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Abstract

Security cameras installed in public spaces or in private organizations continuously

record video data with the aim of detecting and preventing crime. For that reason,

video content analysis applications, either for real time (i.e. analytic) or post-event

(i.e. forensic) analysis, have gained high interest in recent years. In this thesis,

the primary focus is on two key aspects of video analysis, reliable moving object

segmentation and carried object detection & identification.

A novel moving object segmentation scheme by background subtraction is pre-

sented in this thesis. The scheme relies on background modelling which is based

on multi-directional gradient and phase congruency. As a post processing step,

the detected foreground contours are refined by classifying the edge segments as

either belonging to the foreground or background. Further contour completion

technique by anisotropic diffusion is first introduced in this area. The proposed

method targets cast shadow removal, gradual illumination change invariance, and

closed contour extraction.

A state of the art carried object detection method is employed as a benchmark

algorithm. This method includes silhouette analysis by comparing human tempo-

ral templates with unencumbered human models. The implementation aspects of

the algorithm are improved by automatically estimating the viewing direction of

the pedestrian and are extended by a carried luggage identification module. As

the temporal template is a frequency template and the information that it pro-

vides is not sufficient, a colour temporal template is introduced. The standard

steps followed by the state of the art algorithm are approached from a different

extended (by colour information) perspective, resulting in more accurate carried

object segmentation.

The experiments conducted in this research show that the proposed closed

foreground segmentation technique attains all the aforementioned goals. The in-

cremental improvements applied to the state of the art carried object detection

algorithm revealed the full potential of the scheme. The experiments demonstrate

the ability of the proposed carried object detection algorithm to supersede the

state of the art method.
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Chapter 1

Introduction

In recent years automated video surveillance has attracted a high level of interest

from the computer vision research community. CCTV camera systems have been

installed in busy public spaces such as airports, train stations, and city centres

collecting valuable data for real-time and post event analysis, which is mostly

carried out manually, by vigilant CCTV operators. According to recent reports,

the number of surveillance cameras in the UK reached 4.2 million, resulting in the

impressive analogy of 1 CCTV camera being installed per 14 individuals of the

population [5]. Such surveillance systems play a major role in crime detection and

prevention and are an important segment of public infrastructure that protects

national security at all levels.

Often a detailed description of a human appearing in CCTV footage is used

in an individual’s behaviour analysis. Detection and recognition of luggage being

carried is one of the most widely accepted descriptions vitally used in the theft

detection and criminal behaviour identification. For instance, tracking of a carried

object could lead to detection of any exchange of objects that happens between

people carrying them, where a violent object exchange could be characterised as

theft. Another example is the immediate detection of luggage left unattended

in busy places such as airports and large train stations, which facilitates early

luggage contents examination by the officials.

Conceptually, automatic baggage detection in video footage can be achieved

by observing the changes in human appearance and gait caused by carried objects.

Usually the standard steps that are followed in computer vision for carried object

detection in videos are: moving object detection and segmentation, moving object

classification into human and non-human, object tracking through the frames, and

analysis of the segmented silhouette to detect any human body shape violations

or change in gait style or periodicity.

Moving object detection is achieved with background modelling and subtrac-

tion methods such as the C. Stauffer & W. Grimson algorithm [130] while object

1
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Figure 1.1: Segmented foreground silhouettes of a person carrying a backpack.

tracking is successfully performed with mean-shift tracking algorithm [28]. To

identify a moving object as human, Histograms of Oriented gradients (HoG) are

usually used as features [32]. The implementation of all these steps results in

a collection of binary or colour silhouette images of the subject that should be

further processed to detect carried objects (see Figure 1.1).

1.1 Research Motivation and Goals

One of the procedures described above, i.e. moving object segmentation, is very

critical for accurate Carried Object Detection (COD). The importance of moving

object segmentation becomes obvious by observing Figure 1.1, which illustrates a

sequence of silhouettes segmented by a standard background subtraction method.

The last two silhouettes of the sequence are partially segmented, due to similarity

of colour between the carried backpack and the background. Moving object seg-

mentation in visual surveillance is of vital importance as beyond COD many other

tasks such as vehicle type recognition, number plate recognition, object tracking,

action recognition and many other such tasks, rely on it.

The moving object segmentation is usually performed by background subtrac-

tion, which means subtracting the current frame from a reference background

frame or a background model. The subtraction itself might be a trivial task but

background modelling and maintenance requires careful design since it should

cope with a variety of practical situations that include: illumination changes in

the scene, the presence of dynamic background (sea waves, tree leaves, fountains,

escalators) and cast shadows, foreground/background similarity, adverse weather

conditions (snow, rain), objects that ceased moving, camera jitter, PTZ cameras

and night time videos. For this reason, even after 20 years of ongoing research

and countless publications attempting to address these issues, the background

modelling remains a fascinating and challenging research field.

There is no single method known that performs real-time under all the above

mention circumstances. Most of the current applications aim at tackling problems

of immediate priority such as the presence of illumination changes, cast shadows,

and dynamic background. These will be the three goals of this thesis, with special
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attention drawn onto shadow elimination and segmentation of complete object

contours as these are the facts that mostly affect the results of a COD system.

After segmenting the moving objects it is important to track them, which

means establishing correspondence between the detected foreground regions. Since

the available tracking algorithms have satisfactory performance and it would be

impossible to accommodate such variety of topics in one thesis, this subject was

left for future investigation.

Once the sequence of silhouettes of a moving subject is acquired, a COD scheme

can be designed. The importance of COD in visual surveillance, expressed in the

beginning of this chapter, is the reason for conducting research in this specific

topic. If compared to the research progress made in the domain of background

modelling over the recent years, the state-of-the-art in COD methodologies have

hardly been evolved. Most of the techniques are based on body shape analysis via

temporal human like templates, which encode the history of motion, some on gait

analysis, and very few up to date approaches involve cues such as optical flow, bag

shape analysis and colour segmentation. Naturally, the most modern techniques

exhibit better results than the mainstream body shape analysis based techniques.

However, one approach that attracts attention is of D. Damen and D. Hogg [34]

where the authors compare a human like temporal template with unencumbered

human models to detect the carried object. The MATLAB implementation of this

method is available for research purposes. This fact along with the encouraging

experimental results presented by the authors made this algorithm a good starting

point for research. A careful examination of D. Damen and D. Hogg’s system

revealed that although the methodology proposed is promising, the system suffers

from several weaknesses. Sometimes, body parts or clothes are detected as carried

objects and at the same time some carried objects fail to be detected. Further

the proposed system is not fully automatic. Hence it is possible to resolve the

weaknesses of the system, in view of disclosing the full potential of the scheme.

This is one primary goal of the research presented in this thesis.

1.2 Original Contributions

This thesis consists of a number of original contributions to video analytics and

forensics application domains. The key contributions which are outlined below

mainly focus on foreground/background segmentation and COD.



CHAPTER 1: INTRODUCTION 4

1. Design of an edge enhancing smoothing filter

This thesis contributes with the novel design and implementation of a filter

that enables the enhancement of edge features of an object. The proposed

filter originated while designing a closed foreground contour segmentation

algorithm implemented for foreground object extraction. To extract gra-

dient features the image should be pre-smoothed for noise reduction with

a carefully chosen linear filter that would not degenerate edges. It is well

known that the Gaussian filter does not respect edges; whilst on the other

hand a truncated sinc filter over-enhances them. Hence a filter that would

lie between the Gaussian and the sinc filter was designed and implemen-

ted. Its ability to enhance edges in foreground object extraction is proved

through detailed experiments.

2. Closed foreground contour segmentation with shadow elimination

As it was mentioned earlier prerequisite for most of the COD systems is

moving silhouette segmentation. Consequently the success of a COD system

depends on the successful foreground object segmentation. A key contribu-

tion of this thesis is the novel design, implementation and testing of a closed

foreground contour segmentation algorithm. The approach proposed is pro-

ven to be robust to gradual illumination changes, handles specific dynamic

background scenarios, reduces significantly the cast shadows and ensures the

extraction of whole silhouettes. Instead of using the conventional colour pixel

values as features for background modelling, the proposed method utilises

the unique properties of the pixel value gradient extracted by the use of the

proposed edge enhancing filter and the phase congruency features to extract

the foreground contours. These contours are reflected on the corresponding

edge images to isolate the edges that belong to foreground silhouettes, thus

refining the crude contours. An additional contribution of this method is the

processing of the refined contours for noise reduction using colour features

and a classifier. To ensure closed contours the edges are extended and closed

via anisotropic diffusion, which has not been used previously in literature as

a post-processing step in foreground segmentation.

3. Viewing direction estimation of pedestrians

Viewing direction estimation refers to the direction that a pedestrian faces

while moving in the scene. It plays an important role in low resolution
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surveillance environments where tasks as gaze tracking or head orientation

estimation could be assisted by body orientation estimation. By extension,

interaction between two or more people could be expressed by the direction

that their bodies are facing. However, in this study, the viewing direction

estimation is employed for the purpose of COD. It is common sense that the

location of carried objects and their visibility depends on the position of the

viewer in relevance to the position, and moving direction of the pedestrian.

Therefore it was vital to devise a robust method for viewing direction estima-

tion. The most common way for direction estimation is to use histogram of

oriented gradients. However, the proposed direction estimation stays away

from complex feature descriptors and develops simple features based on the

geometry of the upper part of human silhouette. Though seemingly simple,

it is proven that the method attains a high level of accuracy in classification.

4. Carried object detection

A major contribution of this thesis is a robust, novel, carried object detec-

tion approach that utilises the above mentioned key contribution on viewing

direction estimation and incremental original research ideas. The proposed

COD system is one of the few methods which use colour information to

segment the carried objects. It follows the standard steps used in the state-

of-the-art algorithm proposed by D. Damen and D. Hogg [34], namely, the

estimation of moving direction of humans, construction of human-like tem-

poral templates, and their comparison with the best matching view-specific

exemplar. However each step is approached from the advantageous view-

point that colour offers, thus improving the traditional steps used in prior

literature. In the light of new information the segmentation of carried ob-

jects becomes more accurate and easier to distinguish from body parts. The

experimental results show that the proposed COD is capable of achieving a

higher level of accuracy than the state of the art COD approaches.

5. Carried bag type recognition

A natural extension of COD is carried bag recognition. It is known that

object classification is a challenging task and hence the design of a gene-

ral carried object recognition algorithm would be difficult to address. For

this reason it is assumed that in the environment that is monitored, people

mostly appear carrying objects of a particular type, i.e. a bag / piece of

luggage. Thus, it is possible to classify the bags/luggage by taking into ac-
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count their position in relevance to the body of the person that caries them.

This approach classifies the luggage into 5 categories and attains satisfactory

performance. The method could be greatly enhanced in the future by the

shape features of carried objects.

1.3 Thesis Structure

For clarity of presentation the thesis is organised into seven chapters and additional

experimental results and other supporting material are included in the appendices

as appropriate.

Chapter 2 introduces the reader to the topic of COD through a detailed review

of current literature. The chapter also includes a review of the most popularly

used foreground/background (or moving object) segmentation techniques since

they provide the underlying fundamental algorithms required for robust COD.

Chapter 3 explains in detail all fundamental theoretical and mathematical

concepts required for understanding the original ideas and approaches proposed in

the contributory chapters of this thesis. The chapter starts with the description of

two benchmark algorithms, one on COD and the other on foreground/background

segmentation, and subsequently continues with a presentation of theoretical pre-

liminaries that cover numerous topics.

Chapter 4 is the first contributory chapter of this thesis and presents original

research in foreground/background segmentation. It describes a novel approach

for extracting closed foreground contours and eliminating cast shadows. Within

the proposed framework a novel edge enhancing filter emerged and is thus formally

presented.

Chapter 5 initially presents a number of possible improvements to the bench-

mark COD algorithm and continues with proposals to achieve fully automated

operation and grater usability of the algorithm. The latter is achieved by the

introduction of an automatic viewing direction estimation algorithm and carried

bag type recognition system.

Chapter 6 proposes a novel method for COD by using colour information.

The method follows the standard steps taken in the state-of- the-art algorithm

approaching them from the point of view facilitated by colour information.

Chapter 7 summarises the research presented within the thesis drawing overall

conclusions. It also suggests possible future improvements and enhancements.

Appendices provide with additional experimental results and pseudocodes.



Chapter 2

Literature Review

The literature review focuses on the two major tasks that this thesis deals with.

While the first is concerned with COD in video, the second relates to moving fore-

ground object segmentation. Early examination of approaches for COD revealed

that the results of COD are highly dependent on foreground object segmentation.

Successful implementation of the latter will lead to successful performance of the

former.

COD literature starts with an insight to gait and motion analysis in subsec-

tion 2.1.1 as they are employed in many COD approached described in subsections

2.1.2 and 2.1.3. The COD review continues in subsection 2.1.4 with methods ba-

sed on silhouette shape analysis in conjunction with neural networks for decision

making. A brief description of COD based upon an event such as an object ex-

change or carried object left in the scene is presented in subsection 2.1.5. Finally,

subsection 2.1.6 describes other important methods for COD.

Since a major contribution of this thesis is foreground segmentation the li-

terature review continues to a presentation of background modelling techniques.

Due to the presence of a large number of background modelling techniques avai-

lable in the literature, it is impossible to accommodate all within this review.

Therefore, only the most popular and efficient schemes based on statistical back-

ground modelling are presented in his chapter. A popular background modelling

approach based on a Mixture of Gaussians [130] is described in subsection 2.2.2

followed by a summary of the proposed improvements. Several strategies presen-

ted in subsection 2.2.3 if followed, can improve the segmentation accuracy and

robustness of background modelling techniques. These involve Markov Random

Fields (MRF) for segmentation improvement, background modelling with multiple

complementary models to maintain the background when new objects are inserted

into the scene and background modelling with texture features to address dyna-

mic background scenarios. Lastly the most recent approaches are summarised in

subsection 2.2.4

7
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Figure 2.1: An example of Motion Energy Image and Motion History Image in
second and third image respectively [8].

2.1 Carried Object Detection (COD)

2.1.1 Gait and Motion Analysis

Motion analysis, gait and action recognition are the forerunners of COD used in

many succeeding applications to detect the carrying status of a pedestrian. Mo-

tion analysis can reveal the periodic attributes of motion exhibited by humans

or animals which separated them from objects with constant motion such as ve-

hicles [30, 31]. Further the motion of different parts of the same object could be

evaluated: for instance separate examination of motion of upper and lower limbs

could show if the periodic characteristic of any of them ceased to exist because of

the presence of a carried object [55]. Gait investigation could disclose information

about the gender and even the identity of a person [84, 83]. An example of a

carrying status detection based on gait is shown in [133] where the average human

gait is convolved with a bank of Gabor filters of different scales and orientation

and classified as carrying a briefcase or not with a general tensor discriminant

analysis method developed by the authors. However this method has not been

tested extensively on a COD dataset but only on a gait identity dataset.

Human movement and pose recognition by analysis of different types of tem-

poral templates that encode motion over time [35, 8, 15, 64, 55] could lead to

detection of carried objects as it will be shown in subsection 2.1.2. A. Bobick and

J. Davis in [8] and [35] introduce the idea of temporal template as a vector image

that is obtained by accumulating binary images which represent a person’s move-

ment over time. Two different types of temporal templates are proposed in [8] and

[35] and are referred as Motion Energy Images (MEI) where all the binary images

are united to one image or Motion History Images (MHI) where the cumulative

image has a variation in intensity of the pixels based on the time of the execu-

tion of a movement (Figure 2.1). These temporal templates are used for action

recognition by matching their Hu moments against a set of training examples that

encode a series of aerobic movements.

Another temporal template similar to MHI named timed Motion History Images

(tMHI) encodes in it actual time, making the MHI independent of frame rate [15].
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This tMHI is combined with the orientation of its gradient vectors which makes

it capable of identifying the direction of local and global motion.

2.1.2 COD Based on Motion Analysis, Temporal

Templates and Body Main Axis

A good starting point is “W4: real-time surveillance of people and their activi-

ties” in [55], which proposes a framework for a system that: detects foreground

objects, classifies the detected objects into humans and non-humans, tracks mul-

tiple humans even if they appear as a group, tracks human body parts, recognises

interaction of humans with objects, and detects carried objects. Commonly it is

an integral system, presented through a number of publications over a period of

time [56, 30, 31, 53] (described subsequently), which follows all standard steps

required to achieve carried object detection in a video sequence [64].

The initial publication is “W4: Who? When? Where? What? A Real Time

System for Detecting and Tracking People” published in 1998 by I. Haritaoglu et

al. [56]. The authors proposed a tracking technique that relies on monochromatic

information, particularly useful for night-time or infrared surveillance. Appea-

rance models of people are constructed during their motion to facilitate tracking

under occlusion. These models are also useful to recognise an individual’s actions

with reference to an object.

Initially a foreground region detection is performed by simple pixel based thre-

sholding of the absolute differences of the current pixel from the maximum and

minimum values of that pixel observed over time. All other traditional post pro-

cessing methods, such are morphological processing for noise removal, connected

component analysis etc., are applied. Afterwards, a motion model is constructed

for each foreground object to predict their motion in the subsequent frames. If

there is significant overlap between the predicted bounding box of the object and

the bounding box in the current frame, then a match is found. Beyond that, edge

correlation of silhouettes between two consecutive frames is performed to confirm

the match. For tracking under occlusion, local versus global correlation techniques

are preferred; for example for tracking of a person’s head. To address scenarios of

objects merging and splitting after a time interval of combined motion, appearance

models are constructed. Such a model is a temporal textural template defined as

[56]

Ct(x, y) =
I(x, y) + wt−1(x, y)Ct−1(x, y)

wt−1(x, y) + 1
(2.1)

where I(x, y) is the intensity of the foreground pixel, and wt−1(x, y) is the number
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Figure 2.2: An example of temporal textural template developed over time in the
second row and the corresponding frequency temporal template in the third row
[55].

of times that the specific pixel in C(x, y) has been classified as foreground (Fi-

gure 2.2). Having a number of temporal textural templates before merging and

after splitting, it is possible to identify the tracked person by correlating its tem-

poral templates. Aiming at action recognition, an additional cardboard human

model is constructed to track the human body parts.

At the same time, another publication by R. Cutler and L. Davis in [30] propo-

sed the detection of periodic motion by analysing the self-similarity of an object

during its motion. Prerequisite for this method is the segmentation of moving

objects. A self-similarity measure of a segmented object is computed as the sum

of absolute differences between the pixel values of the same object at two different

time points. Subsequently a self-similarity square matrix is constructed for all

available combinations of time points (Figure 2.3). Simple observation and Fou-

rier analysis of the self-similarity matrix reveal the existence of periodic motion

or combination of two periodic motions with different frequencies. As it was later

shown in [31] this method is especially useful for the following tasks: (a) mo-

ving object classification into humans and non-humans (Figure 2.3), (b) defining

the number of people in a group based on the number of different frequencies

that occur, (c) action recognition and carried object detection by analysing the

periodicity of upper limbs, and (d) person recognition by their gait for tracking

purpose.

Another problem that could arise in a system as W4 is the separation and tra-

cking of people when they move in groups. Subsequent publication of I. Haritaoglu

et al. proposes a complementary to W4 part “Hydra” [54], a system for multiple

people detection and tracking within a group. To that end “Hydra” utilises local

shape features by analysing the boundary of an object, global shape information
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Figure 2.3: Self-similarity matrices for all combinations of available time points.
In the left is the self-similarity matrix of a walking pedestrian while in the right
is of a moving car [31].

(i.e. the inherent structure of human body), and appearance information (e.g.

head texture). First it analyses the boundary of the group silhouette to find the

heads of the people in the group, and then it takes the vertical projection histo-

gram of the group silhouette to find the local minima that are used to separate the

individuals from each other. The pixels of the group shape area are assigned to

each human silhouette that is comprised of them, according to their path distance

from the torso main axis. People in groups are tracked according to their heads.

Now that all the necessary steps are taken to segment and recognise moving

people and ensure that they are tracked effectively even in groups, it makes sense

to apply carried object detection. The project that tackles this issue is Backpack

proposed in [53] of I. Haritaoglu et al. Backpack is the final touch of W4 in [55]

and uses attributes of the human silhouette symmetry and periodic motion to

detect carried objects. The idea applied here is, that anything that violates the

symmetry around the body axes and is not part of the body comprises a foreign

object [53, 55].

Initially, the background subtraction is performed to obtain the binary moving

silhouette, and a major axis which traverses the centre of the body is determined

by using Principle Component Analysis (PCA). Since the periodic motion of the

person is taken into account, the method as in [30] and [31] is employed for the

calculation of periodicity of the walking pedestrian. Horizontal and vertical pro-

jection histograms are obtained to create their self-similarity plots and calculate

the frequencies. It is worth to note that, in average, 60 projections are needed for

the calculations.

Next step is the recognition of regions which are not symmetric to the major

axis. Usually the parts of the human body are symmetric to the axis, thus, regions

that do not obey this law are marked as carried objects (Figure 2.4-left). It is a

fact that sometimes body parts, like hands and feet, belong to the non-symmetric
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Figure 2.4: Left: Symmetry analysis for COD. Right: Calculation of self-similarity
plots for two horizontal projections to determine if the non-symmetric region exhi-
bits recursive motion. The first similarity plot, in contrast to the second, looks like
the similarity plot of the whole silhouette and therefore exhibits similar motion.
The second plot represents the non-periodic motion of the carried object [55].

regions. To avoid such inaccuracies, a temporal textural template is developed over

time and the detected non-symmetric parts of the template undergo periodicity

analysis based on two horizontal (because motion is exhibited by upper and lower

limbs) projection histograms. The periodicity of the non-symmetric parts (in fact

of the horizontal projection histograms that the parts belong to) is compared to

that of the person that they belong to. If the periodicity of the shape is similar

to the periodicity of the body then it is classified as a body part, otherwise it is

considered as a carried object (Figure 2.4-right).

According to experimental results of Haritaoglu the performance of the Back-

pack is satisfactory, but later tests conducted by Damen and Hogg reveal some

weaknesses in Haritaoglus method [33]. These include the facts that, the axis not

always crosses the centroid of the body and very frequently parts of the body are

detected as carried objects. Moreover the precise estimation of the frequency of the

moving person needs at least 12 walking cycles, requiring around 200 frames (17

frames each walking cycle). As mentioned by Javed and Shah, the PCA method

for the specification of major axis is not sufficiently efficient as large carried objects

cause a significant change in the body shape and consequently the dislocation of

the axis [64].

Javed and Shah in [64] proposed another integral system that involves all

the prerequisite steps for COD. These are namely: moving object detection by

background subtraction, cast shadow removal, object tracking and classification,

and finally COD. [Note: Since an example of such a system has already been

described, the rest of the paragraph concentrates on COD method only.] The

authors adopt the technique of the temporal template to create the Recurrent

Motion Image (RMI). In contrast to the aforementioned temporal templates, RMI

aims at recording the regions of the moving object that perform kinesis. In this
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Figure 2.5: From left to right: Detection of a moving person, placement of the main
axis and detection of non-symmetric regions in the silhouette, the RMI model, and
the detected object after RMI consideration [64].

way the RMI is used for the classification of moving objects and for COD. Javed

and Shah detect the position of the head in order to draw a vertical axis which

starts from the head and ends at the feet. Subsequently, symmetry analysis is

performed to spot the non-symmetric regions of the silhouette, similar to the

approach proposed by I. Haritaoglu in [53]. Since the RMI maps the moving parts

of the body, a simple comparison of the non-symmetric region with the one in

RMI will show if the non-symmetric region belongs to the moving parts or not. In

the case that the detected object is non-recurrent, then it is labelled as a carried

object (see Figure 2.5).

One of the latest approaches, attracted by the body main axis properties is of

Y. Qi, G. Huang and Y. Wang [111]. A Support Vector Machine (SVM) classifier

is trained with vectors containing the distance of each point on the contour of the

binary silhouette from its main axis. Initially, a background subtraction is perfor-

med and the binary silhouette is morphologically processed so that the contour of

the shape is clear enough for further analysis. Next, the main axis is computed

and all the images are resized to the same height. Finally the characteristics of the

contour of the silhouette are forwarded to the SVM for the classification. Once

the person is classified as carrying an object or not, the location of the object

(possibly a bag) is specified.

The latest proposition for temporal template employment for COD and proba-

bly the one with the best performance is of D. Damen and D. Hogg [33, 34] which

is described in detail in chapter 3.

2.1.3 Gait Analysis Based Approach

An example of an approach that bases baggage detection on motion, is the method

proposed by C. BenAbdelkader and L. Davis [7]. The concept is the analysis of

human gait and body shape to determine the presence of carried object, given the

assumption that the walking manner and the body shape changes under a carried

load. The authors concentrate on two types of carried objects: objects situated in

the region of arms and in the region of legs. This fact prompts the segmentation of

body into four regions with one of them located at the upper part of the body and
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Figure 2.6: Helical signature construction by stacking samples that lie on the same
vertical position through the time [112].

the remaining three at the lower part. The periodicity and amplitude of the width

of segmented parts are obtained after analysing a sequence of binary silhouettes.

After the characteristics (periodicity and amplitude) of naturally walking person

are recorded, several constraints, in terms of the period of gait and the recurrent

motion of arms and legs, are imposed for the four regions. If any of the constraints

is violated then the person is assumed to carry an object. The above method differs

from the one of I. Haritaoglu in [53], as it does not perform symmetry analysis.

A similar approach that uses periodicity information is described in [124] by

T. Senst et al., focuses on placing people under two categories: carrying a bag

or not. The bounding box of the tracked foreground silhouette is divided into

N = 25 non overlapping blocks and self-similarity plots as in [31] are calculated

for each block. To make the similarity plots gait invariant, periodicity dependency

measure between two blocks is calculated as the maximum of the absolute relative

correlation of the similarity plots. The periodicity dependency measures for all

blocks form a feature descriptor that is forwarded to SVM for classification of

individual into two categories as having baggage and not. The highest accuracy

achieved was 72.5%.

The contribution of Y. Ran et al. in [112] exploits the periodical attribute

of human motion to construct helical signatures that hold important information

about gait rate and stride length as shown in Figure 2.6. While the accuracy of

the other methods is affected by erroneous foreground segmentation and tracking

the development of helical signatures does not require foreground segmentation.

Analysis of the change in symmetry or frequency of the helix can reveal if a

person carries a bag in one or two hands, or if an object is attached to his/her

legs or upper body. Beyond carrying condition detection, the authors show how

the helical signatures can be utilised for robust pedestrian segmentation when the

background is complex and how to handle occlusions.

In [36] the authors detect carried backpacks in order to correct the gait curve

for subsequent gait classification. The gait curve is a result of averaging individual

gait curves that occur over time. Each gait curve contains a set of points which

are space normalised by subtracting contour points of a binary silhouette from its
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body main axis. Series of features related to the collation of the curve in the are

of human back are thresholded to detect the backpack.

2.1.4 Silhouette Shape and Neural Network Exploitation

In [17] and [16] A. Branca et al. propose a method based on wavelet analysis

and neural network for detecting intruders in archaeological sites and the carried

by them objects. To do this, they first concentrate on people recognition among

other moving objects. The sequence of images in a video facilitates the extraction

of moving objects and a collation with the background gives the outline of the

moving object. Next, Harr wavelet transform is applied to the segmented binary

silhouette in order to decompose the image into subbands. Each of the subbands

contains different characteristics/features of the image in frequency and orientation

domain. After 3-level decomposition a subband of the last decomposition level is

selected and forwarded to a trained, three layer neural network. The output of the

network processing is true or false depending on if the moving object is a person

or not. The extended edition [16] of A. Branca et al. adds to the existing neural

network other two trained, neural classifiers of the carried objects that are to be

recognised. The detected, greyscale human silhouette is scanned using a mask of

the object in order to detect the carried item.

The work of H. Nanda et al. [99] is another example of detecting carried

objects using general human appearance and neural network. The proposed neural

network has two layers; one hidden with 20 sigmoid nodes and one output layer

with a linear node. Scaled Conjugate Gradient training method has been chosen

as the best one for training the network. Initially, foreground segmentation and

object tracking is performed and a sequence of aligned and rescaled blobs are

extracted for each moving object. Each blob is processed separately and is directly

used as input to the neural network which classifies it as pedestrian or pedestrian

with distorted shape. The majority of the classification results per subject will

indicate the final result. The method is camera view point invariant and the

authors report 81.3% classification accuracy.

2.1.5 Detecting People Acquiring Exchanging or Leaving

Objects

N. M. Ghanem and L. S. Davis [47] approached the topic of baggage detection

in terms of finding the changes in the appearance of pedestrians before entering

and after leaving a Region of Interest (ROI). Similarly to other methods the sub-

ject is tracked and the foreground is extracted using the Codebook Background
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Subtraction (CBGS) method. Subsequently three types of templates are created

to spot the difference in the appearance “Before” and “After” entering the ROI.

These templates are: the occupancy map which is the common frequency tempo-

ral template of a tracked pedestrian, the codeword frequency map that records the

number of codewords (different colour values this pixel took through the time) for

each pixel that belongs to foreground, and the colour histogram intersection map

where the intersection of the colour histograms is calculated for the “Before”-

“After” codebook templates. The next step is the calculation of the difference

between each pair of maps. The result is: the Occupancy Difference Map, the

Codeword Frequency Difference Map and the Histogram Intersection Map. The

difference feature maps are segmented into a number of blocks of different sizes

partially covering each other. Each block is represented by the averages of the

difference maps values they enclose, thus achieving a grouping of the features.

Consequently the number of features for each tracked person reaches high levels

and the selection of the most significant features is needed. For this purpose the

boosting technique, AdaBoost, is employed. After the selection of the strongest

features the SVM classifier is trained to detect backpacks and suitcases. An ave-

rage of 90% recognition rate was achieved.

In [27] Chi-Hung Chuang et al. addressed baggage detection when bag ex-

change occurs between two individuals via people tracking and calculation of Ra-

tio Histograms (RH). The ratio histogram is a fraction of the colour histograms

of each person before and after the bag exchange occurs. The numerator could

be the histogram before the exchange and the denominator the histogram after

the exchange and vice versa constructing it this way two different RH per person.

The detection of missing colours between the before and after conditions in one

of the two RH leads consequently to the detection of a carried object and answers

to the question “who, out of the people involved was carrying the bag before and

after the exchange”.

2.1.6 Other Methods

The method of R. Chayanurak et al. in [23] utilises the star skeleton, which de-

fines the regions representing the limbs and other protruding objects. Initially the

contour points of the silhouette are defined and a Delaunay triangulation of the

shape is constructed. The parent nodes of the spanning tree formed are averaged

into a centroid, which is connected to the most distant points on the silhouette’s

contour forming a star skeleton (Figure 2.7). The limbs of the stars are tracked

and the decision is made by evaluating the level of movement the identified limbs

perform. The limb that exhibits the lowest motion is characterised as a carried
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(a) (b) (c)

Figure 2.7: The procedure of designing a star skeleton involves the Delaunay
triangulation of the contour points (c), the localisation of the centroid from the
parent nodes (b) and the calculation of the most distant points from the centroid
(a) [23].

object. However, the experimental results presented are not adequate to support

the performance efficiency of this method. The work of A. Elgammal in [39] sug-

gests that the dynamic shape of a human silhouette through its walking cycle can

be modelled as a manifold in 3-dimensional space. This means that if the sil-

houette is represented as a feature vector in a high dimensional domain then the

dimensionality of that vector can be reduced in such a way that it belongs to a 3-

dimensional manifold. The vector that represents the shape of a silhouette is as a

distance function of pixel points from the closest point on the silhouette’s contour.

A non-linear dimensionality reduction method has been used to embedding the

manifold to 3-dimensional Euclidean space. Figure 2.8-left shows an example of

embedded manifold for 10 walking cycles of a side view silhouette. Each cycle

consists of sample points that correspond to shape samples taken from the image

gait cycle. The nearby points on the manifold are grouped with K-means cluste-

ring to establish the representative points of each shape sample. Complementary

manifolds can be constructed for other views of the silhouette.

The authors also propose a non-linear mapping function, based on Radial Basis

Function interpolation that takes the points from the 3-dimensional embedding

space to the higher dimensional visual space. The goal of this procedure is the

reconstruction or refinement of a degenerate input silhouette shape by detecting

the corresponding closest point on the embedded manifold and recovering the

intrinsic body shape using the mapping function. Such an example of body shape

reconstruction is shown in Figure 2.8-right.

This method is immediately related to carried object detection as it is shown

in [81] and [82] by C.-S. Lee and A. Elgammal. They form a mapping function

yt = γ(bt; s, v) that maps the body pose bt from the embedding space to the visual

space, given the shape style s and viewing direction v. Given an input silhouette

the algorithm retrieves the closest body configuration from the manifold and fills

any holes in the input silhouette. Once the silhouette’s shape is improved the

procedure is repeated to improve the accuracy of the retrieved configuration. In
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Figure 2.8: Left: An example of gait manifold for 10 walking cycles of side view of
a pedestrian. Right: Two examples of shape reconstruction while preserving the
viewing direction[39].

the same iterative manner the carried objects are detected as outliers of the best

matching configuration retrieved.

Research that tackles the typical negative impacts of foreground-background

segmentation on carried object detection is presented in [123] by T. Senst et al.

They proposed modelling the motion of bounding boxes detected via optical flow

as a Gaussian probability function. A bounding box exhibits a uniform motion

with one main direction and so do the torso, head and any carried objects. Non

uniform, periodic motion is performed by limbs which can be differentiated by the

rest of the aforementioned areas by comparing their motion with the motion of

the bounding box. A uniform motion model of an average person is constructed

to classify the uniform motion of carried objects from the uniform motion of the

torso.

One of the most recent approaches combines low level region detectors as op-

tical flow, mean shift colour segmentation, occlusion boundary based moving blob

detector [37]. The combined detected regions are classified with SVM according to

a number of features related to shape of the region and its relation to the human

silhouette.

Another up to date method of A. Tavanai et al. [134] combines 3 different

probabilities of presence of a carried object (CO) related to, the geometric shape

of a common CO, continuous spatial relationship of person and the CO, significant

overlap of the CO with the found protrusions. The regions that maximise the

combined probability are considered to be a CO. The experiments showed that

the CO localisation achieved is more accurate than the one of D. Damen & D.

Hogg.
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2.2 Moving Foreground Extraction

In video analytic applications moving object segmentation constitutes the first

step in a sequence of operations that aim at the analysis of moving objects. Fore-

ground extraction can be performed by background subtraction methods, which

most of the time involve background modelling, background initialisation, back-

ground maintenance and foreground segmentation modules. Background subtrac-

tion means extracting the foreground by subtracting the current frame from a

reference background frame or a background model. Since the background is not

static and objects are added and removed from the background scene constantly, a

single reference background frame is not sufficient. Therefore, more sophisticated

background models have been developed that are updated over time to handle va-

rious extended situations like scene illumination changes, cast shadows, dynamic

background, camera jitter, foreground/background similarity, moving background

objects, inserted background objects, PTZ cameras and night time videos. Most

of the above issues are addressed in a significant number of publications, with 360

of them cited by T. Bowmans in his comprehensive survey [10].

Before starting the review it should be noted that the reader can refer to the

surveys on background subtraction methods [10, 12, 9] published by T. Bouwmans

who maintains a website with references to most of the influential background

subtraction techniques (sites.google.com/site/backgroundsubtraction/overview 1).

According to T. Bouwmans the traditional background modelling techniques can

be classified into five basic groups as presented in Table 2.1. The shaded methods

and their improvements will be discussed in this section.

2.2.1 Basic Background Modelling

One of the very first examples of background subtraction was developed to track

piglets in a pen [95]. The method was based on frame differencing; that is sub-

traction of the current frame from a reference frame, which is updated over time

according to the following scheme.

Bt =

{
Bt−1 + 1 if It > Bt−1

Bt−1 − 1 if It < Bt−1

(2.2)

where, Bt is the value of a pixel in the reference background at a point of

time t and It is the value of the pixel in the current frame. This is the method

of a running median, where the reference image converges to a median, after a

number of iterations. It is a computationally inexpensive method and only one

1The references given in each group might not always be accurately classified into it.
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Table 2.1: Categorisation of background modelling techniques.

Basic Background
Modelling

Average - Running Average [103]

Median - Approximated Median
[95]

Histogram over time [66]

Statistical
Background
Modelling

Density functions

Single Gaussian [147]

Mixture of Gaussians [130]

Kernel Density Estimation [40]

Machine learning

Support Vector Machine

Support Vector Regression (SVR)

Support Vector Data Description

Subspace learning

Principal Components Analysis

Independent Component Analysis

Incremental Non Negative Matrix
Factorisation

Background
Clustering

K-means

Codebook

Basic Sequential Clustering

Neural Network
Background
Modelling

General Regression Neural Net-
work

Self Organizing Neural Network
[88]

Background
Estimation

Wiener Filter [136]

Kalman Filter

Chebytchev Filter

image needs to be stored every time. The median can also be calculated by the

Least Median of Squares method [141] or the M-estimators technique [153] that

both require the storage of N ≥ 3 frames. A recently proposed histogram based

median estimation requires the storage of a significantly higher number of frames

(15-91 frames), which however does not affect the real time performance [62].

Another background subtraction method of the same category is the estimation

of the background model as an average or a running average of frames. The

simplest calculation of the average background model, which can be updated over

time is expressed by the following equation:

Bt(x, y) = aIt(x, y) + (1− a)Bt−1(x, y) (2.3)

where a is the learning rate, It is the current frame and Bt is the background

model at time t. The foreground F can be segmented by thresholding the diffe-

rence between the current frame and the background model with a threshold T
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(Equation 2.4) [103, 105, 158].

F (x, y) =

{
1 if |It(x, y)−Bt(x, y)| < T

0 otherwhise
(2.4)

The average background model could be conveniently applied in colour videos as

well, where each colour component is updated separately. If the HSV colour space

is employed then it is possible to detect the shadow pixels by thresholding the

ratio IVt /B
V
t of the value component [105]. Another factor that could impair the

performance is brightness changes that may occur. To reduce that impact, the

distance of the mean brightness µIt of a region of It from the mean brightness

µBt of the region of Bt can be added to each colour channel c according to the

following equation [158]

Bt(x, y, c) = aIt(x, y, c) + (1− a)Bt−1(x, y, c) + (µIt − µBt) (2.5)

This holds if the RGB colour space is used for background modelling, where each

colour component includes brightness information. Two recent methods which

follow the same baseline attempt to improve the method by incorporating spatial

information [25] or allow the learning rate a adapt whenever a new object is

introduced to the scene or when the background illumination changes fast [69].

Histogram based background modelling is the last example of basic background

modelling methods. In its simplest approach, the history of a pixel values form

a histogram where the value with the highest frequency is accounted for by the

background [66, 128]. Because the history of values of the pixel that belongs to

background vary (e.g. due to illumination changes) sometimes it is hard to find

a local maximum in the histogram. Therefore, the frequencies of nearby values

are organised into one bin [66, 128, 65]. Since the noisy video input affects the

histogram appearance some methods suggest frame filtering with homomorphic

[79] or a simple smoothing filter [78]. The homomorphic filter clearly outmatches

the smoothing as it moderates the illumination and reflectance variation across

the scene. The number of fames that should be stored to successfully model the

background varies from 45 frames reported in [78] to 750 frames reported in [66].

A common way to update the background is to update the stored frames in a first-

in-first-out order and reconstruct the histogram to find the new local maximum

[78].

These are the basic background modelling techniques which are computatio-

nally efficient and were mostly developed for traffic surveillance systems where

challenging scenarios such as dynamic or cluttered background are not so frequent.

For the running median and average background modelling methods the back-
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Figure 2.9: An image with a monitor that flickers and scatter plot of red and green
components of a pixel on the screen [130].

ground is usually initialised with the first frame of the video sequence, which

means that the foreground detection begins from the first frame. This brings up

the issue of background initialisation to solve the problems that arise from an

inaccurate initial background. To make the background model more robust to

dynamic background scenarios and scene illumination changes, statistical back-

ground modelling methods have been developed and are described in the next

section.

2.2.2 Statistical Background Modelling

The statistical background modelling is a reliable and well studied method for

modelling the background, as it collects and updates statistical information over

time. It is comprised of methods involving background modelling with single or

mixture of Gaussian distributions and their improved and generalised versions,

non-parametric density estimation for background modelling, usage of machine

learning (SVM or SVR) to determine the function that models the background,

subspace learning using PCA or Independent Component Analysis (ICA). Since

each of these approaches features a large number of publications, it would consume

many pages and effort to describe them all. Therefore only the techniques directly

related to this research will be presented in the following sections.

Background Modelling with Gaussian Distributions

The background modelling by a single Gaussian is closely related to background

modelling with a running average of N frames. C. Wren et al. [147] proposed to

model the history of each colour component for a pixel by a single Gaussian distri-

bution, to handle unstable backgrounds. To avoid storing N frames at all times,

the parameters (mean and variance) of the Gaussian distribution are updated

according to the following equations,

µt(x, y) = aIt(x, y) + (1− a)µt−1(x, y) (2.6)
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σ2
t (x, y) = a(It(x, y)− µt(x, y))>(It(x, y)− µt(x, y)) + (1− a)σ2

t−1(x, y) (2.7)

where It is the current pixel value, µt is the current mean, σ2
t is the current variance

and a is the learning rate. The higher the a, the faster the background will be

updated. A pixel belongs to the background if its current value It is within a

certain distance from the mean, otherwise it belongs to foreground. This method

can be applied on various colour spaces and covers backgrounds where gradual

illumination changes take place.

Imagine a situation where the background is dynamic and involves more than

one colour, such as waving tree leaves, where the green leaves and blue sky occur

interchangeably. Another example is a flickering screen as shown in Figure 2.9.

The scatter plot of the red and green channels of a pixel for a period of time

show that there are two separate distributions that describe the history of pixel

values. This leads to the conclusion that a single Gaussian is not sufficient to

model the background. N. Friedman and S. Russell [46] first noticed that model-

ling the background as a Mixture of Gaussian (MoG) distributions would solve

shadow problems in traffic surveillance. They assigned shadows, road and cars to

three different Gaussian distributions where their parameters were updated with

incremental Expectation Maximisation (EM) method to avoid storing N recent

frames that a traditional EM requires.

C. Stauffer and W. Grimson (SG) [130, 129] generalised the approach of N.

Friedman and S. Russell to cover dynamic background scenarios. The background

is modelled with up to 5 Gaussian distributions that are updated with on-line

K-means approximation instead or EM. The Gaussian Mixture Model (GMM)

exhibits a learning capability that would assist except for modelling backgrounds

changing lighting conditions, dynamic background scenes with periodic motion,

such as waving trees or sea waves. Their algorithm became a state-of-the art

that has been improved in various ways by the research community. A detailed

description of their approach is given in section 3.2.

A summary of Most Important Methods for Statistical Background

Modelling

Following a chronological order P. KaewTraKulPong and R. Bowden in [68] re-

introduced the EM algorithm to update the parameters of the MoG and suppressed

the shadow by thresholding a colour distortion metric. A similar shadow removal

technique was presented by T. Horprasert et al. in [60] who proposed a statistical

non Gaussian background learning method. Later the same authors with A. El-



CHAPTER 2: LITERATURE REVIEW 24

gammal proposed no-parametric background modelling by using a kernel density

estimation [40], which became very popular and was improved by Z. Zivcovic in

[161] in terms of memory efficiency and accuracy.

T. Bowmans in his survey on “Background Modelling using Mixture of Gaus-

sians for Foreground Detection” summarises and compares the aforementioned

methods and many others which aim to improve the GMM [12]. Among them the

most important ones will be discussed in the next lines. Similar to A. Elagmmal,

A. Mittal and N. Paragios used an adaptive kernel density estimation and optical

flow for motion based background subtraction [96]. They introduced normalised

colour representation, which was later adopted by H. Wang and D. Suter in [139],

where the authors tackled some practical issues of the GMM and developed in [140]

the first integrative system, SACON, that handles a variety of situations where

the original GMM fails. In [63] O. Javed et al. introduced gradient information

into GMM to remove spurious foreground objects created by illumination change,

ghosts or shadows. The paper of F. Kristensen et al. [77] studied the impact

of colour space selection on background modelling, and concluded that YCbCr

colour model gives the best results. Spatial and colour coherency was taken into

account by authors in [150] and in ASTNA system of M. Cristani, V. Murino in

[29]. MRF based approach described in [121] was tested by T. Bowmans in his

survey and was found to cause the least errors.

However, after resolving all the primary weaknesses of the GMM, the need

for more complex methods that would deal with more challenging dynamic scenes

became more prominent. Two of the early approaches for dynamic scene modelling

are presented by H. Yang et al. in [149], and J. Zhang and C. Chen in [154]. The

former paper suggests the combination of two GMMs for modelling the gradually

and suddenly changing pixel values, while the latter one utilises a support vector

machine (SVM) classifier over a set of statistical features such as mean, standard

deviation and correlation to decide if the pixel belongs to the dynamic background

or not. Other methods for background modelling of dynamic scenes is of Z. Wang

et al. in [142], a generalised SG background subtraction of A.B. Chen and V.

Mahadevan in [20], and Type-2 fuzzy GMM of T. Bowmans and F. El Baf in [11].

2.2.3 Strategies Followed to Improve the Results of

Background Modelling

Several strategies can be followed to improve the original results of the GMM.

These are the employment of MRFs for accurate noise free segmentation, main-

tenance of multiple backgrounds to recover quickly the background when the in-

serted static objects start moving and the utilisation of texture features to model
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Figure 2.10: From left to right: the first image is the current frame, the second
image is the probability map as a result of MoG background modelling, the fourth
image is the thresholded probability map, and the fourth image is the segmentation
result from MRF framework described in [22].

Figure 2.11: First and second order MRF with 4-neighbour and 8-neighbour
connectivity respectively.

dynamic backgrounds.

MRF for Accurate Foreground Segmentation

The reason behind using the MRF method is because it imposes a kind of spatial

interactions between the pixels which are modelled as isolated entities. Spatial

dependence favours smooth foreground/background segmentation without noise

specks and with complete foreground shapes. The MRF framework can be ap-

plied to almost any type of background model which is expressed in terms of pro-

babilities. An example image, taken from [22], that displays the effects of MRF

on foreground/background segmentation in contrast with a simple thresholding is

shown in Figure 2.10.

The process of applying MRF for foreground/background segmentation is well

explained by K. Schindler and H. Wang [121], and by Y. Sun et al. [131]. A

current frame can be considered as an MRF which consists of an undirected graph

with frame pixels X = {x1...xn} considered as nodes and a neighbourhood system

{N1...Nn} = N ⊂ X with Ni the set of neighbours that surround each node

xi. A set of labels L = {l1...lk} = {“bg”, “fg”} for a background/foreground

segmentation problem are the potential assignments to each node. Supposed f =

{f1, ..., fn} is a set of labelling configurations defined on the lattice X such that

fi = f(x),∀x ∈ X, then fi can be regarded as a function that assigns a label

l ∈ L to the pixel x ∈ X, [86, 71]. Let F = {F1, ..., Fn} be a set of random

variables defined in the set X where each variable Fi can take a value fi in L. The

probability that a random variable Fi takes the value fi is denoted by P (Fi = fi)
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or else P (f). The P (f) follows Gibbs distribution and as such P (f) ∝ e−E(f),

where E(f) can be written as follows:

E(f) =
∑
xi∈X

Di(fi) +
∑

xi,xj∈N

Vi,j(fi, fj) (2.8)

where Di is the data cost function, and Vi,j is the smoothness cost or clique

potential function that defines the interaction between the neighbouring pixels.

The neighbourhood of a pixel can be regarded as 4-connectivity or 8-connectivity

with cliques defined over 2 or three pixels respectively as shown in Figure 2.11.

The configuration that minimises the energy function E(f) is the one that solves

the segmentation problem by labelling.

Let us take the basic example of background modelling with a running average,

where the foreground F can be segmented by thresholding the difference between

the current frame It and the background model Bt with a threshold T as follows:

F (x, y) =

{
1 if |It(x, y)−Bt(x, y)| < T

0 otherwhise
(2.9)

The smoothness cost in its simplest form can defined as follows:

Vi,j(fi, fj) =

{
s if fi 6= fj

0 if fi = fj
(2.10)

where the cost is s = aT constant for all neighbouring nodes with different labels

and 0 otherwise. The cost could also vary depending on colour similarity between

the neighbouring pixels as in the approach of L.-Y. Chang and W.H. Hsu [22].

The data cost function can be defined as class conditional probability function as

follows

Di(fi) =

{
− ln(p(It|fi = “bg”) = |It(x, y)−Bt(x, y)|)
− ln(p(It|fi = “fg”) = T )

(2.11)

Sometimes to define the energy function several data costs and smoothness

costs are accumulated [107, 22]. For example Y. Zhou et al. [159] formed an

image pyramid and defined smoothness cost functions on cliques that are formed

between two neighbouring pixels at the same scale, two corresponding pixels at

adjacent resolution scales, and two corresponding pixels at two consecutive frames.

S.-Y. Yang and C.-T. Hsu [150] combined a hybrid feature vector for background

modelling with MRF and V. Reddy et al. [113] used MRF to define the cliques on

an 8-neighbour connectivity node in a process to initialise a background model.

A recent approach for foreground post-processing with probabilistic super pixel

MRF is proposed by A. Schick in [120].
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Background Modelling using Texture Features

Another possible way to model the background is using texture information. M.

Heikkila and M. Pietikainen were the first to introduce texture features like Local

Binary Paterns (LBP) for background modelling [58]. Later, the authors in [85]

used the LBP in conjunction with a codebook representation and a single Gaussian

in an attempt to model dynamic background. Other LBP implementations include

the method proposed by S. Zhang et al. [155] where the authors employ a spatio-

temporal LBP for dynamic background. Further a local dependency histogram

based method proposed by S. Zhang et al. exhibits robustness in scenes with

noise and dynamic background [156]. In [157] the same authors incorporated the

LBP feature along with pixel coordinates and intensity values into a covariance

matrix to ensure local dependency. R. Yumiba et al. employed a spatio-temporal

texture named a Space-Time Patch to address illumination changes and dynamic

background [152].

Multi Layer and Multi-modal Background Modelling

The traditional GMM approach treats all pixels equally and the mean and va-

riance are updated with the same learning rate. H. Yang et al. in [149] presented

the idea of maintaining two background models with different learning rates, with

one monitoring gradual changes while the other sudden and quick changes. The

model learns accurate means and variances, which help in reducing the holes in fo-

reground when the foreground/background similarity is high. Following the above

idea, R. Evangelio and T. Sikora maintained two complementary background mo-

dels to detect the static foreground such as left-objects that would otherwise merge

into the background model after some time [43]. A similar multi-layer background

model was adopted by J. Yao and J.-M. Odobez [151] in combination with colour

and LBP features to handle changes in background due to inserted objects.

2.2.4 Recent Approaches for Background Modelling

Some of the recently developed, most promising methods which are non GMM

are discussed below. ViBe in [6] models the background with a set of samples

rather than pixel probability distributions. The authors propose a background

initialisation from a single frame where the samples of the model are taken from

the neighbouring frames. Subsequently the background is updated randomly fol-

lowing a number of rules. Experimental results show substantial improvement

compared to the state-of-the-art methods with respect to accuracy, memory, and

time efficiency. In [137] M. Van Droogenbroeck and O. Paquot proposed signifi-
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cant improvement of ViBe through several enhancement steps. They introduced

significant noise reduction by hole filling and connected component processing,

and foreground object outline maintenance by inhibiting background propaga-

tion. Furthermore, they suggest substituting the Euclidean distance measure by a

colour distortion metric. The L. Maddalena and A. Petrosino in [88] successfully

modelled dynamic background with a self-organizing neural network that learns

the motion patterns. The method performs real time and is robust to illumination

changes and cast shadows. M. Hofmann et al. proposed Pixel-Based Adaptive

Segmenter (PBAS) which combines some of the characteristics of SACON and

ViBe [59] while Y. Nonaca et al. integrated pixel level, region level, and frame

level processing into their system [101]. They introduced Radial Reach Correla-

tion to address the illumination changes and applied kernel density estimation for

pixel based background modelling.

2.3 Summary and Discussion

This chapter summarised the state-of-the-art and most commonly used approaches

for COD and background modelling for foreground object segmentation. By exa-

mining the literature on COD it became obvious that the results of COD directly

depend on foreground object segmentation.

A general framework that is comprised of a number of standard steps, on how to

detect a carried object given a video sequence was presented. Most of the studied

COD methods, including the state of the art algorithm proposed by D. Damen and

D. Hogg [34, 33] rely on a combination of silhouette and gait analysis algorithms

with the use of temporal templates. Another important method explained is the

representation of the human silhouettes during a walking cycle as a 3-dimensional

manifold to recover their natural shape in the presence of a carried object, which

is detected as an outlier.

The background modelling methods presented relate to basic and statistical

background modelling techniques. Special importance was given to background

modelling with a mixture of Gaussian distributions as it is the most popular and

widely studied method due to its real time performance, and low memory requi-

rement. The improvements proposed to the MoG were summarised and general

strategies to improve segmentation accuracy and robustness of the algorithm were

presented.

The chapter closes with a summary of the most recent background modelling

methods.



Chapter 3

Theoretical Preliminaries

This chapter presents all theoretical preliminaries that are required to unders-

tand the novel concepts and methodologies proposed in the chapters that follow.

It begins with introductions to the state-of-the-art COD method of D. Damen

and D. Hogg [34] and the well-established foreground/background segmentation

technique of C. Stauffer and W. Grimson [130], presented in sections 3.1 and 3.2,

respectively. These two approaches are used as benchmark algorithms in the pro-

posed research and many of their attributes are adopted for the development of

novel algorithms. In addition, section 3.3 presents the formation of an image gra-

dient vector and section 3.4 includes the definition of steerable filters. One further

important concept introduced and used later in chapter 4 is diffusion in image pro-

cessing, which is difficult to comprehend when not presented as originating from

the foundations of Physics. Therefore, section 3.5 introduces diffusion based on

its definition in Physics and extends it to the definition and applications in image

processing (see section 3.6). Further topics subsequently presented relate to diffu-

sion are the structure tensor explained in section 3.7 and a coherence enhancing

anisotropic diffusion in section 3.8. Finally section 3.9 provides a summary and a

discussion.

3.1 The state of the art COD Method

The work of D. Damen and D. Hogg [34] is based on creating a temporal template

of a moving person and a further analysis of its properties to detect carried objects

(see Figure 3.1). The concept of temporal textural template was first defined by

I. Haritaoglu in [53] and it was described earlier in chapter 2. However, D. Damen

prefers using a frequency temporal template also first referred by I. Haritaoglu

[53]. Therefore, the baggage detector proposed by D. Damen takes as input a se-

quence of binary images which represent the foreground segmentation of a moving

29
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Figure 3.1: A summary of the procedure adopted by D. Damen and D. Hogg for
baggage detection.

Figure 3.2: Exemplar temporal templates of 8 viewing directions.

person. These binary silhouettes are aligned with the help of an Iterative Closest

Point (ICP) algorithm and averaged to create the temporal template. This tem-

poral template is matched against a number of unencumbered temporal template

models from a database to find the one that matches best. The database contains

728 unencumbered temporal template exemplars of 13 different sizes, facing at 8

different viewing directions (are shown in Figure 3.2), and 7 in-plane rotations.

As expected, the difference of the two templates reveals the protruding regions

which are likely to be carried objects. For further enhancement of accuracy, a

trained model that maps the probable bag location is selected out of four view

specific models to weigh the protruding regions. Finally, the carried objects are

segmented via energy minimisation using Graph Cuts (see Appendix C).

Two important questions related to the approach described above arise, which

are: How the best matching view specific exemplar is found and how the bags are

segmented with the Graph Cuts.

Starting with the first question; it is common sense that the location of carried

objects and their visibility depends on the position of the viewer in relevance to

the position, and moving direction of the pedestrian. This fact brings the need

of classifying the temporal template into 8 categories, according to its direction

of motion. The procedure of direction estimation involves the transfer of motion

from the image plane (the two-dimensional image surface) to the ground plane

(which is at 90 degrees to the picture plane, commonly the ground that objects

move on) via the homography transformation. Thus, by identifying the motion

vector of the person and the position of the camera on the ground plane, it is

possible to find the direction of motion. Therefore, the displacement along the

x and y axis on image plane in combination with the average angle between the

motion vector and the vector connecting the camera to the pedestrian on ground
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plane will give the direction of motion. Knowing the viewing direction of the

pedestrian the corresponding temporal template can be matched against exemplars

of the same viewing direction. The exemplar that minimises the sum of absolute

weighted differences between itself and the temporal template is confirmed as the

best match.

The second question is associated with the segmentation of carried objects

via Graph Cuts. According to Damen & Hogg [34] the difference image v(x, y)

between the best matching exemplar and the temporal template can be considered

as a first-order Markov Random Field (MRF) and an energy function is minimised

to determine which spatial locations (x = (x, y)) on the MRF belong to the carried

objects (mx = 1) and which to noise (mx = 0). They express the energy function

by the following equation

E(m) =
∑
x∈I

(φ(v|mx) + ω(mx|θd)) +
∑

x,z∈C

ψ(mx,mz) (3.1)

where

φ(v|mx) =

{
− log(p(v|mx = 1)) if mx = 1

− log(p(v|mx = 0)) if mx = 0
(3.2)

are the class-conditional probability functions based on v(x, y) that express the

cost of assigning a label to location x = (x, y) and

ω(mx|θd) =

{
− log(θd(x)) if mx = 1

− log(1− θd(x)) if mx = 0
(3.3)

are the prior probabilities θd given the direction d. The smoothness cost function

ψ(mx,mz) that defines the interaction between pairs of neighbouring pixels C in

the image I is expressed as,

ψ(mx,mz) =

{
λ if mx 6= mz

0 if mx = mz

(3.4)

The class conditional p.d.f are defined by Damen & Hogg [34] as,

p(v|mx = 1) = γN (ν; 0.6, 0.3) + (1− γ)N (ν; 1.0, 0.05) (3.5)

p(v|mx = 0) =
1/(ν + 0.01)

log(1 + 0.01)− log(0.01)
(3.6)

In their experiments γ = 0.65 and λ = 2.3 which are optimised over two

different video sequences. Subsequently, the energy function is minimised via

Graph Cuts and labels are assigned to every pixel x = (x, y). The intermediate
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Figure 3.3: The assignment of labelling costs on spatial locations x = (x, y) of the
difference image v(x, y) and final carried object segmentation. Starting from left
to right are the temporal template, the difference image, the costs assigned to the
spatial locations, the prior probability view specific models, the input to Graph
Cuts as noise probabilities and carried object probabilities, the output of Graph
Cuts and finally the labelled temporal template.

and final results are illustrated in Figure 3.3.

3.2 Background Modelling with Mixture of

Gaussian Distributions (Stauffer &

Grimson method)

The revolutionary approach for background modelling with a mixture of Gaussian

distributions of C. Stauffer and W. Grimson in [130, 129] has been used extensively

throughout the years as a stepping stone for the development of novel algorithms.

The stable performance of the method under various scenarios such as dynamic

background and gradual illumination changes made it extremely popular. Ac-

cording to Stauffer & Grimson each pixel in the frame is modelled by weighted

Mixture of Gaussian (MoG) distributions whose parameters and weights are conti-

nuously updated over time. This allows the prediction of pixel values that belong

to the foreground/background in successive frames based on probability. The his-

tory {X1, ..., Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t} of the values of a pixel in frames

I is modelled by a mixture of K Gaussian distributions. Xt could be a scalar if

the pixel has one greyscale intensity value or a vector if the pixel has three colour

components. The probability of observing Xt at time t is

P (Xt) =
K∑
k=1

ωk,t ∗ η (Xt, µk,t,Σk,t) (3.7)
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where ωk,t are the coefficients of each distribution that act as weights, µk,t,and Σk,t

are the mean value and the covariance matrix of the kth Gaussian distribution.

The Gaussian function η is defined as

η (Xt, µt,Σt) =
1

(2π)n/2|Σk,t|1/2
e−

1
2

(Xt−µt)>Σ−1
t (Xt−µt) (3.8)

Stauffer and Grimson assume that the R, G, and B components are independent

and have the same variances and thus the covariance matrix is

Σk,t =
(
σ2
kI
)

(3.9)

where I is the identity matrix and σ2
k is the variance of the kth distribution. Every

new scalar or vector Xt is checked against the existing K distributions via absolute

distance to find a match. A match is found if the following inequation is true

|Xt − µk,t−1| ≤ 2.5σk,t−1 (3.10)

If a match is found then the kth Gaussian that is found to be a match, is

updated following the next equations.

µk,t = (1− ρ)µk,t−1 + ρXt

σ2
k,t = (1− ρ)σ2

k,t−1 + ρ (Xt − µk,t)> (Xt − µk,t)
ωk,t = (1− ρ)ωk,t−1 + a(rk,t)

(3.11)

where ρ = a(ηXt|µk, σk) is a learning factor, a is the learning rate and rk,t is 1

for the model which has been matched and 0 for the remaining models. In case

that no matching distribution is found, the pixel is labelled as foreground and

the least probable distribution is substituted by a new one, initialised with prior

parameters for ωk,t and σ2
k,t, and µk,t = Xt.

To decide which portion of the distributions represents the foreground and

which the background it is important to put them in an order according to the ratio

ω/σ. Then the first B distributions, chosen according to the following formula,

account for the background.

B = argmin
b

(
b∑

k=1

ωk,t > T

)
(3.12)

where T is the threshold that defines the portion of distributions that are accoun-

ted for by the background. A pixel is labelled as background if the current Xt

matches any of the first B distributions. In the opposite case the pixel is labelled

as foreground.
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This algorithm will be used in the next chapter by slightly modifying the

equations that update the parameters and the distance measure according to the

requirements of the proposed framework.

3.3 Gradient Vector

Let us begin with the definition of gradient and directional derivatives. The gra-

dient of a scalar point function f(r) ≡ f(x, y, z) is a vector point function de-

fined at each point r ≡ (x, y, z), where f(r) is suitably differentiable. Thus,

grad(f(r)) ≡ ∇f ≡< ∂f
∂x
, ∂f
∂y
, ∂f
∂z
>≡ i∂f

∂x
+ j∂f

∂y
+ k∂f

∂z
= F where, i, j,k, are unit

vectors in the rectangular Cartesian-coordinate system. The vector F has magni-

tude |∇f | =
√

(∂f
∂x

)2 + (∂f
∂y

)2 + (∂f
∂z

)2 and points to the direction indicated by the

unit vector m = ∇f
|∇f | , where the directional derivative Dmf(r) in direction m at

the point r has the greatest value among all the directional derivatives Duf(r) at

the same point [72] .

3.4 Oriented (Steerable) Filters

P. Cheng-San Teo in his thesis [135] identifies two main streams in the composi-

tion of steerable filters. These are the numerical approach and analytical approach.

The former treats the problem numerically and computes the optimal number of

basis filters and steering coefficients. The latter defines the functions that are ana-

lytically steerable and proposes analytical way of writing the linear combination

of the basis functions derived.

The foundations of numerical approach were set by P. Perona in his work

“Deformable kernels for early vision” [109]. His technique is based on singular

value decomposition to compute small number of basis functions to be combined

in a filter of arbitrary rotation. P. Peronas work was continued by R. Manduchi

in [91, 92] and D. Shy in [125].

The analytical approach that was introduced by T. Freeman and E. H. Adelson

in [45] proposes a method for design of steerable filters as linear combination

of basis filters. They find analytically the minimum number of basis functions

required to synthesise a filter at any orientation, by expanding the function as

Fourier series and analysing the frequencies that occur.

According to [45] the steerable filters are defined as “a class of filters in which

a filter of arbitrary orientation is synthesised as a linear combination of a set of

basis filters”. This statement is in agreement with the definition of the directional

derivative, which states that the rate of change of a function of several variables in
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Figure 3.4: The angles between the vector and the x and y axis.

the direction pointed by unit vector u =< u1, u2, u3 > equals to the dot product

of the gradient and the vector u. i.e.

Duf = ∇fu =
∂f

∂x
u1+

∂f

∂y
u1+

∂f

∂z
u3 = cos(ax)

∂f

∂x
+cos(ay)

∂f

∂y
+cos(az)

∂f

∂z
(3.13)

where, ax, ay, az are the angles between the vector u and the positive x, y and z

axis, respectively [72]. In two dimensional case of a function f(x, y) and a vector

u =< u1, u2 > the directional derivative equation can be written respectively as

Duf = ∇fu =
∂f

∂x
u1 +

∂f

∂y
u1 = cos(ax)

∂f

∂x
+ cos(ay)

∂f

∂y
= cos(θ)

∂f

∂x
+ sin(θ)

∂f

∂y
(3.14)

where, θ is the angle between the vector u and the positive x axis (see Figure 3.4)

[72, 119]. The partial derivatives ∂f
∂x

and ∂f
∂y

are regarded as basis functions and

cos(θ) and sin(θ) as the steering coefficients (according to the theory of steerable

filters by T. Freeman and E. H. Adelson [45]).

Following the concept of directional derivatives the authors in [45] impose the

basic steering constraint which is represented by the following formula

f θ(x, y) =
M∑
j=1

kj(θ)f
θj(x, y) (3.15)

where, f θj(x, y) are M basis filters and kj(θ) are the interpolation functions that

linearly combine the basis filters.

An important attribute of spatial filters is separability. Spatially separable

filters are computationally efficient since the convolution with a two dimensional

filter can be substituted by a sequence of one dimensional convolutions; one in

vertical direction followed by one in the horizontal direction. This means that the

following statement holds:

I(x, y) ∗ g(x, y) = (I(x, y) ∗ g(x)) ∗ g(y) (3.16)

Every function that can be written as a polynomial in x and y has separable



CHAPTER 3: THEORETICAL PRELIMINARIES 36

basis functions that might be large in number. In [45] it is shown how to find

the x − y separable basis functions and functional forms of separable filters for

Gaussian derivatives of up to fifth order are provided.

Assuming that the 2-D Gaussian function to be used is G(x, y) = e−(x2+y2) then

the basis set for the first order derivative of Gaussian consists of two directional

derivatives G0◦ = ∂G
∂x

= −2xe−(x2+y2) and G90◦ = ∂G
∂y

= −2ye−(x2+y2) and the

steering condition in Equation 3.15 is expressed as:

Gθ = cos(θ)G0◦ + sin(θ)G90◦ (3.17)

3.5 Diffusion of Matters and Heat Conduction

Diffusion is characterised as the tendency of molecules of one substance to spread

from areas of higher concentration to areas of lower concentration. At some point

in time the concentrations produce equilibrium and the movement of molecules

continues at constant rate. One of the first scientists to experiment with diffusion

of gasses was Thomas Graham as referred to by [110]. However, A. Fick [44] spot-

ted that in a publication of Graham on diffusion of salts in water a fundamental

law for the operation of diffusion of fluids was missing. Following the Fouriers law

of heat conduction, A. Fick realised a relation of heat condition, where the driving

force for heat transfer is the temperature difference, with diffusion.

Let us revise the fundamental laws of heat conduction as developed by J.

Fourier. The Fouriers law of heat conduction states that “the rate of heat

conduction through a plane layer is proportional to the temperature difference

across the layer and the heat transfer area, but is inversely proportional to the

thickness of the layer” [41], which in one dimensional conduction can be expressed

by the following equation:

Q = −kAT1 − T2

∆x
= −kA∆T

∆x
⇒∆T→0 Q = −kAdT

dx
(3.18)

In three dimensional case of heat transfer, the above equation becomes

−→
Q = −k

(
Ax

∂T

∂x
,Ay

∂T

∂y
,Az

∂T

∂z

)
(3.19)

where A is the area (normal to the direction of heat transfer), k is the thermal

conductivity of the material and dT
dx

is the temperature gradient. Since the tem-

perature gradient is the slope of the temperature curve and given that the heat is

transferred from hotter to cooler areas gradient will be a negative quantity. The-

refore the negative sign in Equation 3.19 ensures that the heat transfer along the
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Figure 3.5: Heat transfer in a medium.

direction of positive x-axis is a positive quantity.

The heat transfer problems could be characterised as steady or transient.

The term steady implies that there is no change in temperature condition of a

given point within the medium over time, although there might be temperature

variations across the medium. On the other hand if the temperature at any fixed

point of the medium changes with time during heat conduction then it is called

transient (or unsteady) heat conduction (the temperature varies with time as well

as position). Here we are mostly interested in the transient heat conduction.

One could raise a question on how to determine the variation of temperature

within the medium or the temperature value at a given location x at time point t,

as until now no time was included in the Equation 3.18. A more complete version

of the heat conduction equation in one dimensional transient case where there is

no heat generation is expressed by (also called diffusion equation)

∂T

∂t
= a

∂2T

∂x2
(3.20)

where a is the thermal diffusivity of the material dependant on thermal conduc-

tivity k of the material and the heat capacity (the capability of the material to

store heat). Note that here k does not depend on the location x in the medium.

The above equation is a result of heat energy conservation law in an element that

can be expressed as “the change in rate of heat conduction over an interval ∆x

equals to the rate of change of heat energy content of the element over time”. The

complete derivation of the Equation 3.20 can be found in [41].

The heat conduction is said to be two-dimensional when conduction in the

third dimension is negligible and is expressed by

∂T

∂t
= a

(
∂2T

∂x2
+
∂2T

∂y2

)
= a(∇2T ) (3.21)
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Figure 3.6: The boundary conditions at time t for a medium of thickness L are
T (0, t) = T1 and T (L, t) = T2. If T1 > T2 then the heat is transferred towards the
colder temperature which is in direction of positive x-axis.

To completely define a heat transfer problem and to ensure the uniqueness of the

solution to the heat equation it is important to identify the boundary condi-

tions at each side of the medium. For one dimensional problems as in Figure 3.6,

the temperature T (x, t) is a function of time and location and two boundary

conditions are required (for two dimensional problems we would need four boun-

dary conditions). Therefore, at time t the boundary condition at location x = 0

is T (0, t) = T1 and at location x = L, which is the width of the medium, is

T (L, t) = T2 . When the measurement of heat transfer begins the initial distribu-

tion of the temperature in the medium (condition of the medium) must also be

known: So the initial condition at time t = 0 is T (x, 0) = f(x).

Fick spotted the analogy between heat and mass transfer [44]. As the rate of

heat conduction is proportional to temperature gradient likewise the rate of mass

transfer (or diffusive mass flux) is proportional to the concentration gradient. In

one dimensional case this can be expressed by the equation

j = −Ddu
dx

(3.22)

where u is the concentration of matter in a mixture, x is the location and D is

the diffusion coefficient (or mass diffusivity) which shows how fast the substances

diffuse into each other and depends on the nature of the substances. Applying

the law of mass conservation, which implies that in a closed system, mass can

neither be created nor destroyed, A. Fick came up with his second law of diffusion

expressed by the following equation:

∂u

∂t
= D

∂2u

∂x2
= D∇2u (3.23)

The above equation shows how the concentration u changes with time due to the
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diffusion process. Details on how the above equation is derived can be found in

the “A heat transfer textbook” of J. H. Lienard [67]. If the diffusion coefficient D

is not a constant but depends upon the location or concentration then it cannot

be taken out of the derivative and the equation becomes

∂u

∂t
=

∂

∂x

(
D
∂u

∂x

)
(3.24)

For two- or three- dimensional cases the derivatives can be replaced by gradient

operators and thus it will be

∂u

∂t
= ∇·(D∇u) = div (D∇u) =

∂

∂x

(
D
∂u

∂x

)
+
∂

∂y

(
D
∂u

∂y

)
+
∂

∂z

(
D
∂u

∂z

)
(3.25)

Similar boundary conditions are applied here to ensure unicity of the solution.

3.6 Diffusion in Image Processing

Physically the diffusion process in images resembles the heat conduction in mate-

rials. Therefore the researchers usually refer to the diffusion equation as the heat

equation. As heat is transferred through a mass tending to reach a state where all

the molecules have the same temperature, the image pixel values change according

to their surrounding ones until homogeneity is achieved. At the same time the

pixel values remain within the maximum and minimum limits, imposed by the

original image, which are usually from 0 to 255. J. Weickert [143] successfully

defines the intuitive perception of diffusion as “physical process that equilibrates

concentration differences without creating or destroying mass”.

The first researchers to use the concept of diffusion in image processing were

P. Perona and J. Malic in their well-known publication “Scale-Space and Edge

Detection Using anisotropic Diffusion” [108]. They proposed a non-linear diffusion

process for inhomogeneous image smoothing and edge detection. The diffusion

equation they adopted is as follows:
∂I(x,y,t)

∂t
= ∇ · (c(x, y, t)∇I(x, y, t)) = div(c(x, y, t)∇I(x, y, t))

I(x, y, 0) = I0(x, y)
(3.26)

where I0(x, y) is the original image, I(x, y, t) is an image smoothed by a Gaussian

kernel with size of variance equal to t (time or scale) and c(x, y, t) is a scalar valued

diffusivity factor. The simplest case of diffusivity is a constant value which leads

to homogeneous diffusion or more commonly known as Gaussian blurring, uniform

through the space. To achieve inhomogeneous diffusion which promotes smoothing
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within the region while slowing down the diffusion across the boundaries, the

diffusivity should be large within the regions and small along the edges. The

simplest version of diffusivity in this case is a binary valued function with 1 within

the region and 0 at the boundaries. However P. Perona and J. Malik proposed

diffusivity c(x, y, t) as a monotonically decreasing function (from 1 to 0) of the

gradient norm of the image I(x, y, t), typically defined as

c(x, y, t) = g(∇I) =
1

1 +
(
‖∇I‖
K

)2 (3.27)

This means that diffusion is promoted in regions with small gradients and is inhi-

bited in areas with high gradients that corresponds to edges. Since the smoothing

at edges is delayed, the noise survives for a longer period of time.

In their publication Perona and Malik wrongly defined the inhomogeneous

diffusion as anisotropic, which was later corrected by J. Weikert as inhomogeneous

diffusion since the diffusivity factor is a scalar valued function. He suggested that

in true anisotropic diffusion the diffusivity factor should be a structure tensor.

Isotropic and anisotropic diffusion along with all the related aspects of PDE based

image smoothing techniques was investigated extensively by J. Weikert in [143].

3.7 The Structure Tensor

Structure tensor is a positive semi-definite symmetric matrix that holds informa-

tion on the orientation and intensity of the surrounding structure of an image

u. To make the tensor invariant to small variations caused by noise the image is

smoothed by a Gaussian kernel Kσ with standard deviation σ producing uσ. The

diffusion tensor matrix is defined as

J0(∇uσ) = ∇uσ ⊗∇uσ = ∇uσ∇u>σ =< ∂uσ
∂x
, ∂uσ
∂y

>< ∂uσ
∂x
, ∂uσ
∂y

>>=

=

(∂uσ∂x )2 ∂uσ
∂x

∂uσ
∂y

∂uσ
∂x

∂uσ
∂y

(
∂uσ
∂y

)2

 (3.28)

where ∇uσ is the gradient of image uσ.

An m×m symmetric matrix A, as J0(∇uσ), is a positive semi-definite matrix

if for any vector x 6= 0 the quadratic form x>Ax ≥ 0. Also if B is an n × m

matrix then A = BB> is positive semi-definite and possesses some important

properties. This matrix is always symmetric and its eigen-decomposition always

exists, and has a particularly convenient form: the eigenvalues are always positive

or null and the corresponding eigenvectors are pairwise orthogonal when their
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Figure 3.7: The structure tensor and its eigenvectors.

eigenvalues are different. Figure 3.7 shows an example of structure tensor with

eigenvalues µ1 ≥ µ2 and corresponding eigenvectors (unit vectors) v1 = [v1a v1b]

and v2 = [v2a v2b] . Supposed that

Q =

[
v1a v2a

v1b v2b

]
=

[
cos θ sin θ

sin θ cos θ

]
and Λ =

[
µ1 0

0 µ2

]
(3.29)

matrix Q is also called a rotation matrix where the angle θ shows the amount that

the xy coordinate system must be rotated counter-clockwise to coincide with the

system v1v2. For a positive semi-definite matrix A it is also valid that:

A = QΛQ> ⇔ Λ = Q>AQ (3.30)

This shows that the matrix A can be transformed into an equivalent diagonal one.

This process is often referred as diagonalisation [57].

3.8 Coherence Enhancing Anisotropic Diffusion

A complete guide on anisotropic diffusion in image processing was written by J.

Weikert in his book “Anisotropic Diffusion in Image Processing” [143].

One of the most important publications of J. Weickert that is in particular

interesting is the one that studies the enhancement of flow-like patterns (e.g.

fingerprints) via coherence enhancing filtering [144]. The author proposes the

use of non linear tensor diffusion process with a structure tensor as diffusivity

function, thereby promoting anisotropic behaviour. When Ω is an image space
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(a) (b) (c) (d) (e)

Figure 3.8: The average orientation of eigenvectors (in (b) σ = 1 and in (c) σ = 5)
and the average direction of gradients (in (d) σ = 1 and in (e) σ = 5) of the
fingerprint image.

and ∂Ω is the boundary of the image, the diffusion process is described by the

following equations [144]

∂u(r,t)
∂t

= div (D(uσ(r, t), r)∇uσ(r, t)) on Ω× (0, inf) Diffusion equation

(D(∇uσ)∇uσ) · n = 0 on ∂Ω Neumann boundary

u(r, 0) = f(r) on Ω Initial condition

(3.31)

where uσ is the image (density) smoothed with a Gaussian kernel of scale σ,

r = (x, y) is the location and t is time. D(∇uσ(r, t)) is the diffusion coefficient

for image u at location r. The dot product of the diffusion tensor D with the

outer normal n defines the Neumann boundary condition which holds for insulated

boundaries where there could not be flux beyond the boundaries so that the density

gradient must vanish. An analytical solution of the diffusion equation can be

achieved via the method of separation of variables. Though, to solve the problem

numerically it is required to discretise it.

Conventionally the diffusivity factor is observed to depend on the image gra-

dient (e.g Perona-Malik case [108]). However, Weickert introduces the use of

structure tensor as diffusivity to enable dissimilar smoothing in different directions

[144]. The advantage of structure tensor over the simple ∇uσ becomes obvious by

observing the pictures in Figure 3.8. This example is similar to the one in [144]

and it compares the average orientation of eigenvectors with the average direc-

tion of gradients for the fingerprint image. In this example the gradients and the

elements of the structure tensors are averaged with a Gaussian kernel of σ = 5

(Figure 3.8 (c) and (e)). It becomes obvious that in a large window the average

direction of gradient does not represent the structure of data. Because the avera-

ging of gradients in a window might cancel out the gradients pointing at opposite

directions, it is more convenient to average the tensor matrix field. Therefore the
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Figure 3.9: Anisotropic diffusion of a fingerprint image. The values of the required
parameters are σ = 1, ρ = 6 and t = 30.

convolution of the structure tensor J0 with a Gaussian kernel Kρ gives

Jρ(∇uσ) = Kρ ∗ (∇uσ∇u>σ ) (3.32)

This means that the eigenvectors of the resulting tensor summarize the direc-

tion of gradients within the window of size ρ. The eigenvector with the highest

eigenvalue is parallel to the average direction of gradient, while the one with the

lower eigenvalue moves along coherent structures and its eigenvector is perpen-

dicular to average direction of gradient. If someone wants to smooth along the

flow of structures then they should adapt the eigenvalue of the vector that has

the same direction with the flow in such a way that it increases with respect to

coherence (µ1 − µ2)2.

Furthermore, the author did not only replace the gradient based diffusivity with

a structure tensor, but he also adapted the diffusion tensor in such a way that it

facilitates the diffusion along the flow-like patterns. Following the property of a

positive semi-definite matrix A = QΛQ> the authors simplified and substituted

the eigenvalues of the tensor maintaining at the same time the same eigenvectors.

Consequently, the diffusion tensor becomes D = QΛQ>, where Λ is a diagonal

matrix of new eigenvalues. An example of application of anisotropic diffusion is

presented in Figure 3.9.

3.9 Summary and Discussion

This chapter presented the background and the theoretical preliminaries that are

required to understand the concepts presented within rest of the thesis. The COD

system presented here will be used as a benchmark algorithm in chapters 5 and

6 and the background modelling algorithm described will be used in chapter 4 to

model the background by using improved feature vectors instead of using simple

colour values. Since a novel edge enhancing filter is proposed in the chapter
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4, it was necessary to review the theory behind oriented filters (see section 3.4).

Sections 3.5 and 3.6 extensively discussed the theory behind diffusion starting from

the diffusion of matter and heat conduction in materials, and concluding with a

presentation on coherence enhancing anisotropic diffusion in images. Section 3.7

that presented the structure tensor is of high importance as the properties of

tensors are exploited in chapter 4 for contour completion via anisotropic diffusion.



Chapter 4

Extraction of Closed Foreground

Contours

The most widely recognised method for background modelling is via MoG [130] i.e.

each pixel in the video frames is modelled by a weighted MoG whose parameters

and weights are continuously updated throughout time. This allows the prediction

of the pixel values that belong to the background in consecutive frames based on

probability. However, this method has some weaknesses including the detection of

shadows and spurious objects, inability to handle sudden illumination changes and

foreground-background similarity. These shortcomings have led to a vast amount

of literature attempting to improve the original concept.

To solve the above issues entirely or at least to improve the robustness against

these weaknesses, this chapter approaches the background modelling from ano-

ther perspective. Instead of using the colour pixel values as features the proposed

method utilises the unique properties of gradient and phase congruency features.

Since the gradient measures the difference between neighbouring pixels across a

line segment, it is not so sensitive to colour variations and illumination changes.

The same applies to phase congruency features that represent the agreement of

phases of frequency components of a decomposed image signal. Before the com-

putation of image gradient the image is pre-smoothed for noise reduction with a

carefully chosen filter that would not degenerate the edges.

The collective result of the above features is a crude foreground contour that

should undergo refinement to conclude with a fine object contour. To that end

the crude foreground contour is reflected onto the edge contours obtained with the

standard edge detection procedure proposed by John F. Canny and at different

scales to ensure scale invariance.

Since the aim was to segment as many contours as possible it is inevitable to

encounter edges that result due to noise. This situation requires a noise edge re-

45
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duction techniques that would take into account the colour and texture properties

of the surrounding area. For this reason colour and texture similarity measures are

developed based on various colour spaces to train a classifier that will classify the

edges as foreground and background. As the extracted contour does not always

result in a closed curve, edge continuation and closure techniques are employed to

ensure closed contours [51, 48].

4.1 The Starting Point of the Research

The inspiration for this chapter has been the work of O. Javed et al. in [63]

who used the magnitude and direction of image gradient to address some of the

weaknesses of the algorithm originally proposed by Stauffer and Grimson [130].

The work in [63] proposes a background modelling with a combination of colour

features along with gradient features to ensure that the biggest part of the contour

of the detected foreground consists of a strong magnitude of the gradient.

Following the algorithm proposed in [130], the authors in [63] model the back-

ground in RGB colour space, as a MoG which is updated over time using K-means

approximation of the EM algorithm. To compute the gradient features, the co-

lour mean of each pixel as well as the standard deviation are converted to their

equivalent greyscale. The mean magnitude of gradient in x and y directions is cal-

culated as the difference of means between neighbouring pixels, and the standard

deviation as a sum of standard deviations. When an incoming frame arrives, the

magnitude and direction of gradient are computed and compared against the ones

of the model to decide which pixels belong to the foreground. It should be noted

that no separate model is maintained for the gradient vector information but in

contrast it is derived from the updated colour mixture model.

Next, the following procedure is applied in [63] to determine if the foreground

found by RGB features was valid. Assume that the RGB coloured frame is I and

the extracted foreground be F (I). If the gradient image is Ig let the foreground

edge information be G(Ig). Further assume that the boundaries of F (I) will be

denoted as ∂F (I). For a foreground region that belongs to ∂F (I) there should be

a corresponding foreground region in G(Ig) that matches a minimum percentage

(20 per cent) of the pixels of that region, as explained in [63]. If the percentage

is relatively low then the region in ∂F (I) is considered as a spurious object and

is not included in the foreground. Except for the above criterion the paper in

[63] suggests that the true foreground boundaries should also lie on some edge of

image I.

At last, when sudden illumination changes are observed the foreground seg-

mentation is only based on gradient features. The advantage of the method des-
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cribed above is that it ignores the spurious objects such as isolated light blobs

and undefined shadows having undefined contours and is robust to illumination

changes.

However, the ideas presented in [63] were not exploited to their full extent.

They only specify if a region (for example defined as a connected component) as

a whole belongs to the foreground or not but do not evaluate parts of the same

region. Therefore if for instance 10 per cent of an object consists of its contour-less

shadow then the whole object will be considered as a foreground object. To address

this issue, the foreground G(Ig) could be used to dispose of these shadow regions

or at least part of them. Furthermore, sometimes the colour based extracted

foreground object lacks exacted contours that could be corrected with the use of

edges that lie on G(Ig).

The simplest approach to achieving the aforementioned goals would involve

the following steps: Computation of F (I), G(Ig) and the edges of the incoming

frame E(I); morphological dilation and closing of G(Ig) to obtain M(G(Ig)) and

definition of the convex hulls that enclose the connected components of M(G(Ig));

removal of all the regions in F (I) that lay out of the convex hull thus, achieving

the elimination of shadows that do not have strong gradients. Conclusively, the

smooth contour C(I) of the foreground region is the edge E(I) present in the

combination of F (I) with the M(G(Ig)) and can be defined by the following ex-

pression:

C(I) = (F (I) +M(G(Ig)))E(I) (4.1)

The regions of F (I) that are enclosed in the contour C(I) are considered as

foreground. Advantage of the above method is the detection of well-defined fore-

ground contours, as sometimes the algorithms based on common MoG background

subtraction fail to deliver an accurately defined contour. Examples of incomplete

contours produced by algorithms described in [130, 68] and [151] are shown in

Figure 4.1. On, the other hand the convex hull does not always enclose the whole

object resulting in broken regions.

However, this process gives rise to the following questions: Are the gradient fea-

tures enough on their own to detect the foreground contour? Could the gradient be

computed at directions beyond the x and y (e.g. at angles {0◦, 30◦, 60◦ . . . 330◦})?
Does the convex hull not absorb the background edges along with the foreground

edges that it encloses? Do the foreground edges always result in a closed contour?

How tolerant is the gradient to noise? The sections that follow address all these

questions through the design of a complete system that integrates all advantages

of the method.
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(a) (b) (c) (d) (e)

Figure 4.1: Examples of incomplete silhouettes segmented with three different
algorithms based on MoG: (a) input frame, (b) ground truth, (c) GMM of Stauffer
& Grimson [130], (d) GMM of KaewTraKulPong [68], (e) Multi-Layer Background
Subtraction [151].

4.2 The Outline of the System

The general idea is the detection of foreground contour based on statistical back-

ground modelling with gradient features initially ignoring the colour properties

of the pixels. Once the contours are obtained they are reflected on the incoming

frame edges. As there is a high probability of noise occurrence, the noise edges

are removed based on colour ratios. The removal of noise edges might lead to

removal of healthy edges resulting in broken contours. This is resolved by an ite-

rative contour closure method based on diffusion. The summary of the system is

represented as a flow chart in Figure 4.2.

To model the background the magnitude of gradient is computed in 12 different

directions and subsequently the resulting 12 images are combined into 6. To

enhance the detection of contours, supplementary features are computed. These

are the phase congruency features in 6 different directions as proposed in [75, 74].

The final combination of all these features constitutes the feature vector used to

model the background. The same feature vector is computed for each incoming

frame and compared against the background. The detected foreground is the

contour of the likely foreground objects (sections 4.3 and 4.4).

At the same time the edge information is computed for the current frame on

H and S components of the HSV colour space with J. F. Cannys edge detection

algorithm [19]. To ensure scale invariance and given the fact that the saturation

component is not a smooth image the edges are calculated at different scales with

different thresholds. Another additional edge is derived as maximum moment of

phase congruency covariance proposed by P. Kovesi in [76] ( subsection 4.5.1).

The reflection of the detected crude contours on the combination of edges

provides with refined foreground contour information. As the occurrence of noise

is inevitable, the detected foreground edge segments must undergo further post-

processing to remove the edges that result from noise. Among noise edge segments,

there are also those that belong to shadows and should be classified as such.

To achieve noise and shadow line removal, colour ratios are calculated in three
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Figure 4.2: Flow chart of the foreground contour recovery system.

different colour spaces along the edge segment. This technique was successfully

employed by J.-F. Lalonde [80], who utilised the colour ratios along with texture

features to remove the shadows in outdoor consumer photographs. Here, the

colour ratios are compacted into four representative features that are capable of

performing the intended task (subsections 4.5.3 and 4.5.2).

At the final stage the contours are completed via iterative anisotropic diffusion

proposed by D. Gil and P. Radeva in [48] and flood filled to recover the foreground

regions (subsection 4.5.5).

4.3 Computation of Gradient and Phase

Congruency Features

The directional derivative of an image is very sensitive to noise. Therefore the

image should undergo smoothing in the first place. Assuming an image I and a

smoothing filter h, according to the differentiation rules it is valid that [72],

∂I

∂xi
∗ h =

∂

∂xi
(I ∗ h) =

∂h

∂xi
∗ I (4.2)

Hence hitherto all the operations of derivation will be applied on the selected

smoothing filter at a first stage and then the filter will be convolved with the

image.
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As it was shown in the previous section the background modelling based on the

magnitude of gradient is a significantly promising method since it is stable to sud-

den illumination changes. The gradient information can be derived by convolving

the image with the first partial derivative of a two dimensional Gaussian function.

The partial derivatives are usually taken with respect to directions x and y which

generate the gradient at only two directions. To improve the accuracy it was deci-

ded to compute the derivatives at multiple directions. The concept of computing

the derivative of a filter at multiple directions is the same as steering any of the

partial derivatives. This brings up the question of how exactly is to steer the first

derivative of Gaussian filter or any other filter in general and weather a filter is

steerable or not. The introductory material about steerable filters is presented in

section 3.4.

For the purpose of current application, the first order derivative of Gaussian

function is considered, for the reason that their convolution with an image results

in gradient information. Assuming that the 2-D Gaussian function to be used is

G(x, y) = e−(x2+y2) then the basis set for the first order derivative of Gaussian

consists of two directional derivatives G0◦ = ∂G
∂x

= −2xe−(x2+y2) and G90◦ = ∂G
∂y

=

−2ye−(x2+y2) and the steering condition is expressed as:

Gθ = cos(θ)G0◦ + sin(θ)G90◦ (4.3)

It is well known that the Gaussian, as a smoothing filter, does not favour the edges

while reducing the noise. Therefore there is need for a smoothing function that

would respect the edge structure while blurring the random noise. In the following

section such a function is studied and the experiments conducted have shown that

it performs better than Gaussian derivative of first order.

4.3.1 The Edge Enhancing Filter (EEF)

It is well known that the infinite sinc function sinc(x) = sin (x)/x acts as an ideal

interpolation filter in spacial domain. Since the data samples available are finite

this leads to the truncation of the sinc filter and consequently to approximate

solutions. This results in the “ringing” effect, also known as Gibbs phenomenon

while filtering with truncated sinc. In order to mitigate the ripple like effect,

several windowing functions such as Hamming, Blackman, Kaiser, and Lanczos,

that in contrast to a box filter attenuates softly at their ends, have been developed.

The convolution of sinc function with any of these windowing functions results in a

smoothly weakening sinc function that approximates zero as fast as the windowing

function [146].

The windowed sinc function is widely used as an interpolation kernel. However
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Table 4.1: Values of the sinc and the proposed synthetic EEF filter and their
derivatives.

x = [−2π, 2π] sinc(x) Im(H(sinc(x))) f(x) Im(H(f(x)))

0.0000 1.0000 0.0000 1.0000 0.0000

1.0472 0.8270 0.4632 0.8648 0.4349

2.0944 0.4135 0.6884 0.4500 0.7020

3.1416 0.0000 0.5940 0.0000 0.5521

4.1888 -0.2067 0.3047 -0.1025 0.2511

5.2360 -0.1654 0.0280 -0.0800 0.0867

6.2832 0.0000 -0.0445 0.0000 -0.0106

Figure 4.3: Similarity of the shapes of the proposed EEF filter, the Gaussian filter
(σ = 1.5) and the sinc filter. The first image shows the initial waves and the
second image shows their derivatives.

it is rarely considered for image filtering. An example of an interpolation filter

evolved from the sinc function is the edge resolution enhancing interpolation filter

[98]. Inspired by the work in [98] it is attempted to create a similar filter for edge

enhancement. Initially the sinc function is obtained in the interval [−2π, 2π] and

next modified in such a way that the beneficial effects of the function are preser-

ved, at the same time minimising the negative impact. Since the synthetic Edge

Enhancing Filter (EEF) f does not have a specific function, it will be impossible to

find its basis functions for steering it in an analytical manner. For the same reason

the functional derivative of the filter is not known. A common way to approximate

the derivative numerically is to use the Hilbert transform. The result of using the

Hilbert transform is an array of complex valued numbers of the form z = a + bi,

where a = Re(z) and b = Im(z). The real part Re(z) is the initial function itself

while the imaginary part Im(z) is the derivative of the function. As a sample, 13

equally spaced points in the interval [−2π, 2π] were taken. Table 4.1 shows the

values of the sample points in the specified interval, as well as the results of the
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(a) (b) (c) (d)

Figure 4.4: The results of filtering an image (a) with the Gaussian filter (σ = 1.5)
(b), EEF (c) and a sinc(x) filter (d).

Figure 4.5: From left to right in first and second row: Fingerprint image convolved
with the derivative of Gaussian filter, EEF and a sinc(x) filter and undergone non-
maximum suppression with threshold 0.5.

functions applied to the points.

Figure 4.3 represents the EEF, Gaussian, and sinc(x) functions in the interval

[−2π, 2π]. As it appears the shape of EEF is something between the Gaussian

(σ = 1.5) and the sinc filter. This is more clearly observed in the images of

Figure 4.4 that show the original noisy image in (a) blurred by the Gaussian filter

in (b), by the EEF in (c) and the sinc filter in (d). Another example that best

illustrates the properties of the EEF is presented in Figure 4.5 where the fingerprint

image has been convolved with the horizontal and vertical derivatives of the three

filters under question and has then undergone non-maximum suppression with

threshold 0.5 (this threshold has been selected as the best to display the results).

By comparing the results it can be inferred that the EEF enhances the edge

continuity along the curves in contrast to the Gaussian filter, while the sinc filter
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Figure 4.6: The proposed EEF filter rotated in 12 directions.

starts creating edgy effects at the boundaries of the image. More images comparing

the three filters are available in Appendix A.

4.3.2 Formation of Two Dimensional EEF

It is well established that the two dimensional Gaussian and sinc filters are x and

y separable, which means that the two dimensional filters can be obtained as the

outer product of two one dimensional functions. If g(x, y) is a two dimensional

Gaussian filter and g(x) is its one dimensional horizontal version and g(y) is the

vertical one then it is valid that

g(x, y) = g(x)⊕ g(x) = g(x)>g(x) = g(y)g(x) (4.4)

where ⊕ is the symbol for outer product.

Similarly the EEF in two dimensions is the outer product of two one dimen-

sional filters f(x). In terms of two dimensional partial derivatives it is known that

for a Gaussian function g(x) and its corresponding two dimensional g(x, y) it is

valid that ∂
∂x
g(x, y) = g(y)g′(x) and ∂2

∂x2
g(x, y) = g(y)g′′(x) and so on. In the same

way the two dimensional partial derivatives of the EEF are ∂
∂x
f(x.y) = f(y)f ′(x)

and ∂
∂y
f(x, y) = f ′(y)f(x).

As it was explained earlier, to obtain more accurate results the image should

be convolved with a bank of rotated EEF ( see Figure 4.6) at orientations θ =

{0◦, 30◦, 60◦, . . . 330◦}. The specified rotations were selected after experiments, as

they gave the best results. The rotation operator performs a geometric transform,

which maps the position (x1, y1) of a picture element in the EEFf θ(x, y) onto a

position (x2, y2) in the EEF f 0◦(x, y) by rotating it through a specified angle θ

about an origin O at (x0, y0), which is normally the centre of the image.

x2 = cos (θ)(x1 − x0)− sin (θ)(y1 − y0) + x0

y2 = sin (θ)(x1 − x0) + cos (θ)(y1 − y0) + y0 (4.5)
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The rotation algorithm can produce coordinates (x2, y2) which are not integers.

In order to determine the value of the filter at these positions the Gauss’ inter-

polation method is used. The value of the rotated filter at the position (x1, y1) is

f θ(x1, y1) = f(x2)f ′(y2), where f(x) is the one dimensional EEF.

Gauss’ data interpolation method [18] is described as follows: Since the filter

is synthesised in the spatial domain, we are interested to know the values of the

function at n positions. Assuming that we have the real data pairs (xn, yn) given

for n = {0, 1, . . . , N − 1}, where xn = 2πn/N . The interpolating condition for

n = {0, 1, . . . , N − 1} is

yn = a0 +

N
2
−1∑

k=1

[
ak cos

(
2πnk

N

)
+ bk sin

(
2πnk

N

)]
aN/2cos(πN) (4.6)

where a0 = c0, aN/2 = cN/2, ak = 2Re{ck}, bk = −2Im{ck} and where the

coefficients ck are calculated by using fast Fourier transform as

ck =
N−1∑
n=0

xne
−i2πkn/N (4.7)

where, k = {1, . . . , N
2
− 1}

Once the two dimensional filter has been rotated it is imperative to check if

the filter can be decomposed into several separable basis filters. Since there is

no specific function for the EEF it is impossible to identify the basis filters in an

analytical manner. Therefore, numerical methods such as those proposed in [?,

91, 92] will be suitable. Application of singular value decomposition (as proposed

by P. Perona in [109]) to the bank of rotated filters reveals that the minimum

number of non separable basis functions that can rotate the filter with minimum

error is 6. If the 6 basis functions are separable then to perform convolution with

each basis will cost 2×13 = 26 operations; 26×6 = 156 operations in total. Since

the convolution with one two dimensional filter requires 13×13 = 169 operations,

it was decided to not utilise any of the aforementioned numerical approaches to

find the separable basis functions but use the pre-computed rotated filter bank

instead. The MATLAB implementation of the method based on SVD is available

at http://www.vision.caltech.edu/manduchi/def.tar.Z and is cited in the paper

[92] authored by R. Manduchi et al.

4.3.3 Formation of the Final Feature Vector

The result of convolving a greyscale image with the bank of precomputed ker-

nels will give gradient information at multiple orientations. In particular the
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Figure 4.7: The total energy E(x) is computed as sum of amplitudes An.

magnitude of gradient is of high interest and it is derived in the following way.

Supposed Iθ = I ∗ f θ is the convolution of the image with a filter and also

θj = {0◦, 30◦, 60◦, ..., 330◦} with j = 1, ..., N . Then the magnitudes that are

derived are expressed as

Fj =
√

(Iθj)2 + (Iθ(N−j+1))2, j = 1, ..., N/2 (4.8)

Thus, Fj is a collection of image features for background modelling. Since the

goal is to maximise the detection of approximate contours it was decided to utilise

image features from phase congruency. These were first proposed by P. Kovesi in

[74] and [76] and it is described as a measure invariant to brightness or contrast

changes and signifies the points of high interest. The author mentions that feature

realisation in an image occurs at points of maximum phase congruency which,

while speaking about a one dimensional signal, means that when the phases of all

detected frequencies are in agreement then the point is of high interest. This is best

illustrated in Figure 4.7, which shows the amplitudes An of all different frequencies

of different phases added to compute the total length of the path from the centre

of axes to the end of vector E(x). At the same time the vector connecting the start

point and the end point of the path is expressed as energy E(x). It is obvious that

if all the frequencies are in phase then the sum of amplitudes has the maximum

value and it is when the local energy E(x), attains the maximum. The above

concept can be expressed by the following equation.

PC(x) =
|E(x)|∑
n

An(x)
=

∑
n

An cos(φn(x)− φ̄(x))∑
n

An(x)
(4.9)

P. Kovesi further enhanced the Equation 4.9 to make it insensitive to noise; for

more information refer to [75]. In the practical case of two dimensional images

the computation of phase congruency is not as straightforward as defined by the
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above equation. To identify the amplitudes, the image is convolved with oriented

Gabor wavelets of different scales. The Equation 4.9 is calculated separately at 6

orientations and the resulting phase congruencies PC(θ) are used as features for

the background model.

4.4 Background Updating and Foreground

Segmentation

After combining the 6 image features of gradient information with the 6 phase

congruency images, a 12 dimensional feature vector is obtained. This feature

vector is used to perform background modeling based on a mixture of Gaussian

distributions as proposed by C. Stauffer and W. E. L. Grimson [129, 130]. If the

size of the frames of the under processing video is m × n then we can assume a

feature cube of size m× n× 12. Each pixel of the frame could be represented by

the variable F (x, y, i), where i = {1, ..., 12} is the number of features. The history

of feature values for each pixel is modelled by K Gaussian distributions. In the

current application the minimum number of K = 2 gives the best results. The

probability of observing F (x, y) at time t is [129]

P
(
F(x,y),t

)
=

K∑
k=1

ωk,t ∗ η
(
F(x,y),t, µk,t,Σk,t

)
(4.10)

Where ωk,t are the coefficients of each distribution that act as weights, µk,t, and

Σk,t are the mean value and the covariance matrix of the kth Gaussian distribution.

The Gaussian function is defined as [129]

η
(
F(x,y),t, µk,t,Σk,t

)
=

1

(2π)n/2|Σk,t|1/2
e−

1
2(F(x,y),t−µk,t)

>
Σ−1
k,t(F(x,y),t−µk,t) (4.11)

Stauffer and Grimson assumed that the R, G, and B values are independent

and have the same variances and thus

Σk,t =
(
σ2
kI
)

(4.12)

where I is the identity matrix and σ2
k is the variance of the kth distribution. The

same assumption applies for the 12 features. Every new vector F(x,y,i),t is checked

against the existing K distributions via absolute distance to find a match. This

distance is defined as:

Dk =
∣∣F(x,y),t − µk,t−1

∣∣ (4.13)

A match is found if the dot product of the distance vector of each distribution is
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smaller than 2.5 standard deviations, i.e.:

Dk ·Dk ≤ 2.5σk,t−1 (4.14)

If a match is found then the kth Gaussian that is found to be a match, is updated

following the next equations.

µk,t = (1− a)µk,t−1 + aF(x,y),t

σ2
k,t = max ((1− a)σ2

k,t−1 + a
(
F(x,y),t − µk,t

)>
(F(x,y),t − µk,t), σ2

min)

ωk,t = (1− a)ωk,t−1 + a(rk,t)

(4.15)

where a is the learning rate and rk,t is 1 for the model which matched and 0 for

the remaining models. In the case that no matching distribution is found then the

pixel is labeled as foreground and the least probable distribution is substituted by

a new one, initialised with prior parameters for ωk,t and σ2
k,t and µk,t = F(x,y),t . To

decide which portion of distributions represents the foreground and which portion

defines the background, it is important to put them in an order according to their

weight ωk,t. Then the first B distributions, chosen according to the following

formula, account for the background.

B = argmin
b

(
b∑

k=1

ωk,t > T

)
(4.16)

where T is the threshold that defines the portion of distributions that are accoun-

ted for by the background. A pixel is labeled as background if the current F(x,y),t

matches any of the first B distributions. In the opposite case the pixel is labe-

led as foreground. For the current implementation the parameters are T = 0.4,

a = 0.005, σ = 0.3, σmin = 0.7σ and K = 2.

4.5 Post Processing of the Segmented

Foreground Contour

The result of foreground segmentation using gradient and phase congruency fea-

tures is the derivation of approximate foreground contours that should undergo a

series of post processing steps to achieve an accurate foreground contour definition.

These steps include the reflection of the raw foreground contours on edges derived

from the incoming frame and further refinement by removing the line segments

that occur as a result of noise or shadow. As some edge segments are removed it is

imperative to make use of contour completion methods to ensure closed contours.

A sophisticated algorithm, developed by D. Gil and P. Radeva in [48] based on
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anisotropic diffusion is employed to recover smooth edges. Due to the complexity

of the method, its explanation will consume a significant part of this section. In

spite of the good results produced the methods intensity makes it questionable for

real time applications. An outline of the post processing algorithm is presented in

pseudocode in Appendix B.

The key algorithms to be explained in this section are:

• Edge detection

• Noise line removal

• Shadow line removal

• Simple edge completion method

• Anisotropic diffusion to recover smooth edges

4.5.1 Edge Detection and Accumulation

A credible raw foreground contour refinement should include the reflection of the

contour on credible edges. The edge detection algorithm should be scale invariant

or at least scale conscious. Hence, Canny edge detection routine has been used at

different scales and the results have been accumulated into one aggregate image.

Usually the Canny algorithm is applied on a greyscale image. Nonetheless, it

was decided to collect edges from the HSV colour space since the saturation com-

ponent encloses valuable segmentation information, when the value component

fails. The scales chosen for gradient estimation are σ = 2 for the saturation

component and σ = {1, 2, 3} for the value component. After non-maximal sup-

pression the corresponding high and low thresholds for hysteresis thresholding are

respectively, threshhigh = {0.3, 0.08, 0.05, 0.3} and threshlow = 0.4threshhigh.

Except for gradient based edge detection methods an important edge detection

method based on phase congruency, proposed by P. Kovesi in [76], was employed.

The main strength of phase congruency is that it provides an absolute measure of

significance of features. This allows the definition of one global threshold for the

entire image or a range of images. P. Kovesi identifies a measure of edges from

phase congruency based on moment analysis. Hence, non-maximal suppression of

maximum moment of phase congruency is considered as a complementary edge.

The complementarity of this method lies in the fact that in contrast to Canny

filter that produces response on each side of a line feature, the phase congruency

produces one centralised response. Here, the thresholds for hysteresis thresholding

are threshhigh = 0.3 and threslow = 0.01.
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The total of 5 edge images undergo noise and shadow line reduction separately,

and the resulting edges are combined into one final edge image ready for contour

completion

4.5.2 Shadow Line Removal

Ignoring the order the algorithms are executed, it is good to start with the shadow

edge removal. This part if applied is the actual bottleneck of the whole algorithm.

The existing literature on edge based shadow removal suggests a variety of me-

thods. However, the more they increase in accuracy, the more computationally

expensive they become. The currently available methods implemented in MAT-

LAB are significantly far from being real time. The methodology proposed by J.

F. Lalonde et al. [80] for shadow removal in consumer photographs in outdoor

scenes is the one that best suits the proposed foreground segmentation process.

This is because the authors approach the shadow detection problem not at region

level as usually happens, but at edge level. They perform watershed segmentation

to detect object boundaries and gradient estimation to localise strong candidate

shadow edges. Since in our case the edges are already known the first stage of the

algorithm could be omitted.

The basic concept of the algorithm is the detection of features across the boun-

daries and the use of Adaboost classifier to categorise the edges. The features

computed across the edges include colour ratios at 3 colour spaces (RGB, LAB,

ILL [26]), texton features [94], and skewness of pixel intensities [160]. To compute

the colour ratios at each pixel location across the line it is important to know the

orientation of the line at that point. Once the orientation is determined, orien-

ted first derivative of the Gaussian filter is constructed at 4 different scales and

is matched with the orientation of the line. Subsequently the weighted average

fl(p) of pixels under the positive side of the filter can be calculated. If the filter is

rotated by 180◦ then the weighted average fr(p) of pixels at the other side of the

line can be calculated. The ratios for each pixel and colour space are computed

as fractions of the minimum average to the maximum, as follows:

min (fl(p), fr(p))

max (fl(p), fr(p))
(4.17)

Once all the ratios along the line are obtained, they are averaged in such a way

that there is one ratio for each colour space component resulting in 9 colour ratios

computed for each scale. The colour ratios along with the texture features are fed

to Adaboost classifier which delivers the final classification results. More details

about this technique can be found in [80]. One more contemporary approach for
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shadow detection that partially uses the concepts proposed by Lalonde is the one

of X. Jiang et al. in [148]. The authors suggest incorporating local correlations

between the local luminance contrast and average local luminance to enhance the

output of classification based only on colour ratios. However the procedure is very

long and complicated to be adopted for the purpose of this application.

4.5.3 Noise Line Removal

As it was expected, the occurrence of noise lines due to inaccurate initial fore-

ground segmentation is high, therefore they should be removed. Following the

concept of colour ratios in different colour spaces it becomes possible to remove

the noise lines since their average ratios are approximate to one. A high average

ratio means that there is a considerable colour similarity between the areas on

either side of the line. This feature is in particular useful in dynamic background

scenarios with consistent texture such as sea waves or even weak shadow lines.

The preferred colour spaces are RGI (where I=R+G+B), LAB and HSV and

the selected scales for Gaussian filter are σ = {2, 3, 6}. The first derivative of

Gaussian is steered as described in the subsection 4.3.2. Similar to shadow line

removal the weighted average of pixel values is calculated at either side of a line

for each point (Figure 4.8). Therefore it will be 3 × 9 = 27 ratios per pixel in

total. However the colour ratios are not used directly for classification, on the

contrary they are compacted into 4 representative features that will be used with

SVM classifier to perform the intended separation into 2 classes (foreground and

background).

The first feature to be computed is S1 defined as the average of the colour

ratios as they were proposed by J. F. Lalonde.

RLi,j =
min (fl(pi,j), fr(pi,j))

max (fl(pi,j), fr(pi,j))
i = 1...N, j = 1...M (4.18)

where N is the length of the line in pixels and M is the number of colour compo-

nents per pixel.

S1 =

M∑
j=1

N∑
i=1

RLi,j

MN
(4.19)

It is common sense that the purpose of using ratios is to achieve a measure which

will be invariant to the scale of colour spaces. Working towards the same direction,

the ratios between consecutive partial averages of pixels at the same side of a line

will further reduce the dependence to colour information. This can be expressed
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Figure 4.8: Colour ratio calculation with oriented Gaussian derivative filters along
a line segment. The filter is rotated to obtain the average of pixel values at either
side of the line.

by the equations

rli,j =
fl(pi,j)

fl(pi+1,j)
, rri,j =

fr(pi,j)

fr(pi+1,j)
, i = 1...N − 1, j = 1...M (4.20)

Then the final ratios and the total score S2 can be computed as

Ri,j =
min (rl(pi,j), rr(pi,j))

max (rl(pi,j), rr(pi,j))
(4.21)

S2 =

M∑
j=1

N−1∑
i=1

Ri,j

M(N − 1)
(4.22)

For the third feature the ratios of partial averages at the same side of a line are

computed with reference to one of the partial averages. This will give an indication

of how much the pixel values along a line segment deviate from a fixed point of

reference. Hence, the ratios are expressed by the follows equations as:

rli,j =
fl(p1,j)

fl(pi+1,j)
, rri,j =

fr(p1,j)

fr(pi+1,j)
(4.23)

The total score S3 is calculated in the same way as S2. The final feature to be

included was widely used for shadow detection in the early foreground segmenta-

tion algorithms. The word is about the intensity component I = R+G+B where

the ratio between the intensity of background model and the intensity of incoming

frame would indicate the presence of shadows [68, 140, 121, 40]. Thus the average

of ratios for the intensity component is defined as the fourth feature:

S4 =

N∑
i=1

RLi,3

N
(4.24)

An example of the four features calculated for edge segments of the images in
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Figure 4.9: Example of two patches (right) of the same image (left) and their
detected edge segments.

Figure 4.9 are: for the first case of the ground S1 = 0.5520, S2 = 0.9652, S3 =

0.6918, S4 = 0.6275, and for the second case of the wall S1 = 0.5627, S2 = 0.8438,

S3 = 0.6696, S4 = 0.7509. It is obvious that feature S2 is capable of identifying

the areas where there is difference in texture and feature S4 senses the shadow.

4.5.4 Edge Completion Methods

The edges that remain after shadow removal and noise line removal most of the

time do not form a perfectly closed contour. The term “perfectly closed” means

that the contour filling allows the recovery of the area enclosed in the contour.

An insignificant amount of research has been conducted on edge completion tech-

niques. Some of them, e.g., [90] and [97], concentrate on salient and closed contour

extraction but not on contour completion. A considerable attempt is of M. Na-

rayanan and B. Kimia in [100] who identify gaps for completion using constrained

Delaunay triangulation and suggest completing them with Euler Spiral [70] or

a straight line. Their simpler assumption in [100] that it is more likely that the

edge end-points interact with the closest neighbouring edge end-points rather than

with those that are far, leads to the selection of neighbouring end-points within a

specified window.

The approach of completing contours with affine geodesics proposed by A. A.

Handzel [51] is preferred to Eulers Spiral [70] since according to theoretical aspects

it will provide with similar results via a simpler implementation. A geodesic line is

the shortest line to connect two points on a curved surface; therefore, the authors

obtain the geodesic as a parabolic arch that passes through two lines that are

tangent to it. The contours to be completed could be assumed as two tangents.

The pictures in Figure 4.10 compare contour completion with affine geodesics to
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Figure 4.10: Contour completion with affine geodesics and straight lines in a
neighbourhood of 11x11(second row), 15x15(third row) and 17x17(fourth row)
around end-points. The parallel line segments as in the last example are not
completed in the case of affine geodesics, as expected.

contour completion with straight lines in a neighbourhood of 11× 11, 15× 15 and

17× 17 around end-points.

In order to spot edge end-point Kovesi Linker [73] was used. The edge image

was obtained by applying the Canny edge detector with threshold = 0.35 and

sigma = 1 on the golfer image from the Berkley segmentation dataset [93]. By

zooming into detail it can be spotted that the affine geodesics complete the contour

with a smooth curve in contrast to the simple straight line.

The main difficulty when using affine geodesics is the definition of the two

tangent lines. Since in nature we can rarely see completely straight lines, the ap-

proximate fitting of a straight line to a contour segment is not always successful.

This results in some undesirable parabolic curve definitions as it can be seen in the

examples provided. Further in practical cases the above methods are not conve-

nient for the main reason that they cannot guarantee “perfectly closed”contours.

In general a concept that has no clue on what direction a contour should follow

to be completed is condemned to fail. The methods described above are good for

imprinting when no information is available about the contour direction (or inten-
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tion of continuation). In our case the missing contours occur because of incomplete

foreground segmentation and not because of non-availability of direction relevant

information. This means that following the contour towards the direction that is

indicated by the gradient will lead to a smooth contour recovery. A method that

successfully implements this concept using anisotropic diffusion is suggested by D.

Gil and P. Radeva [48] and will be explained in detail in the following section.

4.5.5 Contour Completion Via Anisotropic Diffusion

Before proceeding to the following section the reader is advised to familiarise

themselves with the concept of anisotropic diffusion presented in sections 3.5-3.8.

Smooth Contour Recovery

P. Radeva and D. Gil in their work extended the anisotropic diffusion to recover

smooth contours [48]. The basic idea of their method was the extension of the

objects contour in the direction perpendicular to edge gradient. Since, as explained

above, the image gradient is not a sufficient measure to extend flow like structures

the authors rely on the orientation of structure tensors averaged within a window

of size ρ.

Jρ(∇uσ) = Kρ ∗ (∇uσ∇u>σ ) (4.25)

Computing the structure tensors for each pixel of an image leads to an automatic

generation of a vector field defined on the whole image. The broken edges of a

curve are interpolated along the defined vector field iteratively, via anisotropic

diffusion. Given that the γ0 is the set of points to be extended over the computed

vector field, the diffusion process is encoded by the following equations [48]:

∂u(x, y, t)

∂t
= div (D∇u(x, y, t)) (4.26)

u(x, y, 0) =

{
1 if r = (x, y) ∈ γ0

0 otherwise
(4.27)

To form the diffusion tensor D, the property D = QΛQ> of a positive semi-

definite matrix was used; where Q =

[
v1a v2a

v1b v2b

]
. It is desired to extend the contour

along the direction indicated by the eigenvector v2 perpendicular to the image

gradient and parallel to the real extension of contour. Hence, Λ =

[
0 0

0 1

]
. has

eigenvalues µ1 = 0 and µ2 = 1 to ensure maximum diffusion along the flow like

structure. The final result of the diffusion process is the extended contour. The
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following operations aim at discretisation of the problem to reach an iterative

solution.

∂tu =
∂u(x, y, t)

∂t
= div (D∇u(x, y, t)) = ∇ · (D∇u(x, y, t)) (4.28)

If D =

[
a b

b c

]
, ∂x = ∂

∂x
, ∂y = ∂

∂y
then by substituting the gradient operators by

partial derivatives, it will be,

∂tu =
(
∂x ∂y

)
·

[(
a b

b c

)(
∂xu

∂yu

)]

=
(
∂x ∂y

)
·

(
a∂xu+ b∂yu

b∂xu+ c∂yu

)

= ∂x(a∂xu+ b∂yu) + ∂y(b∂xu+ c∂yu)

= ∂x(a∂xu) + ∂x(b∂yu) + ∂y(b∂xu) + ∂y(c∂yu)

(4.29)

If the symmetrical central differences are used to calculate the derivatives then

∂xf = 1
2
(fi+1,j − fi−1,j)

∂yf = 1
2
(fi,j+1 − fi,j−1)

(4.30)

And thus the following equations express the discretised solution to the PDE,

∂x(a∂xu) = 1
2
((ai,j + ai+1,j)(ui+1,j − ui,j)− (ai−1,j + ai,j)(ui,j − ui−1,j))

∂y(c∂yu) = 1
2
((ci,j + ci,j+1)(ui,j+1 − ui,j)− (ci,j−1 + ci,j)(ui,j − ui,j−1))

∂x(b∂yu) = 1
2
(1

2
bi+1,j(ui+1,j+1 − ui+1,j−1)− 1

2
bi−1,j(ui−1,j+1 − ui−1,j−1))

∂y(b∂xu) = 1
2
(1

2
bi,j+1(ui+1,j+1 − ui−1,j+1)− 1

2
bi,j−1(ui+1,j−1 − ui−1,j−1))

(4.31)

Tuning the Direction of Eigenvectors

As it may have already been understood the selection of proper eigenvectors is

crucial in contour completion process as they decide towards which direction the

contour will be extended. Often the gradient information derived from the value

component of an HSV image is not sufficient and it is required to borrow additional

information from the saturation component.

Hence, the structure tensor can be first computed for the Value and Saturation

components, and then averaged. The benefit of averaging the structure tensors is

apparent in the images of Figure 4.11 . Attention should be drawn at the torso
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(a) (b) (c)

Figure 4.11: Averaging of tensors of the value component (a) and the tensors of
the saturation component (b) into one final tensor (c). The tensors are represented
as ellipses with their orientation aligned with the orientation of the boundary.

(a) (b) (c) (d)

Figure 4.12: Tensor fields for the saturation (a), value (b) and foreground (c)
images. The weighted average of the three images is shown in (d).

and the legs of the pedestrian, where at several points the value component fails

in producing accurate structure tensors. This failure is compensated by tensors

produced from the saturation component. The resulting average combines the

advantages of both colour components.

Except for that, to inhibit the diffusion towards the areas that deviate from

the moving object the structure tensor is further weighted by the tensor derived

from the crude foreground image, result of background subtraction. Therefore the

final structure tensor is expressed as follows:

JA = w1Jρ1(∇Sσ1) + w2Jρ2(∇Vσ2) + w3Jρ3(∇Fσ3) (4.32)

where S is the saturation image, V is the value image, and F is the resulting

foreground from the background subtraction process. The elements of tensor ma-

trices are added element-wise after being weighted by the factors w1, w2, and w3.

The images in Figure 4.12 show the tensor field for saturation and value compo-

nents, as well as the tensors for the foreground image. It can be easily noted that
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(a) (b) (c)

Figure 4.13: Diffusion results for the edge image (a). (b) is the diffusion result for
weighted average tensors of saturation and value components and (c) is the result
for weighted average tensors of saturation, value and foreground contour images.

the tensors of the foreground image are well stretched around the contour of the

silhouette inhibiting in this way the diffusion towards irrelevant directions. This

additional property is revealed by the resulting diffused image as illustrated in

Figure 4.13 , where the initial edge image Figure 4.13-(a) is diffused to achieve

closed contours. On one hand is the diffused contour without the foreground image

tensor field Figure 4.13-(b) where the diffusion expands to the objects that belong

to background and on the other hand in Figure 4.13-(d) is the diffused contour

which, due to the tensor field of foreground forms well rounded shape.

Once the closed contour is obtained it is filled and slightly eroded to thin the

contour and eliminate any extended edges, which lie out of the object contour.

Another additional use of the structure tensor throughout the whole algorithm,

in various steps, is the calculation of the direction of the gradient, which is given

by the following formula.

θ =
180

π
atan2 (v1a, v1b) (4.33)

where θ is the angle in 2D space and v1 is the eigenvector with the maximum

eigen-value.

4.6 Experimental Results and Analysis

To test the proposed system, ChangeDetection.net [49] video database was used as

the benchmark dataset. All possible scenarios were included to ensure an overall

objective evaluation of the system. The shadow line removal as proposed by J.

F. Lalone was not applied since it was computationally intensive for this kind of

application.

The code was developed in MATLAB and the experiments were conducted on a
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Figure 4.14: Distribution of processing time for the different parts of the system.

machine with 2.4GHz processor and 4GB memory. For the reason that MATLAB

is a prototyping language, its code execution is not efficient in computationally

intensive applications. Hence, the average processing time for a 320 × 240 frame

is 30 seconds of witch, approximately 19.25 seconds are used for background mo-

delling and updation, 0.85 seconds for phase congruency feature calculations, 3.66

seconds for noise line removal, 5.04 seconds for diffusion, and the rest of the time

is used for other minor tasks (see Figure 4.14). It was found from the experiments

that, if coded in C++, the background modelling based on GMM works at a rate

of up to 30 frames per second. This leads to the conclusion that if the complete

proposed system was coded in a compiled programming language, the worst case

scenario performance would be less than 10 seconds per frame.

4.6.1 Experiments Set Up

Before presenting the experimental results it is important to specify the experi-

mental set up, which includes some details on implementation and the choice of

important parameters.

To find separate edge segments for post processing the MATLAB function

“edgelink.m”developed by P. Kovesi was used [73]. His work on phase congruency

is also available as a MATLAB implementation “phasecong3.m”from the same

source. As input to “phasecong3.m”, it is required to provide with a number of

variables; the most important of which are: a greyscale image, number of wavelet

scales = 4, number of filter orientations = 6, wavelength of smallest scale filter =

3 and the scaling factor between successive filters = 1.8. The values of parameters

were selected as those which give the best results.The resulting phase congruency

in 6 orientations are linearly adjusted to the range [0,1].

For fast implementation purposes the EEF was not employed for edge detection

but only for background subtraction; instead, the traditional Canny edge detector

was used. After segmenting the foreground contour with the use of background

subtraction, raw foreground was morphologically closed before being reflected onto
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the edges.

All edge segments at different scales are processed separately and the four

features obtained are forwarded to an SVM classifier. The LIBSVM library [21]

was used as a tool to implement the classification. The classifier was trained

with features computed from a pair of 2 different frames for each of the following

datasets: ‘PETS2006’, ‘pedestrians’, ‘backdoor’, ‘busStation’, ‘canoe’, ‘winterDri-

veway’, and ‘bungalows’. Foreground and background samples were taken to train

the classifier, with features of weak shadow also included in the background. From

the last mentioned dataset only the foreground information was considered for trai-

ning as the shadow conditions were extreme and thus more sophisticated features

are needed to handle them. Figure 4.15 shows the layout of foreground-background

samples with respect to one of the four features S1, S2, S3 and S4.

Foreground is represented by red coloured points while background by blue. It

can be noticed that the features are partially complementary and each covers the

other there where it fails. The features that seem to separate better the clusters

are S2 and S3 confirming that the simple colour ratios measure S1 is not sufficient

on its own. A 3D view of features is visualised in Figure 4.16 where the separation

between the two clusters is more obvious.

The classifier was trained with 3-fold cross validation to select the kernel and

the training parameters. Among linear, polynomial and Radial Basis kernel func-

tions, the polynomial kernel of 3rd degree produced the highest average accuracy

of 87.72% with training parameters C = 7.4643 and γ = 1.8661. The final model

was trained with the entire set of samples. In the future it is possible to enrich

the training set and even expand the set of features for more accurate results.

To remove noise edges in thermal videos only the measure S1 was used, with the

threshold 0.95.

Once all the edges are classified, the ones that belong to background are re-

moved. The rest of the edges are combined into one edge image that will be

defused for closed contour recovery. As it was explained earlier in this chapter

three structure tensor fields are combined into one according to Equation 4.32

For colour videos the weights are w1 = w2 = 0.46 and w3 = 0.08 and the scale

parameters are ρ1 = ρ2 = ρ3 = 4, σ1 = σ3 = 2, and σ2 = 1. For the thermal

videos, since the saturation component is not available the structure tensors are

computed over the greyscale frame and the segmented raw foreground. In this

case the weights become w1 = 0.97 and w2 = 0.03, and the scale variables are

ρ1 = ρ2 = 4, σ1 = 1 and σ2 = 2. The parameters were selected in such a way

so that they facilitate acceptable results. The diffusion process is completed in

70 iterations, which are enough to recover closed contours. A longer period of

diffusion, in case of noisy complex background, would result in contours extended
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Figure 4.15: One-dimensional representation of feature clusters. From left to right
are visualised the features S1, S2, S3 and S4. The horizontal axis represents the
number of samples while the vertical axis the feature value for each sample point.
Foreground is represented by red coloured dots while background by blue coloured
dots.

Figure 4.16: Three-dimensional representation of features. Each graph combines
three different features. From left to right are visualised the feature triplets S1S2S3,
S2S3S4, S3S4S1, and S4S1S2. Each axis corresponds to one of the three features.
Foreground is represented by red coloured dots while background by blue coloured
dots.
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Figure 4.17: Some examples of intermediate results from the proposed foreground
segmentation procedure. From left to right, the first column shows the background
subtraction result, the second column the recovered foreground edges, the third
column the edges after noise line removal, the forth column the results of edge
completion and the last one, the filled and eroded contours.

away from the object into the background and would add more thickness to the

contours. The diffused contour is flood filled to segment the foreground silhouette

and morphologically eroded by a square structuring element of side = 4 pixels to

attenuate any occurring noise extensions. Figure 4.17 shows some example results

for all important stages of the algorithm starting with the raw foreground image,

followed by its reflection on the edges, then the refined edge image, the closed

contour and finishing with the filled and eroded image. In the example of the

image boat, it is displayed how well the method removes the edges that belong

to waves, while in the example from the ‘backdoor’ dataset, the shadow edge is

partially removed. Further the noise and some parts of shadows in the cubicle

image are effectively eliminated.

4.6.2 Experiments Analysis

The results of benchmark algorithms selected for comparison with the proposed

method were taken from the ChangeDetection.net website [49]. The scenarios that

the ChangeDetection.net covers include baseline simple cases, shadow sequences,

dynamic background sequences, intermittent object motion, camera jitter and

thermal video sequences. Each scenario includes a number of videos with tempo-
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ral ROIs varying from 1000 to 5000 frames. ChangeDetection.net project features

the results from most of the influential publications of first generation algorithms

on foreground segmentation in video. It is also the home of the IEEE “change

detection workshop”displaying a range of applications of different levels of per-

formance. Therefore, it was easier and more reliable to derive the experiments

results for comparison from there.

Specifically, the algorithms chosen spread across the whole range of overall

performance levels; starting with the standard Stauffer-Grimson GMM (GMM-

SG) [130] and its improved version by P. KaewTraKulPong (GMM-KAEW)[68],

followed by a non-parametric density estimation algorithm which integrates spatio-

temporal features by Y. Nonaka et al. (KDE-IST)[101], a multi-layer background

subtraction technique based on colour and texture features by J. Yao and J.-

M. Odobez (MLBS) [151], a self-organizing, through artificial neural networks,

background subtraction algorithm by L. Maddalena and A. Petrosino (SOBS-

SC)[89], a visual background extractor (ViBe+)[137] of M. Van Droogenbroeck and

O. Paquot, a pixel based adaptive segmenter of M. Hofmann et al.(PBAS)[59] and

finally ending with the method with the best overall performance which maintains

complementary GMM background models (SGMM-SOD) of R. Evangelio and T.

Sikora[43].

To measure the accuracy of the methods we employ the following metrics:

• Recall: Rec= TP / (TP + FN)

• Precision : Prec= TP / (TP + FP)

• Specificity: Spec= TN / (TN + FP)

• False Positive Rate: FPR= FP / (FP + TN)

• False Negative Rate: FNR= FN / (TP + FN)

• Percentage of Wrong Classifications: PWC=100 * (FN + FP) / (TP + FN

+ FP + TN)

• F-Measure : F= (2 * Prec* Rec) / (Prec + Rec) which is the weighted

harmonic mean of Precision and Recall, so it can be regarded as an overall

accuracy measure.

where, TP: True Positive FP: False Positive FN: False Negative TN: True Negative

Tables 4.2 to 4.7 display all the above defined metrics for the proposed Closed

Foreground Contour (CFC) method for the video sequences contained in each

scenario separately. Furthermore, the average results achieved by the CFC for
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Table 4.2: Metrics for the baseline sequences.

video Recall Specif. FPR FNR PWC Prec. F-measure
C

F
C

PETS2006 0.9191 0.9976 0.0024 0.0011 0.3437 0.8335 0.8742

highway 0.9474 0.9774 0.0226 0.0033 2.4334 0.7257 0.8219

office 0.5266 0.9947 0.0053 0.0351 3.7627 0.8803 0.6590

pedestrians 0.9377 0.9992 0.0008 0.0006 0.1393 0.9220 0.9298

Average results for the above video data.

a
lg

or
it

h
m

s CFC 0.8327 0.9922 0.0078 0.1673 1.6698 0.8404 0.8212

GMM-SG 0.8180 0.9948 0.0052 0.1820 1.5325 0. 8461 0.8245

MLBS 0.8456 0.9984 0.0016 0.1544 0.8993 0. 9655 0.9004

SGMM 0.9334 0.9974 0.0026 0.0666 0.5494 0. 9113 0.9212

Table 4.3: Metrics for the shadow sequences.

video Recall Specif. FPR FNR PWC Prec. F-
measure

C
F

C

backdoor 0.9358 0.9942 0.0058 0.0013 0.7006 0.7645 0.8415

bungalows 0.5669 0.9884 0.0116 0.0276 3.6862 0.7574 0.6484

busStation 0.9011 0.9894 0.0106 0.0038 1.3820 0.7658 0.8280

copyMachine 0.6843 0.9880 0.0120 0.0235 3.3056 0.8092 0.7415

cubicle 0.9455 0.9959 0.0041 0.0011 0.5123 0.8209 0.8788

peopleInShade 0.8718 0.9924 0.0076 0.0077 1.4397 0.8729 0.8724

Average results for the above video data.

al
go

ri
th

m
s CFC 0.8176 0.9914 0.0086 0.0108 1.8377 0.7985 0.8018

GMM-SG 0.7960 0.9871 0.0129 0.2040 2.1951 0.7156 0.7370

MLBS 0.8588 0.9912 0.0088 0.1412 1.5621 0.8099 0.8216

SGMM-SOD 0.9191 0.9902 0.0098 0.0809 1.2534 0.8226 0.8646

each scenario are compared at the end of each table with the average results for

the same scenario of three other algorithms. These three algorithms are SGMM-

SOD of highest overall F-measure, MLBD of medium overall F-measure, and the

traditional GMM-SG with low F-measure.

It is observed that the proposed method achieves high average results for the

baseline, shadow, and thermal sequences. This is well understood if the design

of the system is taken into account. Specifically, the precision and recall metrics

attained for the ‘PETS2006’ and the ‘pedestrians’ video sequences are over 90%

(Table 4.2). One of the primary goals was the shadow reduction, which explains

the good average performance for the shadow sequence and the lowest FPR (

Table 4.3 ). The high average F-measure value for the thermal sequence is a

result of the fact that the primary background modelling is based on gradient and

phase congruency features that do not depend on colour ( Table 4.7 ). Also the

method performs well for the ‘boats’ and ‘canoe’ video sequences of the ‘dynamic
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Table 4.4: Metrics for the dynamic background sequences.

video Recall Specif. FPR FNR PWC Prec. F-
measure

C
F

C

boats 0.7721 0.9982 0.0018 0.0014 0.3176 0.7349 0.7531

canoe 0.9359 0.9829 0.0171 0.0024 1.8762 0.6677 0.7794

fall 0.8069 0.7535 0.2465 0.0035 24.5575 0.0557 0.1043

fountain01 0.8944 0.9359 0.0641 0.0001 6.4178 0.0115 0.0226

fountain02 0.8397 0.9932 0.0068 0.0003 0.7086 0.2113 0.3377

overpass 0.7845 0.8973 0.1027 0.0029 10.4167 0.0940 0.1679

Average results for the above video data.

al
go

ri
th

m
s CFC 0.8389 0.9268 0.0732 0.0018 7.3824 0.2959 0.3608

GMM-SG 0.8344 0.9896 0.0104 0.1656 1.2083 0.5989 0.6330

MLBS 0.7584 0.9912 0.0088 0.2416 1.0758 0.6466 0.6278

SGMM-SOD 0.7786 0.9966 0.0034 0.2214 0.6041 0.7044 0.6883

Table 4.5: Metrics for the intermittent object motion sequences.

video Recall Specif. FPR FNR PWC Prec. F-mea-
sure

C
F

C

abandonedBoxx 0.4546 0.9896 0.0104 0.0276 3.6146 0.6879 0.5475

parking 0.5772 0.9964 0.0036 0.0354 3.5998 0.9311 0.7126

streetLight 0.4001 0.9979 0.0021 0.0274 2.8207 0.8966 0.5533

sofa 0.2691 0.9967 0.0033 0.0373 3.8559 0.8081 0.4037

tramstop 0.2494 0.9832 0.0168 0.1642 14.851 0.7641 0.3760

winterDrivewayy 0.7155 0.9970 0.0030 0.0021 0.5073 0.6454 0.6786

Average results for the above video data.

al
go

ri
th

m
s CFC 0.4443 0.9935 0.0065 0.0490 4.8750 0.7889 0.5453

GMM-SG 0.5142 0.9835 0.0165 0.4858 5.1955 0.6688 0.5207

MLBS 0.5012 0.9629 0.0371 0.4988 7.0245 0.6024 0.4816

SGMM-SOD 0.7363 0.9909 0.0091 0.2637 2.5238 0.8141 0.7151

background’ category ( Table 4.4 ). This is due to the application of noise line

removal in post processing stage. Since the edges that lie on the waves have great

colour and texture similarity across them, they are successfully removed. However

this is not the case for the ‘fountain’ videos as although the edges that belong to

waves are removed, the ever running fountain jet is not possible to be removed

as the surrounding area differs from the fountain jet. The method also performs

poorly for scenes with waving trees such as ‘fall’, ‘overpass’ and some frames from

‘highway’ where the precision levels for ‘highway’ are relatively low and for the

other two cases minimal ( Table 4.4 and Table 4.2). It is also expected that the

precision results for camera jitter will be very low (see Table 4.6). This is justified

by the fact that the primary foreground segmentation via background subtraction

is based on features that occur from neighbouring pixel differencing. Hence, if the
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Table 4.6: Metrics for camera jitter sequences.

video Recall Specif. FPR FNR PWC Prec. F-
measure

C
F

C

badminton 0.9081 0.9326 0.0674 0.0033 6.8208 0.3237 0.4773

boulevard 0.7344 0.8592 0.1408 0.0131 14.6675 0.2044 0.3198

sidewalk 0.9290 0.6468 0.3532 0.0019 34.5842 0.0658 0.1229

traffic 0.4230 0.9129 0.0871 0.0383 11.7641 0.2437 0.3092

Average results for the above video data.

al
go

ri
th

m
s CFC 0.7486 0.8379 0.1621 0.0142 16.9592 0.2094 0.3073

GMM-SG 0.7334 0.9666 0.0334 0.2666 4.2269 0.5126 0.5969

MLBS 0.6903 0.9905 0.0095 0.3097 2.1628 0.7905 0.7311

SGMM-SOD 0.6113 0.9907 0.0093 0.3887 2.3608 0.8040 0.6724

Table 4.7: Metrics for thermal video sequences.

video Recall Specif. FPR FNR PWC Prec. F-
measure

C
F

C

park 0.6452 0.9866 0.0134 0.0122 2.4700 0.6230 0.6339

diningRoom 0.6341 0.9929 0.0071 0.0344 3.7881 0.8940 0.7419

corridor 0.2976 0.9983 0.0017 0.0137 1.5093 0.7772 0.4304

library 0.3477 0.9970 0.0030 0.1558 12.8179 0.9649 0.5112

lakeSide 0.7879 0.9981 0.0019 0.0044 0.6138 0.8974 0.8391

Average results for the above video data.

al
go

ri
th

m
s CFC 0.5425 0.9946 0.0054 0.0441 4.2398 0.8313 0.6313

GMM-SG 0.5691 0.9946 0.0054 0.4309 4.2642 0.8652 0.6621

MLBS 0.5072 0.9986 0.0014 0.4928 3.8704 0.9611 0.6331

SGMM-SOD 0.6396 0.9971 0.0029 0.3604 1.6846 0.9471 0.7353

directions of object and camera motion coincide, it will be difficult to recover the

moving contours and at the same time all the stationary contours will appear as

exhibiting motion. In this case the noise line removal will not induce any change

as the stationary objects differ from the background.

Since the system does not have a long term memory to store the moving objects

that stopped moving, the recall values for the ’office’ video from the baseline

category (Table 4.2) and all the videos, except for the ‘winterDriveway’, from the

intermittent object motion category (Table 4.5), are very low. To handle this

kind of situation complementary background models should be maintained as in

SGMM-SOD of R. Evangelio and T. Sikora [43] and in MLBS of J. Yao and J.-M.

Odobez [151] or the background should be updated selectively as in SOBS-SC of

L. Maddalena and A. Petrosino [89]. A significant reason for the success of these

methods is due of their ability to store the foreground objects that ceased moving.

For the category of camera jitter, algorithms that use spatial mechanisms like
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Table 4.8: Comparative averages of all metrics of available scenarios for the selec-
ted methods.

Recall Specif. FPR FNR PWC Prec. F-measure

Proposed CFC 0.7041 0.9561 0.0439 0.2959 6.1606 0.6274 0.5779

Proposed CFC no
camera jitter

0.6952 0.9797 0.0203 0.3048 4.0009 0.7110 0.6321

Proposed CFC
no camera jitter,
overpass, fall,
fountain01

0.6973 0.9926 0.0074 0.2729 2.7180 0.7594 0.6846

GMM-SG 0.7108 0.9860 0.0140 0.2892 3.1037 0.7012 0. 6624

GMM-KAEW 0.5072 0.9947 0.0053 0.4928 3.1051 0.8228 0.5904

KDE-IST 0.6507 0.9932 0.0068 0.3493 2.8905 0.7663 0.6418

PBAS 0.7840 0.9898 0.0102 0.2160 1.7693 0.8160 0.7532

MLBS 0.6936 0.9888 0.0112 0.3064 2.7658 0.7960 0.6993

SGMM-SOD 0.7697 0.9938 0.0062 0.2303 1.4960 0.8339 0.7661

SOBS-SC 0.8017 0.9831 0.0169 0.1983 2.4081 0.7315 0.7283

ViBe+ 0.6907 0.9928 0.0072 0.3093 2.1824 0.8318 0.7224

SOBS-SC in [89], and ViBe+ in [137] perform best. This is visible in Figure 4.21

for the ‘badminton’ case.

To continue with the comparison the average values of all metrics in Tables

4.2-4.7 for the proposed CFC method and all the benchmark algorithms have been

summarised in Table 4.8. In general the proposed method works relatively well

after removing the ‘camera jitter’ category and other three specific video sequences

from the ‘dynamic background’ category.

For better comparison of the methods, the averages of all metrics have been

computed over some selected scenarios. These video scenarios and the average

Table 4.9: Comparative averages of all metrics for the specific video sequences: pe-
destrians, PETS2006, highway, office, fountain02, boats, canoe, winterDriveway,
backdoor, busStation, bungalows, peopleInShade, cubicle, copyMachine, park, la-
keside, corridor, dinindRoom, library.

Average Recall Specif. FPR FNR PWC Prec. F-measure TSE

CFC 0.7429 0.9927 0.0073 0.0184 2.3114 0.7976 0.7480 1977914

GMM SG 0.7349 0.9912 0.0088 0.0189 2.4858 0.7648 0.7170 3624078

GMM-KAEW 0.5446 0.9960 0.0040 0.0268 2.7757 0.8811 0.6313 3158727

KDE-IST 0.6439 0.9954 0.0047 0.0263 2.7546 0.8110 0.6655 2477131

PBAS 0.8057 0.9922 0.0078 0.0059 1.2971 0.8351 0.7742 3484131

MLBS 0.7274 0.9938 0.0062 0.0172 2.1027 0.8632 0.7480 3438928

SGMM-SOD 0.8017 0.9929 0.0071 0.0070 1.3302 0.8530 0.7937 3830332

SOBS-SC 0.7955 0.9890 0.0110 0.0082 1.8090 0.8024 0.7689 3771922

ViBe+ 0.7107 0.9940 0.0060 0.0133 1.7671 0.8452 0.7439 3547007
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Figure 4.18: Total Shadow Error for the 9 background subtraction techniques for
the video sequences specified in Table 4.9.

Figure 4.19: Average F-measure for the 9 background subtraction techniques for
the video sequences specified in Table 4.9.

metrics obtained are shown in Table 4.9. An additional measure incorporated in

this table is the Total Shadow Error (TSE), which measures the total number of

false positives that occur due to shadow. As it is shown in Table 4.9 the propo-

sed CFC achieves the lowest shadow error, which is confirmed by the qualitative

examples illustrated in Figure 4.20. The corresponding bar charts that compare

the TSE and F-measures of Table 4.9 are displayed in Figure 4.18 and Figure 4.19

respectively. The bar chart in Figure 4.18 demonstrates the big difference bet-

ween the TSE of the proposed method and the rest methods. As it is shown in

Figure 4.19 the F-measure of the proposed CFC system for the specific group of

videos is ranked as average among the rest of the techniques.

A visual comparison of the methods in Figure 4.20 reveals that the proposed

CFC method removes effectively the light shadows in comparison to the rest of
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Figure 4.20: Qualitative results comparing the proposed CFC method with a
selection of methods under analysis.
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Figure 4.21: Qualitative results comparing the proposed CFC method with a
selection of methods under analysis.
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Table 4.10: Comparative results for the ‘shadow’ category while employing the
EEF and the Gaussian filters.

video Recall Specif. FPR FNR PWC Prec. F-measure

backdoor EEF 0.9358 0.9942 0.0058 0.0013 0.7006 0.7645 0.8415

backdoor Gaus-
sian filter

0.9491 0.9780 0.0220 0.0010 2.2616 0.4667 0.6257

bungalows EEF 0.5669 0.9884 0.0116 0.0276 3.6862 0.7574 0.6484

bungalows Gaus-
sian filter

0.6725 0.9856 0.0144 0.0209 3.3145 0.7491 0.7087

busStation EEF 0.9011 0.9894 0.0106 0.0038 1.3820 0.7658 0.8280

busStation Gaus-
sian filter

0.9578 0.9756 0.0244 0.0016 2.5013 0.6011 0.7386

Figure 4.22: Qualitative comparative results for the ‘backdoor’ video sequence
while employing the EEF and the Gaussian filters, respectively.

the background subtraction techniques. Special attention should be given to the

‘PETS2006’ case which is one of the most basic scenarios that occur in surveillance

and where the other methods fail removing the ground shadow. Hard shadow

examples such as those present in the ‘highway’ image example are not possible

to be removed with the proposed method. A further observation noticeable in the

examples of Figure 4.20 and Figure 4.21 is the wholeness of the achieved segmented

foreground, as broken objects is a usual case for many background subtraction

techniques. In the proposed CFC the contour completion via anisotropic diffusion

ensures whole objects. However, this attribute results in a sub-optimal output in

case of waving trees as in the ‘fall’ example of Figure 4.21 (explained in section

8.2.). Finally, the thermal frame example confirms the ability of the CFC system

to provide with accurately defined foreground shapes.

Last but not least, Table 4.10 and Figure 4.22 are given to show why the Gaus-

sian filter is not preferable for smoothing before computing the derivative. The

table shows that although the recall values have been increased, the precision va-

lues for two cases have been decreased. As it appears in Figure 4.22, the Gaussian

filter is more sensitive to illumination changes than the EEF filter causing a large
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number of false positive detections. Therefore, the use of the Gaussian filter is not

advisable.

4.7 Summary and Discussion

In this chapter a method for closed foreground contour segmentation and ground

shadow reduction in video sequences has been proposed. The procedure begins

with the acquisition of crude foreground contours via background subtraction,

based on GMM, which through a number of steps that follow is refined and finally

closed into an accurate foreground contour.

Specifically, a novel smoothing filter is applied to each incoming frame prior

to computation of gradient features, which ensures the maximum continuation

of contours and tolerance to illumination changes. Additional phase congruency

features contribute to the detection of contours that the gradient omits. Sub-

sequently after the raw foreground contours are reflected onto the edges of the

incoming frame, a noise edge removal technique based on colour ratios is applied.

This is an important step as it also decides whether an edge lies over a shadow

contour. Finally a contour completion technique based on anisotropic diffusion is

applied to achieve a closed foreground contour that is filled to define foreground

regions.

The experiments have shown that the method performs very well in the pre-

sence of shadows. It attains the lowest occurrence of false positives due to shadows

in comparison with the state-of-the-art techniques. Dynamic background scenes

like sea waves are handled successfully since there is significant level of similarity

in colour and texture across edges that lie on waves. However the noise reduction

techniques fail to remove the tree leaves. Further, the contour completion tech-

nique underperforms in backgrounds containing waving trees, as the completion

of undeleted contours means the detection of the entire tree. It was also shown

that for a group of specific scenarios where the proposed CFC system is designed

to perform well, the system is ranked as medium among the rest of the techniques.

Key step on the CFC algorithm is the noise line removal technique as it is

the one that decides which of the detected edges belong to the foreground and

which not. This step relies on colour ratio features and a classifier that takes

the decision. This gives potential for further research into additional features and

further training of the classifier, which could improve the results obtained above.



Chapter 5

Viewing Direction Estimation and

Carried Bag Type Recognition

(BTR) for a COD System

This chapter deals with viewing direction estimation of a walking person for the

purpose of using it subsequently for COD as proposed by D. Damen and D. Hogg

[33, 34]. Additionally, bag type recognition algorithm is devised based on the

location of the detected object relatively to the human body. The chapter begins

with section 5.1 where the COD system of Damen & Hogg is analysed to identify

its shortcomings for the purpose of later proposing solutions. Section 5.2 presents

the proposed viewing direction estimation and bag type classification algorithms.

Section 5.3 provides experimental results and a detailed analysis. Finally section

5.4 concludes, identifying future directions of research.

The COD of Damen & Hogg is the state of the art method extensively tested on

a large dataset and exhibits the best known results. Their COD algorithm is based

on a temporal template analysis, as clarified in the chapter 3 and requires a moving

foreground segmentation. The foreground silhouettes are segmented by a GMM

based background modelling algorithm as proposed by P. KaewTraKulPong in

[68]. The tracking part was performed by a simple connected component analysis,

based on features such as for e.g., aspect ratio of the object, colour properties

and location. The readers are advised to familiarise themselves with the COD of

Damen & Hogg, described in chapter 3 before proceeding.

Several techniques have been proposed recently for person’s body orientation

estimation or body pose recognition; these are mostly based on the direction

of gradient features, and a few are summarised below. M. Enzweiler and D.

M. Gavrila begin their work with pedestrian classification to continue with body

orientation estimation in a unified fashion. The classification is performed with

82
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a linear SVM and local receptive field neural network (NN/LRF), on HOG [42].

Another approach, which utilises HOG features in conjunction with LBPs for

person detection and orientation classification is presented in [145]. The authors

suggest that substituting the conventional SVM with an SVM decision tree gives

significantly improved results. In [24] the authors achieve body pose classification

by a sparse representation of multi-level HOG features. They also show that

sparse representation attains higher accuracy levels than SVM training. A different

approach in [3], by M. Andriluka et al., utilises pictorial structures extended to 8

viewpoint specific models for human detection and viewpoint estimation.

In contrast to the above mentioned methods the following ones assume a detec-

ted person and an extracted silhouette. A. Agarwal and B. Triggs in [1] introduce

the relevance vector regression for 3D human pose estimation. They apply a Re-

levance Vector Machine on a Histogram of Shape Context, previously undergone

dimensionality reduction. The same features are adopted by Rybok et al. who

classify the body orientation into 12 categories using SVM and Nearest Mean clas-

sification [116]. In [104] the authors apply body orientation estimation from the

top camera view by shape context matching of the upper body with predetermined

models.

The proposed direction estimation stays away from the complex feature des-

criptions and classification methods. Since primarily it is to be used with tempo-

ral templates for COD purpose, the devised features are simple and based on the

geometry of the upper part of human silhouette. Though seemingly simple, the

method attains high accuracy classification results.

For carried object recognition no relevant literature was found. Therefore

the proposed algorithm is simple in nature and exploits one of the most obvious

features that characterise a bag, which is its location near the human body.

5.1 Evaluation of the Damen & Hogg COD

System and the Proposed Improvements

5.1.1 Shortcomings of the Damen & Hogg COD System

A detailed examination of Damen & Hogg’s approach revealed the following short-

comings, if addressed, can improve its accuracy and practical usability:

Exhaustive search: One of the shortcomings is the exhaustive search used

for finding the best matching exemplar from the database. The baseline of the

exhaustive search includes: the collection of different sizes and rotations of the

exemplars, which share the same viewing point with the temporal template and
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(a) (b) (c) (d)

Figure 5.1: The problem of connected bags as output of Graph Cuts in two
examples; (a) and (b) are the input of Graph Cuts, (c) is the segmented out-
put, (d) is the result reflected on the temporal templates.

the selection of the one that minimises the sum of difference between the exem-

plar and the temporal template. The system goes through all available exemplars

translating them up to 30 pixels towards each direction (horizontally and verti-

cally), 3 pixels at a time, until the minimum sum confirms the best match. It is

obvious that exhaustive search is not the best option as it is a time consuming

process.

Connected bags: A further problem is associated with the output of Graph

Cuts algorithm (see Appendix C) which segments the shape of the detected bags.

Two images are fed as input of Graph Cuts algorithm; the probability of bag

location multiplied by transformed trained bags model (rescaled translated and

rotated to match the temporal template) and the probable noise location, multi-

plied by the transformed inverse of the trained bags model. The referred probable

bag and noise locations are probability estimations derived from the difference

image, which is the result of subtraction between a temporal template and its

matched exemplar. Provided that the alignment of the exemplar with the tempo-

ral template is accurate, Figure 5.1 illustrates the input of Graph Cuts in columns

(a) and (b), and the output in column (c) reflected on the temporal template in

column (d). It is observed that the person in both of the illustrated cases carries

a backpack and a pulling luggage. However the detection of the bags as separate

items was not successful as they appear as a one piece/item (see Figure 5.1 (c)).

Homography and direction estimation: As it was mentioned before, the

mapping of motion from the image plane to the ground plane is achieved with

the use of a homography transformation, which requires 8 corresponding points

between the two planes. These points should be provided manually to the D.

Damen’s system, making the approach highly dependent on human intervention.
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(a) (b) (c) (d)

Figure 5.2: The connected bag separation process takes as input the binary output
of graph cuts (a) and the respective area on the temporal template (b). After the
application of the thresholding the result is (c) and the outcome of morphological
opening is (d).

Therefore, the system becomes impractical while trying to automatically or semi-

automatically process videos from different cameras. Moreover, to estimate the

position of the camera a set of vertical lines is needed to indicate the vertical vani-

shing point on image plane, which is a further complication. The vanishing point

is transformed to world coordinates using the previously calculated homography

matrix. Finally the motion vector of the person is estimated by fitting the points

which represent the person’s position on the ground over a walking cycle using the

Linear Least Squares method (LLSQ).

5.1.2 Improving the Shortcomings of the Damen & Hogg

COD System

Optimisation of the exhaustive search: The first area of improvement is the

exhaustive search applied for the best model match selection. As the database of

exemplars contains silhouettes of different sizes, it is not practical to scan through

all the exemplars. Therefore, initially the size of the exemplar is decided in accor-

dance to the height H of the pedestrian, i.e. the difference between the highest

and the lowest non zero pixel of the temporal template. From the availability of

13 different exemplar sizes only the three closer to the height of the silhouette are

selected. It is safe to assume that three closest sizes are enough to match exactly

with the template or even to cover it. Next, the exemplar and the silhouette are

aligned with the help of the vertical axis that passes through the centre of the

head. Finally the shifts of 10 pixels or less are performed avoiding the temporary

matching of all the sizes. To conclude, for the fact that sometimes the silhouettes

of the pedestrians are oversized, the exemplar is being dilated if the following rule

is true:  w,H
4∑

(x,y)=(1,H
4

)

|PT (x, y)−M(x, y)|

 > 0.1 (5.1)
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where PT (x, y) is the person temporal template and M(x, y) is the best matched

temporal model.

Separation of connected bags: As mentioned in the previous section so-

metimes two bags are recognised as one item. To prevent this, the binary output

of the Graph Cuts algorithm (the detected bag) should be cleaned in the areas

where the intensity of the pixels is low in relevance to the rest of the greyscale

area occupied by the bag. The separation of bags is achieved via histogram based

thresholding.

The intensity histogram of the greyscale bag area can be used to indicate which

regions should be removed. Initially, the average value of intensities needs to be

found (Equation 5.2).

M̄ =

m∑
i=1

IiCi

m∑
i=1

Ci

(5.2)

where Ii ∈ (0, 1) is the range of intensity values and Ci is the frequency of

their occurrence. The next step involves the calculation of local maxima in the

interval (0, M̄). Hence localmax = max (Ci) : Ii ∈ (0, M̄). Finally, all the pixels

with intensity values Ii < localmax should become 0. Afterwards, to smooth out

the result, morphological opening followed by closing is applied to the thresholded

image. The intermediate results of the procedure are shown in Figure 5.2 .

In our case the method is applied only for separation of large objects. Advan-

tage of this method is the accurate definition of the shape of the bag, which could

serve well in bag classification process which is based on bag size and position.

5.2 Extending the Practical Usability of the

COD System

5.2.1 Viewing Direction Estimation

The primary aim is the complete disengagement of the system from the need for

human intervention which will be achieved by designing a reliable method for

direction estimation. Thus, the motion information of the tracked silhouette as in

[33] is combined with an initial body pose classification based on shoulder shape

properties of the temporal template.

Assuming that the enquired moving directions are the 8 illustrated in Figure 5.3

the final classification result should place the temporal template in one of the 8

categories. However, a careful examination of Figure 5.3 reveals that pairs of the

8 exemplars look similar and their shoulder region follows a distinctive pattern.
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Figure 5.3: Exemplar temporal templates of 8 viewing directions.

Figure 5.4: The shoulder and edge images that are used to extract information
for classification. Here we have the exemplars 1 through 5.

Therefore, the classes could be reduced to five as in Figure 5.4 or even to three

as follows: class 1 (directions 1 and 5), class 2 (directions 2, 4, 6, and 8), class 3

(directions 3 and 7). The information that will help refining the classification at

a later stage is the motion information.

To present the features that are used for classification, it is first required to

identify some landmark points that would enable the calculation of the features.

Initially the temporal template is thresholded with Otsu’s method (image histo-

gram based thresholding method proposed by N. Otsu in [102]) to determine the

binary template. Then, the height of the silhouette is defined as the difference

of the topmost and bottommost non-zero pixels of the binary template. If the

segmented silhouette in each frame is considered as a binary template then this

direction estimation algorithm can be applied per frame basis as well. Since the

human body is proportionate, its properties have been utilised to localize the head

and shoulders. At this point it should be mentioned that although the calculations

seem to be based on assumptions that probably do not apply to each and every

individual, for the purpose of this method the accuracy of definition of body parts

is satisfactory. The only requirement for this technique is that the camera is eleva-

ted at a height that facilitates the side (within a range) and not the top view. In

the paragraphs that follow, all features are defined as variables with mathematical

types.

If the height of the silhouette is H and the topmost point on the head is t then

the vertical shoulder position (along the y axis) and the point that the image will

be cropped is defined as cut = t+H/4 and the vertical centre of the head is defined

as V ertHeadCent = t + H/17. The sum of the pixels located at the horizontal

line V ertHeadCent will give us the head width HeadW and the maximum of

horizontal projection of the cropped image the shoulder width ShouldW . Thus
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the first feature is defined as

Head-Shoulder Ratio =
HeadW

ShouldW
(5.3)

Next, the horizontal position (along the x axis) of shoulders and head should

be found. Thus, the first nonzero pixel at position x = cut is the left shoulder

HorShouldL and the last nonzero pixel is the right shoulder HorShouldR. Simi-

larly the first non-zero pixel at the vertical position V ertHeadCent is the left head

side HeadL and the last one the right head side HeadR. The centre between two

head sides is considered to be the horizontal head center HorHeadCent. Thus

the next feature is the,

Distance Ratio =
|HorShouldR−HorHeadCent|
|HorHeadCent−HorShouldL|

(5.4)

For the rest of the features we need the horizontal edges of Sobel derivative of the

silhouette as shown in Figure 5.4. The features that are derived from the edges are

the horizontal shoulder and head ranges: HorShouldRangeL, HorShouldRangeR,

and HorHeadRange which is right above the V ertHeadCent. The reason that

these features were selected becomes obvious from Figure 5.4 where the visible

right and left shoulders width changes in accordance with the viewing direction.

In addition, some vertical shoulder features should be taken into account. To

calculate the vertical features it is essential to identify the pixels that are at the

right and left side of the HeadR and HeadL and simultaneously occur only once

through the vertical path from y = V ertHeadCent to y = cut. Once these

pixels are isolated, their vertical mean, standard deviation, range and length are

computed as meanR, meanL, stdR, stdL, rangeR, rangeL, lengthR, lengthL,

respectively. It is also important to examine the slope of the shoulders; thus the

found shoulder points are fitted to a line and its slope is denoted as angleR and

angleL.

The proposed final features are:

Shoulder Range Ratio =
HorShouldRangeR

HorShouldRangeL
(5.5)

Head-Shoulder Range Ratio =

0.5

(
HorHeadRange

HorShouldRangeR
+

HorHeadRange

HorShouldRangeL

)
(5.6)

Shoulder-Height Ratio =
ShouldW

H
(5.7)
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Figure 5.5: The two figures measure the values of Head-ShoulderRatio and
Shoulder-HeightRatio respectively as they occur if applied on the exemplars da-
tabase. Each of the 5 clusters identified consists of 18 exemplars of different sizes
and in-plain rotations which are responsible for the small variation of feature va-
lues within each class.

Shoulder V ertical Range-Length Ratio =
rangeR/lengthR

rangeL/lengthR
(5.8)

Right Head-Shoulder Distance = HeadR−HorShouldR (5.9)

Left Head-Shoulder Disance = HorShouldL−HeadL (5.10)

Mean Difference = |meanR−meanL| (5.11)

Angle-Length Difference = ||angleR ∗ lengthR| − |angleL ∗ lengthL|| (5.12)

Length-Shoulder Differece =

∣∣∣∣ lengthRShouldW
− lengthL

ShouldW

∣∣∣∣ (5.13)

Range-Length Differene =

∣∣∣∣ rangeRlengthR
− rangeL

lengthL

∣∣∣∣ (5.14)

Some of these features, such as Head-ShoulderRatio and Shoulder-HeightRatio,

are strong and capable of classifying the exemplar template models into 5 classes as

in Figure 5.4 regardless the size and the in-plain rotation of the exemplar. The ef-

fectiveness of these features is demonstrated in Figure 5.5 where 5 different classes

are distinguished (represented by 5 dotted clusters where each dot represents an

exemplar template). Each cluster corresponds to a different viewing direction

where the exemplar templates of different sizes and in-plain rotations share an

approximately same feature value. Other features are comparatively weak and act

as complementary when the strong ones fail in real life scenarios.



CHAPTER 5: VIEWING DIRECTION ESTIMATION AND BTR 90

Body Orientation Estimation Using Decision Tree

The defined set of features will be used to classify the body orientation in one

of the first 3 basic categories shown in Figure 5.4 according to the algorithm in

Figure 5.6.

To select the threshold values for the algorithm the cluster plots of features have

been constructed as illustrated in Figure 5.5. At an initial stage the thresholds

were obtained from the database of exemplar models and at the second stage

the thresholds were refined with data obtained from real life temporal templates.

For instance the features Head-ShoulderRatio and Shoulder-HeightRatio have

clearly defined thresholds between the 5 classes as shown in Figure 5.5. The

algorithm has been simplified for presentation purpose to classify into the first

3 categories. However, the variables DistanceRatio and ShoulderRangeRatio

indicate if the template is facing the right or left direction, attaining categorisation

into 5 categories.

Body Orientation Estimation using SVM

Another possible way of classification is the exploitation of SVM classifier. Ho-

wever this method is not examined in this chapter. Instead, the section 6.3 and

subsection 6.7.2 explain how the features:

1. DistanceRatio

2. Head ShoulderRatio

3. Head ShoulderRangeRatio

4. ShoulderRangeRatio

5. ShoulderV erticalRange LengthRatio

6. Shoulder HeightRatio

7. RightHead Shoulderdistance

8. LeftHead Shoulderdistance

9. MeanDifference

10. Length ShoulderDifference

11. Angle LengthDifference

12. Range LengthDifference

could be used to train the classifier and achieve high accuracy results.

Final Viewing Direction Estimation by Combining the Body

Orientation with the Motion Vector

After acquiring the basic information about the pose of the temporal template, its

viewing direction can be identified by combining its pose, and the angle between

the image plane motion vector (unit vector) and a vertical unit vector.
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Body Orientation-Estimation(all the calculated parameters)

// viewing directions 1 and 5
1 if 0 ≤ DistanceRatio ≤ 0.14 or 5 < DistanceRatio ≤ 60
2 if Head-ShoulderRatio ≤ 0.65 or Shoulder-HeightRatio > 0.23
3 pose = 2
4 else
5 pose = 1

// viewing directions 3 and 7
6 elseif 0.60 < DistanceRatio ≤ 1.6 or 0.2 < ShoulderRangeRatio < 5
7 if (Head-ShoulderRatio ≤ 0.55 and Shoulder-HeightRatio > 0.20)

or (0.4 < ShoulderRangeRatio < 1.9
and Head-ShoulderRangeRatio < 5
and Shoulder-HeightRatio > 0.20) or Shoulder-HeightRatio > 0.23

8 if MeanDifference > 7 or ((stdR > 4 or stdL > 4)
and Angle-LengthDifference > 4.5)

9 pose = 2
10 else
11 pose = 3
12 else
13 pose = 1

// viewing directions 2,4,6 and 8
14 elseif 0.14 < DistanceRatio ≤ 0.60 or 1.6 < DistanceRatio ≤ 5

or ShoulderRangeRatio ≥ 5or ShoulderRangeRatio ≤ 0.2
15 if Head-ShoulderRatio > 0.65 and 0.2 < ShoulderRangeRatio < 5
16 pose = 1
17 else
18 if RightHead-Shoulderdistance ≥ 4

or LeftHead-Shoulderdistance ≥ 4
or (Shoulder-HeightRatio < 0.21
and Head-ShoulderRangeRatio > 3)
or Head-ShoulderRatio > 0.70

19 pose = 1
20 else
21 pose = 2
22 else
23 pose = 2

Figure 5.6: Human body orientation estimation algorithm
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Figure 5.7: The unit circle with threshold angles on the image plane. The angles
separate the circle into segments that suggest the most likely directions within
them. The output of SVM classifier will decide which direction should be selected
as final.

To calculate the motion vector, PCA is used for data fitting instead of the

Linear Least Squares (LLSQ) method proposed by D. Damen. Let us assume that

the position of the person in consecutive frames is represented by the set of points

(x, y). The result of PCA on this set is the two principal components, which are

eigenvectors with their eigenvalues. Thus, the two principal components are

P1 = a1x+ b1y

P2 = a2x+ b2y
(5.15)

The eigenvector [ai, bi] with the highest eigenvalue is the principal component,

which fits the data to a single line. What makes PCA ideal for direction estimation

is the fact that the eigenvector is a unit vector and the dot product of it with a

vector Q, which connects the origin with the position (0,-1) will give the angle,

which defines the probable viewing direction of the person.

Therefore, if Q = −y then,

P ·Q = |P| · |Q| cos θ ⇒ cos θ =
P ·Q
|P| · |Q|

(5.16)

A good reason to substitute the LLSQ method with PCA is the precision of

data fitting. In some cases LLSQ methods fails to fit the data accurately because

of the fact that the error is minimised only with respect to the dependent variable

y. In contrast PCA minimises the error orthogonal to the model line.

The unit circle in Figure 5.7 is marked with the vertical unit vector Q and

angles of high interest which define the thresholding areas. Thus, if the angle of
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Figure 5.8: Bags type examples in BTR module.

(a) (b) (c) (d)

Figure 5.9: BTR involves: (a) the position of the detected bag, (b) the best
matched exemplar, (c) the Graph Cuts bags segmentation and (d) the intersection
of the exemplar with the bags.

the determined motion vector falls in one of these areas then possible directions

are the ones indicated within each area in Figure 5.7. The output of the initial

classifier that classifies into 3 basic poses is used to select one of the possible

directions in each group. For example if the angle of the motion vector is 85◦ then

the possible directions are 4 and 5. Subsequently, if the output of the classifier is

1 then the final viewing direction will be 5. In case the output of classifier does

not match any of the available selections then the most likely direction is selected;

in this example 5.

5.2.2 Carried Bag Type Recognition

Carried BTR algorithm is developed to further extend the usability of the COD

system. The algorithm classifies the detected baggage into 5 categories subject to

the position of the bag relative to the human body. Therefore it is important to

examine the proportions of the human body. The 5 categories include backpack,

rolling luggage, tote bag or duffel bag, handbag and other a category used to re-

present anything else which does not belong to the above four types named (see

Figure 5.8). The result of this part is highly dependent on the baggage detection

output as the position of the detected bag will indicate its type. Any inaccuracies

of the baggage detectors output will have an impact on the BTR results. For this

reason all algorithmic improvements previously made to the system, make the bag
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Figure 5.10: Human body proportions model. Bend line is the horizontal line
through the vertical centre of the body.

position detection more accurate and render the system more suitable for the BTR

module.

As it was mentioned before the type of the bag is decided by the position of the

bag in relevance to the human body. Due to the fact that for baggage detection

the temporal template is compared against the exemplars, the same exemplars are

used for bag type recognition. Figure 5.9 (a) shows an example output of baggage

detector and (b) the best matched exemplar. The Graph Cuts output (c) depicts

the shape and the position of the bag. By relating the bag to the exemplar as

in (d) it becomes possible for the system to recognise the bag type. The BTR

algorithm involves the steps described below.

Human body parameter estimation: By examining the human body pro-

portions it can be deduced that in average the height of a person is H = 8h + e,

where h is the length of head and e the length of neck. In the proposed method

e will be ignored as it is of minor importance. Therefore h = H/8. Figure 5.10

shows the proportions of the human body. Bend line B is the centre of the body

and will be used as landmark for future estimations. If T is the position of the top

of the head in the image, then B = 4h+ T . The last element used is the vertical

line C that traverses the centroid of the body.

Data pre-processing: The first step is the pre-processing of the best matched

exemplar to extract useful information such as the height and the bending line.

Second step is to merge the exemplar with the detected bags (Figure 5.9 (d)) to

find if there is any intersection between them. If not then the bag in the later

steps will be considered as a rolling luggage. Thirdly, the bounding boxes of the

bags are obtained to record the position of the bags and their length over x and y

axes in order to decide if they belong to any of the bag categories defined earlier.

It is also examined if the bag is positioned in front of the human silhouette or

behind. For this reason the viewing direction is taken into account. The rest of
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BagTypeRecognition(SelectedTemplate, LabeledBags, C, direction, bagx)

// bagx is center of bag on x axis
// C is vertical line C through centroid
// direction is viewing direction of the person

1 if direction = 1, 2, or 8
2 if bagx < C
3 apply restrictions to get one of the bag types:

backpack, handbag, tote bag, rolling luggage, other
4 else
5 apply restrictions to get one of the bag types:

handbag, tote bag,other
6 elseif direction = 3, or 7
7 if bagx < C
8 apply restrictions to get one of the bag types:

backpack, handbag, tote bag, rolling luggage, other
9 else

10 apply restrictions to get one of the bag types:
backpack, handbag, tote bag, rolling luggage, other

11 elseif direction = 4, 5, or 7
12 if bagx > C
13 apply restrictions to get one of the bag types:

backpack, handbag, tote bag, rolling luggage, other
14 else
15 apply restrictions to get one of the bag types:

handbag, tote bag, other

Figure 5.11: Bag type classification algorithm.

the algorithm is explained in the section that follows.

Bag classification: The general concept places the bag in one of the three

major categories (depending on the viewing direction of the person) and then

further classifies it to one of the two subcategories (depending on the position of

the centre of the bag with respect to C). Afterwards the bag is classified into

one of the 5 categories according to the constraints satisfied by its position. To

begin with, it is very likely that some of the regions detected as bags are not

actually bags. Figure 5.12 shows such regions. These are the ones that stretch

over the line T + 3(H/16) and under the line T + 9(H/16) from both sides of

the silhouette. It should be noticed that there is no constraint on the width of

these regions. Once we dispose of the unwanted regions we can continue with the

classification of the remaining reliable ones. The pseudocode of the algorithm is

presented in Figure 5.11 and the diagrams in Figure 5.13 and Figure 5.14 specify

the constraints to be applied in order to achieve the desired classification.
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Figure 5.12: Regions that do not belong to any type of bag.

(a) Backpack (b)Handbag (c)Tote bag

(d) Rolling Luggage

Figure 5.13: The groups of models (a)-(d) reflect the set of conditions that should
be satisfied for the identification of a bag for directions of motion 3 and 7. For
instance, if the dimensions of the bounding box of a bag are compliant with the
restrictions depicted in (a) then the bag is classified as a backpack; if not, then it
is attempted to place the bag in one of the other categories. The bag is classified
as an unknown object if it fails to be placed in any of the above categories.
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(a) Backpack

(b) Handbag

(c) Tote bag (d) Rolling luggage

Figure 5.14: The groups of models (a)-(d) reflect the set of conditions that should
be satisfied for the identification of a bag for directions of motion 1, 2 and 8. For
instance, if the dimensions of the bounding box of a bag are compliant with one
of the three restrictions depicted in (a) then the bag is classified as a backpack;
if not, then it is attempted to place the bag in one of the other categories. The
bag is classified as an unknown object if it fails to be placed in all of the above
categories.
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5.3 Experimental Results and Analysis

The data used in the experiments were obtained from the third camera view of the

PETS 2006 dataset, the videos AVSS AB easy and AVSS AB medium from the

i-Lids 2007 dataset, and further in-house videos recorded by a commercial grade

camera. Each person’s trajectory has been split in such a way that it records 2

seconds of movement (approximately 2 walking cycles) as suggested by D. Da-

men. Therefore, the final sample size is 239 (or 179 not split) individuals for the

PETS dataset, 75 (or 46 not split) for the i-Lids dataset, and 75 (or 39 not split)

for the in-house videos. In spite of the fact that the last two datasets cannot be

employed for the comparison of the viewing direction estimation because of the

lack of calibration measurements, they are used for testing the viewing direction

estimation and bag type recognition. The code of Damen & Hogg was used for

the experiments and further development of the ideas as it is freely available for

research purposes. The method intrinsically does not deal with partially occluded

silhouettes; therefore, their trajectories have been removed manually. All experi-

ments have been conducted on a computer with a 2.53 GHz processor and 4.00

GB memory.

5.3.1 Exhaustive Search Optimisation

To prove the efficiency of the new algorithm for acquiring the best matching exem-

plar from the database it was necessary to measure the execution time for different

cases. Execution time was measured for a sample of 11 objects for each of the

two search strategies and the average execution time was 17.07s for the primary

method and 4.30s for the optimised one, i.e. the latter being 3.97 times faster.

As the execution time for this part of the system does not depend on the num-

ber of frames per person, there was no necessity to make more measurements.

Furthermore, by explicitly defining the approximate template size, the selection

of exemplars much bigger than the temporal template is prevented, which is a

regular phenomenon due to the fact that the goal is to minimise the difference.

5.3.2 Connected Bags Separation

The process of connected bag separation involves only large in size detected ob-

jects. This means that in templates of smaller sizes even if they include relatively

big carried objects the separation will not be attempted, for the simple reason

that the range of intensities will be very limited. Some instances of successfully

separated bags are presented in Figure 5.15. The last example demonstrates the

usability of the algorithm for more accurate isolation of the bag.
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Figure 5.15: Examples of separated bags. The separation by thresholding improves
the shape of the bags as well.

Table 5.1: Body orientation estimation without motion information. Classification
results for the 3 basic classes.

PETS i-Lids In-house

3 basic classes 85% 72% 78%

5.3.3 Evaluating the Viewing Direction Estimation

To compare the homography based direction estimation method with the propo-

sed, the videos have been selected from the PETS dataset. Since most of the cases

from the third camera view of the PETS dataset resemble viewing directions 2,

4, 6 and 8, the rest of the videos, which feature the directions 1,3,5 and 7, are

used as complementary to prove the ability of the system to classify successfully.

Table 5.1 presents accuracy results for the first classification stage where there are

3 classes and no motion information. Table 5.2 presents the results after including

the motion vector of the person.

5.3.4 Bag Type Recognition

For BTR the experiments have been conducted on only the true positive objects

recognized by the improved system. As summarised in Table 5.3 the overall accu-

racy for BTR is 75%. The accuracy figures obtained for the in-house videos and

the i-Lids dataset are higher due to the fact that the moving people are closer to

the camera and the viewing angle is optimised for baggage detection. The confu-

Table 5.2: Direction estimation comparison of the proposed method (including
motion vector) with the D. Damen’s method and demonstration of results for the
other datasets.

PETS i-Lids In-house

Homography based method 83%

Proposed shape based method 85% 80% 82%
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Table 5.3: BTR results for the PETS 2006 dataset, captured videos and the i-Lids
dataset.

PETS Captured videos & i-Lids Total

Accuracy 63% 92% 75%

Table 5.4: Confusion matrix for bag types recognised in all datasets.

Predicted class

backpack rolling
luggage

tote bag hand bag other

A
ct

u
al

cl
as

s backpack 18 0 0 8 0

rolling
luggage

0 44 4 0 8

tote bag 3 1 45 10 3

hand bag 5 0 1 19 5

other 0 0 0 0 1

sion matrix in Table 5.4 demonstrates the ability of the system to classify into five

different classes.

5.3.5 Overall Performance Evaluation

After applying all of the proposed improvements it is important to examine their

collective contribution to the overall performance of the system.

The graph in Figure 5.16 compares the execution time of the original system

and the improved system against the number of people in the video sequence.

At this point it should be mentioned that the number of frames that a person

appears in affects the execution time but not significantly. Therefore, it has been

ignored. The graph reveals the importance of computation time reduction for a

large amount of processed data.

To test the performance of the system, Accuracy, Precision, Recall, and Spe-

cificity metrics have been employed. The ground truth box for the position of the

bags on the temporal templates was obtained manually. Detection is considered

as successful only if the overlap between the bounding box of the ground truth

and the detected one is higher than 20%. In case the overlap is less than 20% but

greater than 0% then, if the detected bounding box is inside that of the ground

truth, then it is labelled as false negative, else if the ground truth bounding box is

inside the bounding box detected, then it is labelled as being false positive. Any

other case would suggest that the detected and the ground truth boxes are not

related to each other and therefore the detections are labelled as false positive and
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Figure 5.16: A performance comparison between the improved and the original
versions.

Table 5.5: Overall results for the improved and primary system for 179 individuals
from the PETS dataset.

Accuracy Precision Recall Specificity

D. Damen’s version 50.3% 54.4% 55.0% 44.7%

Proposed version 56.9% 63.5% 56.9% 56.8%

false negative respectively.

In Table 5.5 the specificity and precision values of the primary system are low

which shows the weakness of the system in recognizing the negative cases. Howe-

ver, the recall value is relatively high. Because of the fact that the improved system

reduces the detection of false positives preserving the number of true positives,

the precision and accuracy levels have been significantly increased. In addition

the true negative detection is improved which is reflected in the new specificity

obtained.

5.4 Summary and Discussion

In this chapter, a number of methods have been proposed to improve the baggage

detection system originally proposed by D. Damen and D. Hogg. Two substantial

extensions to the original system proposed by this research are body orientation es-

timation and baggage type recognition. The former will be further enhanced in the

next chapter with the application of ordinary classifiers. It has also been proven

that the proposed viewing direction estimation approach can successfully substi-

tute the homography based direction estimation, discharging the system from the

need of human intervention. Furthermore, due to the proposed enhancements for
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the best matching model search, computational time has been significantly redu-

ced allowing the potential for processing a large amount of data. Finally, it was

shown that the proposed connected bag separation algorithm resulted in more

accurate bag type classification.

Future work can focus on the enrichment of the temporal templates and usage

of colour information for COD. Further, the current bag classification is based

only on the location of the bag and other features like size and shape are not

taken into account. Another perspective that has not been explored is the use of

gradient information or shape context histograms for bag shape recognition, which

can distinguish it from the body parts. In addition, frame wise colour silhouette

segmentation can separate the areas belonging to clothes from the ones that belong

to the carried objects. For more accurate temporal template construction the

orientation estimation algorithm could be applied per frame basis, splitting the

trajectory when the orientation changes. Some of the suggestions for future work

will be presented in the next chapter.



Chapter 6

Carried Object Detection Using

Colour Information

The preliminary information and concepts required to understand the major contri-

bution of the work presented in the current chapter have been presented in chapters

3 and 5. The COD system proposed in this chapter is based on the COD system

analysed earlier in section 3.1 with the difference that the intensity based tempo-

ral template used originally has been replaced with a colour temporal template

(section 6.2). The work presented includes all approaches that are proposed with

the aim of exploiting colour information for a variety of purposes within COD;

for e.g., colour information is used to detect the human torso (section 6.4) as well

as the carried object (subsection 6.5.1). Another key contribution of the work

presented in this chapter is the redefinition of the viewing direction estimation

algorithm by using the concept of machine learning (section 6.3). A further minor

contribution of the chapter is the selection of the best matching human like exem-

plar, which is subtracted from the temporal template to deduce the protruding

regions. Since the conventional temporal template has been substituted with the

colour based temporal template it was important to reconsider the definition of

the energy function that facilitates the segmentation of bags via the use of an

energy minimisation approach based on Graph Cuts (section 6.5). The primary

aim is to increase the accuracy of the system but at the same time to reduce the

false positive detections which were common for the previous system. The detai-

led experimental results reflect the effectiveness of the suggested improvements in

terms of accuracy, performance, and segmentation precision of the shape of the

bags (section 6.7). Finally, as the proposed system is not 100% accurate, ideas for

further research are proposed in section 6.8.

103
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Figure 6.1: A summary of the baggage detection system.

6.1 System Overview

The work of D. Damen and D. Hogg is based on the creation of a temporal

template of a moving person and further analysis of its shape to detect the carried

object. The concept of temporal template was firstly defined by I. Haritaoglu in

[53] as the average of foreground silhouettes. Since it is intended to use colour

information, it was required to create a colour temporal template. Therefore, the

baggage detector takes as input a sequence of colour foreground images which

are aligned using image registration to create a colour temporal template (see

Figure 6.1). Then, the temporal template is matched against exemplar temporal

templates of 13 different sizes, 8 viewing directions, and 7 rotations until the best

match is found. Subsequently the temporal template is decomposed into CIELAB

colour space components and the best matching exemplar is subtracted from each

of them to reveal the protruding regions which are likely to be carried objects.

For further enhancement of the accuracy, D. Damen adopts trained view specific

models that map the probable bag location and are used to weight the protruding

regions. However, the effectiveness of these priors is doubted and, for the proposed

application a more conservative prior of homogeneous nature is chosen to weigh

the temporal templates.

It is common sense that the location of the bag and its visibility depends on

the position of the viewer in relevance to the position, and moving direction of

the pedestrian. This fact brings the need of classifying the temporal template
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(a) (b) (c)

Figure 6.2: (a) is the colour temporal template generated using subpixel image
registration, (b) is the corresponding frequency temporal template and (c) is the
template generated using ICP.

into 8 categories, according to the direction of motion. One way to estimate the

Viewing Direction (VD) is to transfer the motion from the image plane (the two-

dimensional image surface) to the ground plane (which is at 90 degrees to the

picture plane; commonly the ground that objects move on) via the homography

transformation as proposed D. Damen in [33]. The problem here is that the ho-

mography transformation demands at least 8 corresponding points between the

two planes. When the points are provided manually to the system, it becomes

impractical while trying to automatically process videos from different cameras or

the same pan-tilt-zoom (PTZ) camera. Certainly, automatic methods for homo-

graphy calculation such as presented in [87] can be used but they are complicated

and computationally expensive. The VD estimation method proposed in chapter

5 is extended here to be used with an SVM classifier.

6.2 Generation of the Temporal Template

The first step is the generation of the colour temporal template. The foreground

silhouettes are segmented by a GMM background modelling algorithm as proposed

by P. KaewTraKulPong in [68]. Then, a simple connected components tracking

algorithm is applied to define the trajectories of the pedestrians. Since all the test

videos involve only pedestrians, no human detection algorithm was employed.

The extracted colour foreground allows the utilisation of registration methods

based on colour information. The report of R. Szeliski [132] suggests that direct

pixel based alignment could be a solution. To reduce the computational load,

Fourier transform is applied to the non-registered images to achieve reliable and

fast alignment. Such an algorithm is proposed in [50] as subpixel image registra-

tion and its MATLAB source code is freely available for research purposes. This

algorithm requires a small pixel sample to perform the registration and is accurate

and fast enough to align a long sequence of images. The shoulder area has been
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(a) (b) (c) (d)

Figure 6.3: (a) is the colour temporal template, (b) is the inverse grayscale tem-
poral template, (c) is the a* component and (d) is the b* component.

selected as the pixel sample, since it remains stable over time unlike the limbs.

The output of the algorithm is a translation vector and an error rate. If the error

rate is larger than 29% or if the translation vector suggests displacement greater

than 18 pixels then the current image is not registered to the preceding one to

avoid large inconsistencies in the temporal template. Initially, all the silhouettes

of a trajectory are centred and cropped to an image of fixed size h× w and then

aligned by two consecutive frames at a time, via subpixel registration. As Colour

Temporal Template (CTT) is defined the average of all silhouettes in each RGB

channel using the formula in Equation 2.1. To differentiate the colour temporal

template from the conventional one, which is defined as the average of binary sil-

houettes [33], henceforth it will be called as Frequency Temporal Template (FTT).

Figure 6.2 shows an example comparing subpixel image registration with the ICP

image alignment method employed in [33]. To create the corresponding FTT

to the CTT, the calculated translation vector was simply applied to the binary

silhouettes.

By having a colour temporal template it is important to decide upon which

colour space properties best represent reality. It was decided to utilise the CIELAB

colour space in [118] because it approximates human vision and therefore has an

inherent property of segmentation based on colour (see an example in Figure 6.3).

Because of the fact that the a* and b* derivatives of the La*b* image might have

negative pixel values the negative values have been transferred to the positive axis

and the pixel values have been linearly adjusted. The purpose of the creation of

these images will be analysed subsequently in this chapter.

6.3 Viewing Direction estimation

For the viewing direction estimation, the motion information as shown in subsec-

tion 5.2.1 was combined with the pose estimation based on shoulder shape features.

The goal is to categorise the temporal template into one of the VD categories in

Figure 6.4.
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Figure 6.4: Exemplar temporal templates of 8 viewing directions.

The temporal template is thresholded as previously, in chapter 5, with Otsu’s

method to obtain the binary silhouette and the following features are calculated

as in subsection 5.2.1 to feed an SVM classifier.

1. DistanceRatio

2. Head ShoulderRatio

3. Head ShoulderRangeRatio

4. ShoulderRangeRatio

5. ShoulderV erticalRange LengthRatio

6. Shoulder HeightRatio

7. RightHead Shoulderdistance

8. LeftHead Shoulderdistance

9. MeanDifference

10. Length ShoulderDifference

11. Angle LengthDifference

12. Range LengthDifference

An SVM classifier is trained to classify into 3 target classes: class 1 (directions

1 and 5), class 2 (directions 2, 4, 6, and 8), class 3 (directions 3 and 7). After

acquiring the basic information about the pose from the classifier the VD can be

identified by combining its pose, and the angle of motion vector (unit vector) from

a vertical unit vector (0,-1) on the image plane. The rest of the procedure followed

is exactly as described in subsection 5.2.1, subsubsection “Final Viewing Direction

Estimation by Combining the Body Orientation with the Motion Vector”.

6.4 Selection of Best Matching Model and

GrowCut Segmentation

To find the exemplar model that best matches the CTT under query, the cor-

relation function is utilised. Initially the temporal template is roughly aligned

to the exemplar model by the head location and its size is approximated by the

height of the temporal template. To refine the alignment a correlation measure is

maximised to confirm the best match.
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The correlation function between matrices A and B of size w× h is defined as

follows.

C(A,B)) =

(w,h)∑
(x,y)=(1,1)

(
A(x, y)− Ā)(B(x, y)− B̄

)
√√√√( (w,h)∑

(x,y)=(1,1)

(A(x, y)− Ā)2

)(
(w,h)∑

(x,y)=(1,1)

(B(x, y)− B̄)2

) (6.1)

where Ā and B̄ are the averages of the matrices A and B. Since the exemplar

models EM are frequency templates (with intensities varying from 0 to 1) the CTT

has to be adjusted accordingly. Therefore, it is converted to greyscale, inverted,

and normalised to the range [0, 1]. The similarity measure function between the

inverse temporal template PT and the exemplar model EM to be maximised is

defined as

S(PT,EM) = 0.8C(PTtg, EM) + 0.2C(PTg, EM) (6.2)

where,

PTg(x, y) = PT (x, y)g(y) (6.3)

and

PTtg(x, y) =

{
PT (x, y)g′(y), if EM(x, y) > 0

0, if EM(x, y) = 0
(6.4)

where, g(y) = [4.40 : −0.01 : 2.01] and g′(y) = [3.20 : −0.005 : 2.005]. EMbest is

selected as the best matching transformed exemplar that maximises S(PT,EM).

argmax
EM

S(PT,EM) = {EMbest} (6.5)

For further enhancement of accuracy the selected exemplar template is dilated

by a square structuring element SEij, i, j = {1, 2}

EMbest =

{
EMbest

⊕
SE, if for Diff(x, y) Shoulder HeightRatio > 0.1

EMbest, otherwhise

(6.6)

where, Diff(x, y) = |PT (x, y) − EMbest(x, y)| and ‘
⊕

’ is the dilation operator.

The threshold for dilation implementation is selected after testing through some

selected datasets.

Sometimes the shape of the best matching exemplar is not enough to cover

the torso area. Hence, GrowCut algorithm [138] is employed to define the torso

shape. In more detail, the Grow cut algorithm takes as input two images: the

seeds and the image on which the algorithm is applied. The seeds are the labels

for the foreground, background and the unknown regions. The seed image will be
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Figure 6.5: Direction specific mask images used as input seeds to GrowCut algo-
rithm.

(a) (b) (c) (d) (e) (f)

Figure 6.6: GrowCut segmentation: (a) is the temporal template, (b) is the se-
lected best matching exemplar, (c) is the transformed (size and position) mask,
(d) is the GrowCut segmentation results, (e) is the difference image and (f) is the
labelled bags.

called as mask M and it will be labelled as follows:

M(x, y) =


1, if foreground

−1, if background

0, if uncertain

(6.7)

The foreground is a predefined pixel selection as shown in Figure 6.5 which is

transformed according to transformations applied to the best matching exemplar

to match the size and rotation of the temporal template. The background com-

prises of all the pixel values greater than 200 (selected as threshold after testing)

on the CTT, and unknowns are all the rest. The a* component of La*b* image

representation is selected as the second input argument. Thus the result of seg-

mentation are the labels indicating the foreground region; here the torso (see

Figure 6.6).

labels = GrowCut(a∗,M) (6.8)

As mentioned above, the torso segmented via GrowCut is used to redefine the

exemplar itself. Therefore, if the blurred GrowCut foreground is B (Figure 6.7 (b))

then the final best matched exemplar template is defined as follows (Figure 6.7

(d)):

EMF (x, y) = min(1, B(x, y) + EMbest(x, y)) (6.9)
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(a) (b) (c) (d) (e) (f)

Figure 6.7: Exemplar redefinition with the segmented torso. (a) is the temporal
template, (b) is the blurred GrowCut result, (c) is the best matching exemplar,
(d) is the combination of exemplar with the segmented torso, (e) is the inverse
grayscale temporal template and (f) the difference image v(x, y).

The difference image v(x, y) in Equation 6.10 reveals the protruding regions

that will undergo further analysis for carried objects extraction ( Figure 6.7 (f)).

The corresponding differences for the a* and b* components of the La*b* colour

space are presented in Equation 6.11 and Equation 6.12.

v(x, y) = max(0, PT (x, y)− EMF (x, y)) (6.10)

va(x, y) = max(0, PT (x, y)− a∗(x, y)) (6.11)

vb(x, y) = max(0, PT (x, y)− b∗(x, y)) (6.12)

6.5 Segmentation by Energy Function

Minimisation

The segmentation of bags is handled as a labelling problem by D. Damen in [33]

where the segmentation of carried objects is achieved via energy minimisation

using the Graph Cuts algorithm [14] (see Appendix C). Therefore the pixels that

belong to carried objects should be labelled as foreground and limbs as back-

ground. Assuming that the label assigned to a certain pixel pi(x, y) depends only

on the labels assigned to its neighbouring pixels, the difference image v(x, y) can

be considered as a first-order MRF. Since a 4-neighbourhood system on a 2D lat-

tice is assumed and the label set is L = {0, 1}, the Gibbs energy function follows a

special case of the Ising model [86]. If P is an image (lattice) m×n and N ⊂ P is

the neighbourhood system for P defined as N = {Np|∀p ∈ P}, then according to

Bayes’ theorem, to achieve segmentation, a maximum a posteriori (MAP) solution

should be given (i.e. maximising the posterior probability). This is equivalent to
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minimising the following energy function

E(f) =
∑
p∈P

Dp(fp) +
∑
p,q∈N

Vp,q(fp, fq) (6.13)

Where Dp is the data cost function, and Vp,q is the smoothness cost or clique

potential function that defines the interaction between the neighbouring pixels.

Supposed f = {f1, ..., fm×n} is a set of labelling configurations defined on the

lattice P such that fp = f(p),∀p ∈ P , then fp assigns a label l ∈ L to the

pixel p ∈ P , [86],[71]. The data cost function Dp can be an arbitrary probability

density function (p.d.f) that measures the cost of assigning the configuration fp to

a pixel. Therefore, we will search for the p.d.f that best describes the given data.

In our case the smoothness cost function is defined as

Vp,q(fp, fq) =

{
s, if fp 6= fq

0, if fp = fq
(6.14)

and the data cost function is defined as

Dp(fp) = − ln (p1(v(x, y)|fp) + p2(v(x, y)|fp)) (6.15)

Hence, the class conditional distributions are:
p1(v|fp = 1) = 1

κ
M(x, y) ∗ Ŵ (y)

p1(v|fp = 0) = κ lnN (x, y) ∗ (1− Ŵ (y))

(6.16)


p2(v|fp = 1) = (λva(x, y) + λvb(x, y)) ∗ Ŵ 3(y)

p2(v|fp = 0) = −(λva(x, y) + λvb(x, y)) ∗ Ŵ 3(y)

(6.17)

As p.d.f are selected the mixture M of normal distributions and log-normal

(lnN ) distribution, multiplied by constants 1/κ and κ respectively. The coeffi-

cient λ that is used to weigh the differences va(x, y) and vb(x, y) is found to be

proportional to κ such that λ = 5/κ. In this manner there will be only one coef-

ficient that will determine the sensitivity of the system. Finally, Ŵ is a Gaussian

weight function and its purpose will be clarified in subsection 6.5.2.

Considering the weight function Ŵ as a prior it is possible to apply Bayes

rule to compute the posterior probability. According to Bayes theorem for data

analysis [127] the posterior probability (represents our state of knowledge about

the truth of the hypothesis in the light of data) of hypothesis H given data D
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Figure 6.8: Class conditional likelihood distributions (left) and the prior distribu-
tion (right).

equals to

P (H|D) =
P (D,H)

P (D)
=
P (H)P (D|H)

P (D)
(6.18)

where P (H) is the prior distribution and P (D|H) is the class conditional likeli-

hood distribution of data given the hypothesis. The normalizing factor P (D) =

ΣHP (H)P (D|H) is the sum over all possible values of H [2].

Here, the prior distribution is assumed to be the weight function Ŵ which gives

us a general true understanding at which areas of the template it is more likely

to find a bag. The class conditional prior P (D|H) is as defined in Equation 6.16

(see Figure 6.8 left). Therefore the posterior distribution is defined as follows:

P (fp = 1|v(x, y)) =
P (fp = 1, v(x, y))

P (X)
(6.19)

=
P (fp = 1)P (v(x, y)|fp = 1)

P (fp = 1)P (v(x, y)|fp = 1) + P (fp = 0)P (v(x, y)|fp = 0)

P (fp = |v(x, y)) =
P (fp = 0, v(x, y))

P (X)
(6.20)

=
P (fp = 0)P (v(x, y)|fp = 0)

P (fp = 1)P (v(x, y)|fp = 1) + P (fp = 0)P (v(x, y)|fp = 0)

where P (fp = 1) = Ŵ and P (fp = 0) = 1− Ŵ (see Figure 6.8 right ). The found

posterior is regarded as prior and is forwarded to Equation 6.16 which becomes

p1(v(x, y)|fp) =


P (fp = 1|v(x, y)) if fp = 1

P (fp = 0|v(x, y)) if fp = 0

(6.21)
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(a) (b) (c) (d) (e)

Figure 6.9: Temporal template in (a) and the va(x, y) and vb(x, y) difference images
in (b) and (c) respectively. (d) and (e) are the va(x, y) and vb(x, y) after noise
reduction.

6.5.1 Utilisation of La*b* Colour Space Derivatives a*

and b* as Difference Images

Due to the fact that the difference images va(x, y) and vb(x, y) contain noise that

occur because of the significant colour information present at the outline of the

silhouette, the connected components that are unlikely to represent a bag have

been removed by considering their aspect ratio, their size relative to the silhouette

and the pixel intensity. Thus, the connected components that have been removed

could be characterised as unusually long, small or lacking colour.

More specifically, the separation between the objects and non-object areas is

executed in two phases: in the first phase the thresholds are applied directly to

the binary va(x, y) and vb(x, y) images and in the second phase the thresholds are

applied to the binary va(x, y) and vb(x, y) images after morphological erosion. The

values that are thresholded for each object, in both phases, are: the ratio of the

major and minor axes lengths, the area, the mean value of pixel intensities and

an additional aspect ratio feature for the second phase. Subsequently, the results

of both phases are combined into one image and its equivalent greyscale image is

obtained from the original va(x, y) and vb(x, y) images. The results of processing

are shown in Figure 6.9.

6.5.2 Definition of the Weight Function Ŵ

As it is expected some of the areas with high probability do not always belong

to a carried object, especially the ones that are located around the head or well

under the feet. The face colour contains high intensity values, due to which the

potential objects extracted from the a* and b* images belong to the head region

on a number of occasions. Therefore there is a need for a function that weighs

the difference images v(x, y), va(x, y), and vb(x, y) to reduce the probability in
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(a) (b) (c) (d)

Figure 6.10: The effect of weight function application: The temporal templates in
(a) are wighed by their gradient like weights in (b). (c) and (d) are the difference
images multiplied by the weight vector Ŵ and not respectively.

the unlikely areas. The weight function is constructed as a vector that will be

multiplied with each column of the difference image. A linear function does not

assist the intended aim since the transition across the curve is very steep. On

the other hand the Gaussian function offers a smooth and slow transition and is

evaluated as the most suitable due to its bell shape (Equation 6.22).

f(x) = a exp

(
−(x− b)2

2c2

)
(6.22)

Thus, for a given vector x = [1, 2, ..., h], where h is the height of the temporal

template image, a vector W of size h×1 is constructed. W contains all the weights

in the following way: Let us assume two different vectors that obey two different

Gaussian functions,  (W1i)
h
i=1 = [(di)

h
2
i=1 (ci)

h
i=h

2
+1

]

(W2i)
h
i=1 = [(ci)

h
2
i=1 (di)

h
i=h

2
+1

]
(6.23)

where, (ci)
h
2
i=1 = (ci)

h
i=h

2
+1

= 0.5 and

(di)
h
2
i=1 = 0.5et, where t = − ((xi)

h
2
i=1−h/2)2

2(100(Sa−0.2))2

(di)
h
i=h

2
+1

= 0.5et, where t = −
((xi)

h

i=h2 +1
−h/2)2

2(100(Sa+0.2))2

Because the size of the temporal templates differs it would be unfair to use the

same weight vector for different sizes. Hence, the weight vector is adapted accor-

ding to the size Sa = {0.2, 0.25, 0.3, 0.35, ..., 0.8} of the best matched exemplar so

that the higher probabilities are concentrated around the silhouette’s torso. The
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final weight vector Ŵ is 
(Ŵi)

h
2

+10

i=1 = (W1k)k=i+50Sa

(Ŵi)
h
i=h

2
+11

= (W2k)k=i−50Sa

(6.24)

To clarify the concept Figure 6.10 demonstrates how exactly Ŵ looks like and

the results of its multiplication with difference images.

6.5.3 Definition of the Probability Function M(x, y)

As it was proposed by D. Damen the pixel values under a threshold constitute

to noise and all the rest are likely to belong to a carried object. This threshold

is decided using the following equation thresh = min(0.38, max(v(x, y))/1.72).

The numeric values that appear in this function are considered to be the safest

ones after testing through a training sample. As an example, the distribution of

pixels greater than the threshold is presented in Figure 6.11. Since the pixel values

on the greyscale temporal template vary with the colour of the clothing and the

carried object, the conditional distribution cannot be approximated by a single

distribution and cannot be the same for all the cases. Thus, a non-parametric

density estimation technique is used to obtain an intuition of how the pixel values

are distributed and to determine the parameters of the Gaussian distribution or

the mixture of Gaussian distributions that would form the likelihood function.

The averaged shift histogram is a common non parametric density estimation

technique which defines the probability of a pixel p having a value xt out of a

sample of values x1, x2, ...xn. Given the kernel function K(t) the probability is

defined in [122] as follows:

Pr(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(6.25)

where n is the sample size and h is the smoothing factor, also known as bandwidth.

Built in MATLAB routine “ksdensity” was used to perform density estimation, ha-

ving the normal distribution as kernel function K(t) and h computed as suggested

by Silverman in [126]. Hence,

h = σ̂Cν(k)n−1/(2ν+1) (6.26)

where σ̂ is the sample’s standard deviation, ν is the order of the kernel and Cν(k) is

the constant for the chosen distribution, which for a Gaussian kernel of size ν = 2 is

equal to 1.06. Therefore, Equation 6.26 can be simply written as h = 1.06σ̂n−1/5.
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Figure 6.11: An example showing non parametric density curve with two
peaks/two means (left). In the proposed technique the standard deviations are
adjusted proportionally to the means and the resulting curve is shown in the right.
The corresponding templates are on either side of the curves.

The above density estimation was applied to the difference image v(x, y). The

main purpose of this operation is to smooth out the intensity histogram to obtain

the mean values of the mixture of Gaussian distributions. For example given the

curve in Figure 6.11 we separate our sample into two groups as indicated by local

minima and each subsample has its mean at local maxima. From the experiments

it was found that in the case of a true detection, the standard deviations of the

distributions are proportionate to the computed mean values. Hence, s is found

to be

s =
(x̄− thresh)(0.01− b)

1− thresh
+ b (6.27)

where b = thresh−0.09, s belongs to the interval (0.01, b) and x̄ to (thresh, 1). The

above function establishes a correspondence between the mean and the standard

deviation. The likelihood mixtureM of Gaussians is computed in such a way that

the sum of their coefficients ki approximates 1. Therefore, if the number of found

distributions is Gn , then

M =
Gn∑
i=1

kiN (x̄i, si) (6.28)

The coefficient values ki are decided to be analogical to the highest probability

for each mean value; this is analogical to the local maxima of the non-parametric

density curve. Thus,

ki =
maxi

Gn∑
j=1

maxj

, i = {1...Gn} (6.29)

where, maxi are the local maxima.

6.5.4 Definition of the Probability Function lnN (x, y)

By observing the first histogram in Figure 6.12, which represents the distribution

of the pixel values smaller than the defined threshold thresh, it is concluded that



CHAPTER 6: COD USING COLOUR INFORMATION 117

Figure 6.12: The noise distribution for pixel values < 5.8 (left) and the distribution
of their log values (right).

Figure 6.13: Bags type example in bag type recognition module.

they follow a log-normal distribution. To find the parameters of the log-normal

distribution it is required to plot the log values of the pixels [115]. Since the second

histogram in Figure 6.12 resembles a normal distribution, the mean value for the

log-normal distribution is approximately µ = −0.7 and the standard deviation is

σ = 2.2 as obtained from the normal distribution histogram in Figure 6.12 (right).

6.6 Carried Bag Type Recognition

Bag type recognition algorithm is developed in the previous chapter is tested

across the newly acquired bags. The algorithm classifies the detected baggage

into 5 categories subject to the position of the bag relative to the human body.

The 5 categories include backpack, hand bag or shoulder bag, tote bag or duffel

bag, rolling luggage, and other to represent anything else which does not belong

to the above (see Figure 6.13). The result of this part is highly dependent on the

baggage detection output as the position of the detected bag will indicate its type.

Any inaccuracies of the baggage detector’s output will have an impact on the bag

type recognition results. For this reason all algorithmic improvements previously

made to the system, make the bag position detection more accurate and render

the system more suitable for the bag type recognition module.
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(a)

(b)

(c)

Figure 6.14: Comparison of image alignment techniques: (a) illustrates the CTT
created by using subpixel image registration and (b) shows the corresponding
FTT. (c) shows the FTT generated by the ICP algorithm.

6.7 Experimental Results and Analysis

In order to critically evaluate the performance of the improved system a significant

number of detailed experiments were conducted. The data used for the experi-

ments were obtained from the PETS 2006 dataset (3rd camera view) and further

videos recorded in-house using hand-held and CCTV cameras to cover specific test

scenarios that were not present in the PETS dataset. Since the system is not ca-

pable of processing occluded silhouettes, these have been removed manually. The

experiments have been conducted on a computer with a 2.53 GHz processor and

4.00 GB RAM memory. Each person’s trajectory has been split in such a way that

it records 2 seconds of movement (approximately 2 walking cycles) as suggested

by D. Damen. Therefore, hereafter we will refer to each part of a trajectory as

a separate individual and consequently the sample size will increase accordingly.

The final sample size will be 239 (or 179 not split) individuals for the PETS data-

set, 95 (or 39 not split) for the in-house videos obtained by the hand-held camera,

and 94 (or 45 not split) for videos obtained via CCTV cameras. The implemen-

tation was carried out in MATLAB and constitutes a major revision of the initial

implementation by D. Damen and Hogg. The following subsections present the

experimental results for each step of the procedures described in this chapter.

6.7.1 Temporal Template Generation and La*b* Colour

Space Exploitation

As it was explained in the relevant section, the temporal template is generated

by averaging the extracted foreground silhouettes. To achieve this, all the images

through the frames have to be aligned. Here, it is proven that the proposed image

registration method offers a considerably better outcome than the ICP alignment.
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Figure 6.15: Processing time comparison of image alignment techniques.

The figures that follow, compare the ICP and Subpixel image registration methods

(see Figure 6.14 and Figure 6.15). Undoubtedly, the subpixel registration has

outperformed the ICP in terms of accuracy and time.

Another division of the proposed system that needs to be justified is the Grow-

Cut exploitation and La*b* colour space selection. The main reason for GrowCut

application is the definition of human torso. We take advantage of the fact that

the colour of clothes is uniform over the entire torso region and the bag colour

differs from that of the clothes. In a sense, the high contrast attribute of a* and

b* components of the La*b* colour space is utilised. Figure 6.16 illustrates the

results of applying GrowCut segmentation on the a* component. Apparently, the

segmentation is not successful on white colour clothes due to the lack of colour

information (Figure 6.16 (g)).

From the viewpoint of definition of bags the La*b* colour space offers signi-

ficant improvement to the system. Whereby, not only it enables the detection of

(a) (b) (c) (d) (e) (f) (g)

Figure 6.16: Human torso definition: The first row depicts the CTT, while the
second row their a* component of the La*b* colour space. The result of GrowCut
algorithm as a mask over the temporal template is shown in the last row. The
algorithm fails while expanding over colourless areas like in (g).
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Figure 6.17: Segmentation of the carried objects by means of a* and b* derivatives
of the CIELAB colour space.

otherwise undetected objects, but it also contributes to the accurate acquisition

of bags shape by reducing the noise caused by shadow. Figure 6.17 shows some

of the successfully and unsuccessfully isolated bags. By observing the presented

examples it is possible to understand which colours are encoded by each of the a*

and b* components and the reason that some bags are not segmented; i.e. mainly

the weak colour representation of the bag including considerable amount of black

and white colour.

6.7.2 Direction Estimation Evaluation

An SVM classifier has been trained to obtain the pose of the pedestrians. The

LIBSVM library was chosen as a tool to implement the classification [21]. As

a matter of fact, the classifier can recognise between three different poses. The

motion vector of the pedestrian is used to refine the results and classify the object

to one of the 8 categories. Since the performance of the classifier cannot be

evaluated objectively over the whole dataset, 8 random images have been selected

from each direction group to test the classifier; thus the testing set consists of

8*5=40 samples.

Initially, 12 images from all available datasets for each of the 5 groups shown in

(a) (b) (c) (d) (e)

Figure 6.18: Each of the shown templates is an example for each of the 5 categories
with 3 different labels. Therefore for each image there are (a) direction=1, label=1,
(b) direction=2, label=2, (c) direction=3, label=3, (d) direction=6, label=2, (e)
direction=5, label=1.
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Table 6.1: Direction estimation comparison of the proposed method with the D.
Damen’s method.

Accuracy

PETS 2006 In-house Videos CCTV

Proposed Method 0.90 0.89 0.81

D. Damen’s Method 0.83

Figure 6.18 were selected and labeled with 3 different labels, depending on their

posture. Hence the training set consists of 12*5=60 real life samples. As the

set of training images is not large enough for training and not all the features are

rotation and scale invariant, the 60 temporal templates have been flipped vertically

and rescaled to a range of {0.5, 0.6, . . . 1}; in total obtaining 60*6*2=720 samples.

A further set of 90 exemplar templates of selected sizes and rotations have been

added as a supplement to the training set.

The classifier has been optimised by performing 6-fold cross-validation and

‘grid-search’ as suggested by C. Hsu et al. in [61] to select the kernel function

and the training parameters. The set was separated in a way so that the rescaled

versions of each image were at the same group; i.e. testing or training. The set of

90 exemplars was included in each training fold, since it always gives accuracy of

100%. Among linear, polynomial and Radial Basis kernel functions, the latter one

was selected since it gives the highest average accuracy of 85.6% for the training

parameters C = 0.46 and γ = 0.004. The final classification model was tested

over the sample of 40 silhouettes and the accuracy achieved was 80%.

To compare the direction estimation method used by D.Damen with the pro-

posed one, the 3rd camera view videos have been selected from the PETS dataset.

The rest of the datasets in Table 6.1 simply demonstrate the capability of the sys-

tem to identify other viewing directions as well (CCTV videos: mostly directions

3 and 7, videos captured using hand-held cameras: mostly directions 1 and 5,).

Although the accuracy values are high, they do not approximate to 100%. This

is due to the deformation of shoulder shape, either as a result of poor temporal

template generation or objects carried on the shoulders.

A significant proportion of this research was devoted for direction estimation

for the reason that it largely affects the final results. For example, if for actual

viewing direction 1, the detected viewing direction is 2, then possibly a carried

backpack will not be detected or vice versa, i.e., the shoulders might be detected

as a backpack.
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Table 6.2: Bag type recognition results for the PETS 2006 dataset and captured
videos.

True False Total Accuracy

PETS 2006 98 45 143 68.53%

Hand-held camera 43 20 63 68.25%

CCTV 30 5 35 85.71%

Total 171 70 241 70.95%

Table 6.3: Confusion matrix for bag types recognised for all datasets.

Predicted class

backpack rolling
luggage

tote bag hand bag other total

A
ct

u
al

cl
as

s backpack 17 0 0 14 0 31

rolling
luggage

0 45 9 0 2 56

tote bag 2 3 67 14 3 81

hand bag 5 0 2 39 1 47

other 0 0 0 8 1 9

6.7.3 Bag Type Recognition

For BTR only the true positives recognised by the improved system are taken

into account. It is important to note that the recognition is based only on the

location of the bag and no other features such as size and shape are taken into

account. Another perspective that has not been explored yet is the usage of

gradient information for bag shape recognition, which could likely distinguish it

from body parts. As summarised in Table 6.2 the overall accuracy for bag type

recognition is 70.95%.

The confusion matrix in Table 6.3 illustrates the ability of the system to distin-

guish between the four different classes, but also reveals the weakness to distinguish

between backpacks and hand bags. It is good to mention that the category ‘other’

does not overflow.

6.7.4 Overall Performance Evaluation

After applying all of the proposed improvements it is important to examine their

collective contribution to the overall performance of the system. Due to the fact

that the system cannot deal with solely occluded objects, they were not annotated

as ground truth. Since the detection is enhanced by various factors it is vital
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Table 6.4: Baggage detection results for the three datasets during the different
stages of evolution of the system and comparison with the D. Damen’s energy
function.
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Table 6.5: Comparison of the primary D. Damen’s system with the proposed one
over the PETS dataset.

Accuracy Precision Recall/Sensitivity Specificity

Proposed method 0.61 0.65 0.69 0.50

D. Damen’s method 0.50 0.54 0.55 0.44

to check the degree of enhancement that they offer at each stage. Numerous

experiments were conducted on all the datasets changing the different components

of the system.

It is obvious that the occurrence of coefficients at different stages is quite

frequent and their selection was not a trivial task. However they are designed

in such a way so that the one is derived from another. Finally there is only one

coefficient left that if changed would determine the sensitivity of the system. The

performance of the system has been thoroughly examined for the different values

of this coefficient over the PETS dataset. The coefficient values that gave the

best results were tested on the other two datasets for the selection of the final

coefficient value. Therefore the selected coefficient in Equation 6.16 is κ = 0.75.

To begin with, the significance of La*b* colour information to the detection of

bags should be examined. It is also important to incorporate the energy function

as defined by D. Damen into the proposed system and see how exactly the two

different energy functions influence the final results when applied on the same data.

Since the effectiveness of the trained models is questionable, they are replaced with

the gradient weight Ŵ and the La*b* images in D. Damen’s energy function.

Afterwards, the energy function that produces the best results is compared with

the original method proposed by D. Damen.

Table 6.4 shows all the results for the 3 datasets and 6 different energy func-

tions. The total values in Table 6.4 are calculated by combining the results from

all the datasets, not by averaging the percentages obtained. The cases selected for

examination are: A) the energy function as defined by D. Damen in [33] applied

on the FTT and combined with the trained bags models; B) the same D. Damen’s

energy function but with gradient weight Ŵ and a* b* enhancement instead of

the trained bags models; C) the energy function as defined in this chapter applied

on the CTT; D) the same energy function but without the a* b* information; E)

the proposed energy function but with D. Damen’s best model match search; and

finally F) the Bayes energy function. By examining the table it can be inferred

that the a* b* images offer a substantial enhancement to the proposed system

and to D. Damen’s energy function as well. By employing a* b* images in the

case C the precision drops 3% while the recall increases 12% and as a consequence
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Figure 6.19: Precision-recall curves for the final and improved system in case C of
Table 6.4 for the 3 different datasets.

the accuracy level increases from to 58% to 63%.

The low precision and specificity values in the case A of Table 6.4 show that

the D. Damen’s energy function suffers from a significant number of false positives.

The aim is to retain the recall values but at the same time to increase the precision

as and the definition of the shape of the segmented bags. Concerning the alignment

of the temporal template with the best matching exemplar the cases C and E

should be considered. It is obvious that D. Damen’s method does not serve the

requirements of the proposed system and therefore it has been modified.

In general the specificity numbers are low which shows the weakness of the

system in recognizing the negative cases. However the accuracy and precision

levels have been increased. The reader is advised to observe the table to make

further conclusions.

Case C, which is proposed in this chapter, provides the best results; therefore,

it is the one to be compared with the D. Damen’s original system. The results are

presented in Table 6.5.

To test the accuracy of the system, the construction of Precision-Recall (PR)

curve was employed as described in [114] and [4]. The ground truth box for

the position of the bags on the temporal templates was obtained manually. A

Detection is considered as successful only if the overlap between the ground truth

bounding box and the detected one is higher than 20%. In case the overlap is

between 0% and 20% then, if the bounding box obtained is inside that of the

ground truth then it is labeled as false negative, else if the ground truth box is

inside the bounding box obtained then it is labeled as a false positive. Any other

case would suggest that the bounding box obtained and the ground truth box is
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Figure 6.20: Receiver operating characteristic curves for the final and improved
system in case C of Table 6.4 for and the primary one as reported by D. Damen.

not related to each other and therefore the detection is labeled as a false positive

and a false negative, respectively.

The Precision-Recall (PR) curves in Figure 6.19 are derived from each of the

three available datasets while the ones in Figure 6.21 are only derived from the

PETS dataset. They are the result of linear interpolation of recall points cor-

responding to maximum precision. The receiver operating characteristic (ROC)

curves in Figure 6.20 are constructed as complementary to the PR curves. In Fi-

gure 6.19 the results are very encouraging for the in-house videos captured via the

hand-held cameras; this is because the camera angle and distance is optimised for

the purpose of the application. The curves in Figure 6.20 and Figure 6.21 compare

the proposed method with that of D. Damen’s, for the PETS dataset. The ROC

curves show that the false positive rate has been eliminated and the true positive

rate has been increased.

The last metric introduced is the Average Precision (AP), which summarises

the shape of the precision/recall curve, and is defined as the mean precision at a

set of eleven equally spaced recall levels [0, 0.1, ..., 1] [117]:

AP =
1

11

∑
r∈{0,0.1,...,1}

pinterp(r) (6.30)

The precision at each recall level is interpolated by taking the maximum pre-

cision measured for all recalls greater than r

pinterp(r) = max
r̄:r̄≥r

p(r̄) (6.31)
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Figure 6.21: Precision-recall curves for the final and improved system in case C of
Table 6.4 and the primary one as reported by D. Damen.

where p(r̄) is the measured precision at recall r̄. The calculated AP for the

improved version is 0.64 while for the D. Damen’s system it is 0.49. These results

show the significance of the improvement of the system.

6.8 Summary and Discussion

In this chapter have been presented a number of innovative methods that incremen-

tally improve the overall performance of the baggage detection system originally

proposed by D. Damen.

The first goal was to develop a robust direction estimation algorithm. For this

reason the pedestrian’s shoulder shape features and their displacement over the

image plane have been exploited. However, not all available motion information

has been fully utilised. For example the duration of motion on the scene and

the silhouette size variation during motion can indicate the direction of motion.

Hence, there where objects’ size remains approximately the same as they move,

tend to cross the scene horizontally, while the ones that are getting smaller in size

tend to walk vertically. These are perspective related properties that could be

employed to enhance the proposed algorithm.

The next goal was to identify the clothes and torso of the person. Therefore,

the GrowCut algorithm used can be combined with colour clustering techniques to

improve the accuracy of torso detection. In such case the torso of the best matched

template should be substituted by the one obtained. Another important aspect

was the segmentation of bags using the a* and b* components of the La*b*

colour space. Since the La*b* colour space values change with illumination, good
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illumination conditions are in favour of the proposed method. To this end, the

system has been tested under 3 different illumination conditions, where 2 of them

were outdoors. The achieved results were encouraging.

As a summary the system has been improved not only in terms of accuracy

and precision but also in accurate bag shape segmentation. However, the method

still suffers from some inaccurate alignments of the exemplar with the temporal

template and some inaccurate direction estimations. Other major challenges that

need further attention are loose clothes and partially occluded or small objects.



Chapter 7

Conclusions and Future

Perspectives

The research in this thesis focuses on moving object segmentation via background

subtraction and carried object detection and identification in video sequences.

Other contributions refer to the estimation of human body orientation and design

of an edge continuity enhancing filter, as part of developing the above algorithms.

The steps taken to achieve the above contributions are those that differentiate the

current work from other methods. These steps, the relevant original contributions

made and the conclusions made are outlined in section 7.1. Section 7.2 discusses

the limitations of the proposed algorithms that arise mainly from practical and

operational complexities of the nature of the open research problems addressed

in this thesis. Finally the chapter concludes with suggestions for future research

(section 7.3).

7.1 Conclusion

The novel moving object segmentation algorithm based on background subtrac-

tion presented in chapter 4 of this thesis made use of multi-directional gradient

and complementary phase congruency features to model the background. These

features ensured the detection of crude foreground object contours that are subjec-

ted to gradual illumination changes and moderate shadow conditions. Due to the

fact that moderate shadows lack sufficiently well-defined contours and may extend

their influence to areas beyond the boundary of an object, it was decided that tar-

geting such contours rather than regions is more sensible. Therefore a filter that

would facilitate foreground contour continuity was designed as an intermediate

between the traditional Gaussian and the truncated sinc filters. If reflected onto

the edge map of an image, the crude foreground contours were replaced by the
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edges of foreground objects. This operation enabled further contour refinement

by eliminating edges that were present due to noise and shadows.

It was shown that while the elimination of noise edges can be simply achieved

by examining the colour similarity across each side of an edge segment, the reduc-

tion of shadows required more sophisticated measures. To that end, four measures

of region similarity along an edge segment were defined to discriminate between

shadow and non-shadow edges. In addition to that, a subsequent contour com-

pletion step, which can be employed as a post-processing step in any foreground

segmentation scheme, was incorporated into the system. This ensured closed fore-

ground contours and completed object shapes without discontinuities and breaks.

The conducted experiments proved the capability of the proposed methods to

eliminate ghosting effects that occur during background initialisation and at the

moment that a previously stationary background objects begin to move. (e.g. cars

stopped at traffic lights beginning to move). Detailed experimental analysis de-

monstrated the ability of the proposed foreground object segmentation approach

to be in par with the state-of-the-art algorithms and in specific cases, to supersede

their performance.

A novel viewing direction estimation was proposed in chapter 5. The viewing

direction estimation algorithm made use of features derived from the shape of

the shoulders of a human being. The shoulder area exhibits better stability in

shape during a walking cycle, as compared to the upper and lower limbs. These

features described how the head and shoulder proportions change under different

viewpoints. The experimental results revealed that the proposed method performs

better in comparison to those methods that adopt the transfer of motion from the

image plane to ground plane in order to recover the viewing direction.

The COD system based on colour information proposed in chapter 6 made use

a CTT, which contains colour, textural and frequency information. It was shown

that to consider COs as abnormal silhouette protrusions it is vital to separate

the protruding regions that belong to body parts or clothing. To that end a

torso estimation method was applied as a region growing procedure in one of the

colour channels. This enhanced the torso shape of the best matched exemplar

model and reduced the occurrence of false positive detections. In addition it was

noted that the colour temporal template facilitated accurate segmentation of those

carried objects that had intense colour saturation. To reduce the likelihood of head

and feet being detected as carried objects, weighting was imposed on the human

temporal template. Experiments conducted to analyse the performance of the

proposed COD approach proved that it outperformed the current state-of-the-art

algorithm in terms of its robustness to practical challenges.

Carried object recognition is a challenging task due to the wide range of ob-
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jects that could be carried by general public. Assuming that the interest of the

proposed surveillance application is common public spaces such as airports and

train stations, the objects that are most likely to be carried are different luggage

types. Therefore, a bag type classification algorithm was proposed in chapter 5

by examining their locations in relevance to the human body that carries them.

Detailed experimental results conducted on five commonly used baggage types

revealed an overall classification accuracy of 70.95%.

It was observed that the foreground segmentation algorithm employed for sil-

houette extraction for COD affects the accuracy of the final outcome. For instance,

the cast shadows extend the shape of the silhouettes and the broken or incom-

plete foreground shapes reduce the likelihood of presence of carried objects. This

was the incentive for the development of the proposed foreground segmentation

algorithm that eliminates shadows and guarantees complete silhouette contours.

The detailed performance evaluation of the proposed novel CFC segmentation

algorithm within the framework of the proposed COD system requires further

attention and is proposed as a future developmental task.

7.2 Limitations

The proposed algorithms are constrained by several limitations if specific scenarios

are to be served. This section critically reviews the underlying reasons for the

limitations and the potential impact they may have in practical applications.

First, the methodology followed in the proposed CFC algorithm intrinsically

does not favour dynamic backgrounds that include objects such as, tree leaves,

fountains, or in general a rather cluttered background. The edges that belong to

tree leaves are unlikely to be removed due to the high curvature of their shapes

and the absence of a specific pattern, i.e. presence of random shapes. Moreover,

Figure 7.1: An example output of CFC algorithm where parts of the background
are included into the foreground.
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for example, if the background of an edge of a leaf is the sky, it is not removed

as according to the specified rules adopted in segmentation, dissimilar colours

across the edge segment imply that it belongs to foreground. Hence, in the case

of tree leaves the edges that are not eliminated are extended into a closed shape,

which includes all tree leaves along with some patches of the sky. This increases

the false positive rate detection if compared with other foreground segmentation

methods, which incorporate in the foreground only the waving leaves and not the

sky patches. Another example is the integration of the background area between

the limbs of a human object to the foreground, when strong shadow edges are not

removed (see Figure 7.1). Given the fact that the region between the limbs is the

same as the background, it can be removed if post processing at region level is

applied. Nonetheless, the proposed CFC algorithm performs specifically well for

traffic monitoring, where the shadows are frequent, the recovery of the whole car

is challenging, and the car shapes are convex in contrast to humans.

The viewing direction estimation module is affected by anything that deforms

the natural shape of the segmented silhouette. This could be a load carried high

on the shoulders or over the head, or the shadows beneath the legs, or even falsely

segmented additional foreground. As most of the features are related to the shape

of the shoulder and one feature to the height of the silhouette, in case of the

above mentioned shape deformations, it is expected that there will be classification

errors. Therefore, a robust foreground segmentation method is very important in

every aspect of COD process. A positive fact is that the proposed viewing direction

estimation method is stable under in-plane rotations.

As it was mentioned above the performance of the COD highly depends on

the accuracy of foreground object segmentation. Therefore this is the most im-

portant and fundamental constraint. Assuming that the foreground segmentation

is absolutely correct, the next problem would be the viewing direction estimation

of distorted body shapes. Another challenge is the partially occluded carried ob-

jects, which do not protrude enough to be detected. For instance, it is difficult

to detect the bright pink bag in Figure 7.1 as it does not protrude significantly.

However, since the proposed enhancement based on colour object segmentation

favours the objects with intense colours, the pink bag is partially segmented. The

rest of the bag could be recovered if region growing or simple colour clustering is

applied. It should be noted that, the detection of white and black carried objects

will solely depend on their grey level intensity. This means that the likelihood of

detecting white objects is very low, and could be enhanced by a frequency tempo-

ral template. Finally detailed experiments have also revealed that the lose clothes

or people of bigger than average size are more likely to produce false positive

detections.
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The proposed bag type recognition approach is limited only to carried but not

still luggage classification. The fact that the bag type recognition depends only on

their location, it is difficult to discriminate the bag types that reside at the same

or nearby locations. For example the most bulged part of a backpack resides at a

location similar to the typical location of a ladies shoulder bag. Thus under some

viewing directions their locations appear to be similar.

7.3 Future Work

To address the above mentioned limitations the following directions for future

research are proposed.

The proposed CFC algorithm is able to detect all available moving contours

and successfully complete them. The only stage that requires attention and if

enhanced could positively affect the final results is the edge segment classifica-

tion. More research should be undertaken to deploy texture features invariant to

strong shadows. To handle various types of dynamic background the edge segment

classification principles could be altered.

To address issues such as camera jitter and various forms of dynamic back-

ground, a texture based background modelling approach needs to be designed.

Texture features such as Colour Co-occurrence Matrix (CCM), widely used in

texture recognition [106], can be employed. The CCM accommodates the inter

channel relationship of pixel colours within a specified region into a histogram of

occurrences. This means that the CCM will remain approximately the same if

the contents within the region are rearranged. The effectiveness of the CCM in

texture recognition over the single channel co-occurrence matrix has been proved

in [106, 38]. An aspect that might impair the performance of a foreground seg-

mentation method base on CCM is the high dimension of CCM which increases in

proportion with the quantisation levels. It is understood that there is a trade-off

between accuracy and computational cost that should be balanced. The first and

most important perspective would be balancing the computational cost with the

colour quantisation levels by reducing the dimensionality of the CCM. Another

perspective is the examination of performance of the Haralick features [52].

The experiments conducted reveal that there is space for the improvement

of the proposed COD algorithm. The likelihood functions can be continuously

updated by new data. One helpful cue could be the distance of the carried object

from the body main axis in combination with the pixel intensities that make it

up. If the central point under the feet of the temporal template is taken as a

reference, then the distance of each pixel from that point can be calculated and

positioned into a 3D map as in Figure 7.2. The x axis represents the distance,
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the y axis represents the pixel intensity and the colour encodes the frequency

of occurrence. It is noticed that the pixels that belong to carried objects form

clusters at some distance from zero. Figure 7.2 shows two examples of carried

object and two examples of unencumbered temporal templates. This information

can be effectively used not only for COD but also for bag type classification based

on distance. The bag type classification can be extended by exploiting shape

information.

The most challenging task in object detection and tracking is occlusion hand-

ling. In real world scenarios people usually move in groups, resulting in occluded

view of moving and carried objects. Future research can concentrate on patch

based object detection and recognition. This means that the method to be deve-

loped should make use of features that do not characterise the object as a whole

but other smaller characteristic parts of the object. Another perspective can rely

on combining multiple views of the same object.

Figure 7.2: From left to right: In the first and second columns are shown the pro-
truding carried objects with their distance-intensity maps, and in the third and
fourth column are shown unencumbered temporal templates with the correspon-
ding distance-intensity maps.
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Figure A.1: Fingerprint image filtered with the derivative Gaussian filter of σ =
1.5, EEF filter and the sinc(x) filter and undergone non-maximum suppression
with threshold 0.5. The size of all filters was 13 × 13 sampled in the interval
[−2π, 2π].
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Figure A.2: flower image filtered with the Gaussian filter of σ = 1.5, EEF filter
and the sinc(x) filter. The size of all filters was 13 × 13 sampled in the interval
[−2π, 2π]. The corresponding edges are obtained after non-maximum suppression
with threshold 1.3 and hysteresis thresholding with thresholds threshhigh = 0.5
and threshlow = 0.01.
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ProcessForeground(colour image, foreground, angle, M)

// M is the maximum moment of phase congruency covariance
// angle is the direction of gradient
// foreground is the crude foreground contour

1 h s v = RGBtoHSV(colour image)
2 thresh = 0.3
3 sigma = 1
4 edgeS = CannyEdge(s, thresh, sigma)
5 ind = 1

6 for thresh = {0.05, 0.08} and sigma = {2, 1}
7 edgeV (ind) = CannyEdge(v, thresh, sigma)
8 ind = ind+ 1

9 threshold = 1.3
10 edgeM = NonMaximumSuppression(M,angle, threshold)
11 total edge = edgeS + edgeV (1) + edgeV (2) + edgeV (3) + edgeM

12 stract elem1 = square(2)
13 morphologyEdge = Close(Dilate(total edge, stract elem1))
14 morphologyForeground = Close(foreground, stract elem1)

15 edgeInForgr = morphologyEdge ∗morphologyForeground
16 Binary Mask = Close(edgeInForgr, stract elem2)

17 Foreground edge(1) = edgeS ∗Binary Mask
18 Foreground edge({2, 3, 4}) = edgeV ({1, 2, 3}) ∗Binary Mask
19 Foreground edge(5) = edgeM ∗Binary Mask

20 for ind = {1, 2, ..., 5}
21 Foreground edge(ind) = NoiseLineRemove(Foreground edge(ind),

angle, colour image, threshold)
22 Foreground edge(ind) = ShadowLineRemove(Foreground edge(ind),

angle, colour image, threshold)
23 Total edge = Total edge+ Foreground edge(ind)

24 final foreground edge = EdgeExtensionByDiffusion (Total edge)

Figure B.1: Pseudocode for foreground contour post-processing of chapter 4



Appendix C

Graph Cuts for Energy Function

Minimisation

The description of the Graph Cuts principle given below is derived from the work

of Y. Boykov and V. Kolmogorov in [13] and Y. Boykov in [14]. The Graph Cuts

algorithm proposed in [13, 14] was designed to solve efficiently energy minimisation

problems like in Equation 2.8 through finding the minimum cut/maximum flow

in graphs.

The energy functions that can be minimised in vision refer to labelling problems

such as those described in subsection 2.2.3 by Equation 2.8 and in section 6.5 by

Equation 6.13. An image can be considered as an MRF which is an undirected

graph with image pixels X = {x1...xn} considered as nodes and a neighbourhood

system {N1...Nn} = N ⊂ X with Ni the set of neighbours that surround each node

xi. Each pixel x ∈ X is to be assigned a label from a set of labels L = {l1...lk}.
The aim is to find a labelling configuration from the set of configurations f =

{f1, ..., fn} such that fi is function that assigns a label l ∈ L to the pixel x ∈ X.

This can be achieved by finding the labelling configuration fi that minimises the

following energy function

E(f) =
∑
xi∈X

Di(fi) +
∑

xi,xj∈N

Vi,j(fi, fj) (C.1)

where Di is an arbitrary data cost function that measures the cost of assigning a

label fi to a pixel xi, and Vi,j is the smoothness cost that defines the interaction

between the neighbouring pixels xi and xj.

To solve this energy minimisation problem let us consider a graph G = 〈V , E〉
as in Figure C.1-(a), where V are the vertices of the graph (in case of image the

vertices are pixels) and E are the directed edges that connect the vertices. The

graph in Figure C.1-(a) represents a labelling problem with two labels, which
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(a) (b)

Figure C.1: An Example of directed graph. (a) is the graph G while (b) shows
the cut over the graph G. The thickness of the edges correspond to the data cost
[13].

correspond to the two terminal nodes usually called as sink t and source s. The

weight or thickness of the edges connecting the vertices (pixels) to the terminal

nodes are proportional to the data cost Di, while the thickness of edges connecting

the neighbouring nodes between them is proportional to the smoothness cost Vi,j.

An s/t cut separates the graph nodes into two disjoint groups S and T where

S contains the source s while T the sink t. The cost of the cut C = {S, T } is

equal to the sum of weights of the edges that connect the nodes of the set S
with the nodes of the set T . The minimum cut problem on graphs is to find

a partition that ensures the minimum cost C. An example of minimum cut is

shown in Figure C.1-(b). The minimum cut on graphs is directly related to the

minimisation of energy function in Equation C.1 to solve labelling problems. Since

a minimum cut separates the graph into two groups it can be seen as it assigns two

different labels to the pixels (nodes). As the weights of the edges are derived from

the smoothness and the data cost functions of the energy function, the minimum

cost cut corresponds to the minimum energy.
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