987 research outputs found

    FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle Counting in City Cameras

    Full text link
    In this paper, we develop deep spatio-temporal neural networks to sequentially count vehicles from low quality videos captured by city cameras (citycams). Citycam videos have low resolution, low frame rate, high occlusion and large perspective, making most existing methods lose their efficacy. To overcome limitations of existing methods and incorporate the temporal information of traffic video, we design a novel FCN-rLSTM network to jointly estimate vehicle density and vehicle count by connecting fully convolutional neural networks (FCN) with long short term memory networks (LSTM) in a residual learning fashion. Such design leverages the strengths of FCN for pixel-level prediction and the strengths of LSTM for learning complex temporal dynamics. The residual learning connection reformulates the vehicle count regression as learning residual functions with reference to the sum of densities in each frame, which significantly accelerates the training of networks. To preserve feature map resolution, we propose a Hyper-Atrous combination to integrate atrous convolution in FCN and combine feature maps of different convolution layers. FCN-rLSTM enables refined feature representation and a novel end-to-end trainable mapping from pixels to vehicle count. We extensively evaluated the proposed method on different counting tasks with three datasets, with experimental results demonstrating their effectiveness and robustness. In particular, FCN-rLSTM reduces the mean absolute error (MAE) from 5.31 to 4.21 on TRANCOS, and reduces the MAE from 2.74 to 1.53 on WebCamT. Training process is accelerated by 5 times on average.Comment: Accepted by International Conference on Computer Vision (ICCV), 201

    Spatial and temporal background modelling of non-stationary visual scenes

    Get PDF
    PhDThe prevalence of electronic imaging systems in everyday life has become increasingly apparent in recent years. Applications are to be found in medical scanning, automated manufacture, and perhaps most significantly, surveillance. Metropolitan areas, shopping malls, and road traffic management all employ and benefit from an unprecedented quantity of video cameras for monitoring purposes. But the high cost and limited effectiveness of employing humans as the final link in the monitoring chain has driven scientists to seek solutions based on machine vision techniques. Whilst the field of machine vision has enjoyed consistent rapid development in the last 20 years, some of the most fundamental issues still remain to be solved in a satisfactory manner. Central to a great many vision applications is the concept of segmentation, and in particular, most practical systems perform background subtraction as one of the first stages of video processing. This involves separation of ‘interesting foreground’ from the less informative but persistent background. But the definition of what is ‘interesting’ is somewhat subjective, and liable to be application specific. Furthermore, the background may be interpreted as including the visual appearance of normal activity of any agents present in the scene, human or otherwise. Thus a background model might be called upon to absorb lighting changes, moving trees and foliage, or normal traffic flow and pedestrian activity, in order to effect what might be termed in ‘biologically-inspired’ vision as pre-attentive selection. This challenge is one of the Holy Grails of the computer vision field, and consequently the subject has received considerable attention. This thesis sets out to address some of the limitations of contemporary methods of background segmentation by investigating methods of inducing local mutual support amongst pixels in three starkly contrasting paradigms: (1) locality in the spatial domain, (2) locality in the shortterm time domain, and (3) locality in the domain of cyclic repetition frequency. Conventional per pixel models, such as those based on Gaussian Mixture Models, offer no spatial support between adjacent pixels at all. At the other extreme, eigenspace models impose a structure in which every image pixel bears the same relation to every other pixel. But Markov Random Fields permit definition of arbitrary local cliques by construction of a suitable graph, and 3 are used here to facilitate a novel structure capable of exploiting probabilistic local cooccurrence of adjacent Local Binary Patterns. The result is a method exhibiting strong sensitivity to multiple learned local pattern hypotheses, whilst relying solely on monochrome image data. Many background models enforce temporal consistency constraints on a pixel in attempt to confirm background membership before being accepted as part of the model, and typically some control over this process is exercised by a learning rate parameter. But in busy scenes, a true background pixel may be visible for a relatively small fraction of the time and in a temporally fragmented fashion, thus hindering such background acquisition. However, support in terms of temporal locality may still be achieved by using Combinatorial Optimization to derive shortterm background estimates which induce a similar consistency, but are considerably more robust to disturbance. A novel technique is presented here in which the short-term estimates act as ‘pre-filtered’ data from which a far more compact eigen-background may be constructed. Many scenes entail elements exhibiting repetitive periodic behaviour. Some road junctions employing traffic signals are among these, yet little is to be found amongst the literature regarding the explicit modelling of such periodic processes in a scene. Previous work focussing on gait recognition has demonstrated approaches based on recurrence of self-similarity by which local periodicity may be identified. The present work harnesses and extends this method in order to characterize scenes displaying multiple distinct periodicities by building a spatio-temporal model. The model may then be used to highlight abnormality in scene activity. Furthermore, a Phase Locked Loop technique with a novel phase detector is detailed, enabling such a model to maintain correct synchronization with scene activity in spite of noise and drift of periodicity. This thesis contends that these three approaches are all manifestations of the same broad underlying concept: local support in each of the space, time and frequency domains, and furthermore, that the support can be harnessed practically, as will be demonstrated experimentally

    Behavior and event detection for annotation and surveillance

    Get PDF
    Visual surveillance and activity analysis is an active research field of computer vision. As a result, there are several different algorithms produced for this purpose. To obtain more robust systems it is desirable to integrate the different algorithms. To achieve this goal, the paper presents results in automatic event detection in surveillance videos, and a distributed application framework for supporting these methods. Results in motion analysis for static and moving cameras, automatic fight detection, shadow segmentation, discovery of unusual motion patterns, indexing and retrieval will be presented. These applications perform real time, and are suitable for real life applications

    Carried baggage detection and recognition in video surveillance with foreground segmentation

    Get PDF
    Security cameras installed in public spaces or in private organizations continuously record video data with the aim of detecting and preventing crime. For that reason, video content analysis applications, either for real time (i.e. analytic) or post-event (i.e. forensic) analysis, have gained high interest in recent years. In this thesis, the primary focus is on two key aspects of video analysis, reliable moving object segmentation and carried object detection & identification. A novel moving object segmentation scheme by background subtraction is presented in this thesis. The scheme relies on background modelling which is based on multi-directional gradient and phase congruency. As a post processing step, the detected foreground contours are refined by classifying the edge segments as either belonging to the foreground or background. Further contour completion technique by anisotropic diffusion is first introduced in this area. The proposed method targets cast shadow removal, gradual illumination change invariance, and closed contour extraction. A state of the art carried object detection method is employed as a benchmark algorithm. This method includes silhouette analysis by comparing human temporal templates with unencumbered human models. The implementation aspects of the algorithm are improved by automatically estimating the viewing direction of the pedestrian and are extended by a carried luggage identification module. As the temporal template is a frequency template and the information that it provides is not sufficient, a colour temporal template is introduced. The standard steps followed by the state of the art algorithm are approached from a different extended (by colour information) perspective, resulting in more accurate carried object segmentation. The experiments conducted in this research show that the proposed closed foreground segmentation technique attains all the aforementioned goals. The incremental improvements applied to the state of the art carried object detection algorithm revealed the full potential of the scheme. The experiments demonstrate the ability of the proposed carried object detection algorithm to supersede the state of the art method

    Robust Event Detection and Retrieval in Surveillance Video

    Get PDF
    We developed a robust event detection and retrieval system for surveillance video. The proposed system offers vision-based capabilities for the detection and tracking of various objects of interest, and can recognize events such as: 1. a person with certain attributes being present in the scene; 2. two people meeting; 3. people carrying bags; 4. bags being dropped; 5. bags being stolen; 6. bags being exchanged; 7. two people handshaking; 8. one person's pointing gesture. We use an improved adaptive Gaussian mixture model for background modeling and foreground detection; a connected component labeling algorithm is then employed to label the foreground pixels. A Kalman filter approach is used to build models for the entities of interest (people and bags), which is combined with color histograms for tracking. We use shape symmetry analysis and color histograms to detect people carrying bags. Our experiments demonstrate the ability to search for instances of events according to specific attributes in large video sequences

    Bayesian foreground and shadow detection in uncertain frame rate surveillance videos

    Get PDF
    In in this paper we propose a new model regarding foreground and shadow detection in video sequences. The model works without detailed a-priori object-shape information, and it is also appropriate for low and unstable frame rate video sources. Contribution is presented in three key issues: (1) we propose a novel adaptive shadow model, and show the improvements versus previous approaches in scenes with difficult lighting and coloring effects. (2)We give a novel description for the foreground based on spatial statistics of the neighboring pixel values, which enhances the detection of background or shadow-colored object parts. (3) We show how microstructure analysis can be used in the proposed framework as additional feature components improving the results. Finally, a Markov Random Field model is used to enhance the accuracy of the separation. We validate our method on outdoor and indoor sequences including real surveillance videos and well-known benchmark test sets

    Exploring Motion Signatures for Vision-Based Tracking, Recognition and Navigation

    Get PDF
    As cameras become more and more popular in intelligent systems, algorithms and systems for understanding video data become more and more important. There is a broad range of applications, including object detection, tracking, scene understanding, and robot navigation. Besides the stationary information, video data contains rich motion information of the environment. Biological visual systems, like human and animal eyes, are very sensitive to the motion information. This inspires active research on vision-based motion analysis in recent years. The main focus of motion analysis has been on low level motion representations of pixels and image regions. However, the motion signatures can benefit a broader range of applications if further in-depth analysis techniques are developed. In this dissertation, we mainly discuss how to exploit motion signatures to solve problems in two applications: object recognition and robot navigation. First, we use bird species recognition as the application to explore motion signatures for object recognition. We begin with study of the periodic wingbeat motion of flying birds. To analyze the wing motion of a flying bird, we establish kinematics models for bird wings, and obtain wingbeat periodicity in image frames after the perspective projection. Time series of salient extremities on bird images are extracted, and the wingbeat frequency is acquired for species classification. Physical experiments show that the frequency based recognition method is robust to segmentation errors and measurement lost up to 30%. In addition to the wing motion, the body motion of the bird is also analyzed to extract the flying velocity in 3D space. An interacting multi-model approach is then designed to capture the combined object motion patterns and different environment conditions. The proposed systems and algorithms are tested in physical experiments, and the results show a false positive rate of around 20% with a low false negative rate close to zero. Second, we explore motion signatures for vision-based vehicle navigation. We discover that motion vectors (MVs) encoded in Moving Picture Experts Group (MPEG) videos provide rich information of the motion in the environment, which can be used to reconstruct the vehicle ego-motion and the structure of the scene. However, MVs suffer from high noise level. To handle the challenge, an error propagation model for MVs is first proposed. Several steps, including MV merging, plane-at-infinity elimination, and planar region extraction, are designed to further reduce noises. The extracted planes are used as landmarks in an extended Kalman filter (EKF) for simultaneous localization and mapping. Results show that the algorithm performs localization and plane mapping with a relative trajectory error below 5:1%. Exploiting the fact that MVs encodes both environment information and moving obstacles, we further propose to track moving objects at the same time of localization and mapping. This enables the two critical navigation functionalities, localization and obstacle avoidance, to be performed in a single framework. MVs are labeled as stationary or moving according to their consistency to geometric constraints. Therefore, the extracted planes are separated into moving objects and the stationary scene. Multiple EKFs are used to track the static scene and the moving objects simultaneously. In physical experiments, we show a detection rate of moving objects at 96:6% and a mean absolute localization error below 3:5 meters

    Standardized low-power wireless communication technologies for distributed sensing applications

    Get PDF
    Recent standardization efforts on low-power wireless communication technologies, including time-slotted channel hopping (TSCH) and DASH7 Alliance Mode (D7AM), are starting to change industrial sensing applications, enabling networks to scale up to thousands of nodes whilst achieving high reliability. Past technologies, such as ZigBee, rooted in IEEE 802.15.4, and ISO 18000-7, rooted in frame-slotted ALOHA (FSA), are based on contention medium access control (MAC) layers and have very poor performance in dense networks, thus preventing the Internet of Things (IoT) paradigm from really taking off. Industrial sensing applications, such as those being deployed in oil refineries, have stringent requirements on data reliability and are being built using new standards. Despite the benefits of these new technologies, industrial shifts are not happening due to the enormous technology development and adoption costs and the fact that new standards are not well-known and completely understood. In this article, we provide a deep analysis of TSCH and D7AM, outlining operational and implementation details with the aim of facilitating the adoption of these technologies to sensor application developers.Peer ReviewedPostprint (published version
    • 

    corecore