11 research outputs found

    Using a variation of empirical mode decomposition to remove noise from signals

    Full text link

    Using a variation of empirical mode decomposition to remove noise from signals

    Get PDF
    This paper will describe the application of -based decomposition, which is a variation of the empirical mode decomposition method based on modified peak selection, to de-noising and de-trending of signals. The -based decomposition method will be explained, and its application to synthetic and real-world signals in the context of de-noising and de-trending will be described. Comparison between the computational simplicity of the τ-based decomposition method to de-noising and de-trending of signals and approaches based on empirical mode decomposition will be highlighted. © 2011 IEEE

    Single Channel Speech Enhancement Using Adaptive Soft-Thresholding with Bivariate EMD

    Get PDF

    Turning Tangent Empirical Mode Decomposition: A Framework for Mono- and Multivariate Signals.

    No full text
    International audienceA novel Empirical Mode Decomposition (EMD) algorithm, called 2T-EMD, for both mono- and multivariate signals is proposed in this paper. It differs from the other approaches by its computational lightness and its algorithmic simplicity. The method is essentially based on a redefinition of the signal mean envelope, computed thanks to new characteristic points, which offers the possibility to decompose multivariate signals without any projection. The scope of application of the novel algorithm is specified, and a comparison of the 2T-EMD technique with classical methods is performed on various simulated mono- and multivariate signals. The monovariate behaviour of the proposed method on noisy signals is then validated by decomposing a fractional Gaussian noise and an application to real life EEG data is finally presented

    Characterization and filtering of electroencephalogram contaminated by electromyography of facial muscles

    Get PDF
    The Electroencephalogram (EEG) has been the most preferred way of recording brain activity due to its noninvasiveness and affordability benefits. Information estimated from EEG has been employed broadly, e.g., for diagnosis or as an input signal to Brain-Computer Interfaces (BCI). Nevertheless, the EEG is prone to artifacts including non-brain physiological activities, such as eye blinking and the contraction of the muscles of the scalp. Some applications such as BCI systems may occasionally be associated with frequent contractions of muscles of the head corrupting the EEG-based control signal. This requires the application of several filtering techniques. However, the gold standard techniques for signal filtering still contain limitations, such as the incapacity of eliminating noise in all EEG channels. For this reason, besides studying and applying filtering techniques, it is necessary to understand the contamination from electromyogram (EMG) along the scalp. Several studies concluded that EMG artifact contaminates the EEG at frequencies beginning at 15 Hz on the topographic distribution of the energy that encompasses practically the entire scalp. Thus, the present work aims to quantitatively estimate EMG noise in 16 bipolar channels of EEG distributed along the scalp according to the 10-20 system. This estimation was based on an experimental protocol considering the simultaneous acquisition of EEG and EMG of five facial muscles sampled at 5 kHz. The protocol consisted of activating facial muscles while listening to 15 beep sounds. The evaluated muscles were frontal, masseter, zygomatic, orbicularis oculi, and orbicularis oris. The mean power of the EEG contaminated by EMG of facial muscle contractions was compared between the periods of muscle contraction and non-contraction. The results show that EMG contamination from frontal and masseter muscles are present over the scalp with an increase from 63.5 μV2 to 816 μV2 and from 118.3 μV2 to 5,617.9 μV2, respectively. Also, this work proposes a technique for EMG artifact removal that is less sensitive to low SNR as the current gold standard techniques. The proposed method, so-called EMDRLS, employs Empirical Mode Decomposition (EMD) to generate an EMG noise reference to an adaptive Recursive Least Squares (RLS) filter. To test the EMDRLS method, EEG signals were collected from 10 healthy subjects during the controlled execution of successive facial muscular contractions. The experimental protocol considered the isolated activation of the masseter and frontal muscles. EEG corrupted signals were filtered by the EMDRLS method considering distinct SNRs. The results were compared to traditional approaches: Wiener, Wavelet, EMD, and a hybrid wavelet-RLS filtering method. The following performance metrics were considered in the comparative evaluation: (i) SNR of the contaminated signal; (ii) the root mean square error (RMSE) between the power spectrum of artifact-free and filtered EEG epochs; (iii) the spectral preservation of brain rhythms (i.e., delta, theta, alpha, beta, and gamma) of filtered signals. For EEG signals with SNR below -10dB, the EMDRLS method yielded filtered EEG signals with SNR varying from 0 to 10 dB. The technique reduced the RMSE of frontal channels from 1.202 to 0.043, which are the source of the most corrupted EEG signals. The Kruskal-Wallis test and the Tukey-Kramer post-hoc test (p < 0.05) confirmed the preservation of all brain rhythms given by EEG signals filtered with the EMDRLS method. The results have shown that the single-channel EMDRLS method can be applied to highly contaminated EEG signals by facial EMG signal with performance superior to that of established methods.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas GeraisTese (Doutorado)O Eletroencefalograma (EEG), é uma medida da atividade cerebral que ostenta as vantagens de portabilidade, baixo custo, alta resolução temporal e não invasivo. Os desafios desse exame são os artefatos de diferentes fontes que tornam a análise de dados do EEG mais difícil, e que potencialmente resulta em erros de interpretação. Portanto, é essencial para muitas aplicações médicas e práticas remover esses artefatos no pré-processamento antes de analisar os dados do EEG. Nos últimos trinta anos, vários métodos foram desenvolvidos para remover diferentes tipos de artefatos de dados de EEG contaminados; ainda assim, não há nenhum método padrão que pode ser usado de forma otimizada e, portanto, a pesquisa permanece atraente e desafiadora. Algumas aplicações, como as Interfaces Homem Computador (HCI), podem ocasionalmente estar associadas a frequentes contrações dos músculos da cabeça, corrompendo o sinal de controle baseado no EEG, requerendo a aplicação de alguma técnica de filtragem. No entanto, as técnicas padrão de ouro para filtragem de sinal ainda contêm limitações, como a incapacidade de eliminar o ruído em todos os canais EEG com relações sinal-ruído (SNR) muito baixas e quando a faixa espectral do ruído sobrepõe a do EEG, que caracteriza diversas contaminações no EEG, mas principalmente a contaminação oriunda do sinal eletromiográfico. Por esta razão, além de estudar e aplicar técnicas de filtragem, é necessário entender a contaminação do eletromiograma (EMG) ao longo do couro cabeludo. Alguns estudos concluíram que o artefato EMG contamina o EEG em frequências a partir de 15 Hz em uma distribuição topográfica que engloba praticamente todo o couro cabeludo. Assim, o presente trabalho tem como objetivo estimar quantitativamente o ruído EMG em 16 canais bipolares de EEG distribuídos ao longo do couro cabeludo de acordo com o sistema 10-20. Essa estimativa foi baseada em um protocolo experimental considerando a aquisição simultânea de EEG e EMG de cinco músculos faciais amostrados a 5 kHz. O protocolo consistiu em ativar os músculos faciais enquanto o voluntário ouvisse 15 sons de bip. Os músculos avaliados foram o frontal, masseter, temporal, zigomático, orbicular do olho e orbicular da boca. A potência média do EEG contaminado pela EMG das contrações da musculatura facial foi comparado entre os períodos de contração muscular e não contração. Os resultados mostram que a contaminação muscular do frontal e do masseter provoca um aumento de energia sobre o couro cabeludo de 63,5 μV2 para 816 μV2 e de 118,3 μV2 para 5,617,9 μV2, respectivamente. Além disso, este trabalho propõe uma técnica de remoção do artefato de EMG menos sensível a baixas SNRs que as atuais técnicas padrão ouro. O método proposto, chamado EMDRLS, emprega Decomposição do Modo Empírico (EMD) para gerar uma referência de ruído EMG a um filtro RLS (Recursive Least Squares) adaptativo. Para testar o EMDRLS, foram coletados sinais de EEG de 10 indivíduos saudáveis durante a execução controlada de sucessivas contrações musculares faciais. O protocolo experimental considerou a ativação isolada dos músculos masseter e frontal. Os sinais corrompidos por EEG foram filtrados por EMDRLS considerando SNRs distintos. Os resultados foram comparados às abordagens tradicionais: Wiener, Wavelet, EMD e um método de filtragem híbrido wavelet-RLS. As seguintes métricas de desempenho foram consideradas na avaliação comparativa: (i) SNR do sinal contaminado; (ii) o erro quadrático médio da raiz (RMSE) entre o espectro de potência das épocas de EEG filtradas e sem artefatos; (iii) a preservação espectral de ritmos cerebrais (isto é, delta, teta, alfa, beta e gama) dos sinais filtrados. Para sinais EEG com SNR abaixo de -10dB, o método EMDRLS produziu sinais EEG filtrados com SNR variando de 0 a 10 dB. A técnica reduziu o RMSE dos canais frontais de 1,202 para 0,043, que são a fonte dos sinais de EEG mais corrompidos. O teste de Kruskal-Wallis e o teste post-hoc de Tukey-Kramer (p <0,05) confirmaram a preservação de todos os ritmos cerebrais dados pelos sinais de EEG filtrados pelo método EMDRLS. Os resultados mostraram que o método EMDRLS pode ser aplicado a sinais EEG altamente contaminados por sinal facial EMG com desempenho superior ao dos métodos estabelecidos

    Mining the brain to predict gait characteristics: a BCI study

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, em 2018A locomoção é uma das atividades mais comuns e relevantes da vida quotidiana, sendo que envolve a ativação dos sistemas nervoso e músculo-esquelético. Os distúrbios da locomoção são comuns principalmente na população idosa, sendo que frequentemente estão associados a uma diminuição da qualidade de vida. A ocorrência destes distúrbios aumenta com a idade, estimando-se que aproximadamente 10% das pessoas com idades entre 60 e 69 anos sofram de algum tipo de distúrbio da locomoção, enquanto esse número aumenta para mais de 60% em pessoas com idade superior a 80 anos. Os padrões da locomoção são influenciados por doenças, condições físicas, personalidade e humor, sendo que um padrão anormal ocorre quando uma pessoa não é capaz de andar da maneira usual, maioritariamente devido a lesões, doenças ou outras condições subjacentes. As causas dos distúrbios da marcha incluem condições neurológicas e músculo-esqueléticas. Um grande número de condições neurológicas pode causar um padrão de marcha anormal, como por exemplo um acidente vascular cerebral, paralisia cerebral ou a doença de Parkinson. Por outro lado, as causas músculo-esqueléticas devem-se principalmente a doenças ósseas ou musculares. A avaliação ou análise da marcha, inclui a medição, descrição e avaliação das variáveis que caracterizam a locomoção humana. Como resultado, este estudo permite o diagnóstico de várias condições, bem como avaliar a progressão da reabilitação e desenvolver estratégias de intervenção. Convencionalmente, a marcha é estudada subjetivamente com protocolos observacionais. No entanto, recentemente foram desenvolvidos métodos mais objetivos e viáveis. Os métodos de análise da marcha podem ser classificados em laboratoriais ou portáteis. Embora a análise baseada em laboratório utilize equipamentos especializados, os sistemas portáteis permitem o estudo da marcha em ambientes naturais e durante atividades da vida diária. A análise laboratorial da marcha é baseada principalmente em informações de imagem e vídeo, embora sensores de piso e placas de força também sejam comuns. Por outro lado, os sistemas portáteis consistem em um ou vários sensores, ligados ao corpo. A adaptação da locomoção é um dos mais relevantes conceitos na análise da mesma, sendo que a sua origem e dinâmica neuronal têm sido amplamente estudadas nos últimos anos. A adaptação da marcha reflete a capacidade de um sujeito em mudar de velocidade e direção, manter o equilíbrio ou evitar obstáculos. Em termos da reabilitação neurológica, a adaptação da locomoção interfere na dinâmica neuronal, permitindo que os pacientes restaurem certas funções motoras. Atualmente, os dispositivos robóticos para membros inferiores e os exoesqueletos são cada vez mais usados não só para facilitar a reabilitação motora, mas também para apoiar as funções da vida diária. No entanto, a sua eficiência e segurança depende da sua eficácia em detetar a intenção humana de mover e adaptar a locomoção. Recentemente, foi demonstrado que o ritmo auditivo tem um forte efeito no sistema motor. Consequentemente, a adaptação tem sido estudada com base em ritmos auditivos, onde os pacientes seguem tons de estimulação para melhorar a coordenação da marcha. A imagem motora (MI), uma prática emergente em BCI, ou interface cérebro-máquina, é definida como a atividade de simular mentalmente uma determinada ação, sem a execução real do movimento. O desempenho da classificação da MI é importante para desenvolver ambientes robustos de interface cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas. O desempenho da classificação da MI é importante para desenvolver ambientes robustos de interface cérebro-máquina, para neuro-reabilitação de pacientes e controle de próteses robóticas, uma vez que, estudos anteriores, concluíram que realizar uma sessão de MI ativa parcialmente as mesmas regiões cerebrais que o desempenho da tarefa real. Inicialmente, a tarefas de MI centravam-se apenas nos movimentos dos membros superiores, no entanto, recentemente, estas começaram também a focar-se nos movimentos dos membros inferiores, de modo a estudar a locomoção humana. A deteção da intenção motora em tarefas de MI enfrenta vários desafios, mesmo para duas classes (esquerda / direita, por exemplo), sendo que um dos principais desafios se deve ao número, localização e tipo de elétrodos de EEG usados. Recentemente, um número crescente de estudos investigou a atividade cerebral durante a locomoção humana. Esses estudos, baseados maioritariamente no EEG, encontraram várias relações entre regiões cerebrais e ações ou movimentos específicos. Por exemplo, concluiu-se que a atividade cerebral aumenta durante a caminhada ou a preparação para caminhar e que a potência nas bandas μ e β diminui durante a execução voluntária do movimento. Em termos de adaptação da marcha, foi demonstrado que a atividade eletrocortical varia de acordo com a tarefa motora executada. Recentemente, as Interfaces Cérebro-Máquina permitiram o desenvolvimento de novas terapias de reabilitação para restaurar as funções motoras em pessoas com deficiências na locomoção, envolvendo o SNC para ativar dispositivos externos. Na primeira parte desta tese, foram realizadas várias tarefas de MI, juntamente com os movimentos reais dos membros inferiores, de modo a comparar o desempenho da classificação de um sistema wireless de 16 elétrodos secos com um sistema wireless de 32 elétrodos com gel condutor. A extração e classificação das características do sinal foram também avaliadas com mais de um método (LDA e CSP). No final, a combinação de um filtro beta passa-banda com um filtro RCSP mostrou a melhor taxa de classificação. Embora durante a aquisição do EEG todos os canais tenham sido utilizados, durante os métodos de processamento, foram escolhidas duas configurações específicas, onde os elétrodos foram selecionados de acordo com sua posição relativamente ao córtex motor. Desde modo, infere-se que uma seleção cuidada da localização dos elétrodos é mais importante do que ter um denso mapa de elétrodos, o que torna os sistemas EEG mais confortáveis e de fácil utilização. Os resultados mostram também a viabilidade do uso doméstico de sistemas de elétrodos secos com um reduzido número de sensores, e a possibilidade de diferenciar entre as tarefas de MI (esquerda e direita), para ambos os membros, com uma precisão relativamente alta. Por outro lado, a segunda parte desta tese apresenta um esquema de adaptação da marcha em ambientes naturais. De modo a avaliar a adaptação da marcha, os sujeitos seguem um tom rítmico que alterna entre três modos distintos (lento, normal e acelerado). As características da locomoção foram extraídas com base numa câmara RGB, sendo que os sinais de EEG foram monitorados simultaneamente. De seguida, estas características bem como as informações do tempo de reação foram utilizadas para extrair as etapas de adaptação da marcha versus etapas de não adaptação. De modo a remover os artefactos presentes no EEG, devidos maioritariamente ao movimento do sujeito, o sinal for filtrado com uma filtro passa-banda e sujeito a uma análise de componentes independentes (ICA). Posteriormente, as características de adaptação da marcha do EEG foram investigadas com base em dois problemas de classificação: i) classificação dos passos em direito ou esquerdo e ii) etapas de adaptação versus não adaptação da marcha. As características foram extraídas com base em padrões espaciais comuns (CSP) e padrões espaciais comuns regularizados (RCSP). Os resultados mostram que é possível discriminar com sucesso a adaptação versus não adaptação com mais de 90% de precisão. Este procedimento permite a monitoração dos participantes em ambientes mais realistas, sem a necessidade de equipamentos especializados, como sensores de pressão. Este método demonstrou que é possível detetar a adaptação com mais de 90% de precisão, quando os participantes tentam adaptar sua velocidade de marcha para uma velocidade maior ou menor.Gait adaptation is one of the most relevant concepts in gait analysis and its neuronal origin and dynamics has been extensively studied in the past few years. In terms of neurorehabilitation, gait adaptation perturbs neuronal dynamics and allows patients to restore some of their motor functions. In fact, lower-limbs robotic devices and exoskeletons are increasingly used to facilitate rehabilitation as well as supporting daily life functions. However, their efficiency and safety depend on how well they can detect the human intention to move and adapt the gait. Motor imagery (MI), an emerging practise in Brain Computer Interface (BCI), is defined as the activity of mentally simulating a given action, without the actual execution of the movement. MI classification performance is important in order to develop robust brain computer interface environments for neuro-rehabilitation of patients and robotic prosthesis control. In the first section of this thesis, it was performed a number of motor imagery tasks along with actual movements of the limbs to compare the classification performance of a dry 16-channel and a wet, 32-channel, wireless (Electroencephalography) EEG system. Results showed the feasibility of home use of dry electrode systems with a small number of sensors, and the possibility to discriminate between left and right MI tasks for both arms and legs, with a relatively high accuracy. The second part of this thesis presents a gait adaptation scheme in natural settings. This procedure allows the monitorization of subjects in more realistic environments without the requirement of specialized equipment such as treadmill and foot pressure sensors. Gait characteristics were extracted based on a single RGB camera, and EEG signals are monitored simultaneously. This method demonstrated that it is possible to detect adaptation steps with more than 90% accuracy, when subjects tries to adapt their walking speed to a higher or lower speed
    corecore