double-exponential synapse
outperforms the lowpass, despite the additional poles introduced by the ZOH assumption
in equation 5.22 that we analyze in section 5.1.2 . This is because the double-exponential
filters the spike-noise twice. Likewise, by exploiting an axonal delay, the same level of per-
formance (e.g., 5% error) may be achieved at approximately 1.5 times higher frequencies, or
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equivalently for 1.5 times longer network delays, when compared to the lowpass synapse
(see Figure 6.21 (Left)). In summary, accounting for higher-order synaptic properties allows us
to harness the axonal transmission delay to more accurately approximate network-level delays
in spiking dynamical networks.

Together, these results demonstrate that our extensions can significantly improve the
accuracy of high-level network dynamics. Having demonstrated this for delays, in particular,
suggests that the extension is useful for a wide variety of biologically relevant networks, such
as those discussed in the following section.

6.2.8 Time cell data

This section has been reproduced from Voelker and Eliasmith (2018).

We now describe a connection between the delay network from this chapter and recent
neural evidence regarding time cells. Time cells were initially discovered in the hippocampus
and proposed as temporal analogs of the more familiar place cells (Eichenbaum, 2014). Similar
patterns of neural activity have since been found throughout striatum (Mello et al., 2015) and
cortex (Luczak et al., 2015), and have been extensively studied in the rodent mPFC (Kim et al.,
2013; Tiganj et al., 2016).

Interestingly, we find that our delay network produces qualitatively similar neural responses
to those observed in time cells. This is shown in Figure 6.22, by comparing neural recordings
from mPFC (Tiganj et al., 2016, Figure 4 C,D) to the spiking activity from a network implement-
ing a delay of the same length used in the original experiments. Specifically, in this network, a
random population of 300 spiking LIF neurons maps a 4.784 s18 delay onto an alpha synapse
(τ= 0.1 s) using our extension. The order of the approximation is q = 6 (see equation 6.4), and
the input signal is a rectangular pulse beginning at t =−1 s and ending at t = 0 s (height = 1.5).
The simulation is started at t =−1 s and stopped at t = 5 s.

We also note a qualitative fit between the length-curve for q = 6 in Figure 6.4 and the
peak response-times in Figure 6.22. Specifically, Figure 6.4 (Bottom) models the non-uniform
distribution of the peak response-time of the cells as the length of the trajectory of x(t ) through
time. Implicit to this model are the simplifying assumptions that encoders are uniformly
distributed, and that the L2-norm of the state-vector remains constant throughout the delay
period. Nevertheless, this model produces a qualitatively similar curve when q = 6 to both
peak response-times from Figure 6.22 (Right) (see overlay).

18This value comes from Tiganj et al. (2016).
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Figure 6.22: Comparison of time cells to a Delay Network. (Top) Spiking activity from the
rodent mPFC (reproduced from Tiganj et al., 2016, Figures 4C and 4D, by permission of Oxford
University Press). Neural recordings were taken during a maze task involving a delay period of
4.784 s. (Bottom) Delay network implemented using the NEF (see text for details). 73 time cells
are selected by uniformly sampling encoders from the surface of the hypersphere. (A) Cosine
similarity between the activity vectors for every pair of time-points. The diagonal is normalized
to the warmest colour. The similarity spreads out over time. (B) Neural activity sorted by the
time to peak activation. Each row is normalized between 0 (cold) and 1 (warm). We overlay the
curve from Figure 6.4 (Bottom) (q = 6) to model the peak-response times. Reproduced from
Voelker and Eliasmith (2018, Figure 10).
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More quantitatively, we performed the same analysis on our simulated neural activity as
Tiganj et al. (2016) performed on the biological data to capture the relationship between the
peak and width of each time cell. Specifically, we fit the spiking activity of each neuron with
a Gaussian to model the peak time (µt ) and the standard deviation (σt ) of each cell’s “time
field”.19 This fit was repeated for each of the 250 simulated spiking LIF neurons that remained
after selecting only those that had at least 90% of their spikes occur within the delay interval.
The correlation betweenµt andσt had a Pearson’s coefficient of R = 0.68 (ρ < 10−34), compared
to R = 0.52 (ρ < 10−5) for the biological time cells. An ordinary linear regression model linking
µt (independent variable) with σt (dependent variable) resulted in an intercept of 0.27±0.06
(standard error) and a slope of 0.40±0.03 for our simulated data, compared to 0.27±0.07
and 0.18±0.04 respectively for the time cell data. We note that we used the same bin size
of 1 ms, modeled the same delay length, and did not perform any parameter fitting beyond
the informal choices of 90% cutoff, dimensionality (q = 6), area of the input signal (1.5), and
synaptic time-constant (τ= 0.1 s).

Neural mechanisms previously proposed to account for time cell responses have either
been speculative (Tiganj et al., 2016), or rely on the precision of gradually changing firing
rates from a bank of arbitrarily long, ideally spaced, lowpass filters (Shankar and Howard,
2012; Howard et al., 2014; Tiganj et al., 2015, 2017, 2018).20 It is unclear if such methods can
be implemented accurately and scalably using heterogeneous spiking neurons. We suspect
that robust implementation is unlikely given the high precision typically relied upon in these
abstract models.

In contrast, our proposed spiking model has its network-level dynamics derived from first
principles to optimally retain information throughout the delay interval, without relying on a
particular synapse model or bank of filters. All of the neurons recurrently work together in a
low-dimensional vector space to make efficient use of neural resources. By using the methods
of the NEF, this solution is inherently robust to spiking noise and other sources of uncertainty.
Furthermore, our explanation accounts for the nonlinear distribution of peak firing times as
well as its linear correlation with the spread of time fields.

The observation of time cells across many cortical and subcortical areas suggests that the
same neural mechanisms may be used in many circuits throughout the brain. As a result,
the neural activity implicated in a variety of delay tasks may be the result of many networks
optimizing a similar problem to that of delaying low-frequency signals recurrently along a
low-dimensional manifold. Such networks would thus be participating in the temporal coding
of a stimulus, by representing its history across a delay interval.

19We set a1 = P = S = 0 in equation 1 from Tiganj et al. (2016), since we have no external variables to control.
20One may view this as a generalization of the main idea from Goldman (2009).
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Chapter 7

Applications to Neuromorphic Hardware

Nengo and the NEF provide a useful toolkit for programming recurrently coupled networks of
spiking neurons to carry out the computations of algorithms formulated as dynamical systems.
The CPU backend is immensely useful for rapidly prototyping ideas, testing hypotheses, and
experimenting with small-scale models on the order of a few thousand neurons. However, for
much larger models such as Spaun (Eliasmith et al., 2012), its 2.5 million neurons require about
2.5 hours of compute time per 1 second of simulation time, that is ≈ 9,000 times slower than
real-time (Stewart and Eliasmith, 2014; Mundy, 2016). As a result, one must turn to specialized
hardware such as GPUs, FPGAs, or neuromorphic architectures, in order to carry out much
larger simulations of spiking neural networks (section 2.3).

For example, in our work in collaboration with Knight et al. (2016), we demonstrate that a
heteroassociative memory network deployed on SpiNNaker takes a constant amount of time
per association, while the exact same network takes a linear amount of time per association on
a CPU.1 At its largest instantiation of 100,000 neurons, the SpiNNaker simulation is more than
150 times faster than a CPU, due to the massive parallelism afforded by the architecture. This
demonstration is encouraging to see, as it illustrates the potential for these methods to scale up
and take full advantage of the distributed nature of spiking computation, while leveraging the
power of dynamical systems to learn synaptic weights with both unsupervised (section 4.2.2)
and supervised (section 4.2.3) learning rules.

However, there are very few examples of functional large-scale models running on neuro-
morphic hardware. We believe that this surprising lack of scale—in a field that was essentially
created to solve a problem in scaling—is primarily due to a lack of co-designed NEF-like

1The number of neurons were scaled linearly in the number of associations.
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frameworks for translating computations, specified in some high-level language (e.g., cou-
pled differential equations), onto distributed networks of physically coupled devices. These
frameworks must be correct, scalable, complete, robust, extensible, and finally realized on
the physical hardware itself, in order to be ultimately useful (section 3.2). In the case of the
NEF, this criteria has been validated by many of the extensions and analyses throughout this
thesis, as well as by past work compiling networks onto Neurogrid (Dethier et al., 2011), SpiN-
Naker (Mundy et al., 2015; Mundy, 2016; Knight et al., 2016), TrueNorth (Fischl et al., 2018), and
many other architectures (Naylor et al., 2013; Bekolay et al., 2014; Corradi et al., 2014; Wang
et al., 2014; Berzish et al., 2016; Wang et al., 2017; Rasmussen, 2018; Blouw et al., 2018).

However, at time of writing, the Nengo backends for Braindrop (Neckar et al., 2019) and
Loihi (GitHub, 2019b) are brand new—as are the chips themselves (Neckar, 2018; Davies et al.,
2018)—and thus currently fall short of their promise to realize large-scale functional SNNs in
neuromorphic hardware. For the case of Braindrop, its shortcoming is mainly by design: the
chip is 0.65 mm2 and implements 4,096 neurons. It is a proof-of-concept prototype for research,
that can in principle be tiled to scale to much larger models in the future and tailored towards
the requirements of some application space. For the case of Loihi, due to a combination of a
lack of hardware support for factorized weight matrices, and limitations on connectivity and
memory, the maximum recurrently connected pool size is 342 neurons.2 And with current
software workarounds, the feed-forward precision stops scaling in Nengo-Loihi after about 400
neurons. Nevertheless, this is the first and only software abstraction to currently make use of
Loihi (Blouw et al., 2018) outside of Intel (Lin et al., 2018b), and it is under active development.
We expect this to get significantly better with time.

Nevertheless, these two architectures—Braindrop and Loihi—represent significant mile-
stones in the evolution of neuromorphic hardware. The first, Braindrop, consumes energy
roughly equivalent to 381 fJ per synaptic operation, for typical network configurations, or
about 10–20 times more than the human brain (see section 2.3). The second, Loihi, consumes
about 24 pJ per synaptic operation, or about 50–100 times more than Braindrop, but offers
determinism and an unparalleled degree of flexibility given its power budget. At the same time,
these two neuromorphic hardware architectures are about as different from one another as
two could be in the space of neuromorphic computing, with each posing very different sets of
challenges when it comes to compiling NEF networks.

The goal of this chapter is to demonstrate that the fundamentals for systematically pro-
gramming neuromorphic hardware are in place. With the theoretical guarantees provided
by chapter 3, the methods for programming dynamical systems in chapter 4, the extensions
of chapter 5, and the functional capabilities of dynamical systems such as those explored in

2Determined empirically using the nengo-loihi==0.5.0 emulator.
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chapter 6 – we are confident that in principle these methods can scale to Spaun’s 6.6 million
neurons (Choo, 2018) and beyond. Thus, we focus on demonstrating the principles of the
NEF, and a few of its extensions, applied to two fundamental—but admittedly small-scale—
dynamical systems. These dynamical systems are described in the same high-level language
of Nengo, but mapped onto two vastly different state-of-the-art neuromorphic architectures:
Braindrop and Loihi.

7.1 Integrator

The integrator, θẋ(t) = u(t), is a dynamical system used extensively by Spaun (Eliasmith
et al., 2012) and many other NEF and SPA models (Singh and Eliasmith, 2004; Trujillo, 2014;
Rasmussen et al., 2017, to name a few) for cognitive tasks involving working memory (also see
section 4.2 for a brief review). This system persists information about the history of an input
signal, starting from t0 and extended indefinitely throughout time, as characterized by the
solution to its differential equation,

x(t ) = x(t0)+ 1

θ

∫ t

t ′=t0

u(t ′)d t ′.

The parameter θ is a system-level time-constant that controls how quickly the memory inte-
grates new information.3 For example, beginning from an initial state of x(t0) = 0, if we hold the
input constant at u(t) = v for θ seconds (t0 < t ≤ t0 +θ), and then clamp the input to u(t) = 0
thereafter (t > t0 +θ), then x(t ) = v will “store” the vector v indefinitely.

More generally, any finite set of nonlinear differential equations can be described as the
integration of an input vector that is some nonlinear function of the state-vector—augmented
to also include u(t)—as in θẋ(t) = f (x(t )). The nonlinearity f(·) may then be supported by
a pool of neurons encoding the state-vector, as explained in section 2.2. Indeed, this is the
essential observation of Principle 3; dynamical systems may be reduced to integration. Thus,
the integrator is a basic component used to implement sophisticated nonlinear dynamical
transformations, such as those involved in adaptive motor control (DeWolf et al., 2016). We
therefore use the integrator, implemented by a pool of spiking neurons using the methods of
the NEF, as a benchmark for evaluating the ability of neuromorphic hardware to implement
generic dynamical systems.

3This parameter is useful for dimensional analysis, when considering the transfer function,
X(s)

U(s)
= (θs)−1, and

in determining the precision of the system: n scales as O (
θ−2) (see Table 3.1).
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Figure 7.1: An integrator running on state-of-the-art neuromorphic hardware. The ideal
solution is plotted against the mean’s 95% confidence interval, bootstrapped from 200 trial
simulations. (a) Nengo Braindrop implementation, reproduced from Neckar et al. (2019,
Figure 15), using 1,024 neurons. (b) Nengo Loihi (v0.5.0) implementation, using 256 neurons.
Loihi simulations performed by Xuan Choo from Applied Brain Research, Inc. See text for
details.

In Figure 7.1, we instantiate a one-dimensional integrator (θ = 1 s) on both Braindrop
(1024 neurons) and Loihi (256 neurons). In both cases, the input signal is a white noise test
signal, band-limited to 1 Hz. Both the ideal and the spiking activity are filtered with a lowpass
(τ= 200 ms). We report the mean output’s 95% confidence intervals, bootstrapped from 200
trials lasting 10 seconds each. We run a large number of trials with random configurations of
the network on the same input, in order to assess overall robustness, and to reveal any systemic
biases in the error or drift.

On Braindrop (see Figure 7.1 (a), reproduced from Neckar et al. (2019, Figure 15)), we
compensate for the distribution of synaptic time-constants, arising from transistor mismatch
in the analog circuitry, using the methods of Voelker et al. (2017a), detailed in section 5.1.3
and 5.1.4. We do so by first measuring the time-constants, and then targeting them individually
with the specific transform given by our extensions. The chip is configured to maximize
the synaptic time-constants; the empirically measured mean is 179.3 ms, with a standard
deviation of 53.8 ms. To help account for temperature-induced variability—manifesting as
slowly-changing shifts to the effective tuning curves (Kauderer-Abrams et al., 2017)—we also
retrain the weights every 10 simulations directly from the spike data, collected using a separate
training signal. The rest of the mapping is handled by the Nengo-Braindrop backend (Neckar
et al., 2018, 2019).
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On Loihi (see Figure 7.1 (b)), we set τ = 200 ms, and use the methods of section 5.1.1
to discretize the integrator according to the simulation time-step (dt = 1 ms). We also use
non-leaky neurons (integrate-and-fire), as this provides the best accuracy (see section 5.2.2).
Weight matrices are left unfactored. Lastly we move the input synapse onto the spike-generator
from host to chip, and uniformly initialize the states of the spike-generators to satisfy the
uniform ISIP criteria (Theorem 3.2.1). The rest of the mapping is handled by the Nengo-Loihi
backend (GitHub, 2019b).

In both cases, the 95% confidence intervals include the ideal across nearly the entire 10 s
simulation. This implies that the sum of any error, whether related to spiking, representation,
or otherwise, has a mean value of approximately zero. We remark that Loihi gives much more
consistent trial-to-trial results, due to the all-digital nature of the chip, determinism, and lack of
temperature-induced variability. Advanced methods that can be used to provide temperature-
invariant decodes in Braindrop have been recently developed by Reid et al. (2019), although
they require external measurements of the device’s temperature, and thus were not employed
in this experiment.

7.2 Delay Network

We now instantiate the same Delay Network (DN) from chapter 6 on state-of-the-art neuromor-
phic hardware (see Figure 7.2). This system is an entirely different kind of dynamical system
that persists not the input’s sum, but finite windows of the input’s history. Specifically, the DN
buffers a sliding window of the input, thus serving as a continuous-time memory, and enabling
the computation of arbitrary nonlinear transformations across a window of time. This can be
used as a basic building block for working memory models that must represent not only what
has occurred, but also when it has occurred.
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Figure 7.2: Delay Network (DN; q = 3, θ = 100 ms; chapter 6) running on state-of-the-art
neuromorphic hardware. (a) Nengo Braindrop implementation, reproduced from Neckar et al.
(2019, Figure 16). (b) Nengo Loihi (v0.5.0) implementation. (c) Overall error (NRMSE) for
Braindrop, Loihi, and a standard desktop CPU. The simulations of (a) and (b) correspond to a
randomly chosen trial from the first test case from (c). Loihi simulations performed by Xuan
Choo from Applied Brain Research, Inc. See text for details.
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This system is described by (repeating equations 6.5–6.12, for clarity):

θẋ(t ) = Ax(t )+Bu(t )

A =


−v0 −v0 · · · −v0

v1 0 · · · 0

0
. . . . . .

...
0 0 vd−1 0


B = (

v0 0 · · · 0
)T

vi = (q + i )(q − i )(i +1)−1

u(t −θ′) ≈
q−1∑
i=0

Pi ,q

(
θ′

θ

)
xq−1−i (t ), 0 ≤ θ′ ≤ θ

Pi ,q (r ) =
(

q
i

)−1 i∑
j=0

(
q
j

)(
2q −1− j

i − j

)
(−r )i− j .

In addition, the state-space realization is balanced and normalized (see section 4.1), and the
polynomial basis functions are rotated accordingly.

To implement the DN, three pools, each containing 128 spiking LIF neurons, are recurrently
coupled to each other (and to themselves), and trained to optimally buffer a white noise test
signal—band-limited to 3 Hz—across a 100 ms sliding time-window. Output spikes are filtered
using a lowpass synapse with τ= 20 ms, and weighted to decode both the state-vector and the
window of history via Pi ,3(·).

For this experiment, we use identical Nengo model code for both neuromorphic backends.
On Braindrop (see Figure 7.2 (a), reproduced from Neckar et al. (2019, Figure 16)), the chip is
configured to use the default distribution of synaptic time-constants (mean τ≈ 18 ms). For
Loihi (see Figure 7.2 (b)), the recurrent time-constant is set to τ= 10 ms, and weight matrices
are unfactored. We also compare this to the reference Nengo simulator (τ= 10 ms) running the
exact same model on a conventional desktop CPU, to obtain a baseline level of performance.
The overall error is evaluated across the entire delay interval θ′ ∈ [0,θ] using the corresponding
analytical readout, Pi ,3(·).

Table 7.1 reports the bootstrapped 95% confidence intervals across 25 trials of 10 separate
test cases. Given the inherent variability in Braindrop’s analog computation, and its incredibly
low power-consumption relative to both Loihi and the CPU solutions, it is surprisingly accurate
given our anecdotal experience simulating noisy small-scale dynamical spiking networks.
However, these results reveal an unexpected drop in precision on Loihi relative to the reference
CPU solution. We attribute this to a combination of: the input’s encoding into spikes, the
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Method 95% Confidence Interval

Braindrop [0.156, 0.163]
Loihi [0.146, 0.153]
Nengo-Loihi Emulator [0.145, 0.151]
Reference CPU [0.055, 0.059]

Table 7.1: Performance of the Delay Network (DN) running on state-of-the-art neuromorphic
hardware: Braindrop and Loihi. We also include Nengo’s emulation of the Loihi hardware, and
Nengo’s CPU reference backend. All four simulations use the same model code and test signals.

LIF neuron model’s discretization in time, quantization errors in neural states and recurrent
weights, and the uniform ISIP criteria being systematically violated leading to state discrepancy
(definition 3.2.1). Notably, this problem is revealed by fewer neurons per dimension, faster
input frequencies, a faster system-level time-constant (θ), and faster synaptic time-constant
(τ), relative to the previous experiment in section 7.1. It is difficult to explore these issues
without direct access to the hardware. Future work is needed to ensure that high-bandwidth
signals are being adequately and scalably encoded as per our analysis in chapter 3.
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Chapter 8

Conclusions

We have discussed a number of theoretical and practical results involving the synthesis of
dynamical systems, their implementation in spiking neural networks, and deployment on
neuromorphic hardware. We now summarize our main contributions.

First, section 3.1 observes a number of computational “sub-principles” that follow from
the adoption of the NEF’s three principles. Arbitrary network topologies reduce to a single
recurrently connected layer with sparse encoders, decoders with block structure isomorphic to
the original graph structure, and a partitioning of time-constants. Heterogeneous dynamical
primitives form the basis for neural computation, and may be expressed within a unified
language to facilitate mathematical analyses that leverage the interchangeability and compos-
ability of such primitives. Chaotic strange attractors emerge from even the simplest spiking
implementations of such dynamical systems. The NEF represents state-vectors by linearly
projecting them onto the postsynaptic currents of neurons, independent of any considerations
of what it means to use a “rate code” or a “spike-time code.” Likewise, these state-vectors
represent frequency content that grows linearly with the relative amount of energy required to
drive the synapses of each postsynaptic neuron, for a fixed level of precision.

Second, section 3.2 addresses the suitability of the NEF as a framework for compiling SNNs
onto neuromorphic hardware. Correctness is guaranteed by Theorem 3.2.1, which teases apart
three sources of error in the NEF, and provides a novel proof of the NEF’s precision, condi-
tioned upon a specific criteria that characterizes the distribution of neural states. Scalability is
guaranteed by the previous theorem, in conjunction with a number of prior observations made
about time, space, and energy requirements that carefully consider the physical dimensions of
relevant quantities (Table 3.1). Completeness is provisioned by the Turing-completeness of
dynamical systems, which justifies our assertion that spiking neural networks—trained with
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the NEF to obey some dynamics—represent powerful models of computation. Robustness is
ensured by a volume of prior work, together with our observation that the NEF is robust to
white noise bounded by the diameter of its neural basin of attraction. Extensibility is demon-
strated by a large number of Nengo backends supporting a variety of seemingly disparate
architectures, in addition to the extensions summarized in point four below.

Third, section 4.2 provides a number of novel perspectives on various algorithms realized
by dynamical systems, in contexts that do not traditionally take a dynamical systems-based
approach at the state-space level. In particular, winner-take-all networks may be given their
inputs sequentially, in which case the ideal solution becomes a nonlinear dynamical system – as
does the case when all inputs are provided simultaneously. Unsupervised learning of encoders
is a dynamical system, local to each synapse, that can be used to learn fixed-points memorizing
its encoded vectors. Supervised learning of decoders is likewise a dynamical system, that can
be unified with system-level dynamics, and subsequently exploited to implement higher-order
transfer functions with only a single spiking neuron (see Lemma 4.2.1 and Theorem 4.2.2).
Both dynamical systems are simultaneously realized in a SpiNNaker simulation to learn a
heteroassociative memory in a network of 100,000 neurons, while running 150 times faster
than a CPU. Lastly, we observe that a large variety of important routines in linear algebra and
gradient-based optimization problems may be cast as dynamical systems that resolve the
correct solution over time.

Fourth, section 5.1 exposes several theoretical extensions to the third principle of the
Neural Engineering Framework, thus enabling spiking networks to leverage the computations
of higher-order synapses in both continuous- and discrete-time domains. We thoroughly
characterize linear dynamical systems using the transfer function representation, which allows
for axonal spike-delays, such as those in Loihi, to be harnessed, while appealing to Lemma 5.1.1
to prove the most general case in Theorem 5.1.2. Nonlinear extensions are supported by
Theorems 5.1.3 and 5.1.4, and culminate in an application that exploits heterogeneous mixed-
signal synapses in Braindrop. We then demonstrate that heterogeneous dynamical primitives
may in principle be exploited to accurately classify surface textures using a tactile robotic
fingertip. And finally we extend the NEF’s optimization problem to simultaneously solve for
decoding weights and the optimal linear filter in the context of Principle 3.

Fifth, section 5.2 considers the challenges in extending the NEF to various neuron mod-
els, while reviewing the work done thus far. In particular, the role of adaptive neurons and
biophysical neurons may be characterized as decomposing a nonlinear transfer function into
increasingly-sophisticated model representations. In doing so, we observe that adaptive LIF
neurons are isomorphic to an n-dimensional expansion of the dynamical state vector, and we
provide a conceptual roadmap for how progress can be made to harness such models system-
atically within the NEF. Poisson-spiking models are compared to regular-spiking and adaptive
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neuron models in the context of Principle 1, which validates our proof of Theorem 3.2.1 –
namely, that uniform neural states guarantee the scaling of precision, even at arbitrarily high
representational frequencies. This validates our theory, and recommends that Nengo should
consider the role of neural-state distributions very carefully in its abstractions.

Sixth, section 6.1 derives a solution to a difficult task for spiking neural networks: maintain-
ing a sliding window of input history. We derive from first-principles an optimal low-frequency
approximation of dimension q to a continuous-time delay, and realize this efficiently using
a spiking neural network. This solution is called the Delay Network (DN). We show that the
DN supports a decoding of the entire window, with weights given by the shifted Legendre
polynomials up to order q . Next, the neural encoding implements a nonlinear kernel convolu-
tion of the time window, thus enabling the population of neurons within the delay network
to compute arbitrary nonlinear functions across the input’s q-degree projection over time.
This leads into a discussion on the scalability of the network, in particular highlighting the
importance of the relationship between each physical quantity: time and frequency.

Seventh, section 6.2 exploits the DN in a number of very different contexts. We find that
none of Reservoir Computing, FORCE computing, nor stacked LSTMs can match the perfor-
mance of the Delay Network given a low-frequency signal relative to the time-step. Further-
more, LSTM cells can be substituted with DN cells, which results in a stacked DN that recovers
performance, while being able to predict chaotic time-series data with improved accuracy and
reduced training times. We see that the detection of periodic patterns within an input stimulus
reduces to taking the L2-norm of a linear transformation of the DN. And, we theoretically
justify the utility in stacking Deep Delay Networks (DDNs) by analyzing the error’s transfer
function and discovering that deep structures provide the better trade-off when controlling
for the number of connection weights. Likewise, we show that DDNs can instantaneously
propagate signals through multiple layers with relatively long synaptic time-constants. We
exploit our earlier extensions to improve the accuracy of discrete-time simulations of continu-
ous neural dynamics. We also demonstrate more accurate implementations of delay networks
with a variety of synapse models, thus allowing systematic exploration of the relationship
between synapse- and network-level dynamics. Finally we suggest that these methods provide
new insights into the observed temporal properties of individual neurons; biological time cell
responses during a delay task are well-approximated by a delay network constructed using
these methods.

Eighth, sections 7.1 and 7.2 utilize many of the aforementioned extensions together with
Nengo to deploy dynamical systems onto state-of-the-art neuromorphic hardware: Braindrop
and Loihi. We find that, by applying a few compensatory techniques, both Braindrop and
Loihi may be used to implement an integrator with little systematic drift averaged over 10 s
trials. When combined with nonlinear feedback, this system serves as the basic building
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block for arbitrary dynamical systems. Braindrop has higher variability due to analog and
temperature-induced variability, but consumes orders of magnitude less power. Next, a small-
scale instantiation of the DN is compiled onto both architectures, using identical Nengo code,
and 128 neurons per dimension – obtaining nearly equal performance to one another.

Among these contributions, we would like to draw final attention to the following overarch-
ing narrative. Recurrent neural networks, especially their spiking instantiations, are notoriously
difficult to train. Backpropagation has little to say about: discovering what computational
structures are useful to consider; imposing prior knowledge on the initial configuration of
the network; harnessing the dimension of time within the dynamics of the computational
primitives themselves; and appropriately setting all of the hyperparameters. Sidestepping
these matters inevitably poses a challenge to deep learning when placed next to the extraordi-
nary scale of the human brain: 1014 connections, capturing temporal dependencies spanning
continuous time-scales on the order of seconds to years, while using only 20 W of power.
Thus, we view mathematical theories and frameworks as paramount to the future success of
deep learning and artificial intelligence, assuming it is ever to become embodied in a similar
form to that of biological intelligence. This motivates our careful exploration into the Neural
Engineering Framework and its methods of harnessing dynamical systems to realize useful
computations latent within the distributed activity of biologically-plausible recurrent spiking
neural networks. We extend this framework, and derive a class of useful dynamical systems that
have been largely ignored in the past: delay networks. The linear dynamics of these systems op-
timally project its input history onto a low-dimensional state-space that becomes nonlinearly
encoded into the high-dimensional activity spaces of neurons. This approach outperforms
equivalently-sized and trained state-of-the-art recurrent neural networks, including stacked
LSTMs, in basic measures of continuous-time information processing capacity, prediction
of a chaotic time-series, and training time. Finally, this same system is implemented on the
neuromorphic hardware architectures of Braindrop and Loihi, with plenty of room to grow.
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