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Abstract

The prevalence of electronic imaging systems in everyday life has become increasingly apparent

in recent years. Applications are to be found in medical scanning, automated manufacture, and

perhaps most significantly, surveillance. Metropolitan areas, shopping malls, and road traffic

management all employ and benefit from an unprecedented quantity of video cameras for mon-

itoring purposes. But the high cost and limited effectiveness of employing humans as the final

link in the monitoring chain has driven scientists to seek solutions based on machine vision tech-

niques. Whilst the field of machine vision has enjoyed consistent rapid development in the last

20 years, some of the most fundamental issues still remain to be solved in a satisfactory manner.

Central to a great many vision applications is the concept of segmentation, and in particu-

lar, most practical systems perform background subtraction as one of the first stages of video

processing. This involves separation of ‘interesting foreground’ from the less informative but

persistent background. But the definition of what is ‘interesting’ is somewhat subjective, and

liable to be application specific. Furthermore, the background may be interpreted as including

the visual appearance of normal activity of any agents present in the scene, human or otherwise.

Thus a background model might be called upon to absorb lighting changes, moving trees and

foliage, or normal traffic flow and pedestrian activity, in order to effect what might be termed in

‘biologically-inspired’ vision as pre-attentive selection. This challenge is one of the Holy Grails

of the computer vision field, and consequently the subject has received considerable attention.

This thesis sets out to address some of the limitations of contemporary methods of back-

ground segmentation by investigating methods of inducing local mutual support amongst pixels

in three starkly contrasting paradigms: (1) locality in the spatial domain, (2) locality in the short-

term time domain, and (3) locality in the domain of cyclic repetition frequency.

Conventional per pixel models, such as those based on Gaussian Mixture Models, offer no

spatial support between adjacent pixels at all. At the other extreme, eigenspace models impose

a structure in which every image pixel bears the same relation to every other pixel. But Markov

Random Fields permit definition of arbitrary local cliques by construction of a suitable graph, and
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are used here to facilitate a novel structure capable of exploiting probabilistic local cooccurrence

of adjacent Local Binary Patterns. The result is a method exhibiting strong sensitivity to multiple

learned local pattern hypotheses, whilst relying solely on monochrome image data.

Many background models enforce temporal consistency constraints on a pixel in attempt to

confirm background membership before being accepted as part of the model, and typically some

control over this process is exercised by a learning rate parameter. But in busy scenes, a true

background pixel may be visible for a relatively small fraction of the time and in a temporally

fragmented fashion, thus hindering such background acquisition. However, support in terms of

temporal locality may still be achieved by using Combinatorial Optimization to derive short-

term background estimates which induce a similar consistency, but are considerably more robust

to disturbance. A novel technique is presented here in which the short-term estimates act as

‘pre-filtered’ data from which a far more compact eigen-background may be constructed.

Many scenes entail elements exhibiting repetitive periodic behaviour. Some road junctions

employing traffic signals are among these, yet little is to be found amongst the literature regarding

the explicit modelling of such periodic processes in a scene. Previous work focussing on gait

recognition has demonstrated approaches based on recurrence of self-similarity by which local

periodicity may be identified. The present work harnesses and extends this method in order

to characterize scenes displaying multiple distinct periodicities by building a spatio-temporal

model. The model may then be used to highlight abnormality in scene activity. Furthermore, a

Phase Locked Loop technique with a novel phase detector is detailed, enabling such a model to

maintain correct synchronization with scene activity in spite of noise and drift of periodicity.

This thesis contends that these three approaches are all manifestations of the same broad

underlying concept: local support in each of the space, time and frequency domains, and further-

more, that the support can be harnessed practically, as will be demonstrated experimentally.
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Chapter 1

Introduction

Interpretation of natural scenes is a process which happens largely automatically in the human

brain. Yet scientists from a whole range of fields such as Biology, Psychology, Neurology, and

indeed Computer Vision, have long wanted to know precisely how it happens. Nakayama et al.

[87] observe that:

“Retinal images are formed on the back of our eyeballs, upside down; they are very

unstable, abruptly shifting two to four times a second according to the movements of

the eyes... ...yet the visual scene appears to us as upright, stable and homogeneous.”

This is a truly impressive example of image processing, but it immediately raises the question

of where the scene is actually perceived - not on the retina evidently. The same authors main-

tain that understanding the mechanism of this process will go a long way to explaining thought

and perception generally. But in any case, as appears usual with biological systems, nature has

parsimoniously evolved a human vision system fit for one particular purpose: survival.

But why should humans possess such curiosity regarding the detailed functioning of the

human visual system? Perhaps from their purely inquisitive approach to science and nature

generally. Or perhaps to be able to supplant such a system with a synthetic alternative, maybe

even with several potential improvements.

The ever-growing reliance of man on machine has meant that a diverse range of ‘intelli-

gent’ devices based on computational elements has pervaded many aspects of human existence.

Increasingly such devices possess some type of camera interface, and algorithms in Computer
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Vision have helped to propel the interaction and usability of the devices to new heights. But as a

vital part of the vision process, the machine must perceive individual objects forming the world

around it in order to interact in a useful way. The capability to logically separate objects, from

each other and more especially from the background, is a basic attribute of vision systems. How-

ever, despite continued research effort, truly reliable solutions have yet to be attained, especially

for use under challenging variable lighting conditions, and where the background may not be

stationary, in a physical or statistical sense.

But traditional algorithms for distinguishing foreground from background rarely make best

use of local image information to achieve accurate separation. This thesis is concerned with

finding strategies for improving on current techniques by exploiting local connectivity between

image elements which are adjacent in space, time, and repetition rate, in order to encourage

co-operative decisions about the location of boundaries between foreground and background.

1.1 Surveillance

Amongst potential exponents of vision algorithms, few applications have become more prolific

than visual surveillance in recent years. According to McCahill and Norris [81] it is estimated

that there were at least 400,000 video surveillance cameras in London alone as of 2002, and more

than 4 million spread throughout the UK. Considering that these devices operate continuously,

the quantity of video data generated is enormous. Both metropolitan authorities and private

security firms employ people to watch and monitor ongoing events in the hope of identifying

criminal activity, untoward behaviour, and serious but non-malicious situations. Evidently, due

to the sheer volume of data, the task of surveillance becomes increasingly difficult to manage

even in a well staffed camera control room, such as that shown in Figure 1.1. Most humans can

maintain the required level of concentration for as little as 20 minutes at a time before fatigue

and boredom erode their powers of attention, this being partly due to the fact that for almost all

of that time, nothing of interest actually happens. According to a report by Gill and Spriggs [41]

many quieter, relatively uninteresting, city areas receive little or no attention for long periods

of time for these very reasons. Figure 1.2 shows police officers attentively monitoring popular

tourist areas in London, but it is not practical to deploy such intensive surveillance everywhere.

However, thanks to techniques in the field of computer vision, it may now be possible to

relegate the bulk of the thankless surveillance task to machines which never tire or lose interest
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or job satisfaction. Enter the synthetic vision system. And perhaps just as in nature, one of the

crucial goals is survival. Not of the machines themselves, but this time of their creators, against

the threat of bombs, theft, and other less serious crimes.

Figure 1.1: Control Room at Newham Borough Council in London, catering for approximately

500 video feeds from surrounding public and restricted areas. Although all cameras are recorded,

not all can be viewed at once in real time, especially by such a limited number of operators.

Figure 1.2: Police at New Scotland Yard monitor key security locations. But such focussed

surveillance leaves little resource for coverage of quieter areas. Photograph: Kirsty Wig-

glesworth/AFP/Getty Images.

1.2 Machine Vision

By employing machine learning algorithms, it should be possible to accumulate details regarding

activity in a scene covered by a fixed view camera in a statistical sense, such that any unusual

event could be highlighted and brought rapidly to the attention of a human observer. Thus the
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overall monitoring task might then be accomplished with fewer people watching more stimulating

activity for a greater proportion of the time, and in a smaller control room consisting of fewer TV

screens. Instead of relying on easily fatigued human concentration, the monotonous ‘watching’

process would go on in the CPU of a computer, continuously fed with digital video data from

one or more cameras.

Such a system may be required to generate immediate alarms, or trigger certain events in

critical situations. But another paradigm is that of retrospective investigation, whereby people

or vehicles might be tracked through archived data across disparate Closed Circuit Television

(CCTV) networks with a view to solution of some particular crime.

But the implementation of software and algorithms suitable for this purpose is a non-trivial

task, and full realization of the above situation still lies in the future. Although machine learning

has been around for many decades, and is a diverse topic that has facilitated numerous applica-

tions that impinge daily on human lives, it is nevertheless still a rapidly developing topic. Many

aspects of computer vision depend critically on principles rooted in machine learning, since scene

appearance and activity patterns for example, cannot practically be programmed directly.

In general, activity implies movement of objects in a scene such as people, vehicles, and trees,

which cause localized changes in the scene’s appearance due to occlusion of the background. The

presence or absence of stationary objects also affects local appearance in a similar fashion. At the

same time, variations in prevailing weather and lighting conditions cause changes in scene ap-

pearance on a global scale, as illustrated in Figure 1.3. In both global and local cases, the activity

manifests itself as changes in colour and intensity at some subset of pixels. The objective is thus

to identify unusual events by modelling the spatial and temporal intensity characteristics of the

scene on a frame by frame basis. The ideal model is constructed or ‘learned’ incrementally from

such data, and matches all aspects of normal activity. Rare behaviour in the scene is highlighted

where it occurs because it does not fit the learned model.

1.3 Image Acquisition

In order for a machine to start interpreting a scene, something physical about that scene must first

be measured. By far the most common type of sensor available is the standard video camera based

on a CCD (Charge Coupled Device) target, measuring light intensity levels in the three spectral

areas Red, Green, and Blue (RGB) as a regular 2-D array of pixels. Because most objects are not
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Bright Sunshine Darkness

Snow storm during darkness Daylight with snow on ground

Figure 1.3: Typical surveillance images from a factory goods yard, in which the same scene is

depicted under widely varying lighting and weather conditions. However, despite the marked

change in appearance, from a surveillance novelty standpoint these views should all be classed

as background. Such diversity is challenging, but not uncommon in practical situations.

themselves emitters of any light, use of such cameras is usually restricted to situations involving

daylight or some artificial light source.

However, whilst the visible part of the electro-magnetic spectrum forms the basis of percep-

tion in human vision, other parts of the spectrum are also found to contain useful information.

Most notably, infra-red imagery [76] presents a pattern of thermal emission from the scene.

Again, many passive objects exhibit no emission of their own here either. However, objects

which are themselves sources of heat, for example, people, animals and engine-driven vehicles,

betray themselves by a significant heat signature. For this reason, infra-red imaging performs a

vital role with regard to covert surveillance. At still longer wavelength, Terahertz radiation [119]

remains strongly directional and thus is also a contender for such application. A method using a

fusion of visible and thermal channels (RGB+T) has also been proposed [124].
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But measurement of electro-magnetic radiation intensity, whether emitted or reflected, only

gives the observer an impression of appearance. In the far field this amounts to a two-dimensional

representation of scene content. Range Images [2], on the other hand, provide a measure of dis-

tance from the sensor, and can therefore lead directly to a three-dimensional representation of

the scene from a single sensor’s point of reference. Such 3-D images may be deemed consider-

ably more informative than their 2-D counterparts because of the potential to resolve ambiguities

regarding 3-D shape, and reason about occlusion. But the much higher system cost renders these

range imaging devices less popular, and consequently perhaps hard to justify from a commercial

point of view.

Stereoscopic vision systems with two cameras also permit 3-D scene reconstruction [48] but

are not commonly used in practice for surveillance, at least partly due to cost considerations, but

also perhaps because of the more complex setup which generally hinders ease of deployment. A

more likely scenario is a network of cameras at a site in which there is some overlap of camera

coverage [65], although this does not guarantee a comprehensive 3-D scene model. In reality,

many practical cost effective solutions to surveillance problems are ultimately provided by rela-

tively inexpensive video camera technology used within a multi-camera environment, regardless

of whether spatial proximity is specifically exploited.

1.4 Unit Formation

Before attempting to define any type of artificial vision system, it seems worth taking a moment

to gain insight into how the Human Visual System (HVS) manages to interpret visual scenes

so successfully. Crucial to this process is the concept of scene decomposition, or segmentation.

In HVS parlance, segmentation is often referred to as unit formation [64]. As an involuntary

cognitive process, the image falling on the retina is ‘parsed’ into separate surfaces in order to

establish the extent of the entities in the image, a process known as individuation. Surfaces

are defined by their boundaries, but it is the association of a particular boundary with a given

surface which controls the perceived juxtaposition of the surfaces in terms of depth. By a process

known as amodal completion, introduced in work by Michotte [84] and analyzed by Kanizsa

[63], surfaces separated by occlusion may be reunited to enable perception of the entire scene in

a 3D space, in spite of the occlusion, and without the need for stereoscopic vision. Perception of

whole entities is advantageous since at a higher cognitive level, interaction with the environment
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is with discrete complete objects, as described by Spelke et al. in [123].

Such a form of discretization is a form of pre-attentive selection, by which concentration at

higher cognitive levels can be directed towards distinct concepts in the scene, e.g. tiger attacking

from the left. This prioritization becomes necessary when the brain has only a finite capacity for

dealing with separate objects. A crucial point is that parsing of surfaces into objects happens at

a relatively low level, and according to very specific but highly adaptive rules, as described by

Nakayama et al. in [87].

Much of the above explanation is supported by inference from experiments involving optical

illusions and demonstrations, and a much more detailed account of the unit formation process is

presented by Shipley and Kellman in [64].

In an artificial segmentation application it would seem useful to replicate some type of unit

formation scheme, although with a rather simpler rule set. Applications are to be found in the

computer vision literature regarding use of Markov Random Fields to group together pixels with

similar appearance, according to the prior knowledge that most uniformly coloured regions tend

to form continuous surfaces, as proposed by Schindler and Wang in [111]. But however it is

achieved, identifying individual entities amongst an image of pixels is the final objective. Tem-

poral consistency of an object is undoubtedly an influence in the HVS, as reported by Shipley in

[118], and should be exploited to advantage in any type of synthetic equivalent system.

1.5 Background Modelling

Although complete segmentation of all objects in a scene from each other is a laudable target, it

may not be easily achieved, or actually even necessary. Often it suffices to distinguish what is

interesting in a scene and denote it foreground with respect to objects which are normally in the

scene: the background. By definition the background is persistent, and consequently in general

more data is available to describe it. For this reason, the type of model capable of distinguishing

foreground from background is usually termed a background model.

In contrast, some systems described in the literature achieve reliable foreground identifica-

tion in context by specifically tracking individual objects and their boundaries through a scene

[56]. Whilst this might achieve good results in ideal circumstances, such tracking algorithms are

computationally intensive, especially when the number of objects is large, but in addition, may

be hindered significantly by image clutter and noise. Temporary loss of tracking, and the subse-
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quent re-establishment of correspondence is also a problem. So in general, explicit background

modelling is more widely adopted.

Effective background modelling is a crucial first stage in most computer vision applications,

especially in outdoor environments. The reliability with which potential foreground objects can

be segmented and subsequently identified directly impacts on the efficiency and performance

level achievable by subsequent processing stages such as tracking, recognition and threat evalu-

ation. The nature of background is considered to be intrinsically statistical. Whilst the concept

of statistical scene modelling suggests that there is no exact distinction between what constitutes

foreground and background, a useful practical definition for surveillance in a busy urban scene

is that people and the objects they cause to move are foreground. Buildings, fixtures, trees and

permanent objects, together with any environmental change in lighting such as shadow caused

by moving clouds, form the background. Critically, it is considered that background is in gen-

eral necessarily amongst foreground, i.e. it can be literally behind and in front of foreground

objects, especially in urban outdoor scenes, as shown by the examples in Figure 1.4. The task of

a background model in such a setting is to discriminate between the two classes under a poten-

tially wide variety of lighting conditions. Evidently, confusion might still arise, since trees sway

in the wind, tending to become foreground, whilst people park their cars, which are eventually

subsumed by the background.

The most commonly encountered models are based on per pixel techniques such as adap-

tive Gaussian Mixture Models [125, 131], or subspace analysis methods [94, 73], and both ap-

Figure 1.4: Examples demonstrating how background can be both behind and amongst fore-

ground. As the person moves behind the tree leaves, the background partially occludes the fore-

ground. The question is how to achieve useful segmentation from such fragmented evidence.
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proaches have been used with success in many applications. However, as might be expected,

neither class of approach turns out to provide completely reliable segmentation in real world sit-

uations. In particular, outdoor scenes suffer significantly from the effects of lighting variation due

to prevailing weather conditions and the time of day. For example cloud cover alters the intensity

and diffuseness of ambient lighting, and the contrast between areas illuminated by direct sunlight

and those in the shade. The physical appearance of a scene can vary dramatically as a result of

these effects, yet for most purposes, a background model would be required to classify the same

scene as background regardless of absolute appearance under a range of lighting conditions, as

Figure 1.3 clearly illustrates.

A further problem is that wind disturbs many types of leafy vegetation. Whilst the textural

appearance of a bush might be largely constant, the absolute detailed pattern of pixels represent-

ing it is likely to change radically over time. Again, the ideal background model would always

classify these regions as background in spite of the local chaotic motion. Random specular re-

flection from moving water presents a similar set of problems.

But the two classes of approach mentioned previously, the per pixel model and the global

subspace model, represent two extremes in terms of pixel connectivity. By definition, the per

pixel model operates on each pixel in spatial isolation, and hence is unable to exploit information

about objects in the scene encoded in the similarity of neighbouring pixels. This situation is

shown in Figure 1.5, where many isolated pixels are highlighted as foreground whilst evidence

from surrounding pixels is in contradiction. On the other hand, the subspace model attempts to

form a spatially holistic model of the scene. But given that the model is restricted to eigenvectors

(representing image modes) linked to only a set of the largest eigenvalues, the descriptive power

of each model component is still potentially distributed across the whole scene. If regions of the

scene are largely visually independent of each other, then this descriptive power could be used

to greater effect if it could be concentrated more locally. Figure 1.6 illustrates the distribution

of model eigenvectors across a typical road junction scene. Whilst some regionalization of the

eigenvectors is visible, many overlap extensively, and are spread over large and diverse image

areas. It is possible that some connectivity between certain regions arises accidentally from

inadequate training data, when in reality there is no such valid relationship. Figure 1.7 shows

the result of a typical segmentation using a subspace model constrained to 14 eigenvectors. The

model clearly has trouble expressing some scene regions effectively.
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Figure 1.5: Left: Typical busy traffic junction. Right: Segmentation using a 5 component Gaus-

sian Mixture Model. Many random noise pixels are highlighted even though they should be part

of the background. Each pixel acts as a process in isolation in this type of model, so no local

support or consensus can be drawn upon during segmentation. A more useful segmentation may

be obtained if decisions for a pixel were formed co-operatively.

So overall, it would appear that permitting local support between pixels, dependent on local

correlation observed during training, is likely to lead to a more informed foreground/background

segmentation of an image. The gestalt theory from psychology [114] suggests that local group-

ings are an essential contributor to the success of the Human Visual System, so it seems not

unreasonable to exploit such local support in a background model. But taking the idea still fur-

ther, spatio-temporal persistence of objects is anticipated in human cognition, and this too is a

form of grouping or local temporal support.

In the light of the previous discussions and examples, it appears logical to devise mechanisms

which augment accuracy of segmentation by employing local rather than global or pixel-wise

support, be this of a spatial, temporal, or other nature. The focus of this thesis is to explore

models which harness the benefits of such support in three different ways.

The approaches to be examined are characterized by treating the image as a signal, applying

algorithms homogeneously across the sequence in all dimensions. Such an approach intrinsically

lends itself to easier implementation on cellular type processing arrays, or in hardware, with all

the flexibility and practical advantages in deployment that this brings to real applications. As

an example, in [147] a motion segmentation algorithm is implemented on a graphics card array

processor having Single Instruction Multiple Data (SIMD) capabilities, achieving a 12 times

increase in throughput compared with a CPU only implementation.
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Figure 1.6: Top left: Typical traffic junction. Top right: Regions of activity from pixel variance.

Bottom: First 12 eigenimages from decomposing covariance matrix derived from 7500 input

frames taken over 1 hour. Red and blue represent +ve and -ve eigenvector elements respectively.
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Figure 1.7: Left: Typical busy traffic junction. Right: Segmentation using a Subspace Model

consisting of the first 14 eigenvectors corresponding to the largest eigenvalues of the training

set covariance matrix. Many items, especially road markings are highlighted even though they

should be part of the background. This may occur partly because there are too few eigenvectors

trying to act globally across the image, as in the eigenvector distributions of Figure 1.6.

1.6 Approach

1.6.1 Pattern-based Background Identification

A logical starting point is to consider local spatial support in the Foreground/Background deci-

sion. By defining a simple rotationally sensitive Local Binary Pattern (LBP), local image gradient

is approximated by a discrete symbol set possessing a limited range of values. Accumulation of

local cooccurrence statistics exhaustively between all directly adjacent pixel sites then becomes

tractable in terms of storage requirements. The accrued joint distribution over the symbol set at

each pixel pair is then be used to evaluate the relative conditional probability of symbol occur-

rence between the two sites in previously unseen data.

Casting the problem as a Markov Random Field, a binary graph cut permits evidence at one

pixel site to give weight to surrounding segmentation decisions, based on the concept of achieving

a global optimum. The merit of such an approach is to preserve the mutual information between

adjacent pixel sites that is encoded in the cooccurrence map, and to use that acquired data to best

advantage in creating a more informed segmentation mask.

Previous methods have imposed an intensity smoothness constraint between adjacent pixels,

but the novelty in this thesis is to base the constraint on potentially different LBP symbols which

are consistently observed simultaneously at the two respective neighbouring sites, regardless of
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the actual symbols or patterns they represent. The advantage of this approach is that it is auto-

matically well suited to modelling highly textured regions such as leaves and vegetation. Fur-

thermore, the cooccurrence map encodes all commonly cooccurring symbol pairs between two

adjacent pixels, allowing the model to accommodate dynamic texture such as moving vegetation.

Although already useful, the technique described so far does not exploit any type of temporal

persistence, an attribute which might equally be considered as locality in time.

1.6.2 Estimation of Time-varying Backgrounds

Taking advantage of locality in time is tackled by considering short blocks of images in the

training data. Using a technique based on Combinatorial Optimization, a set of pseudo-optimal

short-term background estimates is derived from these blocks of images in order to effect a

degree of pre-filtering. Optimization of the new background estimates is arranged such that local

temporal inconsistencies caused by moving objects are rejected in favour of spatio-temporally

stable areas of the training block pixel volume. One pre-filtered background estimate is produced

per block of training images, which then contributes to a conventional eigenspace model.

Although the short-term estimates still contain some foreground artifacts, the level of con-

tamination by foreground objects is considerably lower than without the pre-filtering stage, and

thus the resultant eigenspace model requires far fewer eigenvectors to model a similar percent-

age of overall image energy. The purer eigenspace model permits a tighter detection threshold,

yielding a more sensitive and discriminative system overall. This approach is particularly well

suited to busy surveillance scenes in which the anticipated level of background contamination is

high throughout a substantial fraction of the training data.

But local temporal persistence is only one aspect of the time domain behaviour at a pixel.

If there is regular repetition of some characteristic in the image, then the successive cycles of

repetition can be seen as sharing locality in elapsed time from one cycle to the next, which

amounts to locality in periodicity.

1.6.3 Exploiting Periodicity in Recurrent Scenes

Many road junctions are controlled by traffic lights which have a precisely controlled cycle time.

The repetition frequency of activity on such a junction is likely to form a dominant part of any

dynamic description of the scene. This aspect is exploited here in order to build a predictive

model of scene activity, based on the premise that the long-term time average over the junction
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cycle is cyclostationary in character.

By modelling the scene as a ring of 2D arrays of histograms over some appropriate feature,

rare events can be detected when the content of previously unseen images contains objects or

events which violate the acquired model. The method has the advantage that it may be general-

ized to any particular feature or combined feature set for which a Probability Density Function

(PDF) may be obtained.

Model construction evidently relies on knowledge of the fundamental period over which

road junction activity takes place. The period is determined by extending a method previously

applied to period estimation in gait recognition. Here, a dissimilarity matrix based on Kullback-

Leibler divergence is built for each spatial block or region in the training sequence, such that the

divergence between all possible pairs of histograms in the temporal dimension is represented.

Periodicity is finally estimated from structure in the autocorrelation of the dissimilarity matrix.

Possibilities exist to derive a separate periodicity for each individual spatial image block,

or at the other extreme, a single periodicity for the whole scene, if one should exist. The latter

approach is applicable in cases where the whole image is occupied by a single road junction,

comprising vehicles and pedestrians all regulated by the same set of traffic signals.

Exploiting periodicity in this way is tantamount to imposing local support in the frequency

domain. A model specifically based on periodicity is better placed to take advantage of recurrent

scene behaviour in terms of detection sensitivity than existing techniques based solely on stochas-

tic mechanisms. The approach represents one way to perform a Dynamic Scene Decomposition,

in which normal activity is separated from both static background and unusual foreground, to

form a ‘midground’, and hence a three layer model. The midground component could poten-

tially lead to a form of spatio-temporal activity segmentation map as a descriptor of the scene.

1.7 Goals and Contributions of the Thesis

1.7.1 Goals

The overall objective of the work is to research and define methods to augment the performance

of established background segmentation techniques by applying the general concept of local

support amongst scene elements (pixels). This aspect is explored in the following 3 domains:

• The Spatial Domain: A method of inducing local spatial support based on cooccurrence

of features between adjacent pixels will be formulated, developed and demonstrated. This
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will show that rather than relying on spatial smoothness of some feature, a generalization to

an arbitrary relationship of that feature between adjacent sites encourages a more informed

foreground/background segmentation. This work is presented in Chapter 3.

• The Temporal Domain: A hybrid background model will be proposed, consisting of a

conventional eigenspace model and a pre-filtering stage based on combinatorial optimiza-

tion operating on short blocks of training frames. Temporal support will be demonstrated

by compiling a single background estimate frame from each block of training frames, such

that parts of the spatio-temporal volume representing movement and non-stable intensity

characteristics are rejected in favour of exemplar pixels from more stable regions. Validity

of the overall technique will be shown by illustrating that an eigenspace model built from

the short-term estimates is more compact than one built directly from the unfiltered train-

ing data. The effects of several critical parameters relating to input sampling rate and the

combinatorial optimization stage will also be determined in detail. This work is presented

in Chapter 4.

• The Frequency Domain: A method of characterizing the spatio-temporal behaviour of

periodically recurrent scenes will be developed. The model will permit detection of scene

anomalies which do not fit the expected behaviour encountered in the training data. A

generalized technique for estimation of the dominant fundamental repetition frequency of

a scene or region from the PDF of some arbitrary feature will be detailed. A practical

method for maintaining synchronization of the periodic model with scene activity even in

the presence of noise will also be illustrated. This work is presented in Chapter 5.

The validity of each of the approaches described above is demonstrated experimentally with

datasets drawn from real world situations.

1.7.2 Contributions

Apart from the methodological approach detailed above, along with its development and appli-

cation, the following technical points are highlighted:

• Introduction of the RSLBP4 operator to characterize local 2D intensity gradient, whilst

retaining orientation information. An important feature of the operator is that it can take
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on only 16 discrete symbol values, and thus a cooccurrence map between adjacent pixels

needs only 256 bins, rendering the approach tractable from a storage point of view [108].

• Application of a cooccurrence histogram between two adjacent sites over some arbitrary

feature with a limited symbol set. The map permits mutual inference between the sites

so that their level of agreement can be determined, and the notion of smoothness can be

applied in spite of the absolute symbol values being arbitrary and different. The cooccur-

rence prior may be used to derive arc weights between pixels in a graph cut to improve

segmentation [108].

• A novel way of using a binary graph cut to implement conditional local support between

image elements. Use of unequal forward and reverse arc weights between pixels permits

expression of asymmetric conditional probabilities between two pixels [108].

• Use of Combinatorial Optimization to pre-filter cluttered scenes in order to remove most

foreground objects, based on rejecting local spatio-temporal instability amongst a short

block of sample frames. The short-term estimates, representing pre-filtered background

data, may then be used to construct a conventional eigenspace model which is more com-

pact than without pre-filtering [107].

• Study of important parameters involved in the Combinatorial Optimization algorithm: the

number of input images per block, the input frame rate, the effect on final labelling of

initial label values, the effect of constants β and λ which control the balance between the

data term and the pairwise interaction term in the objective function. The study reveals

that the model is not unduly sensitive to the choice of these parameters.

• Application of autocovariance of a similarity matrix to find dominant periodicity using

symmetric Kullback-Leibler divergence as the metric instead of a directly measured pa-

rameter such as pixel intensity. This approach renders the technique independent of the

chosen feature space, provided that a PDF over that space is available [110].

• A cyclic ring of histograms learned separately for each spatial sub-block of an image se-

quence over some chosen feature in order to model recurrent scene events and activity.

The size of the ring is determined by establishing the dominant fundamental period of the

data described by the histograms. The histogram set may be used to evaluate the rarity of
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activity in subsequent unseen data frames, and thus highlight anomalous events. The fun-

damental period may be defined separately for each sub-block, or as a single global value

for the whole scene [110].

• Use of a software-based Phase Locked Loop (PLL) to synchronize the local model phase

accumulator to learned scene activity after training. The technique helps to combat the

effects of noise, temporary loss of signal, drift in absolute event timing, and errors in

initial periodicity estimation [109].

• A novel phase detector sub-block for the PLL based on histogram comparison. Again

using the Kullback-Leibler divergence, comparing the current model with a complete cycle

of recent data at all possible different phases, the optimal state counter phase may be

determined [109].

1.8 Thesis Structure

The arguments of the thesis are presented in the following chapters, the breakdown of which is

as follows:

• Chapter 2 reviews literature relevant to the three proposed lines of research, and provides

insight into the reasons underlying their choice.

• Chapter 3 investigates spatial support based on local pattern cooccurrence and minimum

cuts on a related graph. Experiments are performed on a monochrome dataset in which the

desired foreground is fragmented and partially occluded by background. Comparison is

made between this result, and what is possible without the benefit of local support, and also

what is possible without the new RSLBP4 operator. The conclusion is that the combination

of techniques proposed does provide a measure of improvement in segmentation in such

challenging circumstances.

• Chapter 4 demonstrates the use of short-term temporal support to derive background ap-

proximations from which an eigenspace model is constructed. The experiments show how

the approach can be used to advantage in a very busy road traffic scene, for which some

parts of the true background are visible for less than half of the time. By comparison with

an eigenspace model based directly on unfiltered data, it is shown that for a given number

of eigenvectors, superior performance is achieved by the proposed combination technique.
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• Chapter 5 describes a model exhibiting support based on exploiting repetitive periodic

activity. Formulation of the frequency estimation technique, and construction of the sub-

sequent periodic model are detailed. Experimental results from three different traffic sce-

narios are presented, with the common goal of detecting anomalous behaviour which con-

tradicts that generally depicted in training data. Two scenarios use a simple object aspect

ratio feature, whilst the third employs object optical flow as the feature. The results of the

latter experiment are particularly convincing. Further experiments show how the frequency

estimation stage may be extended to yield an individual fundamental period for each spa-

tial image block. The final experiment details use of a PLL to successfully maintain model

synchronization in the presence of corrupted data.

• Chapter 6 concludes the thesis, summarizing results and ground covered in the research,

and suggests various promising directions for future studies based on the results achieved

so far.
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Chapter 2

Literature Review

Scene decomposition manifests itself most frequently in the literature as Background/Foreground

segmentation, yet more commonly termed Background Modelling. A great many computer vi-

sion systems require such a scheme as a front-end or pre-processing stage in order to function

correctly, especially in outdoor scenarios, and a wide variety of techniques have been proposed to

achieve a segmentation suitable for the application at hand. In general the requirement is to iden-

tify and localize objects in the scene which are interesting or salient in some way compared with

the normal appearance of the scene. The Background Model forms a static or dynamic character-

ization of the typical scene, with the intention of highlighting as Foreground those irregularities

which cannot be accounted for.

General surveys of the most commonly used techniques are to be found in Piccardi [97],

Radke et al. [104], and McIvor et al. [83], whilst Cheung and Kamath [17] summarize contem-

porary methods as applied specifically to traffic scenes. A review by Buxton [13] on the other

hand outlines various methods of modelling scene activity from a behavioural point of view.

2.1 Local Representation

Whilst in general the range of raw features available is restricted to those offered by commer-

cially viable sensors, by comparison the number of features which can be derived by subsequent

numerical processing of the same data is almost without limit. Linear or non-linear transforma-

tion of the basic RGB colour space is often performed for reasons of coding and transmission, but

can also be beneficial in scene modelling. For example, the colour space defined as Hue, Satura-



2.1. Local Representation 35

tion and Value (HSV) can rendered invariant to absolute intensity simply by ignoring the ‘Value’

component [37], whilst conversely retaining this component alone directly yields a monochrome

representation of the signal. Useful results based on separating intensity from chromaticity are

exemplified in work by both Matsuyama et al. [80], and Horprasert et al. [51].

Extraction of information from monochrome signals is of considerable importance, since

according to [45], many surveillance video signals possess little or no significant chrominance

content. Image gradient [24], optical flow [5, 77] are popular features, whilst for texture-based

analysis Haar wavelets [95] and Local Binary Patterns (LBP) [93] have been proposed.

2.1.1 Heuristic Methods

Although strictly mathematical approaches to scene modelling with provably good solutions are

to be highly commended, many less justifiable ‘engineering approaches’ have been applied to

specific real-world problems, nevertheless achieving effective results. Heuristic methods substi-

tute a simpler problem for the actual problem with a view to producing empirical results suffi-

ciently good for some particular application.

Accordingly, the term midground is introduced in recent work by Valentine et al. [133],

whereby objects persistent in the foreground make the transition to midground after a specified

time limit. It is claimed that the human visual system is less effective in recognition the presence

of objects over medium time-spans, and the technique is proposed with the abandoned luggage

scenario in mind. Eventually midground is subsumed by the background after time elapses past

a second threshold. Such thresholds are invariably a compromise and difficult to estimate in

general unconstrained situations, but may work effectively enough to produce a valid algorithm

in a given situation.

An adaptive block-based algorithm presented by Russell and Gong in [106] uses a priority

stack by which to judge the novelty of a given intensity pattern in a block. The heuristic is to

promote patterns to a higher priority as they re-occur in new images, but otherwise by default let

them be displaced down towards low priority and eventually lost. The overall effect is to retain

estimates of the most commonly occurring patterns, from which a per block foreground mask

may be obtained via an L1 distance metric.

As is common in the case of heuristic methods, it is often necessary to set vital parameters

of a system, such as offsets, factors and thresholds, to particular fixed values in order to make

an algorithm work. But all too often these parameters need to be chosen manually for each
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different operational scenario, unless a suitable estimation mechanism can be found. Overall,

more rigorous mathematical formulations of problems, from which parameter values emerge in

a natural way, are to be preferred.

2.1.2 Per Pixel Models

In the simplest pixel-based models, each pixel position in the image is processed in spatial isola-

tion from all the other pixels. Each pixel has its own private set of model parameters, and its state

is dependent solely on the history of that pixel position alone. Such models are very popular, not

least because of their conceptual simplicity both in theory and implementation.

The very simplest approach is to calculate the individual pixel differences between a frame

and its predecessor as described by Jain and Nagel in [58]. The resultant image, whether colour or

monochrome, highlights all changes in appearance between the two frames. An equally obvious

way forward is to accumulate a mean image either from training data, or on-line as a Moving

Average (MA) filter with rectangular history window, or amnesic average as defined by Weng

et al. in [137] with exponentially decreasing weight for earlier data. A mean image may be

subtracted from any new frame to discover the novel information.

Whilst mean pixel values remain somewhat susceptible to perturbation by outliers, a more

robust statistic is the median filter, which has been employed successfully by McFarlane and

Schofield in [82].

Evidently some threshold must be breached if a hard binary decision on novelty is required at

each pixel. A global threshold across the image will always be a compromise since abnormality

for highly variant pixels will only be reached at higher levels of deviation from the mean. Hence

a standard deviation, maintained separately for each pixel, is the logical solution. A pixel may

then be termed foreground if it exceeds a globally selected number of standard deviations from

the mean. Models based on the assumption of Gaussian distributions have been widely adopted

in order to cast this problem in a more formal probabilistic manner.

The Pfinder system described by Wren et al. in [142] uses a model based on a single three

dimensional Gaussian to approximate the Probability Density Function (PDF) of background

colour and intensity. Thus each pixel has a three element vector representing the mean and a 3×3

covariance matrix describing the variability from that mean. The model is updated incrementally

with each new frame using an exponentially weighted amnesic average [137].

Extending the technique slightly, it is possible to model the PDF as a mixture of simpler PDFs
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[31]. Such a Gaussian Mixture Model (GMM) is described by Stauffer and Grimson in [125]

in which multiple hypotheses are supported simultaneously by the super-position of weighted

Gaussians, each with its own particular mean and covariance. In this work, a mixture of up to

six Gaussians per pixel is supported, although only those with the largest weights which sum to

exceed a certain threshold are actually used for evaluation. Thus the number of Gaussians in the

pixel model adapts approximately to the number of hypotheses found in the data.

The GMM technique is used with three weighted Gaussians by Friedman and Russell in

a traffic tracking application [38] to enable the background model to represent views of road,

shadow and vehicle. Evaluation and maintenance of the model parameters, i.e. means, co-

variances and mixture weights, becomes quite a complex process because the class labels are

completely unknown. Use of the Expectation Maximization (EM) algorithm due to Dempster et

al. [27] is proposed, in which the lack of this so-called missing information is dealt with by an

iterative process of alternately re-estimating the model parameters and the sufficient statistics un-

til a convergence criterion is met. However, this algorithm is not guaranteed to find the globally

optimum solution for any given mixture.

On-line incremental versions of EM are to be found by Nowlan in [92] and by Neal and

Hinton in [89], although these only provide approximations to the original batch EM algorithm

of Dempster et al. [27], since they have to track a potentially non-stationary distribution.

2.1.3 Subspace Methods and Incremental Learning

Instead of modelling the behaviour of pixels in an image sequence separately, it is possible to

analyze how changes in image intensity are related globally between pixels, or further, between

pixel colour channels. By performing Eigenvalue Decomposition (EVD) [127] on the covariance

matrix from a set of vectorized images, the pixel interrelations may be discovered. The technique

known as Principal Components Analysis (PCA), due to an original concept from Hotelling [52],

and later work by Jolliffe [60] is a popular method of achieving this. The vectors comprising the

most significant portion of the eigenvalue decomposition, the principal components, are retained

to form an eigenspace model which represents the largest possible variance in the data. This

forms the basis of the so-called eigen-background technique in which PCA is used to model the

background of an image sequence.

In an application for tracking and modelling human interactions, Oliver et al. [94] describe

how an eigen-background model has been implemented using simple batch mode evaluation.
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The idea of adaptive thresholding when calculating the segmentation mask is also proposed, in

an attempt to compensate for large shadows in the image. It is maintained in this work that the

eigen-background technique is computationally more efficient than per pixel GMMs for a given

level of performance.

Early work on incremental update of eigenspaces did not start with applications in computer

vision, rather in statistics. One of the earliest records of incremental update of the Eigenvalue

Decomposition was by Golub [44]. Further research by Bunch and Nielsen [12] added a level of

robustness to the technique and developed a method for ensuring convergence. Work by DeGroat

and Roberts [26] dealt with the excessive roundoff and truncation errors encountered by other

methods to date in applications involving very large numbers of incremental steps.

Incremental update is important for practical implementations of subspace models because

the number of initial training images is often limited. As a consequence, the resultant covariance

matrix is unlikely to be full rank. An on-line application has the chance to augment the covariance

matrix with new information by utilizing subsequent input frames as further exemplars as the

algorithm runs. This is in addition to the obvious advantage that on-line update enables the

model to track non-stationary image distributions.

One of the earliest uses of incremental learning in computer vision was by Murakami and

Kumar [86] whose work involved efficient determination of eigenimages. Research into face

characterization by Sirovich and Kirby [120] was one of the first applications to use the now

widely-adopted low dimensional method in which eigenvalue decomposition of extremely large,

but limited rank, matrices is avoided. Instead a smaller but equivalent matrix may be decomposed

with far less computational effort to yield the eigenvalues directly, and the eigen-vectors via

transformation. Use of this method proves crucial in the implementation of practical eigen-

background models, and calculations performed by Chandrasekaran et al. [16] demonstrate this

to be the case.

The need for robustness in incremental learning was tackled by Xu and Yuille [146]. The

incremental technique in general lends itself well to robust extension because the model accu-

mulated so far acts as an ideal prototype against which new data may be validated. Incorporation

of the M-estimator technique, originally due to Huber [54] does permit robustness, but in Xu and

Yuille’s implementation a whole image is considered an outlier even if only one pixel is way-

ward, although other researchers subsequently solved this problem. In particular, De la Torre and
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Black [72] propose an improvement to the M-estimator technique of Xu and Yuille [146] which

is more tolerant of single pixel outliers. However, this is still an iterative method, thus incurring

the expected computational penalties.

One of the major problems with all the methods to date is that whilst the eigenspace is allowed

to evolve, the mean is prevented from doing so, thus limiting the models’ usefulness as classifiers.

Having recognized this, Hall et al. [46] extended the technique to permit variation in the mean.

The same work was also highly critical of the accuracy of the various incremental eigenspace

methods available to date, in particular, ways of controlling eigenspace dimensionality are also

called into question. Whilst Murakami and Kumar [86] always retained a fixed number of eigen-

values, the methods of Chandrasekaran et al. [16], and DeGroat and Roberts [26] allowed the

eigenspace to expand or shrink by one dimension per iteration, in order to model the data with

a specified degree of accuracy by retaining all eigenvalues larger than a certain threshold. In

contrast, Hall et al. [46] support a strategy whereby the N largest eigenvalues are kept such that

the total energy of the distribution exceeds a certain threshold, where energy is defined as the

fraction of the retained eigenvalues to the total of all eigenvalues.

In separate work, Hall et al. [47] went on to detail methods for splitting and merging

eigenspace models. The latter is potentially interesting in the context of incremental learning

in which new data is appended to the model in small blocks rather than individually. In line with

their previous work, the mean is properly dealt with in these operations.

In incremental learning experiments on face recognition, Skočaj and Leonardis [121] improve

on the method of Hall et al. [46] by calculating exactly the same subspace but in a different way

which includes weighting coefficients, although ultimately the robustness in their method is based

on EM, an iterative technique.

By fixing the number of retained eigenvalues in a given application, Li [73] adopts a similar

approach, but one which sports a much more efficient form of robust update. Using the current

model as a prototype, an influence function is introduced, reducing the robustness problem to one

of least squares once again. This directly provides a mechanism permitting robustness without

the need for iteration, and thus represents an important development.

Incremental and batch mode methods are compared by Kwok and Zhao [71] in an image de-

noising application of hand-written digit recognition. They allude to the aforementioned mean

shift problem and advocate use of a non-centred PCA method detailed by Jolliffe [60].
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Work by Brand [11] concentrates on a method for incremental update of the Singular Value

Decomposition (SVD) in the presence of missing or untrusted data. Favourable results are

claimed in the method’s use in a flow-based tracking application, along with low computational

complexity compared with similar algorithms.

Although Kernel PCA methods have been proposed to deal with non-linearity [113], sub-

space models are inherently linear in nature, and the relationship between background pixels

in typical image sequences may not always be captured effectively by a constrained number of

eigenvectors. Contamination of the model by a highly cluttered foreground can only exacerbate

the problem, but a method detailed later in Chapter 4 of the thesis addresses this particular issue.

2.1.4 Non-Parametric Models

The PDF of pixel-based models may also be represented by non-parametric techniques, whereby

an approximation to the true PDF is constructed directly from training data. Interpolation to

any arbitrary point in the distribution is achieved by summation over the data using some type

of kernel function. This technique is also known as Parzen windows [31]. Although the kernel

shape and size have to be chosen, unlike a Gaussian Mixture Model for example, there are no

parameters to be estimated, and so the awkward Expectation-Maximization process is avoided.

The non-parametric approach is employed by Elgammal et al. in [33] with a multi-dimensional

Gaussian kernel. To limit computational complexity, the model training data is based on the N

most recent images. For each colour of each pixel, the kernel width is calculated at each new

frame from the median absolute deviation in intensity, such that the distribution represents local

image blur and not the step changes in intensity projected onto the pixel caused by occasional

larger movements in the scene. For example when the pixel momentarily sees sky instead of a

leaf. This work also demonstrates how normalization of colour can help to avoid the confusion

caused by shadows, by isolating chromaticity from intensity for detection purposes.

The non-parametric approach is extended by Mittal and Paragios in [85] who employ a hybrid

kernel density technique in a background model based on a feature vector containing two dimen-

sional optical flow as well as normalized colour. In their PDF estimation, the kernel bandwidth

is related to training data points as well as distribution estimation points.

But for non-parametric methods, density estimation can be computationally expensive if the

model comprises many data points. In addition, modes of the distribution are implicit in a GMM,

but for a non-parametric model need to be estimated, e.g. by the Mean Shift algorithm [20].
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2.1.5 Region Based Features

In the per pixel models, pixels are treated completely in isolation, whilst in the eigenspace model,

the combined connectivity of all image pixels is considered holistically. These are the two ex-

tremes of a more general paradigm in which a number of image pixels, perhaps a region, are

treated simultaneously as a sub-image independent of all other sub-images. A possible approach

to scene characterization along these lines is to split the image into square or rectangular blocks of

pixels, such that the model treats the connectivity between changes in pixel values within a block

individually. The reduction in holistic connectivity has two advantages. Firstly, the eigenspace

model associated with each block does not have to waste eigenvectors expressing potentially ir-

relevant variation from other image areas. In essence, the image regions are not bound so tightly.

Secondly, maintenance of many small eigenspace problems is more tractable according to the

curse of dimensionality [3], since eigenvalue decomposition has a complexity O(n3) where n is

the total number of pixels. Furthermore, the block-based approach is more suitable for a parallel

processing implementation.

In [34] Eng et al. describe an application using a block-based background in which persons

in an outdoor swimming pool are monitored for safety reasons. Here, the refraction of randomly

disturbed water provides a considerable challenge for statistical modelling. Within each pixel

block, a representative overall statistic is derived from training data. Firstly the vector median

over time at each pixel is calculated, and then k-means clustering is applied to all the medians

in the block. Foreground is obtained by evaluating the L1 norm between a new pixel and the

8-connected blocks around it using a threshold with hysteresis defined by Canny in [14].

In [80] Matsuyama et al. propose characterising N ×N blocks of pixels by a Normalized

Vector Distance (NVD). By rasterizing pixels in a block, a distance measure between a new

block and a reference block may be measured as the distance between their respective vectors.

Illumination invariance is achieved by the normalization process. Further, in the same work, a

temporal cooccurrence matrix for a block is treated as a recurrence plot in order to identify peri-

odic behaviour. The concept of the Recurrence Plot as a visualization tool is detailed by Casdagli

in [15], and illustrates the evolution of a dynamical system in state-space in order to highlight

cyclic behaviour by indicating repeating points at which the state-space is closely matched.

But breaking an image into spatial blocks entails an appropriate choice of block size, and

a decision regarding whether to overlap the blocks, and by how much. If the blocks are not
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overlapped in steps of one pixel, then treatment of the image is not homogeneous. On the other

hand, single pixel overlap implies a large number of image blocks, and consequently poorer

computational efficiency. Optimal choice of these parameters is likely to be highly dependent on

scene content, and thus an estimation technique is necessary.

2.1.6 Saliency and Entropy Aspects

The relationship between saliency in an image and Background/Foreground segmentation is

something of a conundrum. On the face of it, an object deserves to be classed as foreground

if it is salient, and a foreground object should by definition be considered salient, so the two

terms appear synonymous.

In work on spatial saliency, Kadir and Brady [61] determine an appropriate scale at which

an image or image patch should be viewed in order to maximize a certain definition of saliency.

Within their framework, the scale at which the entropy of the intensity distribution peaks is the

desired correct scale, and the entropy becomes the measure of saliency. Interestingly, this scheme

is not infallible, since a random pattern of black and white pixels represents a peak in entropy but

would only appear novel at very small scales. Whilst this Scale Saliency algorithm is invariant

under similarity transformations, later work by Kadir et al. [62] develops the idea using elliptic

instead of circular sampling windows, to offer invariance under affine transformations as well.

Extending the Scale Saliency algorithm to include the temporal dimension, Hung and Gong [55]

define a measure of Spatio-Temporal (ST) saliency.

Motion salience in connection with surveillance applications is considered in work by Wildes

[140]. Local motion in an image sequence is identified by a set of directional spatio-temporal

energy filters as originally defined by Adelson and Bergen [1]. Pairs of energy components

representing left/right and up/down movement are derived via a set of separable convolution

kernels, before Gaussian filtering and normalization yield a measure of average opponent motion

between each pair. Saliency is realized in image areas where the maximum of the horizontal

and vertical imbalances between opponent pairs becomes significant over the area averaged at

a particular variance of Gaussian. As such, the motion salience detected across the image is

defined locally, but with respect to a scale imposed by choice of filter variance.

In the light of these works, it becomes clearer that saliency, as defined, is a measure of local

novelty, either spatially or spatio-temporally, for which pixel history is not taken into account.

So, whilst conceptually interesting, these methods may not prove directly useful with regard to
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a Foreground/Background segmentation problem, in which the temporal scale needs to be much

larger and non-localized. Within this context, saliency and foreground identification are not

equivalent.

2.2 Spatial Correlation

Extensive work exists in the literature regarding the per pixel models [38, 125, 131] whereby a

model of each pixel location is maintained independently of all others. At the opposite extreme

of total connectivity between pixels, many variations on a theme have been proposed for the

eigenspace type models [94, 132, 72]. Both approaches have been widely adopted by researchers

and shown to be effective in many applications.

The binary mask resulting from thresholding in a given Foreground/Background segmenta-

tion is often treated subsequently by morphological operations in attempt to ‘clean up’ an im-

perfect segmentation [30]. Typically random pixels or small groups across the segmented image

are highlighted as foreground, possibly due to noise, whilst evidence from most of the surround-

ing pixels does not agree. Similarly, within segmented foreground objects, odd pixels are still

classed as background. The morphological operations of erosion and dilation can remove such

inconsistencies, as shown in Figure 2.1, but two questions immediately spring to mind:

(1) Are the odd ‘noise’ pixels actually incorrect?

(2) Is their presence useful to the segmentation?

With regard to (1), evidently within the scope of the model, the rogue pixels are not in error,

although they may have been caused by sensor noise or corruption of the signal during transmis-

sion. But if a discrepancy between the background model and a new frame of one pixel is actually

in the observed scene for whatever reason, then it is question (2) which becomes pertinent.

For many applications, an isolated foreground pixel is not usually significant, since ideally by

choice of a camera with suitable parameters, it would be arranged that even the smallest objects

of interest occupy an area of many pixels in the image. At the point of quantization to a binary

mask, information is inevitably lost: i.e. the degree to which a pixel’s evaluated abnormality is

greater or less than the threshold. A third question to be asked is therefore:

(3) Can a more informed segmentation at a pixel be achieved by taking into account the

degree of abnormality of surrounding pixels?

A spatial or temporal Gaussian filter may be applied before quantization to reduce the effect
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of the outliers [91], but the penalty would be loss of precision in object localization in space or

time. Such a filter already actually imposes a primitive form of local support between pixels,

but does not specifically by design attempt to eliminate isolated pixels or small groups from the

segmentation.

On the other hand, the Linear Prediction used in Wallflower [131] automatically implies a

level of temporal support at a pixel, and applying temporal hysteresis at a pixel adds some mea-

sure of resilience to noise as proposed by Canny in [14]. But a natural corollary is to consider the

possibility of forming a spatial clique, whereby a given pixel’s segmentation into foreground or

background is influenced by simultaneous decisions dependent on the values of directly adjacent

pixels.

Original Image Background Image

Raw Foreground Mask Eroded/Dilated Mask

Figure 2.1: Background subtraction and morphological processing for a frame, showing how

isolated pixel groups can be eliminated by erosion and dilation. But are isolated pixels actually

in error or do they carry useful information? Elimination seems visually appealing, but may not

always be the optimal strategy.
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2.2.1 Local Binary Patterns

High entropy image content is commonly modelled as texture, as shown by Heikkilä and Pietikäinen

in [50] and by Zhu, Wu and Mumford in [149]. This general approach does not encode exact

pixel configurations, but rather typical patterns exemplary of the region. The LBP8 operator de-

scribed by Ojala et al. in [93] cleverly encodes a summary of local intensity gradient patterns in

a 3× 3 pixel block into one of ten different codewords in a way which renders it insensitive to

both absolute illumination and pattern rotation. These are two crucial attributes in texture anal-

ysis. An application of LBP to background modelling is proposed by Heikkilä and Pietikäinen

in [50]. Specifically, from training data they build a local histogram of the texture as represented

by LBP in a circular area around each pixel. New images may subsequently be tested against the

histogram to infer likelihood of background content.

2.2.2 Markov Random Fields

In their seminal paper [40], Geman and Geman introduce the effect of limiting the impact of

local outliers as a form of stochastic relaxation. They describe a method of image restoration

based on Markov Random Fields (MRF) with a maximum clique size of two. Small pixel groups

which, according to local consensus, fail to match their surroundings, may be identified and

hence corrected by an iterative annealing process. The outliers in this case might be intensity

defects in film images, such as blotches, lines, and speckles. The clique size is the number of

pixels considered to interact together to form one term of the field in optimization of the overall

objective function. A pixel may form a separate clique with each of its nearest neighbours. The

solution for the original image without defects is framed as a Bayesian estimation of the original

image given the defective one, based on spatial correlation within cliques.

In a texture modelling application, Zhu, Wu and Mumford [149] estimate the optimal combi-

nation of features with which to approximate a training set using their Minimax Entropy princi-

ple. The Maximum Entropy principle, due to Jaynes [59], is used to determine a model represent-

ing a fusion of features resulting in a choice favouring simplicity in terms of maximum entropy.

Then the Minimum Entropy principle is applied to produce a model with greater generality by

incorporating sufficient features to minimize the Kullback-Leibler divergence of the model from

the true distribution. Building this into their ‘FRAME’ model, they claim greater descriptive

ability in resynthesizing various types of texture than previous MRF approaches.
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More directly relevant to the removal of outliers in segmentation, in [111] Schindler and

Wang also describe a framework based on Markov Random Fields in which each pixel forms

a clique of size two with its 4-connected neighbours. In such a set up, the MRF is solved by

determining the Foreground/Background state of each pixel, and for the special case of a maximal

clique size of two [66] this may be achieved through a minimum cost cut on a graph having two

terminal nodes, as well as a node for each pixel, as depicted in Figure 3.5. The cut is achieved by

choosing the binary state of each pixel such that it is left joined to exactly one terminal, whilst

no path is left between the two terminals. This is a particular problem in Discrete Optimization,

which is described more generally by Cook et al. in [21], and carries with it the flavour of the

desired spatial support.

Solving the above MRF for the minimum energy in terms of the cost of the partitioning cut

is equivalent to finding the most probable Foreground/Background state for each pixel given the

prior knowledge encoded in the graph’s arc weights. Finding the optimal solution is closely

linked to determining the maximum flow path through a network based on the graph.

Pioneering work in the solution of network flows was carried out by Ford and Fulkerson.

Their 1956 paper [36] showed that determining the Maximum Flow from source to sink terminals

of a network using the ‘augmenting paths’ strategy was a polynomial time algorithm relying on

a depth-first type search. Furthermore, they also proved that the condition of Maximum Flow

between terminals was equivalent to the problem of determining the Minimum Cut solution for

the same network. Improvements and variations on the method have since been demonstrated by

Edmonds and Karp [32] who proposed a breadth-first type graph search, and also by Dinic [29].

The augmenting paths strategy of Ford and Fulkerson is enhanced further in work by Boykov

and Kolmogorov [9]. In contrast to the breadth first search, which they claim is costly in a vision

application because it scans most pixels at each pass, they propose building two search trees, one

rooted at each terminal. Extending, but subtly different from, the work of Dinic [29], the new

algorithm re-uses the search trees instead of building them from scratch for each pass.

In terms of Foreground/Background segmentation, solution of an MRF by an appropriate

graph cut algorithm is beneficial because the approach specifically preserves discontinuities, i.e.

transitions between regions respectively labelled Foreground and Background. Given that bound-

aries have to appear somewhere, energy minimization has the effect of displacing the boundaries

to the cheapest locations. If the strategy for assigning arc weights is well conceived, the result-
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ing partitioning will be useful. Unavoidably, this strategy is inextricably linked to the particular

chosen graph node interaction model, an example of which is the Potts model.

2.2.3 The Potts Model

In the aforementioned work by Schindler and Wang [111], a method is described whereby an

MRF acts in conjunction with a conventional per pixel model using Gaussian Mixture Models.

The data terms of the objective function are determined as the probability of a pixel being back-

ground if the pixel is deemed to belong to the background, or a constant if it is supposed to be

foreground. Thus the notion of a thresholding constant does exist in a certain way.

However, the interaction terms between pixels is governed by a model originally due to Potts

[102, 143], alternatively known as the Ising model [57] in the field of statistical mechanics. The

model is very simple: if two adjacent pixels adopt the same (terminal) label in segmentation, zero

penalty is incurred. On the other hand, if the pixels take on different labels, a constant penalty

is charged. The effect of the interaction terms is to balance the cost of ‘wrongly assigning’

pixels in the segmentation against the total length of boundary perimeter between background

and foreground.

Visually this appears to make objects seem more ‘blob-like’ with smooth boundaries. Addi-

tionally, across the image as a whole, isolated pixels and small groups are suppressed. Overall,

the effect of applying MRFs to segmentation problems is to permit globally optimal solutions

embracing a level of local spatial support between pixels. At first sight such an effect appears

beneficial, and certainly higher level vision processes might be faster and more effective with

a smaller number of more solid objects. But strictly mathematically it would seem that pixels

have been ignored and object boundaries distorted for the sake of a more pleasing visual effect,

with the prior being to minimize boundary length. With reference to questions (1) and (2) posed

in Section 2.2, regardless of whether isolated pixels in the Foreground/Background mask are

actually in error, they have contributed to the segmentation even if they get eliminated, but the

assumed smoothness prior has not taken into account the strength of the correlation between

adjacent pixels.

According to a method detailed in Seki et al. [116], a cooccurrence relationship is learned

between adjacent image blocks based on the most significant Principal Components of their

variation. Thus the possibility exists to support a change in one block by a completely different,

but correlated change in its neighbour. Following a similar argument, it would seem possible to
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arrange the neighbourhood interaction terms of an MRF to also take advantage of cooccurrence

information, instead of just relying on the simplistic Potts model. The goal is still a ‘clean’

segmentation, but also a more precise one. With reference to question (3) in Section 2.2, a

more informed segmentation will come from an enhanced pixel interaction penalty which can

take on values between 0 and 1. Investigation into providing better local spatial support for

Foreground/Background segmentation on this basis will be described further in Chapter 3.

This section has considered correlation due to locality in terms of the 2D image space. But

temporal persistence is also a very natural phenomenon in the real world, so the next section

explores the possibility of exploiting locality in time.

2.3 Short-term Spatio-temporal Correlation

The construction of a statistical scene model, either on-line or from training data, involves extrac-

tion of the most salient patterns and trends. A good model succeeds by distilling the vital aspects

as well as more subtle characteristics into a compact efficient representation. Consequently the

model will reflect contributions from all significant scene activity conveyed in the training data.

But in some applications, notably surveillance, the requirement is to reliably detect, track and

identify objects such as vehicles, people, and packages. Detection is achieved when an object

differs significantly from the modelled scene content. The task of separating such items from

more long-term image content by a statistical scene model is considerably frustrated if the model

actually includes examples of the objects to be detected, as shown in Figure 2.2. Conversely, if a

model contains no reference to an object, detection sensitivity for that object will be maximized

in the sense of detection by matching new frames to that model.

Some proposed methods, for example that described by Paragios and Ramesh in [96], depend

on the existence of a clean reference frame without foreground objects, obtained by somehow

physically constraining the scene contents. But in most practical surveillance systems this is at

best inconvenient, and may not be realistic at all. Furthermore, outdoor scenes are subject to

considerable illumination variation, so a single reference frame would be of limited use.

2.3.1 Combinatorial Optimization

What is required is a continuous sequence of reference frames, devoid of contamination by the

objects to be detected. A method is described by Cohen in [19] which attempts to eliminate
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Figure 2.2: Busy station concourse scene in which it is extremely rare that all of the background

is visible simultaneously. A background model which samples directly from this scene is likely

to become contaminated by the very foreground objects it is trying to identify.

moving objects from a short sequence of frames to yield a single frame estimate of the stationary

component.

The Cohen algorithm has been shown capable of compiling a short-term background image

on a per pixel basis from a short block of input frames by casting the problem as an exercise in op-

timal labelling. Figure 2.3 shows an example of how 20 time-spaced frames from a continuously

busy road junction can lead to a useful background approximation. The background is drawn

from parts of any of the input frames which are found to be spatially and temporally consistent.

Thus the solution comprises a set of labels or pointers, one for each pixel in the background

image, specifying from which of the 20 input frames each pixel is to be taken. By employing

an inventive set of cost penalty functions both temporally and spatially, boundaries between sets

of pixels from different images are discouraged from occurring near moving objects, or image

groups exhibiting temporal instability at a pixel.

Once again, based on solution of an MRF with maximal clique size of two, the method relies

on minimum cost cuts on a graph. However, the optimization is not as simple as with the binary

graph cut described in the previous section, and furthermore, the solution is only approximate.
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Optimization by the Minimum Cut/Maximum Flow method of Ford and Fulkerson [36] is

exact and runs in polynomial time, but pixels may only end up attached to one of two differ-

ent terminals, e.g. Foreground and Background. But in the Cohen algorithm, each pixel may

originate from one of k input frames, and so the resultant optimization problem is the minimum

cut on a graph with k terminals. Much is to be found in the literature regarding the resultant

multi-terminal k-cuts, but the one aspect carrying the consensus of view is that an exact solution

to the problem is NP-hard, having time complexity that is exponential in k. Thus the maximum

number of frames k which the Cohen algorithm can deal with is heavily constrained by available

processing power, and practical systems involving large numbers of input frames cannot directly

rely on the scalability of this approach in order to find longer-term background estimates based

on exact k-cut solutions.

2.3.2 Multi-terminal Cuts

The concept of multi-terminal cuts is discussed at length by Dahlhaus et al. in [23] where the

emphasis is on cuts on a graph with fixed non-negative edge weights. The principal application

here is the minimization of communication costs in distributed parallel computing systems. From

a practical point of view, Goldschmidt and Hochbaum [43] draw the assertion that for a fixed

value of k, the complexity of the algorithm is reduced to being polynomial time, and some vision

applications fall into the class of problems which do not demand significant scalability in k in

order to be useful.

However, the algorithm described by Cohen [19] relies on a set of graph edge weights deter-

mined by the actual pixel-to-label assignments made between every clique of two neighbouring

pixels. This more complicated problem is explored extensively by Boykov et al. in [10] where

they introduce and compare their αβ -swap algorithm and their more efficient α-expansion ap-

proach to find approximate solutions in polynomial time.

The underlying principle is to break down the multi-terminal cut into a series of binary cuts

which are individually soluble by the Ford Fulkerson algorithm [36]. From an arbitrary starting

pixel labelling, the αβ -swap method repeatedly considers a binary cut between every pair of

labels α and β from the set, allowing pixels to move between the two classes if the overall result

represents a lower global labelling cost. After several iterations through all k(k−1)/2 pairs, an

approximately optimal labelling evolves.

On the other hand, under the α-expansion model, the binary graph cut is between a nominated
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label α , and all other labels together. Edge weights from a pixel to the particular α terminal in

the graph are made infinite such that pixels can only migrate into the α class and not out of it.

This time a complete iteration with each label taking on the role of α requires only k binary cuts.

As described by Kleinberg and Tardos in [66], convergence of the above algorithms is cru-

cially dependent on the cost function between adjacent pixels conforming to the requirements

of a true metric in terms of symmetry, and obeying the triangle inequality. Their work takes an

in-depth look at what they have termed this metric labelling problem.

Kolmogorov and Zabih [67] conduct a comprehensive review and characterize various types

of energy functions which can be minimized by graph cuts. Although they restrict the range of

functions to those involving up to three binary variables, this is more than sufficient to generalize

previous results.

But although the α-expansion method yields good short-term results, it still suffers from

limitations of scalability in terms of the number of labels, suggesting that it can’t be used directly

to form long-term estimates. And in any case, a recovered background comprising parts under

mutually independent lighting conditions is not useful.

Rather than trying to scale-up a multi-terminal cut algorithm by increasing the number of

labels (frames) in order to achieve more long-term estimates, a potential solution may exist

in which the α-expansion approximation to the multi-terminal cut is used as a pre-processing

stage before a more conventional eigen-background model. The α-expansion produces good

short-term background approximations with little contamination, whilst the eigenspace model

assimilates the longer-term variations of the scene.

2.3.3 Pixel Labelling Applications

Other researchers have also used graph theory to optimize choice of pixel sets from different

images. In a compositing application [25], Davis addresses the problem of creating a mosaic

of a scene from multiple similar images containing moving objects. Although the bulk of this

work concerns treatment of image registration issues, another objective is to produce an overall

composite image in which the joins are invisible. A graph search method based on Dijkstra’s

shortest path algorithm [28] is used to find optimal paths along which to stitch adjacent images

together on the basis of a cost minimization. Low cost between neighbouring pixels in the two

candidate images is achieved where a good colour and intensity match is located, along with the

absence of moving objects.
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A similar approach is detailed by Wexler and Simakov in [138], whereby a panoramic view

with minimal distortion is found by selecting vertical strips of pixels through a spatio-temporal

volume according to a minimum cost criterion, again found by Dijkstra’s algorithm.

A significant pixel labelling problem is that associated with 3-D stereo correspondence as

described by Kolmogorov and Zabih in [68]. Here the labelling represents the offset of a pixel

viewed in one image compared with its position in another. The graph cut enables a global

optimization of offset on the basis of intensity matching between the pixels in the two images.

The above examples support the idea that graph theory has much to offer in terms of matching

and stitching together potentially disparate scene regions.

Specifically regarding the Cohen α-expansion approach [19], the prerequisites for its success

in recovery of a short-term background may be enumerated as follows:

1. That all of the required background is visible for some of the time

2. That the background is more consistently stable than any foreground pixel intensity

3. That each background pixel is time-independent

These conditions are rarely all satisfied, and the short-term estimates produced are unsuitable

for direct use as background models. But crucially, the ability to assemble composite images

whilst avoiding moving objects does provide a potential way to eliminate foreground clutter in

general, and such an approach will be revisited as a pre-processing stage in Chapter 4 where, in

conjunction with a standard eigenspace model, a more effective long-term background estimator

is described. It will be demonstrated that the combination technique performs better than either

part used on its own.

2.4 Dynamic Scene Decomposition

The techniques considered so far deal purely with the appearance of a scene at any given moment

in time. They treat an entire scene as a set of stochastic processes which are highly correlated

in the case of eigenspace models, unrelated in the case of per pixel models, or locally spatially

correlated.

But although instantaneous appearance is the only observable quality available from the

scene, additional information is encoded in changes in appearance over time. If the statistics
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Figure 2.3: Example showing how Combinatorial Optimization may be used to compile a short-

term background estimate from a block of frames. Left: 4 of the 20 input frames. Right: Recov-

ered background.

of some image feature vary regularly and repeatably over time, the distribution is said to be cy-

clostationary. Analysis and characterization of cyclostationary processes is covered in detail by

Gardner et al. in [39].

In the case of most models however, no assumptions are made about the temporal character-

istics of behaviour of a pixel or a localized image feature, spectrally or otherwise structured. In

both cases, this constitutes a waste of potentially valuable discriminative information. Behaviour

of spatially distributed local features linked by adjacency in time has been addressed however, in

the form of motion trajectory patterns.

2.4.1 Learning Motion Patterns

Considerable research interest has been directed towards learning motion patterns from video,

since this is of immediate practical significance with regard to surveillance scenarios. The general

idea is to analyze a large volume of exemplary data from a scene, such that anomalous activity

may be detected, either within the existing data or occurring at a later time.

Often at the heart of such applications is a viable form of feature extraction and motion track-

ing to obtain object trajectories from the raw video data. To achieve this reliably is non-trivial,

especially where multiple objects must be tracked without confusion through scenes exhibiting

compromised lighting conditions and mutual occlusions. In any case, the body of work on ac-

quisition and tracking is extensive, but beyond the scope of the current treatment. However,

the two processes of tracking and motion analysis may be considered largely separate, and the
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relevant detail for this thesis lies within the motion analysis and learning parts of contemporary

approaches. Needless to say, algorithms which handle tracking failures gracefully are more likely

to succeed, and this particular requirement is intrinsic to many recent works.

Amongst the approaches detailed in the following, some aim just to cluster together elements

of spatio-temporal behaviour enabling inferences regarding cooccurrence of elements of activity.

Other methods take into account sequential aspects of behaviour, whilst one technique attempts

to attach semantic descriptors to groups of events. But none of the methods directly addresses

periodic scene activity or attempts to exploit it, as the algorithm described in Chapter 5 does.

An approach involving spatio-temporal derivative filters is described by Pless in [99]. In

this work, a scene is characterized by building a model of the intensity derivative in both spatial

and temporal directions. These features are evaluated over a surrounding region for every pixel,

and along with colour coordinates form a 4-D space for which single Gaussian and mixture of

Gaussian models are produced. The gradient terms also permit estimation of localized optical

flow using the Lucas-Kanade method [77]. These three methods are compared with an ‘intensity

only’ model, and the Linear Prediction model from [131]. Results show that the performance

of all the models is highly dependent on scale and diversity of local motion in the scene. This

approach ignores all temporal aspects of scene activity.

Alternatively, Stauffer and Grimson [126] build a codebook of typical features from a large

body of surveillance data. Initially they use x and y coordinates of an object’s centroid along with

the differentials, dx and dy, and overall object size as features. Applying vector quantization as

the clustering technique, they develop a large but representative codebook of symbols from the

accumulated data. Disregarding the order of symbols in a trajectory sequence, co-occurrence of

the symbols is analyzed, leading to their hierarchical consolidation on the basis of probability

mass functions, thus permitting discovery of a limited number of behavioural classes within the

scene.

Within this paradigm, the authors claim that unusual events may be detected on two different

levels. Firstly, by considering how well a new feature set matches any of the codebook entries,

thus using the latter as a density estimator. Then secondly, by analysing the cooccurrence of

codebook symbol collection from the novel event sequence after feature quantization. Thus the

behaviour may be rated according to how well it matches previously learned activity classes.

In the same work, the technique is extended by augmenting the feature vector with binary
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masks of motion silhouettes. Immediately the encoding of shape opens up the possibility of

discriminating between object classes, regardless of motion, although at the expense of a very

large feature vector. The authors describe experiments using a codebook containing as many as

400 different quantized prototypes.

Useful results on relatively small datasets have been achieved by Swears, Hoogs, and Perera

in [129] using Hidden Markov Model (HMM) techniques to model object position and velocity

in an aerial traffic monitoring application. Crucially, their approach explicitly deals with the

sequence of object trajectory points by constraining certain entries in the HMM transition matrix

in order to preclude return to a previous state. Observation parameters are learned such that a

track is modelled piecewise by a series of elongated 2D Gaussian distributions. The authors have

developed a set of HMM manipulation rules, including cluster creation, extension, observation

testing, and track stealing, which act in an on-line fashion to accumulate a potentially cluttered

scene of tracks into a collection reflecting normal behaviour. Automatic model order selection

is achieved dynamically for each HMM according to the Akaike Information Criterion (AIC)

[145].

Chains of Gaussian distributions are also used by Hu et al. in [53], and crucially in their

algorithm too, the temporal aspect of trajectories is specifically modelled. As with other works,

object position, velocity, and size form the feature vector, but during training, all trajectories

are resampled to a constant vector length before a two level clustering scheme using a fuzzy

K-means algorithm. Thus the sequence of points is represented in a high dimensional space,

and the trajectories may be clustered firstly on the basis of position, and secondly on the basis

of temporal order, before construction of the Gaussians depicting image tracks. The result is a

model which is more sensitive to event order than is possible in approaches which do not model

temporal information directly, but which rely solely on an object’s directional velocity to support

sequential order. There is certain similarity to the approach of Swears et al. [129] in that the final

chain of Gaussians mimics the behaviour at the output of a uni-directional HMM.

The method adopted by Zhong, Shi and Visontai in [148] also relies on cooccurrence of fea-

tures, but this time without specifically tracking individual objects. In their work, based on tech-

niques from information retrieval, they build coarse spatio-temporal histograms from extensive

video data, based on simple image features - colour intensity and motion information computed

directly with a temporal Gaussian derivative filter. Following vector quantization into a dictio-
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nary (codebook) of prototypes, just as in [126], the body of video data is split into short blocks.

The equivalent of a document-keyword matrix is then constructed treating temporal blocks of

video as documents, and prototypes within them as the keywords. The motion pattern learning

task is then cast as a problem in information retrieval, relying on techniques from graph theory.

The objective is to discover concepts by forming links between informative keywords, whilst

ignoring the effects of common and random keywords. Computing such a correspondence rela-

tionship is non-trivial, and the authors introduce transitive closure and a co-embedding technique

in their solution to the problem. An important aspect of the approach is inferred similarity, which

permits expression of relationships between video blocks via similar prototypes. Unusual events

in this context are defined as clusters which are spatially isolated in the embedding space. This

method is attractive because the simplicity of chosen features makes it less dependent on specific

scene characteristics. However, part of its ethos is explicitly avoiding temporal constraint of the

prototypes.

Construction of a semantic scene model is the central theme of work by Makris and Ellis [78]

in which the scene is modelled separately in both topographical and topological structures. The

former represents image locations in terms of real-world ground plane coordinates, facilitating

easier handling of object motion in perspective views, and opening up the possibility of data

fusion from multiple cameras. The feature vector consists of object coordinates and velocities

derived by Kalman filtering. Following accumulation of object trajectories, Expectation Max-

imisation (EM) is employed to express the distribution as a Gaussian Mixture Model (GMM).

A rule-based scheme enables clustering into specific scene elements, such as entry/exit points,

routes, junctions and stop zones. The topological map describes their interconnection in a graph-

ical way, such that a Bayesian Belief Network may be constructed to make inferences about

object behaviour. The compact nature of the graphical model permits conceptual queries about

the data much more readily than the raw data would allow, representing a valuable feature in

a surveillance context. Although this semantic approach is likely to be very powerful in many

situations, still any intrinsic periodicity in the scene is ignored.

Object saliency is the key to irregularity detection in work by Boiman and Irani [7]. Within

their philosophy, an object which can’t be explained, or exemplified, by similar partial supporting

object views from a database is considered to be salient, and thus an anomaly. A feature vector

is formed from the temporal image gradient at all spatial pixel locations in a spatio-temporal
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patch of video, and a database is built from many spatio-temporal patches at multiple scales

throughout training data. A query block of video may be supported wholly, or in part, if it can

be constructed from contiguous groups of patches from the database. The inference mechanism

imposes geometrical restriction on the location and scale of candidate spatio-temporal patches

from the database, with a view to inducing support over as large a spatio-temporal extent as

possible. Such large areas then constitute a match, whereas evidence fragmented within the

database affords less support for the normality of the query. The inference algorithm is based

on a Bayesian network with belief propagation by message passing, but in addition, image and

database topology is exploited to achieve tractable comparisons by progressive elimination of

the search space. The emphasis of their algorithm is from the standpoint of construction of

the query rather than its local dissimilarity from model data as with other approaches, and the

generalization properties of the technique with regard to exact object pose and configuration are

ensured by the wide variety of database patches and scales. Constraints in both sequentiality and

absolute temporal distance are supported by this model, making it closest to the subject pursued

in Chapter 5 of all techniques described so far.

2.4.2 Spatially Supported Linear Prediction

On the other hand, the per pixel Linear Prediction algorithms already described by Toyama et

al. [131] rely solely on previous pixel values in order to anticipate and classify future ones.

Such a method is likely to work best on pixel signals which exhibit cyclostationarity, whereby

temporally cyclic behaviour content at a constant frequency is present. Here, a Wiener filter

[139] forms a prediction of pixel intensity from a weighted sum of previous intensity values.

The tap weights are calculated from the covariance of past values, where the goal is to achieve

Minimum Mean Squared Error (MMSE) in the prediction. Experiments by Toyama et al. in

[131] successfully demonstrated application of the approach to both indoor and outdoor scenes,

using a 30 tap Wiener filter at a 4Hz frame rate. Evidently, the lowest frequency component that

the predicted signal could exhibit is 7.5 seconds, which limits the range of effects that the model

can express.

Integrating spatial support and temporal support in the form of Linear Prediction, Szummer

and Picard [130] describe a method of modelling moving water, flames, and swaying trees as

temporal textures. An Auto Regressive (AR) model is proposed in which a new frame may be

synthesized such that each pixel is described by a weighted sum of previous versions of itself
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and its neighbours, with an additive Gaussian noise process.

In work on Dynamic Textures, Soatto et al. [122] also describe a 2-D Linear Predictive algo-

rithm based on the concept of System (Transfer Function) Identification from signal processing.

An Auto Regressive Moving Average (ARMA) model is proposed whose coefficients are esti-

mated by the EM technique of Dempster et al. [27] in the general case, although a closed-form

solution is presented for simpler second order stationary processes.

Liu and Picard [74] describe scene dynamics in terms of the Wold decomposition of the 1-D

temporal signals derived from each image pixel, giving rise to deterministic (periodic) and non-

deterministic (stochastic) components. Background recovery is performed by a median filter of

length 11, and a 1-D Fourier transform yields the temporal frequency spectrum at a pixel. A

measure of temporal periodicity is defined here as the ratio between the harmonic energy and

the total energy along a temporal line. Harmonic peaks are identified according to a method in

their previous work [75] on the 2-D Wold decomposition for texture analysis. Experiments show

the overall algorithm capable of distinction between various human and animal gaits, and other

types of motion.

In general, there are various techniques described in the literature for determining sinusoids in

arbitrary 1-D signals. Several of them exploit the orthogonality between the sinusoids and noise,

by considering separate component and noise subspaces. Eigen-decomposition of the signal

autocorrelation matrix then yields eigenvalues and vectors from which the sinusoidal components

may be derived. The catch with these methods is that the number of sinusoids sought in a given

signal must be known a priori. Pisarenko’s harmonic decomposition [98] is one of the simplest

approaches, but is rather sensitive, hence mainly of theoretical interest. The more robust MUSIC

(MUltiple SIgnal Classification) first described by Schmidt [112] and its derivative root-MUSIC

also test for a known number of sinusoids. Detailed description of these subspace algorithms is

given by Hayes in [49]. Whether such methods may easily be generalized to multi-dimensional

video signals is unclear. The general problem of frequency estimation and frequency tracking is

dealt with at length by Quinn and Hannan [103].

The per pixel Waviz algorithm described by Porikli and Wren [141] exploits cyclostationarity

of the signal. Here, the Short-Term Fourier Transform (STFT) is used to determine the spectral

content of a pixel’s behaviour within a recent time window. A set of coefficient magnitudes is

accumulated from overlapping temporal blocks by an exponentially forgetting filter. Their simi-
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lar, but later work [101] describing the Waveback algorithm, used the Discrete Cosine Transform

(DCT) instead, claiming its superior low frequency performance. In both cases the coefficients

of the most recent block may be tested against the accumulated coefficients using the L2 norm to

determine novelty. Consideration of the STFT window size and filter time constant is important,

but in spite of this, good results were achieved on a scene containing agitated vegetation. The au-

thors claim a higher specificity compared with competing methods that do not take into account

the temporal aspect.

Whilst the techniques described above certainly take into account periodicity in an image

sequence, they have all used pixel intensity directly as the feature. Although descriptive enough

for some applications, a more general approach operating on the distribution over some arbitrary

feature would be considerably more flexible. It is also not clear how well the linear predictive

approaches would scale to scene events occurring over a longer time-span. Both of these aspects

are addressed in Chapter 5 of this thesis.

2.4.3 Perceptual Grouping

Considerable work has been published on the biological aspects of perceptual grouping [87, 123].

In terms of the human visual system this amounts to forming relationships between objects in an

image. But such grouping also occurs in the temporal dimension, whereby human attention

is drawn to objects whose appearances change together, and those whose appearance changes

cyclically or periodically. At this point it is important to make the distinction between these

two types of variation: Cyclic motion implies events repeating in a certain sequence, whereas

Periodic motion involves events associated strictly with a constant time interval.

Within the field of biologically inspired computing, systems using networks of Spiking RBF

(Radial Basis Function) Neurons have been used by Natschläger and Ruf in [88] to characterize

and identify spatio-temporal behaviour patterns. Such a neuron generates a pulse of activity when

the combination of its inputs reaches a critical threshold. The network of connections from input

neurons to output neurons contains groups of parallel paths with varying synaptic delays whose

relative weights are learned in a Hebbian fashion such that the delay pattern eventually comple-

ments (mirrors) the times between events in training data. By this mechanism, an output neuron

can learn to fire when the appropriate events occur with correctly matched time delays, since

only under this condition will all spikes reach the nucleus simultaneously, causing its threshold

to be breached and hence firing it.



2.4. Dynamic Scene Decomposition 60

This idea is applied to a practical vision system by Ng and Gong in [90], whereby relations

between pixels in the Motion History Image (MHI) over a sequence are learned for a simple

shopkeeper/customer scenario. Abnormal behaviour is detected when a customer takes an item

of stock but leaves the shop without paying the shopkeeper, thus violating the normal sequence

of events. Similarly using MHI, in [6] Bobick and Davis discriminate between actions based on

movement of the human body by matching against various learned templates. But these examples

only identify sequences of learned events occurring at precise relative times, whereas overall the

sequences themselves are asynchronous events - they might happen only once, or repeatedly but

at arbitrary times.

A model described by Xiang and Gong in [144] forms relations between asynchronous but

related scene events by dynamically adding links between parallel Hidden Markov Models, mak-

ing it ideal for many situations where temporal invariance is paramount. A complicated airport

scenario is analyzed, whereby the service vehicles and personnel attending a docked aircraft have

to function within a constrained order.

Whilst the techniques just described have the flexibility to model sequences of events, they

do not attempt to explicitly model periodic behaviour. In fact they deliberately avoid reliance on

absolute periodicity, because in many scenarios it is inappropriate. But for other types of scene,

periodicity is a dominant behavioural aspect, and therefore research towards a suitable model is

motivated.

2.4.4 Relation to Gait Analysis

On an apparently unrelated problem, much is to be found in the literature concerning gait charac-

terization, modelling and identification. Generally these methods work by analyzing the relative

motion of linked body members, which are of course all related by the same fundamental fre-

quency. However, the parallel between this and modelling traffic at a road junction is surprisingly

close. Given extracted features, image areas may be likened to body limbs in that they will likely

share fundamental frequency, but be of arbitrary phase and harmonic content.

Various forms of periodic human motion are characterized by Polana and Nelson in [100]

by tracking candidate objects and forming their reference curves. After evaluating a dominant

spectral component if it exists, an appropriate temporal scale is identified. This idea is further

developed by Cutler and Davis in [22], who also consider periodic self-similarity, Fisher’s Test

for periodicity [35], and Time Frequency Analysis [18]. Meanwhile the previously mentioned
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Recurrence Plot described by Casdagli in [15] is a useful tool for visualizing the evolution of gait-

like processes in state-space, showing specifically when the state revisits a previous location.

Seitz and Dyer [115] additionally consider the possibility that a given cyclic process, such

as human gait, may not be entirely self-similar throughout its cycle due to temporal irregularity.

A time-warping function is proposed which allows temporal contraction and dilation throughout

the cycle provided that the sequence of the constituent changes is preserved. According to their

formulation it is not clear if it is always possible to solve for or automatically learn the optimal

warping function.

2.4.5 Phase Locked Loops

Instead of using Fourier analysis directly, in [8] Boyd employs Phase Locked Loops (PLLs) to

discriminate between different gaits, on the basis that it is more efficient. The n-point Discrete

Fourier Transform (DFT) is necessarily a block process requiring n recent samples and having

O(nlogn) complexity, whereas the PLL is a causal system for which simple update is performed

at the arrival of each new sample. The finer granularity of the latter process is considerably more

amenable to on-line applications.

According to Boyd’s method [8], having identified some fundamental frequency for an object

(person), application of a PLL per pixel in the relevant image area permits estimation of the

magnitude and relative phase of this fundamental component for each pixel making up the object.

The idea is that the phase signature for every object (person) will be different. The technique is

rendered scale and translation invariant by matching these parameters as shapes in the complex

plane using the Procrustes mean [79].

The PLL is a building block used extensively in electronics and communication in a wide

variety of applications. Principally it is a servo loop which acts as a low pass filter for cyclic

processes, constraining rate of change of frequency. Crucially, a local oscillator is synchronized

in both frequency and phase to a single frequency in an incoming signal by the action of the

feedback loop. When in the ‘locked’ condition, the local oscillator can track changes in the

incoming frequency with a dynamic performance dictated by the loop filter transfer function,

whilst exhibiting considerable robustness to noise. These particular qualities of the PLL will

be harnessed to great advantage in Chapter 5 in order to permit a learned model of periodic

scene behaviour to automatically maintain synchronization with the scene that it relates to. An

extensive treatment of the design and analysis of PLLs is given by Best in [4].
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2.5 Summary

The preceding discussion has covered essential techniques and works in the literature regarding

scene decomposition, and in particular Foreground/Background segmentation. The breadth of

techniques proposed in the literature is considerable, yet in general, approaches involving per

pixel Gaussian mixture models, eigenspace models, non-parametric kernel-based models, and

Linear Prediction, appear to dominate in the sphere of practical solutions.

In pursuit of an effective scene decomposition strategy, the following lines of research will

be pursued in subsequent chapters:

1. In existing techniques Markov Random Fields have been used to induce local support in

segmentation, but support based on mutual conditional probability between neighbours

does not seem to have been explored extensively. As such, a pattern-based spatial support

technique utilizing a simple but novel LBP operator and binary graph cuts will be proposed

in Chapter 3.

2. Several algorithms have used graph cuts to optimally ‘compile’ one image from a num-

ber others with some particular goal in mind. To use such an approach to formulate a

pre-processor for removing much scene clutter, upstream of a more conventional back-

ground model seems novel. Thus, a short-term spatio-temporal support technique using

approximate minimum multi-terminal graph cuts followed by an eigenspace model will be

investigated in Chapter 4.

3. Considerable work in the literature describes various approaches for exploiting temporal

periodicity - mostly in the area of synthesis, prediction or gait characterization. But little is

to be found about seeking the dominant global periodicity present in some particular types

of scene, and how it might be used to advantage. Therefore, a spatio-temporal decomposi-

tion scheme for recurrent periodic scenes exhibiting a single dominant period, or multiple

periodicities, is proposed in Chapter 5.
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Chapter 3

Pattern-based Background Identification

Segmentation of an image into foreground (FG) and background (BG) can be considered as a

pixel classification task which is generally performed on the basis of colour intensity measure-

ment evidence from the pixel itself. However, when considering an image pixel in isolation, as

a sample from an independent statistical process, there is only limited scope for validating the

classification decision. Clearly, there is a strong possibility that neighbouring pixels, both in

space and time, will exhibit similar or at least related behaviour. Evaluation of a pixel within the

context of its surroundings to improve classification reliability is thus motivated. This chapter

investigates a method of exploiting local spatial support which is novel in two particular ways.

Firstly, a simplified Local Binary Pattern (LBP) operator characterizes a pixel’s immediate neigh-

bourhood, and secondly, a graph cut utilizes mutual conditional support between adjacent pixels

based on this new operator to induce optimal segmentation. Although the focus here is on spatial

interaction, the resulting model is nevertheless intended to represent dynamic backgrounds.

3.1 Scope of the Problem

The focus of this chapter is to tackle the challenging problem of modelling highly textured

non-stationary backgrounds, and in particular, segmenting people moving amongst dense non-

stationary trees and foliage excited by the wind as shown in Figure 3.1. Traditionally this has

been a difficult problem to solve effectively due to the highly chaotic nature of such image areas

containing branches and leaves. The high information content, or entropy, of patterns encoun-

tered and their temporal behaviour make them inherently incompressible and thus hard to model
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compactly. In addition, it is not uncommon in such scenes to find that background is in general

scattered amongst foreground, i.e. it can be literally behind and in front of foreground objects.

Figure 3.1: The challenge of pattern-based segmentation is to identify unusual objects amongst a

highly cluttered background. An area of dense vegetation, shown enlarged in the top right image,

largely obscures the view of a person shown as ground truth in the bottom right image.

3.1.1 High Entropy Scenes

Many typical scenes contain areas of high inherent complexity such as specular reflection from

disturbed water and chaotic occlusion and appearance variation of vegetation moving under the

influence of air flow. From the standpoint of information theory these represent high entropy

sources [55], whilst signal processing tends to consider the effect spectrally, and refers to sources

emitting wideband noise. In single frames, the chaos is a spatial property manifesting itself as

texture, whilst in video such stochastic variation may occur temporally as well. Exact modelling

of the precise characteristics of intensity over time in a high entropy image area is by definition

almost impossible: the information is highly incompressible.

From a foreground/background detection point of view the goal is to highlight unusual state

or behaviour of the objects in view, which might for example entail a person walking in front

of a tree in leaf, or perhaps passing behind it, causing partial occlusion due to the background

now being in front of the person of interest. In both cases, the requirement is to identify some

less common pixel intensity configurations amongst a potentially broad range of common ones.

Occlusion of the foreground, as in the second case, merely compounds the detection problem
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by fragmenting the available useful evidence. A solution is sought which maximizes use of the

available evidence in order to achieve useful segmentation.

3.1.2 Importance of Local Support

Figure 3.2: Diagram showing how local support may be applied to a pixel P within its 4-

connected neighbourhood N0 . . .N3. Interconnecting arrows couple mutually supported pixels.

Intuitively, allowing adjacent pixels to provide local support for each other seems highly

reasonable. Equally, to deny the possibility of support could be seen as a waste of the available

scene information encoded mutually between pixels. A possible scheme for local linkage with

4-connectivity is shown in Figure 3.2.

With subspace techniques as employed in [94, 73], the eigenvectors of image covariance

represent linkage of pixel variations across the entire scene, and are thus inefficient at capturing

independent local stochastic processes. Connectivity in the temporal dimension as exploited by

Linear Prediction [131] is also likely to be ineffective due to the lack of cyclic components of

intensity at a pixel.

On the other hand, the Gaussian Mixture Model (GMM) [125] has been shown highly effec-

tive when it comes to acquiring and adapting to the statistical characteristics of behaviour at a

pixel. However, high variance (or covariance for a colour image) inevitably implies low selectiv-

ity for a Gaussian component, so unless the spread of common pixel values is confined to several

narrow modes, there is the danger that a foreground object will fail to be detected reliably. In

addition, the GMM is at the opposite extreme from the subspace model when it comes to connec-
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tivity: in general it offers no mechanism for support regarding foreground/background decisions

between pixels, either local or global.

3.1.3 Proposed Solution

A further additional requirement for a background model intended for outdoor use is that it must

not be adversely affected by changes in scene illumination with regard to both intensity and

chromaticity, although in some implementations [51] constancy of the latter is used to mitigate

the effect of false positives caused by shadows.

From all the aforementioned observations it becomes apparent that a candidate solution

should satisfy the following criteria:

1. Encode local pixel patterns

2. Provide local support among pixels

3. Have a probabilistic basis

4. Exhibit resilience to lighting variations

5. Be efficient in implementation

To this end, a solution which embraces three important aspects is proposed. Firstly, a rotationally

variant simplification of the LBP8 operator used as the image feature reduces susceptibility to

illumination changes and provides an initial level of pattern sensitivity. Secondly, a cooccurrence

map representing mutual conditional probabilities between adjacent pairs of pixel configurations

lends local support to the foreground/background segmentation decisions, encoding a further de-

gree of pattern dependence. Finally, the array of image pixels is treated similarly to a Markov

Random Field (MRF), and an optimal realization of the segmentation in terms of pixel labelling

in a combinatorial sense is arrived at by a minimum cut on a related graph. Experiments on a

challenging dataset involving objects heavily obscured by tree branches demonstrate the advan-

tage of this approach.

3.2 Rotationally Specific LBP4

High entropy image content is commonly modelled as texture [149]. This general approach does

not encode exact pixel configurations, rather it encodes typical patterns exemplary of the region.
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The LBP8 operator described in [93] cleverly encodes a summary of patterns in a 3× 3 pixel

block into one of ten different codewords in a way which renders it insensitive to both absolute

illumination and pattern rotation. These are both crucial attributes in texture analysis. Using

such a scheme, segmentation on the basis of texture may be achieved by identifying regions with

a similar probability distribution over the ten possible codewords as demonstrated by Heikkilä

and Pietikäinen in [50]. Furthermore, the limited range of codewords is beneficial with regard

to storage space, and facilitates adequate population of a histogram with only a modestly sized

training set.

But the requirement for foreground/background segmentation is different. The interest here

is not in regional texture statistics, but instead in absolute pattern statistics at a pixel, and further-

more, rotational invariance is not only unnecessary, but a hindrance with regard to the modelling

requirement. Such a state of affairs leads naturally to the concept of a Rotationally Specific Local

Binary Pattern (RSLBP) operator for grayscale images, obtained by simplifying LBP8. As shown

in Figure 3.3 the value of the RSLBP4 operator at a pixel is given by subtracting the intensity

value of the centre pixel from each of its 4-connected neighbours. The sign of the result of each

subtraction contributes a single bit to form a 4 bit codeword. The spatial mapping from neigh-

bour to bit position is immaterial as long as it is applied consistently throughout. This rotationally

specific texture feature is quick and simple to compute, and yields a compact characterization of

two-dimensional image gradient at a pixel fit for the current purpose.

Application of the RSLBP4 operator, denoted here by R(·), to an image produces a symbol

Sr = {0 . . .15} at pixel location r. By considering the 16 bin histogram of these symbols at each

pixel (x,y) over a set of K training frames IT
k of size M×N, where k = {1 . . .K}, an estimate of

Probability Density Function (PDF) representing pixel configuration over this feature is obtained:

p(r = Sr|x,y) =
1
K

K

∑
k=1

u where u =

 1 if R(IT
x,y,k) = Sr

0 otherwise
(3.1)

A query image IQ may be tested against this simply by evaluating the RSLBP4 operator at every

pixel and obtaining the appropriate probability from the histogram, which in turn is tested against

a threshold to yield a rudimentary foreground/background segmentation.
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Figure 3.3: Kernel for the new RSLBP4 operator: a 4 bit word is composed from the boolean

results of thresholding the intensities of 4-connected neighbours against that of the centre pixel.

3.2.1 Cooccurrence Matrix

In order to provide local support between pixels, the training data is also used to build a cooccur-

rence matrix between every adjacent pair of 4-connected pixels both horizontally and vertically

in the image. This two-dimensional histogram represents the joint probability of two separate

RSLBP4 symbols occurring simultaneously at the two adjacent locations. Although conceptu-

ally, cooccurrence between pixels horizontally and vertically is the same, from an implementation

point of view it is preferable to consider it as two separate arrays, Ch of size (M−1)×N×16×16

elements, and Cv of size M× (N−1)×16×16 elements given by

Ch(x,y, i, j) =
1
K

K

∑
k=1

u where u =

 1 if R(IT
x,y,k) = i & R(IT

x+1,y,k) = j

0 otherwise
(3.2)

Cv(x,y, i, j) =
1
K

K

∑
k=1

u where u =

 1 if R(IT
x,y,k) = i & R(IT

x,y+1,k) = j

0 otherwise
(3.3)

at location (x,y) where i, j = {0,1 . . .15}, R(·) is the RSLBP4 operator, and IT
k k = {1,2 . . .K} is

the training set. The cooccurrence matrices at each pixel are normalized to the number of training

samples K such that they correctly reflect the joint PDF.

Now consider two horizontally adjacent pixels r and s in a query image IQ at positions (xr,yr)

and (xr + 1,yr), having RSLBP4 symbols Sr and Ss respectively. If on the basis of information

from the training data solely about pixel r, it is decided that r is background, then a conditional

probability of symbols over pixel s may be obtained from Ch(xr,yr,Sr,Ss) due to the cooccurrence

relationship. But in order for this to be a valid probability, normalization of Ch over its last

dimension is required such that the conditional probability of s given r is:
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p(s = Ss|r = Sr,xr,yr) =
Ch(xr,yr,Sr,Ss)

∑ j Ch(xr,yr,Sr, j)
(3.4)

However, the relationship between r and s is symmetrical, so if s were known to be background

then the conditional probability over r comes from a similar expression. It is important to note

that the normalization constant in the denominator must be obtained by summing along the third

dimension of Ch this time:

p(r = Sr|s = Ss,xr,yr) =
Ch(xr,yr,Sr,Ss)
∑iCh(xr,yr, i,Ss)

(3.5)

The denominator in Equations (3.4) and (3.5) represents the marginal probability of symbol

occurrence at a location (x,y), as illustrated in Figure 3.4. For pixels r and s which are vertically

adjacent in IQ at positions (xr,yr) and (xr,yr + 1), again taking on RSLPB4 symbols Sr and Ss

respectively, the relative conditional probabilities are obtained as in Equations (3.4) and (3.5),

but this time with reference to cooccurrence array Cv.

It becomes apparent that these mutually dependent results cannot be acted on sequentially,

especially when it is remembered that a pixel is potentially supported by four neighbours. For

any given query image there will be a global combination of foreground/background decisions

amongst the pixels, i.e. a segmentation by pixel labelling, such that the labelling process is

made optimal according to the localized support measure introduced above. Finding the optimal

labelling of all pixels in a scene is then reduced to an exercise in Combinatorial Optimization,

for which a solution may be sought through graph cut techniques.

Figure 3.4: Example marginal and joint distributions for arbitrary adjacent pixels A,B using the

new RSLBP4 operator R(·) depicted in Figure 3.3.
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3.3 Combinatorial Optimization

The problem of choosing a label for each pixel in an image from a finite set of labels according

to a set of penalty expressions is the essence of discrete optimization. The objective is to separate

the pixels according to their labels in the configuration which incurs the least penalty. If the

penalty criteria are suitably designed, the optimal separation is useful in some way.

The labelling of pixels from a discrete set is directly equivalent to making a cut on a graph

consisting of vertices and edges as shown in Figure 3.5. In such a graph there is a vertex for

each pixel, and a special terminal vertex representing each element of the label set. Every pixel

node is coupled by an edge to every terminal, but edges also exist between the pixels to represent

their interdependencies. According to a scheme of penalties, every edge is assigned a weight

determined by the cost of cutting that edge. The optimal solution is obtained by cutting enough

edges to leave every pixel connected to exactly one terminal, thereby taking on that terminal’s

label, and yielding the combination of pixel to terminal assignments which gives the minimum

cost cut of the graph, and hence the overall problem solution.

Figure 3.5: Graph for an array of only 9 pixels: source and sink nodes represent the two classes

A and B. A cut must separate A and B: the MinCut/MaxFlow algorithm finds the cheapest. A

practical graph contains a node for every image pixel. Figure taken from [9].

It was shown in [36] that for the special case of two labels, an optimal solution can be ob-

tained in polynomial time using the Minimum Cut/Maximum Flow (MinCut/MaxFlow) algo-

rithm. Fortunately the current foreground/background segmentation is just such a binary prob-

lem. Segmentation into more regions than this is potentially interesting, but the multi-way cut

has been shown to be NP-hard [23], although [10] describes a way of achieving a local energy
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minimum within a constant factor of the global minimum by their alpha expansion algorithm. At

any rate, it is not yet clear exactly how to exploit the multi-way cut in the context of the current

problem.

3.4 Inducing Local Support by Graph Cut

The graph cut problem has much in common with the solution of Bayesian networks and Markov

Random Fields (MRF) [40], whereby a realization of the field encompasses the interdependen-

cies of the nodes. A method described by Schindler and Wang in [111] demonstrates how local

support can be achieved by considering the grid of pixels as an MRF utilising the Potts interaction

model [102], in which the penalty for separating pixels is a constant. This leads to their goal of

overall smoothness in the segmentation, which might look visually appealing, but may eventually

not be accurate. The result of such a scheme is to favour reduction in the global total perimeter

between foreground and background objects, yielding rounded-off corners, blob-like segmenta-

tion masks, and suppression of small pixel clusters. Ultimately the optimization goal may not

induce convergence towards the ground truth, instead over-applying the heuristic that adjacent

pixels belong to the same object - a potential distortion of the truth. This situation prompts the

argument that the simplistic Potts interaction model is insufficient here.

In general, such combinatorial optimizations are considered to be discontinuity preserving in

that they induce a trade-off between a spatial smoothness constraint and the individual likelihood

of observed data. This is based on the premise that hard boundaries do occur in reality, but

that they should only appear in segmentation where the data obviously supports them well. As

an improvement to the approach of Schindler and Wang [111], a variable inter-pixel penalty

is proposed here, with a view to supporting segmentation boundaries only where accumulated

evidence is strong.

In solution of the binary label case by the MinCut/MaxFlow algorithm, one can imagine

trying to transport as much water from the source node to the sink node by a system of pipes

having capacity limits equal to the edge weights. When no more capacity can be added to the

network, the path traced by the saturated pipes (edges) defines the minimum cut. In the current

case of the mutual support problem, the capacity of a pipe depends on which way the water

is flowing, i.e. which of its end nodes is joined to the source and which to the sink. This

is crucial in determining which conditional probability, and hence penalty, is applied at the final
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segmentation. In the proposed algorithm, illustrated for clarity here by only three pixels in Figure

3.6(a), the cost of a given labelling L is the energy function

E(L) = ∑
r∈IQ

Dr(l)+ ∑
{r,s}∈N

Vrs(p(r|s), p(s|r)) (3.6)

consisting of penalty terms Dr derived from the probability of a pixel r being background as de-

fined by Equation (3.1) and given by the tBG(r) and tFG(r) entries in Table 3.1, and an interaction

term Vrs based on conditional probability derived from cooccurrence of adjacent pixels r and s,

denoted by the n(r,s) entry in Table 3.1. Determined by the way the graph edges are cut, Dr takes

on one of the values {tBG(r), tFG(r)}, and Vrs takes on either the forward or reverse capacity value

n(r,s) if r and s have different labels, to yield the total cost for the cut E(L) implied by choosing

labelling L. When adjacent pixels take on different labels Dr = tBG(r) and Ds = tFG(s) then

Vrs assumes the Forward Capacity penalty, otherwise the Reverse Capacity penalty. In Equation

(3.6) N represents the 4-connected neighbourhood of connections as shown in Figure 3.5 (not to

be confused with the 4-connectivity earlier in RSLBP4, even though it involves the same pixels).

Edge Forward Capacity Reverse Capacity

tBG(r) 1 1

tFG(r) β

(p(r=Sr)+0.01)
β

(p(r=Sr)+0.01)

n(r,s) λ p(s = Ss|r = Sr,x,y) λ p(r = Sr|s = Ss,x,y)

Table 3.1: Table showing arc weight assignments for the graph representing image pixels.

The tFG terminal link is weighted by an inverse function of probability, heuristically chosen to

bias the penalty against symbols having a small chance of being background. Other formulations

of this arc weight may also be found to work well. The V terms (n-links) can be seen as a

penalty for separating pixels which, according to cooccurrence, should belong together and to the

background. To cause them to end up separated, one would have to have a very low individual

probability of occurring. The constants β and λ control the magnitude of the effect of the D

and V penalties relative to each other, and also to the unity penalty assigned to the cost of being

background. The process of calculating RSLBP4 symbols is summarized by examples in Figure

3.7, whilst use of these RSLBP4 values to index the correct conditional probabilities in Ch and

Cv is shown in Figure 3.8.
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(a) (b)

Figure 3.6: (a) More detailed graph for an array of only 3 pixels, showing Background as the

source label and Foreground as the sink. Terminal and neighbourhood link edge weights are

shown as t and n respectively. Cutting a lower t-link joins a pixel to the BG label incurring cost

tBG (b) Scenes chosen for the experiment lie within highlighted windows.

3.5 Experiment

To demonstrate the effectiveness of the new algorithm using RSLBP4 and MinCut/MaxFlow, the

challenging scene shown in Figure 3.6(b), containing a leafy tree in a courtyard, was chosen.

The leaves move significantly in the wind whilst people pass behind the tree, but remain visible

through the foliage. From a dataset of 2500 monochrome frames of size 128× 96 pixels, 2000

are used as the training data to build the probability distributions and the cooccurrence matrices

Ch and Cv. From the remaining frames an interesting subset is selected, in which people enter the

scene and walk behind the trees, becoming partially occluded by leaves and branches. The new

RSLBP4 operator is compared not only with the standard LBP8 operator, but also with a rather

more primitive feature: a 16 level grayscale derived by merely truncating the pixel intensity to

4 bits. The MinCut algorithm and the previously tabulated weighting scheme was applied in all

cases, and results are shown in Figures 3.9 and 3.10. The significant contribution of the MinCut

stage is further demonstrated with a comparative result in which it is not used: Figure 3.11

shows what happens when individual pixel probabilities alone are used for segmentation using

the RSLBP4 operator. Even when the foreground detection threshold is optimized manually to

0.045, there is only a hint of the presence of a person, and most of the foreground pixels are noise.

Figure 3.9 provides further evidence in support of the RSLBP4 and MinCut combination, with
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Figure 3.7: Evaluation of the new RSLBP4 operator R(·) depicted in Figure 3.3 at the four

adjacent pixel locations F , G, J and K.

images from the right hand window in the scene of Figure 3.6(b). For reference purposes, the

figures also show results using a conventional Gaussian Mixture Model, consisting of 5 isotropic

Gaussian components, and a learning rate time-constant set to 200 frames.

Although the Combinatorial Optimization algorithm chooses discrete labels as its solution,

the notion of a detection threshold still exists in the form of the relative scaling of the vari-

ous edge weights. In the present implementation, β controls the effect of the pixels’ individual

probabilities, whilst λ regulates the influence of the inter-pixel support. In each case, since the

probabilities vary between 0 and 1, the two constants act as maximum values for their own par-

ticular type of edge. Empirically choosing β = 7 and λ = 10 scales the optimization favourably

when the tBG edges are set to unity. The inter-pixel support is limited to 4-connectivity here, as

the important issue is demonstration of the basic principle. Using 8-connectivity may appear ben-

eficial, but histogram sizes increase as the square of connectivity, leading to potential problems

with storage requirement and data sparsity.
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Figure 3.8: The RSLBP4 values calculated in Figure 3.7 are used in pairs to index into the hori-

zontal and vertical cooccurrence arrays Ch and Cv to find the appropriate conditional probabilities

from which penalty weights may be evaluated for the graph in Figure 3.6(a) using Equations 3.4

and 3.5 with the expressions in Table 3.1.

3.6 Discussion

The RSLBP4 operator can generate 16 different values as currently defined, leading to a cooccur-

rence matrix with only 16×16 entries. This compactness is convenient for two practical reasons.

Firstly the memory required to store the inter pixel data is manageable, and secondly the quan-

tity of training data to adequately estimate it remains modest. LBP8 generates only 10 possible

values, but as the experiments show, its rotational invariance renders it inferior in solution of the

current problem. A rotationally variant version of LBP8 generates as many as 59 combinations

and is thus, according to the previous arguments, not so attractive.

Overall the favourable segmentation afforded by RSLBP4 in the results in Figures 3.9 and

3.10 strongly supports the idea that it is a better choice than the other two commonly encountered

features for the current application. Although LBP8 yields acceptable performance in moderately

challenging situations, as in Figure 3.9, it is no match for RSLBP4 in the most difficult cases
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Figure 3.9: Challenging frames from the right window of Figure 3.6(b) in which people pass be-

hind trees. Top to bottom: Original, Ground Truth, using RSLBP4 operator, using LBP8 operator,

and using 16 level grayscale, all with MinCut, plus GMM. RSLBP4 produces the best segmenta-

tion with LBP8 a close second, whilst the grayscale and GMM methods perform poorly.
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Figure 3.10: Very challenging frames from the left hand window of Figure 3.6(b) in which a per-

son walks behind foliage. Top to bottom: Original, Ground Truth, using RSLBP4 operator, using

LBP8 operator, and using 16 level grayscale, all with MinCut, plus Gaussian Mixture Model.

Note that the RSLBP4 operator is the only method which produces a useful segmentation here.
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shown in Figure 3.10. Furthermore, the comparison between Figures 3.10 and 3.11 clearly shows

that the graph cut technique contributes enormously to the overall quality of the segmentation,

since without MinCut, all methods completely fail. It is believed that the ‘double level’ of local

spatial support afforded by the partnership of the two techniques, RSLBP4 and the graph cut, is

the reason for the distinctive result.

On the other hand, the Gaussian Mixture Model does not perform well in any of the examples

shown. The highly chaotic nature of moving foliage results in large values of component variance

in the model, and consequently the sensitivity to foreground outliers is compromised. More

importantly, the GMM doesn’t benefit from the local spatial support which is inherent in the

proposed new technique.

N
o

M
in

C
ut

Figure 3.11: The same three frames as in Figure 3.10 using RSLBP4 but without MinCut, and

hence no local support. The previously visible person is now barely discernible amongst the

noise. LBP8 and Grayscale are similarly ineffectual without the vital MinCut stage. This result

clearly demonstrates the importance of adding local support.

3.7 Detailed Analysis

To provide a more comprehensive demonstration, the new technique was compared with competi-

tors in four different lighting scenarios representing typically encountered practical situations:

1. High Occlusion - person moving behind dense foliage.

2. In Shadow - people moving through areas of high contrast shadow.

3. Against Clutter - person moving in front of highly textured background.

4. Open View - people moving across clear uncluttered background.

Ten example frames were chosen from each scenario and manually annotated with ground truth

binary masks for the expected foreground. Representative frames are illustrated in Figure 3.12.

All frames were processed with each of the algorithms previously described:
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1. RSLBP4

2. LBP8

3. 16 Level Grayscale

4. Gaussian Mixture Model

5. RSLBP4 without Minimum Cut

The resulting foreground/background masks were compared with the ground truth for each frame,

and ROC (Receiver Operating Characteristic) curves produced comparing the various approaches

for each scenario. For the graph cut based techniques (1-3 above) the parameter β was varied

as the detection threshold in order to create the ROC curve. For the Gaussian Mixture Model (4

above), the threshold varied was the maximum permitted distance from the mean of a Gaussian

component that a pixel value may assume whilst still retaining membership of that component.

This parameter was set to 2.5σ in the original work by Stauffer and Grimson [125], but is here

varied between 0.1σ and 10σ to form the ROC curve. For the RSLBP4 without graph cut support

(5 above), a simple threshold of probability of symbol occurrence varying between 0.01 and 0.3

was used.

3.7.1 Results

Typical segmentation results for all combinations of the four scenarios and five techniques are

illustrated in Figure 3.13, whilst the ROC curves based on a range of 20 threshold values for

each technique are shown in Figure 3.14. The results clearly show that under Heavy Occlusion

conditions, the new RSLBP4 operator with Minimum Cut support consistently produces the most

accurate segmentation, whilst for the less challenging scenarios, the simple 16 Level Grayscale

operator with Minimum Cut support yields the best results.

3.8 Validity of Asymmetric Flows

The graph cut technique detailed in Section 3.4 achieves a Minimum Cut on a graph by utilizing

the Maximum Flow algorithm originally described by Ford and Fulkerson in [36]. But the method

used here relies specifically on being able to impose asymmetric capacity limits on arcs between

pixels. However, it is not clear from the literature whether the validity of the resultant partitioning
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Heavy Occlusion In Shadow Against Clutter Open View
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Figure 3.12: Five of the ten frames with ground truth annotation outlines for each of the four

scenarios used to produce the ROC curves in Figure 3.14.
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Figure 3.13: Segmentation results using each of the five different approaches detailed in Figures

3.10 and 3.11 for the first example of each of the four scenarios in Figure 3.12.
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Figure 3.14: ROC curves comparing the performance of the five different approaches for the four

scenarios depicted in Figure 3.12. The new RSLBP4 operator excels under Heavy Occlusion

conditions, whilst in less demanding situations the simple 16 Level Grayscale operator is more

effective than other methods.

has been proved or disproved. To justify use of the approach in this chapter, arguments to support

the validity are presented from both algorithmic and experimental points of view.

3.8.1 Depth First Graph Search

Under the Maximum Flow algorithm, the graph derived from a given frame is searched repeatedly

from source to sink to find out if any further flow can be added to any of the paths. The algorithm

terminates, yielding the maximum network flow condition, when no further capacity is available.

As each arc of the graph is traversed, the current flow is compared with the capacity limit (weight)

for that arc to establish the unused capacity. All that is required for the asymmetric weighting

scheme to be valid is to establish available capacity relative to the direction of the proposed
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current flow increment. This represents a minor complication of the algorithm, requiring the

choice between the two directional capacities as each arc is encountered.

3.8.2 Exhaustive Search Experiment

To support the validity of asymmetric flow experimentally, a small graph was constructed as if

from a 4× 4 pixel image. Randomly generated weights were given to all t-links and asymmet-

ric n-links. The graph was then analyzed by the Minimum Cut/Maximum Flow algorithm and

analyzed by exhaustively calculating the total energy of all 216 possible cut combinations. The

experiment was repeated 1500 times with different sets of random arc weights. The Minimum

Cut/Maximum Flow algorithm never failed to find the correct solution.

Whilst this demonstration in its own right is not conclusive proof of the validity of asym-

metric weighting, and it is assumed that scaling up to ‘real-sized’ images presents no problem, it

would seem that the algorithm is reliable enough to be used in practice.

3.9 Further Development

Although a model involving separate collection of training data is described here, it is anticipated

that an adaptive on-line derivative would also be possible. In such a scenario, the cooccurrence

database would be built and updated in the light of new incoming frames. Providing that a

suitable learning rate can be found, the conditional distributions Ch and Cv between adjacent

pixels will approximately converge, become more refined, and be tracked over time, exploiting

the advantage of the ever-increasing body of training data.

The current model offers the possibility of inter-pixel support in the spatial domain only.

It may be possible to extend support to additionally include a local temporal aspect. Using a

6-connected model in three dimensions would increase the model’s discriminative capability if

training data exhibits consistency in symbol sequency, but it is by no means clear whether typical

scenes would benefit from this. Either way, the complexity of the graph cut would rise from four

to six arcs per pixel - a modest price to pay if the result proves useful.

3.10 Summary

Detection of unusual objects amongst a highly textured background is a difficult problem, espe-

cially when the texture is manifest in the temporal dimension as well. Outdoor scenes involving
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waving trees or moving water are examples of such scenarios, which are nevertheless frequently

encountered in real world vision applications. This chapter has introduced a simpler new opera-

tor RSLBP4 based on existing LBP methods, and shown how it can be applied to advantage in a

probabilistic sense to tackling foreground/background segmentation of highly textured dynamic

scenes. Its sensitivity to rotation, but resilience to overall illumination variations, both contribute

vitally to its success in this application, and the restricted range of output symbols of RSLBP4

permits tractable acquisition and storage of adjacent pixel cooccurrence data.

But as demonstrated, this alone is not sufficient for good segmentation in difficult circum-

stances. Cooccurrence of features in a pixel’s local neighbourhood provides a powerful mech-

anism for boosting the reliability of the foreground/background decision task. By using the

conditional probabilities yielded by pairwise cooccurrence of 4-connected pixels, and casting the

problem as one of Combinatorial Optimization, results show that useful segmentation is possible

from challenging dynamic backgrounds. It has been shown that cooccurrence data may be used

to construct a graph, of which the minimum cost cut facilitates mutually supporting inferences

between pixels, leading to a useful segmentation which would not have been easy to arrive at

otherwise.

Whilst the method just described accumulates pattern distributions over time, it does not

constrain or utilize information carried by the temporal persistence, or lack of, exhibited by the

chosen feature. This particular aspect of background modelling is addressed in Chapter 4.
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Chapter 4

Estimation of Time-varying Backgrounds

The most commonly encountered background models are based on per pixel techniques such

as adaptive Gaussian Mixture Models [125, 131], or subspace analysis based methods [94, 73].

Both approaches have been used with success. However, in typical implementations it is difficult

to avoid such background models being contaminated by foreground scene content, eventually

resulting in a less discriminative model.

Whilst the previous chapter describes a technique exploiting purely spatial support in terms

of cooccurrence of adjacent patterns, the focus of this chapter is investigation of a method seeking

local temporal support for a recovered background by identifying consistency in appearance

among nearby frames - an approach not generally directly exploited by conventional methods.

Motivated by the demand for a more effective background model, robust to non-stationary

environmental changes in outdoor scenes, a technique using Combinatorial Optimization to ex-

tract near-optimal background estimates from blocks of temporally localized frames is presented

here. Using an existing graph cut technique to derive these estimates as a pre-processing stage,

in conjunction with subspace analysis, a novel hybrid background model is demonstrated. The

combined approach exhibits results superior to those achievable with the latter technique alone,

and especially suitable for background modelling in outdoor situations where variable lighting

conditions prevail.
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4.1 Scope of the Problem

An effective background model is a crucial first stage in most computer vision applications,

especially in outdoor environments, where the simplistic mean image approach possible under

heavily constrained indoor lighting conditions is inappropriate. The reliability with which the

model identifies potential foreground objects directly impacts on the efficiency and performance

level achievable by subsequent processing stages such as tracking, recognition and threat eval-

uation. The nature of such an unconstrained background is intrinsically statistical. Whilst the

concept of statistical scene modelling suggests that there is no exact distinction between what

constitutes foreground and background, a useful practical definition for surveillance in a busy

urban scene is that people and the objects they cause to move are foreground, whereas buildings,

fixtures, trees and permanent objects form the background. The task of the background model

in such a setting is to discriminate between the two classes under a potentially wide variety of

lighting conditions. Evidently, confusion might still arise, since trees sway in the wind, tend-

ing to become foreground, whilst people park their cars, which are eventually subsumed by the

background. Without specifically distinguishing vehicles and people from other objects, the lat-

ter problem is unlikely to be completely soluble, but in spite of this, the temporal persistence of

an object in a scene, or lack of persistence, constitutes strong evidence as to its novelty value.

Of the per pixel techniques, the adaptive Gaussian Mixture Model (GMM) [125, 131] is one

of the most widely used background modelling techniques, and the PCA or eigen-background

method [94, 73] is the most commonly encountered holistic modelling approach. Whilst both

have been used successfully, both also suffer from the general problem of having to model fore-

ground clutter as well as the background, since the model can’t in general discriminate between

the two. The resultant model is thus less compact, since it has to represent both foreground and

background, but more seriously, the model’s sensitivity to the foreground is compromised by

the contamination. Such a system relies on the foreground being statistically quite rare in order

that these two problems remain under control. However, in typical busy urban traffic scenes for

example, such rarity cannot be relied upon.

In the case of the GMM, a higher model order with more modes may be required to encom-

pass the extra hypotheses presented by foreground objects, which might be seen as outliers with

regard to the background process. In order to render a GMM adaptive, Friedman and Russell [38]

suggest classifying new pixel data in order to determine which Gaussian, if any, it matches before
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using it to update the sufficient statistics of that Gaussian. However, this forms a feedback loop

such that the classification outcome is a function of previous data. By the very nature of their

dependence on pixel history, feedback systems are prone to various failure modes including:

1. Becoming trapped in a local minimum

2. Oscillation or instability

3. Limit cycles (see [128])

As an example of type 1, consider a red car parked at the side of the road during model initializa-

tion, which subsequently drives away leaving dark road-coloured pixels in its place. If the model

always classifies these pixels as foreground, it will never use them to update the model, and the

desired background distribution, the road, may never be encompassed.

In the case of PCA type methods, various attempts have been made to introduce robustness

and mitigate the effect of foreground outliers, such as by Xu and Yuille [146] and De La Torre

and Black [72]. An influence function is used by Li in [73] through which candidate background

data is compared with the current model, which in turn acts as a prototype. In this case it could

be argued that the model can discriminate between potentially useful background and irrelevant

foreground. But applying the prototype comparison is necessarily a feedback process, possibly

exhibiting non-linear characteristics because of the influence function, but in any case susceptible

to the previously mentioned drawbacks.

Even the pattern-based cooccurrence method described in Chapter 3 suffers from the fore-

ground contamination problem, since crucially the unwanted patterns generated serve merely to

flatten the cooccurrence distributions and hence desensitize the model.

4.2 Short-term Background Estimates

On the other hand, a method detailed by Cohen in [19] has been shown capable of compiling a

short-term background image on a per pixel basis from a short block of input frames by casting

the problem as an exercise in optimal labelling. Figure 4.1 shows an example of how 20 frames

from a continuously busy metro ticket hall can lead to a useful background approximation. The

background is drawn from parts of any of the input frames which are found to be spatially and

temporally consistent. Thus the solution comprises a set of labels or pointers, one for each pixel

in the background image, specifying from which of the 20 input frames each pixel is to be taken.
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The method described in [19] is an application of Combinatorial Optimization [21] achieving an

approximately minimum cost solution using the Minimum Cut/Maximum Flow [36] and Alpha

Expansion [10] algorithms. However, prerequisites for this approach to work are:

1. All of the required background is visible for some of the time.

2. The required background is more consistently stable than any foreground pixel intensity.

3. Each background pixel is time-independent.

But these conditions are not always satisfied. To address the problem, a method is proposed

in this chapter whereby objects which are obviously foreground, under a given definition, are

eliminated from input frames before allowing those frames to contribute to the construction of

a background model. Such an approach yields a ‘purer’ representation of the true background,

and hence one with heightened sensitivity. Obviously, if this pre-processing stage were totally

effective, the task of background segmentation would already have been achieved. In reality, it

only offers a useful measure of pre-processing. The new solution proposed here thus consists

of the pixel-labelling method described above as a stage of pre-processing, operating on short

blocks of input frames to produce a temporally localized background estimation per block. These

estimates are then used to build an eigenspace model. Such a hybrid approach permits the latter

to ‘concentrate’ on dealing with lighting and shadow variation rather than being contaminated

with objects like cars and people which could more usefully be considered foreground, at least

with regard to surveillance applications.

Furthermore, the proposed hybrid approach is entirely a feed-forward system. It thus avoids

the previously mentioned instability and local minimum problems, and convergence towards the

ground truth is more or less guaranteed.

From a model perspective, the new algorithm may be seen as offering a level of temporal

support at a given pixel amongst all the frames comprising a block, by encouraging consistency in

the choice of the estimated background. As a statistical model of the scene, a bias has been given

towards retention of persistent elements of the scene structure, with a view to discriminating

these from the relatively transient foreground.
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Figure 4.1: Example of short-term background recovery from video of a busy metro station ticket

hall. Left: 4 of the 20 input frames. Right: Recovered background. Note how most of the moving

objects have been eliminated. In this indoor environment with predictable lighting conditions,

such a background may be used directly with little further processing, as shown in Figure 4.2.

Figure 4.2: Foreground segmentation using the recovered background from Figure 4.1.

4.3 Combinatorial Optimization

Given a temporally localized set of F input frames of a scene each of P pixels, the requirement

is to form an output image IB to best represent the scene’s background at that time. Thus a set of

labelsF is desired, consisting of one label per pixel, specifying from which input frame that pixel

is to be taken. Evidently, the number of possible combinations is large, but finite. In essence,

the idea is to assign a cost to each choice of label (1 of F) at each pixel, and then solve for the

minimum cost over the image as a whole in order to yield the best set of background composition

labels. For the algorithm to work, the cost assignment scheme for the pixels has to reflect lower

costs for more appropriate combinations of labels. This process is encouraged by penalizing poor

temporal or spatial correlation between adjacent pixels.
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4.3.1 Binary Graph Cuts

The Ford-Fulkerson algorithm [36] permits exact solution of a combinatorial optimization prob-

lem in polynomial time by a minimum graph cut (Min-Cut) in a situation where there are only two

class labels. Having defined a suitable costing model, an undirected graph may be constructed

for the background image, consisting of a node for each pixel, plus two extra nodes known as the

source and the sink, representing the two class labels. The pixel costs become the arc weights

on the graph. However, there are F class labels representing the block of input frames, where

F might typically be larger than ten or more. Although the exact solution of such a problem is

possible, it has been shown to be NP-hard [10]. Instead, an approximate solution can be obtained

rather more efficiently by applying the Min-Cut algorithm iteratively, with each class label taking

its turn to be the source (α), whilst the other F − 1 class labels become the sink (α ′), as shown

in Figure 4.3.

Figure 4.3: Graph for an array of only 9 pixels. Previously in Figure 3.5, the source and sink

nodes represented two separate classes: Foreground and Background. Here the source represents

the single label α chosen in the current iteration of the α-expansion process, whilst the sink node

α ′ represents the union of all other labels. Weights between pixels stem from spatial continuity,

whilst those connecting to the source and sink relate to temporal and motion continuity. The

actual graph contains a node for every pixel in the image. Figure taken from [9].

4.3.2 Alpha Expansion

Under this scheme, at any given iteration, a pixel might already belong to the class label which is

currently taking its turn at being α . In this case, the weight (cost) linking it to α is made infinite,

so that the pixel cannot leave the class label at this iteration. The overall result is that as α takes
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on each class label F , pixels from all the other class labels may leave in order to join α , but none

may leave α . This is known as α-expansion which has been shown by Boykov et al. [10] to lead

to an approximately minimum cost labelling solution after a number of cycles of α through the

F class labels. Typical total image energy reduction over the first iteration is shown in Figure

4.4. According to a proof in [10], the objective function lies within a constant factor of the global

optimum if the interaction penalty is a true metric obeying the triangle inequality. The optimal

graph cut at any iteration is then obtained by a process drawing an analogy with network flow, in

which arc weights are considered flow capacities, the objective being to achieve maximum flow

(Max-Flow) from source to sink. Under this condition, the arcs which are saturated (i.e. have

reached their flow capacity) are those which should be cut to achieve the optimal partitioning

in the equivalent Min-Cut problem. To arrive at this situation, flow is added to the network

incrementally in an iterative fashion until no further addition is possible because there are no

remaining unsaturated paths from source to sink.

Figure 4.4: Energy reduction through the first two iterations of alpha expansion for the 5 test

frame sets used in Section 4.6. Note how the energy is reduced dramatically during the first few

graph cuts. The implication here is that quite good background estimates may be obtained even

after only one alpha expansion iteration.
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4.4 A Hybrid Pixel-Labelling and Subspace Model

4.4.1 Labelling Cost Functions

Following the notation of Cohen in [19], a set of input F frames are denoted as I1, I2, . . . , IF ,

and I f (p) is a colour intensity vector at pixel p where p ∈ P is the set of pixels in an image,

and f ∈ {1 . . .F}. A given labelling is defined as F = { fp}p∈P . The background estimation

is formed by taking a pixel intensity vector at p from input frame f ∗p for all p ∈ P such that

{ f ∗p}p∈P is the set of labels corresponding to the minimum cost background. The cost of a given

labelling F is the energy function

E(F) = ∑
p∈P

Dp( fp)+ ∑
{p,q}∈N

Vpq( fp, fq) (4.1)

consisting of terms relating respectively to temporal smoothness at pixel p, and spatial smooth-

ness between pixels p and q in a neighbourhood N around p. The temporal smoothness term

Dp( fp) consists of two parts which are each evaluated independently at every pixel site according

to the relationship

Dp( fp) = DS
p( fp)+βDC

p( fp) (4.2)

where β controls the balance between DS and DC. The first DS
p( fp), termed the Stationarity Cost,

penalizes choice of frames where the local temporal variance is high, evaluated over 2r adjacent

frames, with pixels averaged over the three colour components as described in [19], so that

DS
p( fp) = min

(
Var fp−r... fp(p),Var fp... fp+r(p)

)
(4.3)

permitting the most stable r frames either before or after fp to represent the stationarity at p. The

overall variance over a range of frames is calculated as an equally weighted sum of the biased

variances of each colour component in the range at that pixel

Var fa... fb(p) =
1
3

[Var(Rp, fa... fb) + Var(Gp, fa... fb) + Var(Bp, fa... fb)] (4.4)

for a colour vector [R G B]T at pixel p and frame f .

The second part DC
p( fp), known as the consistency cost, penalizes choice of frames in which

there is a motion boundary for a pixel. Choice of a frame fp is penalized if, at the pixel in

question, there is significant temporal difference M fp f =
∥∥I fp − I f

∥∥
2 from another frame f , but at

the same time, the latter contains little spatial difference. A large ratio in the gradients of M and

I implies a moving object in frame fp, which should be excluded from the background. Using
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the square of the L2 norm, this ratio is defined as

Ω fp f (p) =

∥∥∇M fp f (p)
∥∥2

‖∇I f (p)‖2 + ε2
(4.5)

where ∇ here represents the spatial derivative of a vector. So the numerator of Equation (4.5)

represents the gradient magnitude of M fp f , and is large wherever image I f changes from agreeing

with I fp to disagreeing with it. The denominator of Equation (4.5) reflects the spatial gradient

magnitude of the luminous intensity of image I f , and thus overall, Ω fp f is large where there is a

temporal boundary between I fp and I f , but no intensity boundary in I f to mitigate it.

Given that the colour intensity vector I of a pixel p located at position (x,y) in frame f is given

by I(px,y) = [Rx,y, f Gx,y, f Bx,y, f ]T , then

∥∥∇M fp f (px,y)
∥∥2 =


∥∥∥∥∥∥∥∥∥∥


Rx−1,y, fp

Gx−1,y, fp

Bx−1,y, fp

−


Rx−1,y, f

Gx−1,y, f

Bx−1,y, f


∥∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥∥


Rx+1,y, fp

Gx+1,y, fp

Bx+1,y, fp

−


Rx+1,y, f

Gx+1,y, f

Bx+1,y, f


∥∥∥∥∥∥∥∥∥∥


2

+


∥∥∥∥∥∥∥∥∥∥


Rx,y−1, fp

Gx,y−1, fp

Bx,y−1, fp

−


Rx,y−1, f

Gx,y−1, f

Bx,y−1, f


∥∥∥∥∥∥∥∥∥∥
−

∥∥∥∥∥∥∥∥∥∥


Rx,y+1, fp

Gx,y+1, fp

Bx,y+1, fp

−


Rx,y+1, f

Gx,y+1, f

Bx,y+1, f


∥∥∥∥∥∥∥∥∥∥


2

(4.6)

and

‖∇I f (px,y)‖2 =

∥∥∥∥∥∥∥∥∥∥


Rx−1,y

Gx−1,y

Bx−1,y

−


Rx+1,y

Gx+1,y

Bx+1,y


∥∥∥∥∥∥∥∥∥∥

2

+

∥∥∥∥∥∥∥∥∥∥


Rx,y−1

Gx,y−1

Bx,y−1

−


Rx,y+1

Gx,y+1

Bx,y+1


∥∥∥∥∥∥∥∥∥∥

2

(4.7)

The small constant ε in Equation (4.5) prevents the denominator from being zero, and ensures

a low cost when there is little gradient in either M or I. Confidence about the identification of

motion in fp is gained by averaging Ω fp f over all frames

DC
p( fp) =

1
F

F

∑
f =1

Ω fp f (p) (4.8)

The quantity Ω bears a close relationship to the magnitude component of an optical flow field

calculation. The images in Figure 4.5 show how DC is developed from its constituent parts, whilst

examples of typical relative values for DS and DC are shown in Figure 4.6.
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Figure 4.6: Relative values of the three cost mechanisms used in the algorithm for a typical

candidate background frame. Higher intensity signifies higher cost of choosing a pixel from a

frame. Left: The first 3 frames from a block. Top Right: Stationarity Cost DS for the middle left

frame relative to the other two frames. This cost is characterized by high local temporal variance

between candidate frames. Middle Right: Consistency Cost DC for the middle left frame relative

to all other frames in the block. This cost is high at motion boundaries. Bottom Right: Spatial

Continuity Cost Vpq between the left middle and lower frames, considering p and q as horizontal

neighbours. It is high for a poor intensity match between p and q in the two chosen frames.
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Given that the goal is to ‘stitch together’ a composite image from areas in candidate source

frames, it is evident that the boundary between the prospective areas must occur somewhere.

In order to cause minimal visual disturbance in the resultant output, the ideal location for the

‘switch’ is one where the candidate images possess high immediate similarity. Thus the spatial

continuity cost between two neighbouring pixels p and q for two input frames fp and fq is

Vpq( fp, fq) = λ

(∥∥I fp(p)− I fq(p)
∥∥2 +

∥∥I fp(q)− I fq(q)
∥∥2

2× (number of colour planes)

)
(4.9)

The penalty of choosing fp and fq as different source frames for two neighbouring pixels p and

q will be small if the frames differ by little in the vicinity of p and q, thus encouraging the switch

from copying from one frame to another. Such a region is quite likely to represent background in

this case. The constant λ controls the balance between V and the temporal cost D. The procedure

for constructing the graph for one iteration of α-expansion is shown in Figure 4.7 for the simple

case where one pixel is already in class α . For the more complicated situation when neither p

nor q is in α , the reader is referred to [10].

4.4.2 Subspace Modelling of Min-Cut Labelled Background Pixels

From a sequence of M input frames of size h× v pixels, overlapping blocks of F frames are

drawn to which the above background recovery algorithm is applied, yielding N = M−F + 1

candidate background frames IB1 , IB2 . . . , IBN . Thus IB1 is derived from input frames 1 . . .F , IB2

from frames 2 . . .F + 1 and so on. The background images are then rasterized to form column

vectors x1 . . .xN each of length hv elements. The mean vector m of {x1 . . .xN} is determined as

m =
1
N

(
N

∑
i=1

xi

)
(4.10)

After mean subtraction, the vectors {x1 . . .xN} are concatenated horizontally to form a matrix

X = [x1−m,x2−m . . . ,xN −m]. The covariance matrix for the background vectors xn where

1 ≤ n ≤ N is then given by the outer product of X with itself C = XXT with eigenvectors vi and

eigenvalues λi where 1 ≤ i ≤ N

XXT vi = λivi (4.11)

However, such a matrix would contain (hv)2 elements but only have a rank of at maximum N.

In this case advantage of the low dimensional method in [73] may be taken, whereby Equa-

tion (4.11) is pre-multiplied by XT in order to find the much smaller matrix XT X of size N×N
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Figure 4.7: Diagram showing how the graph is constructed from a block of input frames using the

three types of penalty weight: DS, DC, and V . In this example pixel q is already in α . Terminal

α ′ indicates all labels not in class α . Although only shown here as a graph for a 1D image, in

reality arcs are introduced between all adjacent pixels in a 4-connected manner for 2D images.

For the more complicated situation when neither p nor q is in α , the reader is referred to [10].

which possesses the same eigenvalues as XXT and eigenvectors ui = XT vi

XT X(XT vi) = λi(XT vi) (4.12)

Thus eigen-decomposition is performed on C′ = XT X, and the K eigenvectors corresponding to

the largest eigenvalues of C′ are retained such that

∑
K
i=1 λi

∑
N
i=1 λi

≥ γ (4.13)
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to form a normalized approximate model

V =
[

XT v1

|XT v1|
XT v2

|XT v2|
. . .

XT vK

|XT vK |

]
(4.14)

where γ represents a given fraction of the original energy. A new image vector y may then be

segmented into foreground and background by projecting into the subspace spanned by V to

determine what parts of it are supported by the model. Re-projecting back into the image space

and subtracting from the original image y leaves the residual image vector r as

r = (y−m)−V
(
VT (y−m)

)
(4.15)

Thresholding each element p of r against a constant τ yields a binary vector B, that may be

de-rasterized to the original image aspect ratio to form a binary segmentation mask, which is

Bp =

 1 if rp > τ

0 otherwise
(4.16)

4.5 Experiment

In order to demonstrate the effectiveness of the proposed scheme, a comparison is performed

between the performance of a subspace model derived from pre-filtered backgrounds obtained by

the Min-Cut optimization (the ‘Min-Cut + Subspace’ method) and that of a subspace model built

directly from the N input frames (the ‘Direct Subspace’ method). Both systems were constrained

to use only 14 eigenvectors, a number which permitted the former to represent at least 80% of

its original covariance energy. In addition, the result of using the Min-Cut alone on frames taken

from the input sequence is shown (the ‘Min-Cut Only’ method).

4.5.1 Dataset

For the experiment, a very busy urban scene at a road junction by a metro station containing

continuous activity involving both people and vehicles was chosen (see Figure 4.8). Video data

was collected over a one hour period in colour at a frame rate of 25Hz, producing 90,000 RGB

image frames at a spatial resolution of 720×576 and 8 bit intensity resolution per colour. For the

purpose of model building, every 300th frame was extracted from this to provide a set of N = 300

images taken at 12 second intervals.

Using F = 20 input frames to evaluate each pre-filtered background, the Min-Cut + Sub-

space model was constructed using 280 images, whilst the Direct Subspace model used the 300
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Figure 4.8: Examples illustrating typical level of activity in the chosen challenging urban road

scene, in which parts of the true background are persistently occluded.

unprocessed input frames. To accelerate the Min-Cut labelling process, the input frames were

sub-sampled to 360× 288 resolution. Although the resultant label set consisted of only this

number of elements, the backgrounds were reconstructed using 1 label per 4 pixels in order to

preserve the original image resolution. The cost balancing constants for the Min-Cut process

were set at β = 1 and λ = 4, whilst in the consistency cost calculation ε = 1. The threshold for

segmentation in both Min-Cut + Subspace and Direct Subspace methods was 20, given that the

intensity range for the RGB data was [0,255]. The Min-Cut Only method used 20 frames from

the input sequence taken at 3 minute intervals, the binary mask being given by thresholding the

difference from the single recovered background. Finally, for all methods, the binary masks were

subjected to morphological filtering to remove single and small groups of pixels before display.

4.5.2 Results

The graph in Figure 4.9 illustrates the cumulative distribution of energy (eigenvalues) among the

eigenvectors of the covariance matrix for the Min-Cut + Subspace and Direct Subspace models.

It is clear that the former requires considerably fewer eigenvectors to reach a certain energy

fraction, thus supporting the idea that the proposed hybrid technique attains a more compact

model. The sharp rise of the Min-Cut + Subspace curve for energy fractions above 0.95 here

strongly indicates the dominance of a small number of eigenvectors in the model, as intended.

Figure 4.10 shows typical output from the Min-Cut pre-processing stage. As illustrated by

the left image, foreground object removal is not always complete. If the 20 input frames used to

produce this particular background estimation contain the stationary car in most frames, it will



4.5. Experiment 100

be indistinguishable from the background. Although such foreground objects still contaminate

the subsequent subspace model, the pre-processing removes so much of the foreground clutter

that overall, considerable advantage is gained.

The segmentation masks B for two typical input frames, which were not used to build the

models, are shown in Figure 4.11 for all three cases of the experiment. The Min-Cut + Subspace

model clearly demonstrates the cleanest segmentation of objects which, for a typical surveillance

application, are required to be foreground.

In particular, for the Direct Subspace model, some of the white road markings and the shad-

ows from the traffic signal posts in the bottom right of the images are breaking through into the

foreground compared with the output from the Min-Cut + Subspace model. Both of these effects

constitute modes of variation which a dynamic background model will attempt to subsume when

exposed to training data. Many of the road markings are intermittently occluded by vehicles

passing over them, whilst the shadows move slowly over time, but both cases count as variations

as far as a background model is concerned.

As previously described, a subspace model can only absorb as many modes of variation as

allowed by the number of eigenvectors from which it is constructed. The more scene elements

changing over time that there are to be described, the less effectively a constrained eigenspace

model can wholly satisfy the requirement. For the Direct Subspace model, most of the eigenvec-

tors end up committed to explaining the vehicles and people moving in the scene, which are the

dominant sources of variation. The ultimate result is inability of the model to adequately capture

the more subtle variations present, hence the appearance of various nominally background ele-

ments in the foreground mask - in this case, particularly the aforementioned shadows and road

markings. The knock on effect is thus desensitization of the overall model and therefore poor

foreground/background discrimination.

On the other hand, the Min-Cut + Subspace model sees the white road markings as being

largely constant due to the relatively clean short-term background estimates derived by the Min-

Cut stage. Furthermore, the dominant modes of activity - vehicles and people - are also by and

large removed. Thus the eigenvectors of the subspace part of this model remain free to express

subtle variations, such as the gradual shift of shadows as the sun moves.

For the Min-Cut Only experiment, the images at the bottom of Figure 4.11 show considerable

problems with shadows, not only on the road surface, but also at building corners and edges. Be-
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cause no variability at all is catered for in the single recovered image, the changing shadows at the

edges and walls of buildings have not been accommodated. Due to the result of the combinatorial

optimization, the output of which is a single image compiled from samples taken throughout the

whole hour of the input video, the chances of a lighting match with a single arbitrary input frame

is small. Different parts of the background model will match different lighting conditions, but

almost all sources of image variation will be wrongly represented for most of the training data.

So the Min-Cut Only approach is of limited practical use.

Figure 4.9: Graph showing that Min-Cut + Subspace consistently requires considerably fewer

eigenvectors to retain a certain fraction of energy than the Direct Subspace method.

4.6 Accuracy of Short-term Estimates

The results of the previous section demonstrate the utility of the short-term background images

produced by minimizing the objective function in Equation (4.1) over a block of candidate input

frames. However, ultimately such background images are still only static estimates of the true

background. Even amongst recovered backgrounds in which all the people and vehicles have

been removed, minor differences in local shading and hue are apparent. Figure 4.12 illustrates

the subtlety of variation in backgrounds only minutes apart. Although each pixel represents a

legitimate local estimate of the scene, and the combination in which they are chosen is determined



4.6. Accuracy of Short-term Estimates 102

Figure 4.10: Two examples of typical output from the Min-Cut pre-processing stage. Left: Im-

perfect object removal. Right: Near optimal background recovery.

globally according to Equation (4.1), even this may not carry any direct guarantee of validity or

absolute consistency in the composite result. For example, some image areas may be locally

brighter or darker with respect to any single frame if the ambient lighting conditions happened

to shift throughout the duration of the block of candidate frames, as there is no global constraint

term in the optimization to suppress unevenness. So overall, the accuracy, realism and ultimate

usefulness of the short-term estimates might be called into question. However, it is the express

purpose of the subsequent processing stage, in this case the eigenspace model, to compactly

represent such image variation. The global inconsistency and realism artifacts inherent in this

type of pre-processing are attenuated by the averaging effect of the following eigenspace model,

which is in turn constrained to representing the most significant modes of variation by limiting

number of eigenvectors. But at the pre-processing stage neither consistency nor realism need

necessarily be seen as goals, it is the effectiveness of the overall system which is of primary

interest, and removal of foreground clutter should be seen as the overriding requirement of pre-

processing.

The large number of parameters to be determined, and the intrinsic stochastic nature of the

input blocks can lead to somewhat chaotic results in terms of reliability of object removal, but

general trends may be identified. The remainder of this section focuses on the effects on the

outcome of the optimization process of the following controllable parameters:

1. Dependency on constants β and λ

2. Number of candidate frames in the input block
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Figure 4.11: Segmentation of two frames using Min-Cut + Subspace, Direct Subspace, and Min-

Cut Only methods. Min-Cut + Subspace shows the best segmentation here.
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3. Sampling rate of candidate frames

4. Initial frame labelling of the pixels

The last three effects may be evaluated directly by considering the overall energy of a given

labelling according to the minimized objective function. If a given set of parameters result in a

higher final energy value than another set, then the resultant labelling is less successful - the true

minimum has not been achieved, bearing in mind that α-expansion yields only an approximate

optimum by design. The effect of varying β and λ cannot be evaluated this way, since the two

constants directly affect energy values. However, the relative merit of a given combination of β

and λ may be determined by considering the number of eigenvectors needed in an eigenspace

model to represent a fixed fraction of the energy of variation. This is directly linked to the

distribution of energy among the eigenvalues - better combinations of β and λ compress most of

the energy into just a few.

4.6.1 Influence of Parameters β and λ

Combining Equations (4.1), (4.2) and (4.9) yields an expression for the objective function in

which it is clear that the balance between the three optimization mechanisms, Stationarity cost

(DS), Consistency cost (DC), and the Symmetric Pairwise cost (V ) is controlled by the two con-

stants β from Equation (4.2) and λ from Equation (4.9) according to the relationship

E(F) = ∑
p∈P

DS
p( fp)+βDC

p( fp) + ∑
{p,q}∈N

Vpq( fp, fq) (4.17)

The absolute value of E is immaterial here since it is only the minimum of E over the la-

belling space which is sought, hence two constants are sufficient. For all 100 combinations of 10

different β values and 10 different λ values, an eigenspace model was built from 25 recovered

backgrounds taken from the scene in Figure 4.8 over a period of 33 minutes. Input blocks were

made up from 20 candidate frames of resolution 360 × 288 taken at 12 second intervals, thus

spanning a period of 240 seconds overall, with adjacent blocks overlapping by 160 seconds. For

each combination, the cumulative distribution of energy was calculated starting with the largest

eigenvalue. The number of eigenvectors required to represent at least 80% of the total energy is

documented in Table 4.1.

These results show that there is a combination of constants leading to a minimum in required

eigenvectors, and that this minimum remains fairly insensitive to the exact values chosen. This
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Recovered Background Enhanced

Figure 4.12: Left: Three recovered backgrounds. Right: Recovered backgrounds enhanced for

illustration purposes by subtracting 75% of the mean of the three, and multiplying by 4. Such

backgrounds derived from a localized time period can exhibit very subtle differences in appear-

ance due mainly to the shift in lighting conditions throughout the input block. Note the colour

and intensity mismatches. Artifacts are apparent when adjacent image regions are selected from

differently lit input frames. The optimization process does not impose global constraints on input

pixel combinations.
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λ ⇒ 0.01 0.25 0.5 1 2 4 8 16 32 64

β = 0 10 9 8 9 9 10 10 10 9 10

β = 0.0625 8 8 9 9 9 9 10 10 9 10

β = 0.125 8 8 8 10 9 10 10 9 10 10

β = 0.25 8 7 8 8 8 8 9 10 9 10

β = 0.5 8 7 7 8 8 8 8 9 9 10

β = 1 8 7 7 7 7 7 8 9 9 9

β = 2 9 7 7 7 7 7 7 7 9 10

β = 4 9 7 7 7 7 7 7 7 8 9

β = 8 9 8 7 6 7 7 7 7 7 9

β = 16 10 8 8 7 7 7 7 7 7 7

Table 4.1: Number of eigenvectors needed to account for 80% of background image energy for

different combinations of β and λ . An optimum is found at β = 8, λ = 1. Crucially, according

to this metric, the result shows stability at 7 eigenvectors over a wide range of β and λ .

is a useful feature of the technique from a practical point of view since a level of robustness is

offered - even values fixed in advance are likely to yield plausible results. These findings are

broadly in agreement with the less detailed results published in work by Cohen [19].

Figure 4.13 shows the recovered backgrounds and the corresponding label sets which control

their make up for a single input block over 4 selected values each of β and λ across the range.

Each label is represented by a unique colour, but especially for the simpler labellings, 10 or less

of the available labels dominate. The figure clearly shows that a given combination of constants

yields an ideal recovered background amidst other combinations which all lead to some defect

or other. In line with expectation, larger values of λ give rise to simpler labellings with less

different patches. As the relative cost of label boundaries due to the Symmetric Pairwise cost

increases, the algorithm favours solutions with less total perimeter between labels. The same

effect is also noticed as β is reduced, since in the absence of significant stationarity penalty in a

region, the Symmetric Pairwise cost again remains the dominant term in Equation (4.17). It is

also interesting to note the stability of solutions in terms of which labels are chosen - the label

map mutates quite gradually as the value combinations are traversed. This again supports the

concept of algorithm robustness.
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Figure 4.13: Effect of varying β and λ . Top: Recovered backgrounds. Bottom: Coloured labels

of corresponding selected frames. The optimally ‘clean’ background is produced with β = 0.5

and λ = 4 in this case. Other combinations of β and λ lead to the highlighted defects. Note how

smaller λ values on the left lead to a more fragmented label selection.
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4.6.2 Input Block Size

Each recovered background is compiled from an input block of candidate frames, whereby pixels

may be chosen from any of the frames according to the optimization of the objective function in

Equation (4.17). However, the question arises as to how many candidate frames there should be

to choose from, and how far apart in time they should be spaced.

The ideal solution would be to make every input frame from the source over a long period

of time available for contribution to the background. However, the computational complexity of

both α-expansion and eigenspace model maintenance prevents this from being possible given the

processing power of the average PC, and say a 25Hz frame rate. For the α-expansion algorithm,

the most costly process, complexity is essentially linear in N, where N is the number of frames

to choose between, although more α iterations through the N labels may required to achieve

stability if there are many more very similar input frames. In the current implementation, stability

is usually achieved after 3 or 4 iterations with N = 20, meaning that no expansion moves occurred

during the whole of the most recent iteration, at which point the algorithm terminates, being

unable to reduce the objective function energy further.

Evidently, even if N is constrained by available resources, the timescale over which the N

frames are distributed is still variable. In the case of the cyclic traffic junction scenario of Figure

4.8, the possibility of finding a realistic background estimate is dramatically increased if the input

block spans at least a complete cycle of the traffic lights. Under this condition, the algorithm is

exposed to the maximum number of different phases of behaviour exhibited by the junction

traffic, and thus the best chance for enough regions of stable background to be visible. On the

other hand, arranging N such that many cycles are spanned leaves open the strong possibility

that shorter phases of behaviour in a cycle are missed. So overall, it is a question of achieving

adequate sampling rate for a given constraint on N, and a particular timescale of events in the

target scenario.

The experiments so far have shown that acceptable results for the traffic junction may be

obtained with 20 frames taken at 12 second intervals over a period of 240 seconds, where the

natural junction cycle time is around 112 seconds. The algorithm can only perform as well as

the supplied data permits - realistically, piecing together a good background estimate relies on

finding frames where all of the background is visible and stable over several frames at some point

during the input block.



4.6. Accuracy of Short-term Estimates 109

For the traffic junction scenario of Figure 4.8, N was varied between 2 and 20 frames dis-

tributed equidistantly in time over 9 separate 240 second sections of video. Figure 4.14 shows

the final energy achieved by α-expansion averaged over the 9 clips. Clearly, for this particular

scenario, the results show that little is to be gained by selecting N > 12 from an energy mini-

mization point of view. Meanwhile, Figure 4.15 shows visible results of varying N over a single

240 second section of video. Various defects are to be seen in backgrounds where N < 14, which

is broadly in agreement with the previous energy-based result. Thus it would seem that there is a

significant connection between absolute α-expansion energy and visible purity.

A practical algorithm would benefit from automatic selection of N, even though it has an

upper constraint imposed by processing time. A possible algorithm could be based on regulating

N so that system operation occurs on the lower gradient part of the curve in Figure 4.14. This

might be achieved by continually trying to reduce N in opposition to a criterion of maximum

negative gradient.

4.6.3 Input Sampling Rate

For a given value of input block size N, the sampling interval may be varied to accommodate

different activity time-spans into the input block. A parallel may be drawn here with the Nyquist

rate from sampling theory [117] which stipulates a minimum sampling rate dependent on the

bandwidth of the signal being sampled. The general idea is to enforce a sufficiently high sampling

rate to prevent transient detail being missed between samples. The principle is equally applicable

here in order not to miss areas of stable background if they remain unoccluded for short periods

of time. This imposes a minimum on the sampling rate, whereas by similar argument, a block of

candidate frames which does not span a wide enough time frame to encompass all modes of scene

activity may also fail to produce a useful result. For constrained N, this imposes a maximum on

sampling rate. The sample rate thus needs to be suitably matched to a scene’s activity timescales.

To study the effect of varying the sampling rate, a set of eighty equally spaced frames repre-

senting exactly one single cycle of traffic junction activity was selected from video data. Using

an input block size of N=16, blocks of frames were taken at 8 different sampling rates by picking

every mth frame from the set, where m = {1 . . .8}, taking modulo-80 frame indexes for large

values of m. Furthermore, to avoid bias introduced by asymmetric scene activity, the final energy

from α-expansion was determined at all 80 potential block starting points for each sampling rate,

and the mean calculated. The graph of Figure 4.16 clearly shows a minimum in final energy at a
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sampling interval of 175 frames, corresponding to m = 5. It turns out that at this sampling rate,

the N = 16 input frames optimally span a complete cycle of junction activity. Given that lower

energy is associated with more satisfactory background recovery, it seems that a feedback mech-

anism capable of minimizing energy with respect to sampling rate could provide an automatic

technique for adapting the latter to scene activity time-span.

In general, the possibility of there being an optimal sampling rate depends on the behavioural

content of the scene. The concept of periodic scene activity and how to exploit it is dealt with

extensively in Chapter 5.

Figure 4.14: Effect of varying the input block size on the minimum energy achieved by α-

expansion. Examples using between 2 and 20 input images for 9 different parts of a video

sequence are shown. A law of diminishing returns is evident with more than about 8 input

images per block for this particular scenario.

4.6.4 Initial Pixel Labelling

The α-expansion process detailed in Section 4.3.2 leads to approximate solutions of the N-cut

problem by iteratively applying binary graph cuts to a set of pixel labels in order to form the
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Figure 4.15: Examples of recovered background produced by α-expansion using various num-

bers of input frames. Good foreground rejection is achieved for N = 14 and above.
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Figure 4.16: Minimized energy as a function of input frame sampling rate for the scenario in

Figure 4.8 using N=16 frames per block. From the graph, the lowest energy value is achieved

with samples approximately 175 frames apart, which at 25FPS corresponds to a sampling period

of 175
25 = 7 seconds. Thus the N = 16 input frame block is equally distributed over a 7×16 = 112

second period - which closely matches the cycle time of the junction. Only under these conditions

is the algorithm presented with the most comprehensive combination of scene representations

from which to work. The shape of the plot above thus opens up the possibility of automatic

sample rate adjustment based on a minimum energy criterion.

desired background image. Under this scheme, each frame represents one of the unique candidate

frame labels, and a complete iteration involves a set of N such graph cuts, with each label taking

its turn at being α . As a direct result of each binary graph cut, a pixel may migrate into the α

class from any other class if such a move is energetically favourable according to the objective

function. Before and after each cut, all pixel labels in the set forming a complete image must

have a current label from the N candidate frames.

The question is which initial label should each pixel take on before the α-expansion opti-

mization process begins?
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Three potential answers spring to mind:

1. Random assignment

2. Fixed pre-determined pattern

3. Starting point determined from the data itself

At first sight, the third choice seems to rule itself out since the whole point of alpha expansion

is to find the optimal label pattern. However, from Equation (4.17) it becomes obvious that the

data terms DS and DC depend only upon an individual pixel’s own labelling rather than that of

its neighbourhood. Thus a plausible starting label for each pixel may be chosen as that which

minimizes a weighted sum of these components DS +βDC. Moreover, from a practical point of

view, this quantity has to be evaluated in any case either before or during α-expansion.

A fixed pre-determined pattern might reasonably consist of setting all initial labels to point

to a single frame. The frame numbered N seems a good choice, since there is maximum chance

of most α-expansion moves occurring during the first iteration of alpha, thus leading to the most

stable solution as quickly as possible.

Random assignment would seem to be the worst way to initialize the labelling, since chaos

is maximized and all potential prior information is disregarded.

The relative merit of the three initialization schemes was investigated experimentally using 5

sets of N=20 candidate input images taken from the scene in Figure 4.8. The final global energy

achieved after minimization by α-expansion was used as the metric for comparison. As discussed

previously, lower resultant energy is associated with more satisfactory labelling. For each of the

5 image sets, the initial labels were set globally to each of the N labels in turn, to 30 different

random label sets, and to the label set dictated by DS + βDC. The resulting energies are shown

in Figure 4.17 in blue, green, and red respectively. In general these results show that the final

energy is broadly similar regardless of initialization scheme. But in more detail, it seems that

the random labelling reliably produces amongst the lowest energies achieved, although only in

image set 4 was it significantly better than the calculated labelling. The single label initializations

produced the most variable (shown in cyan) set of results, and the worst of the methods. This

may be because such labelling initially incurs very little energy contribution from the pairwise

interaction terms (V), leaving the label set certainly in a minimum, but unfortunately a local

minimum from which the algorithm fails to break out.
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Analysis of the actual labellings returned by α-expansion also supports this conclusion. Fig-

ure 4.18 illustrates the difference between all pairs of resultant labellings for each of the 20 single

label, 30 random, and 1 calculated starting points. When comparing two label sets, a different

label at a pixel counts as one, and matching label as zero. The labelling differences are summed

over the 5 input image sets, and displayed as a disparity matrix in which higher intensity signifies

greater disparity. Most notably, the single label initializations (which already exhibited the worst

energies), tend to cause final label combinations which disagree with each other considerably

more than those produced by random and calculated initializations.

Overall it can be concluded that for this particular application, α-expansion produces quite

consistent labelling results and final energies, and that random labelling is at least as effective an

initialization as anything else.

4.6.5 Automated Parameter Exploration

Whilst it is reasonable to obtain qualitative measurements of the effects of the parameter ad-

justments described in this section, an altogether more extensive and rigorous analysis is also

desirable. If the ground truth for a given background at a particular time were known, it would

be possible to assess any other derived background with respect to it, possibly just by summing

the absolute colour intensity difference of all pixels across the image. Then the search space of

the parameters described could be covered systematically until a minimum overall ‘background

image error’ were discovered. Furthermore, plots could be obtained of background accuracy in

relation to the particular selection of any given parameter.

Even though the true background is not actually known, reasonably good backgrounds, such

as that depicted with N = 14 in Figure 4.15, could be obtained with modest amounts of human

intervention. Typically backgrounds without any obvious people or cars are to be sought. Al-

though the effect of subtle image variations, such as those revealed in Figure 4.12, are not directly

accounted for, this problem may be mitigated to some degree by obtaining a series of ‘clean’ es-

timates and extracting mean and variance for each pixel intensity. Hence, if the distribution of

acceptable colours at a pixel is assumed to be normal, any query image may be assessed by how

many of its pixels are within a specific number of standard deviations of the mean.



4.6. Accuracy of Short-term Estimates 115

Figure 4.17: Effect of different initial labelling schemes on result of final α-expansion graph

cut energy for 5 different input frame sets. Colour bars show results for: all pixels starting with

each of the N possible labels (blue), pixels assigned random labels in 30 different configurations

(green), and pixels assigned initial labels based on the minimum of invariant data term DS +βDC

(red). The consistently low energies and small variances associated with random initial labelling

make this the favoured technique.
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Figure 4.18: Disparity matrix showing the disagreement between computed label sets averaged

over the 5 test frame groups. Higher intensity signifies a greater number of pixel locations which

do not agree between the respective column and row label coordinates. Initialization of all image

pixels to a single label (blue) tends to produce the greatest disparity amongst the final solutions.

On the other hand, the random (green) and calculated (red) initializations almost always converge

to the same result. No labelling disagrees with itself, hence the zeros on the leading diagonal.

4.7 Discussion

The success of the hybrid Min-Cut algorithm may be explained by consideration of its two con-

stituent parts separately. The more effectively that one can eliminate foreground objects from the

short-term background images at the Min-Cut stage, the more compact becomes the eigenspace
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model for a given energy fraction. The Min-Cut process can only remove foreground objects if

they are not consistently placed in the F source frames. Turning this around, the true background

can only be found if it is found to be dominant in relation to the costing rules defined.

There is considerable scope for determining an optimal selection of source frames from real-

time incoming video. The imperfect object removal illustrated in Figure 4.10 is typical of what

happens when the choice of source frames is unsuitable. The present method of taking F = 20

frames at 12 second intervals is perhaps rather arbitrary and crude. Naturally, the combinatorial

optimization will take longer if blocks of more than 20 frames are processed, but using fewer

frames might cause some areas of true background never to be discovered.

The optimal sampling interval will depend on the temporal content of the scene. In the

experimental example, the activity of people and cars is governed largely by the sequence of the

traffic lights on the junction, the cycle time of which was measured to vary between 98s and

116s. Waiting cars accumulating at a red light could, for instance, constitute background if most

of the F frames were taken while the cars waited.

An altogether more intelligent way of selecting frames for the optimization stage is required

in order to maximize the capability of the pre-processing for elimination of unwanted foreground.

One possibility would be to add a further term to the cost function in order to exclude choice of

pixels or frames which are too distant, according to some metric, from a current version of the

model. This hints at an on-line algorithm with the capability of automatic adaption. However,

this should be pursued with care, since the resultant system would contain a feedback loop which

may invite bootstrapping and instability problems if the prototype does not initialize properly.

Although a subspace model was selected for the second stage, possibilities certainly exist

for incorporating other techniques. A per pixel model might need less Gaussian components, or

perhaps even only one, if the pre-processing tends to reduce multi-modality in colour space. Dis-

pensing with the Expectation-Maximization stage [27] that usually goes with Gaussian Mixture

Models could lead to considerable saving in processing time.

However, it is believed that the subspace model as chosen here has the best possibility of

success, since it excels in modelling the global linkage of changes between pixels rather than

the spatially localized disturbances which the Min-Cut stage tends to attenuate. Such a property

makes it ideal for a compact model of some aspects of daylight variability.

Recent work in [134] shows how accelerated Mincut/Maxflow graph cuts can be imple-
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mented on the array processor of a common graphics card. Using a distributed version of the

Push Relabel algorithm due to Goldberg and Tarjan [42], the processor achieves 150 graph cuts

per second on an image of size 640×480 pixels, thus paving the way to a realizable background

modelling system based on common hardware and the technique proposed in this chapter.

4.8 Summary

It has been demonstrated that a hybrid background modelling scheme consisting of a pre-processing

stage based on the combination of a Min-Cut/Max-Flow algorithm and a conventional subspace

model shows advantage over the conventional subspace model operating alone. Suitable for ap-

plication in outdoor environments, this chapter has succeeded in developing a system tolerant of

lighting changes, whilst showing robustness to a high level of activity in a complex scene.

Although rather computationally intensive, the new algorithm produces useful improvements

when running at a sub-multiple of the true frame rate. With refinements in the software archi-

tecture, it is believed that the Min-Cut + Subspace method does have a useful role to play in

practical applications, but in any case is valuable as a vehicle for future research in this direction.

However, in spite of the method’s success in providing support for scene elements which

are persistent in time, at the expense of those which are not, there are situations in which this

behaviour is still not quite suitable. Objects which appear in a scene at regular intervals in time

convey no new information in entropy terms, since they are entirely predictable, and as such may

legitimately be considered part of the background. Yet the model just presented would eliminate

these periodically appearing objects thus constraining them to be foreground. The next chapter

will explore a model specifically capable of explaining dynamic periodic behaviour in a scene.
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Chapter 5

Dynamic Scene Decomposition

Many traffic junctions are regulated by lights controlled by a timing device of considerable preci-

sion, and it is in these situations that a model which learns periodic spatio-temporal patterns is ad-

vocated, in order to highlight anomalous events such as broken-down vehicles, traffic accidents,

or pedestrians jay-walking. More specifically, by estimating autocovariance of self-similarity,

used previously in the context of gait recognition, a scene can be characterized by identifying its

global fundamental period. As a model, a spatio-temporal grid of histograms built in accordance

with some chosen feature is introduced. This model is then used to classify objects found in sub-

sequent test data. In particular the effect of such characterization is demonstrated experimentally

by monitoring firstly the bounding box aspect ratio, and secondly the optical flow field, of objects

detected on a road traffic junction. The results enable the model to discriminate between activi-

ties of people and cars sufficiently well to provide useful warnings of adverse behaviour in real

time. For example, it should be possible to identify a pedestrian trying to cross a road at a time

when cars are normally moving through the junction. Namely, this calls for a model possess-

ing a certain temporal contextual awareness, applicable directly to scenes exhibiting recurrent

background activity. Other potential applications include heart image analysis and monitoring of

industrial systems involving repetitive motion.

5.1 Periodic Scene Activity

There is considerable interest in techniques capable of identifying anomalies and unusual events

in busy indoor and outdoor scenes, e.g. shopping malls and road junctions. Currently countless
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people are deployed to watch and monitor CCTV screens in the hope of identifying criminal

activity, untoward behaviour, and serious but non-malicious situations. A fundamental challenge

in computer vision research is to augment such human effort by devising algorithms capable of

isolating and displaying events of interest in a clear, uncluttered way and with a relatively low

false alarm rate. Considerable research effort has produced systems which learn statistical scene

content both at the pixel level [125] and from a global perspective [94] with a view to segmenting

an image into the usual (background) and unusual (foreground). Many approaches achieve this

by exploiting deviations in spatial appearance from some expected norm accumulated by a model

over time. Furthermore, by relating foreground object size, and possibly shape, to areas within

the scene, it becomes possible to identify people and vehicles in the ‘wrong’ place. However,

generally such models are still oblivious to relative event timing.

In this chapter it will be shown that much can be gained from explicitly modelling temporal

aspects in detail. The desire is to extend the definition of ‘unusual’ to the temporal domain such

that the presence of an object is treated explicitly in a spatio-temporal context rather than mod-

elled as a deviation from a single accumulated distribution. This approach is aimed specifically

at modelling scenarios in which periodic behaviour is present, with the aim of identifying people

and vehicles not just in the wrong place, but also those in the right place but at the wrong time.

Many examples of visible periodic behaviour are encountered in everyday life, displaying

periodicity on a wide variety of timescales. Rotating structures such as fan blades, a swinging

pendulum, and shadows caused by the sun moving across a cloudless sky day after day, rep-

resent three scenarios in which appearance repeats itself regularly, so that each cycle is all but

indistinguishable from any other. Such scenes thus exhibit self-similarity with respect to previous

versions of themselves, as the generating agent returns to the same point in state-space previously

visited. This is in stark contrast with other types of behaviour consisting of stochastic events, or

groups of events initiated at random time intervals, whereby self-similarity is not anticipated or

guaranteed at any time.

From an information theory point of view, periodic events carry no new information at all -

they are entirely predictable. Thus the presence of such behaviour in a scene may be considered

as background activity, being non-salient and uninteresting with regard to novelty. Crucially, for

these very reasons, it would be a waste of available information not to eliminate such recurrent

events from the foreground, since periodic behaviour is by definition a form of stationarity, and
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thus belongs as part of a dynamic background. Taking the idea further, if the statistics of a scene

recur in a periodic manner rather than just an object or event, then the same argument may be

applied.

Evidently not all behaviour in a given scene is necessarily periodic. Different parts of a scene

might possess a range of fundamental frequencies, depending on the elements from which the

scene is constructed, and how they are linked. Some parts of a scene might be characterized by

multiple non-harmonically related periodicities, whilst others display only approximate period-

icity - in communication theory terms, a fixed centre frequency which is Frequency Modulated

(FM) by noise. In practice much of a typical scene will exhibit no detectable frequency compo-

nents whatsoever, and thus may be considered non-periodic or aperiodic.

Road junctions regulated by traffic lights are ultimately controlled by a precise timing unit,

such that the various vehicle paths are each given a certain amount of time to cross the junction.

Traffic engineering strategies for achieving effective junction throughput whilst constrained by

safe operating practices are discussed extensively in [69]. However, signal timing controller op-

eration may be broadly divided into three modes. The simplest is Fixed-rate Mode, whereby the

time given to each flow direction is preset during installation or maintenance and doesn’t other-

wise vary. In Actuated Mode, the cycle is essentially fixed, but a given phase may be lengthened

or inserted into the sequence by activation of pedestrian or vehicle sensors. The third, less com-

monly found, is Adaptive Mode, in which timing plans are modified automatically in response

to changing demands in traffic load as measured by a variety of different types of sensor. For-

tunately, many junctions fall into the first category, and the constant cycle time opens up strong

possibilities for exploiting the regular traffic behaviour as part of a dynamic background model.

On an apparently unrelated problem, much is to be found in the literature concerning gait

characterization, modelling and identification, as detailed in [22, 100, 115]. Generally these

methods work by analyzing the relative motion of linked body members, which are of course all

related by the same fundamental frequency. However, the parallel between this and modelling

traffic at a road junction is surprisingly close. Given certain extracted features, image areas

may be likened to body limbs, sharing fundamental frequency, but being of arbitrary phase and

harmonic content.

It is anticipated that a scene consisting largely of a single junction will possess a dominant

fundamental frequency determined by the traffic signal cycle time, and that the queuing and
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movement of all vehicles on the junction will be related to this. In addition, pedestrians using

dedicated crossing points will also be somewhat regulated, whether or not their path across the

road is controlled by a specific dedicated signal. Other activities are likely to be unrelated to the

junction cycle time, perhaps completely non-periodic, or recurrent with a different periodicity,

such as flashing signals, advertising signs, and animated billboard displays, both mechanical and

electronic.

But a basic question arises as to exactly what feature an image or image patch possesses that

is supposed to be periodic. The intensity at a pixel, or the presence or absence of a particular

feature is a uni-dimensional quantity, for which the Fourier transform is well established. But

the meaning of periodicity for a multi-dimensional quantity, such as an RGB triple or the pixels

of a whole image patch, is much less clear. In the context of gait recognition, Cutler and Davis

[22] explore the use of self-similarity of image patch intensity, in which the fundamental period

is defined as the elapsed time between occurrence of matching patches. Of course, spurious

matches might occur at any arbitrary time interval, so it becomes necessary to form an average

period over a representative block of training data.

Here, the above concept is generalized to permit a much wider range of features to be used.

Instead of comparing feature vector values between two different times, the idea is to compare

the PDF over feature space between the two times. This has the following advantages:

1. Comparison is independent of the chosen feature, leading to a more decoupled, flexible

algorithm overall.

2. All possible feature values are considered simultaneously in the comparison, yielding a

broad consensus.

3. No metric on the feature itself is required, thus permitting use of features for which a

precise metric is problematic to define, e.g. colour spaces.

But in order to obtain a distribution over feature space, a local spatial, temporal, or spatio-

temporal extent containing examples from which to form the estimate must be defined. By neces-

sity this imposes a degree of local low-pass filtering due to the sampling aperture, but resolution

may be retained by overlapping the extents using as little as a one pixel or voxel step.

The important question arises as to whether to assume a single dominant period for a scene,

leaving all other spectral content to be considered noise, or whether to split the scene into re-
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gions and evaluate a dominant period for each. Ultimately, the particular application will dictate

which is more appropriate. In any case, both avenues will be explored experimentally during this

chapter.

Instead of using Fourier analysis of pixel intensity directly, [8] employs Phase Locked Loops

(PLLs) to discriminate between different gaits. Having identified some fundamental frequency

for an object (or person), application of a PLL per pixel in the relevant area permits estimation

of the magnitude and relative phase of this fundamental component for each pixel in the object.

The idea is that the phase signature for every object will be different. The technique is rendered

scale and translation invariant by matching relative magnitude and phase parameters from a group

of pixels to known exemplars as shapes in the complex plane using the Procrustes distance, as

described in [79].

Choice of the PLL over Fourier analysis is significant for two reasons: efficiency and causal-

ity. An n-point Discrete Fourier Transform (DFT) has a time complexity of O(nlogn) if n is

chosen to be an integral binary power. But already implicit in the DFT approach is the need

to accumulate the n most recent samples as a block before frequency estimation may proceed.

On the other hand, the PLL is a causal system requiring a low complexity O(1) update at ev-

ery sample, which provides immediate frequency and phase estimates based on all previously

encountered data in an amnesic fashion.

The PLL technique is similarly applied in this work in order to extract the fundamental fre-

quency from temporal self-similarity in an image region. But here the purpose is to establish a

local timing mechanism with some degree of inertia, which can maintain approximate synchro-

nization with scene activity during periods of data corruption, and precise synchronization even

if the scene’s periodicity should drift from the original estimated value.

In this chapter, the goal is to construct an algorithm to characterize the periodicity of a scene

based on its temporal statistics as a signal, rather than by performing explicit object tracking.

This avoids the catch-22 problem of determining the appropriate scale at which to view a scene

region, whereby the saliency of the region depends on the scale at which it is viewed, but the

optimal viewing scale depends on the saliency [61]. Treating the recovered periodicity as a form

of temporal background, the aim is to discover anomalies in both space and time simultaneously

in previously unseen video. Experiments on datasets from three traffic junction scenes are shown,

in which the effectiveness of such a model in performing anomaly detection is demonstrated. The
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results show how scene activity may be decomposed into three layers based upon its dynamic

content: static background, dynamic background, and foreground components.

5.2 Spatio-Temporal Model

The objective is to derive a model comprising a cyclic set of histograms as depicted in Figure 5.1

from a sequence of training frames. Given a video sequence Ix,y,t consisting of tmax frames each

of size xmax× ymax pixels in which (x,y) represents spatial pixel location, t the time index, and I

the colour triple {R,G,B}, the data is split into two parts, the first for training and the second for

evaluation. Obviously, the first image of the test sequence directly follows the final image from

the training sequence - a fact which becomes crucial in ensuring the initialized model remains

synchronized with the test data. This partitioning also enables a natural way of bootstrapping the

model from limited initial exposure to the scene. Of course in a practical on-line situation, the

second partition is temporally unbounded.

Figure 5.1: Diagram illustrating how the periodic statistics of a block of pixels at spatial location

{v,h} may be modelled over time by a set of histograms over some chosen feature space. The

cyclic histogram set is indexed by a modulo-K f und counter which references the appropriate

behavioural representation for a given phase in the cycle, and increments regularly over time.

A static background model IB
x,y,t is evaluated from and maintained through both the training

and test data according to the method detailed in Chapter 4. The overall algorithm for building

the spatio-temporal model is shown in Table 5.1, and described in more detail in the following.

5.2.1 Feature Selection

A feature which summarizes some local characteristic of the image sequence must be selected.

Later experiments employ optical flow, but for initial modelling of the traffic junction, the aspect
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Step Description

1 Derive a static background model from training sequence

2 Extract chosen feature from training sequence

3 Quantize samples to a coarse spatio-temporal grid forming linear state data

4 Find dominant fundamental period Tf und for the scene using the linear state data

5 ‘Roll up’ Linear State Data using period Tf und starting from the end to form aver-

age State Cycle estimate (Figure 5.6)

6 Use State Cycle to classify previously unseen frames

7 Synthesize output from background and mismatched areas in new frames

8 Go to step 6

Table 5.1: Steps in the spatio-temporal modelling algorithm

ratio of an object’s bounding box is chosen, anticipating that pedestrians will always be taller

than they are wide, and vehicles will rarely be so under the majority of typical poses. In order

to ensure symmetrical treatment of ratios greater and less than unity, a Log Aspect Ratio (LAR)

feature LARx,y is developed at position (x,y) by taking the natural logarithm and clipping to +/-1,

resulting in ratio limits from 1
e to e

LARx,y = max
(
−1,min

(
1, loge

(
hx,y

wx,y

)))
(5.1)

where h and w are the object’s bounding box height and width respectively. Bounding boxes are

determined after applying morphological operations to a foreground binary mask MFG
x,y,t which re-

moves shapes below a certain minimum pixel area. The binary mask MFG
x,y,t is in turn derived from

the difference Dx,y,t between the current image and the current static background IBG, according

to the L1 (Manhattan) norm of the pixel vectors in colour space

MFG
x,y,t =

 1 if Dx,y,t > τ

0 otherwise
(5.2)

where τ is a constant and

Dx,y,t =
∥∥Ix,y,t − IBG

x,y,t

∥∥
1

(5.3)
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Thus for each frame of video It , a (potentially empty) list Lt of valid bounding boxes Bt,m is

produced governed by the above rules

Lt = {Bt,1, Bt,2, . . . Bt,m} (5.4)

where the mth bounding box is characterized by the quad

Bt,m = {x,y,w,h} (5.5)

in which (x,y) is the bounding box centre, and (w,h) is its size from which the LAR is calculated.

The maximum value of m is determined by the number of objects detected in the current image.

So the selected feature does not exist at every pixel, rather it will exist wherever valid objects are

detected in the spatio-temporal volume. Figure 5.2 shows an example of accumulation of object

LAR values over time in typical data from the experiment, showing how the feature discriminates

between people and vehicles fairly effectively. Meanwhile in a plot of the image y-axis against

time for a fixed x value, Figure 5.3 illustrates the inherently periodic nature of activity on the

road junction.

5.2.2 Spatio-temporal Histogram

Thus far the training data is represented by a set of points in a 4-D space (x,y, t,LAR). In order

to facilitate comparison of feature occurrence within the spatio-temporal volume, the idea is

to build a spatio-temporal set of histograms over feature space, as shown in Figures 5.1 and

5.4. Therefore the volume is split into a grid of hmax× vmax equal sized square blocks of pixels

spatially and nmax equal sized blocks of frames temporally. In later experiments, a sequence from

the scene in Figure 5.2 consisting of tmax = 90000 frames each of xmax = 360 by ymax = 288 pixels

was split into a grid of hmax = 45 by vmax = 36 spatial blocks by nmax = 478 temporal blocks. At

each spatio-temporal grid position, consisting of a block of

xmax

hmax
× ymax

vmax
× tmax

nmax
=

360
45

× 288
36

× 90000
478

= 8×8×188 (5.6)

pixels, a histogram Hh,v,t of bmax equal width bins is constructed over feature space. Evidently

the spatial resolution is 8×8 pixels, whilst temporally the extent of a block is 188
25 = 7.52 seconds

for a frame rate of 25Hz. The particular choice of hmax, vmax and nmax is ultimately a compromise
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Figure 5.2: Bounding Box centres accumulated over time at a road junction scene. Colour rep-

resents aspect ratio: green samples have h > w (pedestrians), red samples have h < w (vehicles).

Although not completely reliable, the feature is a fairly strong discriminator between vehicles

and pedestrians, especially in the nearer part of the junction. The road areas are seen to contain

mostly vehicles (red) whilst the pedestrian route across the junction, and the footpaths alongside

the road are clearly dominated by pedestrians (green). The ratio for vehicles becomes unreliable

in the far distance due to the unfavourable viewing angle.

between resolution and sparsity of histogram data. For LAR the bins are represented by the

bounded 1-D set

Hh,v,n(b) = {b1, b2, . . . bmax} (5.7)

where b = bbmax(LAR+1)
2

+0.99999c (5.8)

such that the range of the LAR feature (−1 ≤ LAR ≤ +1) is quantized and mapped uniformly

onto bin number b, where 1 ≤ b ≤ bmax. The inherent loss of resolution in all dimensions as a

result of this down-sampling operation is countered by the advantage of being able to quantify



5.2. Spatio-Temporal Model 128

Figure 5.3: Y-T cut (right) through the spatio-temporal volume showing periodic behaviour of

a road junction scene at the vertical yellow line (left) using bounding box aspect ratio as the

feature. There is clearly a temporal structure to the data in various areas of the image.

the similarity between any two spatio-temporal regions on the basis of the selected feature purely

by comparing histograms. In fact from this point onwards, the method becomes independent of

the chosen feature and thus offers a degree of generality and considerable scope for matching any

chosen feature(s) - a crucial strength of the approach.

Figure 5.4: Diagram showing how an image sequence is divided into a uniform set of hmax ×

vmax×nmax spatio-temporal blocks. For each block, a histogram over the chosen feature space is

evaluated from training data.

5.2.3 The Sparsity Problem

It is quite possible that, given the relatively high dimensionality of the histogram containing the

bounding box data points, the density of points is insufficient to yield meaningful distributions

everywhere throughout the spatio-temporal volume. One potential solution is to decrease the

number of blocks in the grid in the dimension(s) causing the deficiency. Alternatively a degree
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Figure 5.5: Relative fundamental period distribution of the scene in Figure 5.2 based on temporal

autocorrelation of bounding box aspect ratio of 4×4 pixel blocks. Intensity, representing period

in seconds according to the side bar, is given by the first significant peak of the autocorrelation

function. Much of the central junction area is the same shade, indicating shared periodicity.

of data smoothing may be applied, both over the bins within each histogram and also between

spatio-temporal histograms. It was found that experimental results benefited from convolution

of the former with a normalized 1-D Gaussian filter, and of the latter with a 3-D Gaussian kernel

having potentially different variance in the spatial and temporal directions. Inevitably there will

be some regions which are poorly supported, and steps to mitigate the effects of this may become

necessary in some situations. A certain advantage of the block-based approach from a spatial

point of view is its tolerance to slight errors in registration due to camera movement induced

either by wind or maintenance work.

5.2.4 Fundamental Period Estimation

To derive an estimate of the fundamental period over which scene changes occur is a non-trivial

procedure, and as such it is dealt with separately in Section 5.3. Suffice to say at this point that
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a scene may have a number of unrelated fundamental periods (including none) distributed over

various regions, as shown in Figure 5.5, and optimally distinguishing them is a topic for future

research. In this section where applications like the traffic junction are considered, it is assumed

that there is a single dominant effect, for which the period is K f und blocks each of tmax/nmax

frames. Given a frame rate of F per second, the fundamental period is thus

Tf und =
K f und

F
tmax

nmax
seconds. (5.9)

Ideally the training data should be long enough to contain sufficient cycles of the fundamental

period in order to permit the latter to be distinguished adequately from noise.

5.2.5 State Cycle and Model Initialization

The State Cycle Sk
h,v for k = {1 . . .K f und} of a grid location (h,v) is defined to be a temporal

description of how the chosen feature varies throughout a single cycle of its fundamental period

of K f und phases. Given that the array Hh,v,n contains a number of cycles of this temporal descrip-

tion in succession, the desire is to form an average histogram H f und of size hmax× vmax×K f und

representing a summary of the scene’s typical behaviour over the c most recent cycles of the

fundamental period, where c = b nmax
K f und

c cycles. Thus taking the c most recent groups of K f und

blocks, the kth element of H f und is the mean of the kth elements of the c groups

H f und,h,v,k(b) =
1
c

c

∑
i=1

Hh,v,nmax−iK f und+k (b) (5.10)

where k ={1, 2, . . . K f und}. This ‘rolling-up’ of the training data is depicted diagrammatically

in Figure 5.6. Normalization of H f und over k,h,v, and b yields an estimate of feature probability

Pf und which then forms the spatio-temporal model of the scene

Pf und,h,v,k(b) =
H f und,h,v,k(b)

∑
K f und
k=1 ∑

hmax
h=1 ∑

vmax
v=1 ∑

bmax
b=1 H f und,h,v,k(b)

(5.11)

Assuming that continuous test sequence (e.g. real-time video streamed data) directly follows

the initial training sequence, then the state counter k, initialized to 1, may be updated every tmax
nmax

frames according to the relation k = mod(k,K f und) + 1 in order to keep track of the learned

phases of periodic scene behaviour.
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⇓

⇓

Figure 5.6: Diagram showing how the training data H is rolled up to form the single cycle average

set of histograms H f und depicted in Figure 5.1 which summarize scene activity.
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5.2.6 Output Synthesis

The objective is to provide an output sequence from the algorithm showing only objects in the

wrong place at the wrong time. For a query test frame IQ appearing subsequent to model initial-

ization, the foreground mask MFG is obtained as in Equation (5.2), and valid object bounding

boxes Bt,m derived as in Equation (5.5). For each candidate bounding box, the LAR is evaluated

from width and height using Equation (5.1) and b is given by Equation (5.8). Values for h and v

are calculated using h = x×hmax
xmax

and v = y×vmax
ymax

. Thus the estimated probability of that particular

aspect ratio bounding box at position {h,v} is given by the model for the current phase k, and

may be compared with a threshold α in order to give a binary decision Mh,v as to whether the

object is sufficiently rare to be displayed

Mh,v =

 1 if Pf und,h,v,k(b) < α

0 otherwise
(5.12)

On the basis of Mh,v being true, for each object in IQ, M is used as a matting mask to re-insert

pixels according to the bounding box dimensions from the new frame IQ into the background IBG

for all objects determined to be anomalous with respect to the current model. The background

with insertions forms the output image from the algorithm. Examples of this matting process are

seen clearly in the experimental results under the ‘Reconstruction’ column of Figure 5.13, where

the unusual object is highlighted alone in the static background.

5.3 Determining the Fundamental Period

The method described in the previous section relies totally on obtaining a robust estimate of the

fundamental period of a region, or of the whole image area, using the 3-D spatio-temporal grid

of histograms Hh,v,n defined in Equation (5.7). The objective is to find the most common lag

between instances of temporal self-similarity at times n1 and n2 over all possible combinations

of n1 and n2. As a measure of the similarity between any two histograms, the general definition

of the symmetric Kullback-Leibler Divergence (KLD) [70] is used, yielding a metric between

distributions P1 and P2 of

DKL(P1,P2) = ∑
i
(P1,i log2 (

P1,i

P2,i
)+P2,i log2 (

P2,i

P1,i
)) bits (5.13)
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Thus over an arbitrary spatial region R in the grid, the average dissimilarity matrix S may be

defined between two temporal planes at times n1 and n2 as

Sn1,n2 =
1
‖R‖ ∑

v,h∈R
DKL(Pn1(v,h),Pn2(v,h)) (5.14)

which after simplification yields

Sn1,n2 =
1
‖R‖ ∑

v,h∈R

bmax

∑
i=1

(Pn1,i−Pn2,i) log2

(
Pn1,i

Pn2,i

)
(5.15)

An example of the symmetric divergence relative to a single time is illustrated in Figure 5.7(a),

and between all combinations of times as matrix S in Figure 5.7(b). Because it is the coincidences

of minima in S that are of interest, representing the best distribution matches, S′ is formed by

subtracting the mean of S, leaving the minima now as negative peaks

S′(i, j) = S(i, j)− 1
imax jmax

∑
i, j

S(i, j) (5.16)

Then the normalized 2-D autocovariance matrix A is constructed from all possible lags (di,d j) in

both spatial directions

A(di,d j) =
∑i, j S′(i, j) S′(i+di, j +d j)√

∑i, j S′(i, j)2 � ∑i, j S′(i+di, j +d j)2
(5.17)

As shown in Figure 5.8(b), matrix A exhibits a regular structure of peaks spaced at the dom-

inant period if one exists. The fundamental interval K f und is identified by exploratory element-

wise multiplication of A with a regular matrix of peaks generated by column vector g(d) as shown

in Figure 5.8(a), whereby varying the pitch d yields a peak in the overall temporal scene power

observed. Thus the fundamental interval is given by

K f und = argmax
d

(g(d)T A g(d)) (5.18)

for dmin ≤ d ≤ dmax and binary vector g such that

gi(d) = δ ((i−nmax) mod d) where 1 ≤ i ≤ 2nmax−1 (5.19)

Figure 5.9 shows how the scene’s signal power peaks at a given value of d.
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(a)
(b)

Figure 5.7: (a) Temporal KL Divergence at one grid position (n1 = 50 on the x-axis) relative to all

other temporal grid positions. Naturally the divergence is zero with respect to itself. (b) Average

Divergence matrix between histograms at temporal grid positions n1, n2 for all combinations of

n1 and n2. Using the Symmetric Kullback-Leibler formula, divergence is summed over all spatial

grid positions of the scene, as well as over the histogram bins (Equation (5.15)).

In the current approach, the region R represents the entire scene, but this technique could

equally well work with subsets of the scene, be they rectangular or square blocks, or even arbi-

trary shapes. A yet more elaborate scheme for analyzing the autocovariance matrix A is described

in [22], in particular explaining that a diagonal equivalent of the matrix in Figure 5.8(a) is nec-

essary to detect periodicity in certain scenes for which self-similarity of appearance peaks more

than once per cycle, e.g. a swinging pendulum at its lowest point.

5.4 Experiment

For the experiments, three busy city-centre road junctions controlled by traffic lights were chosen.

Each dataset consisted of 30000 frames of 720×576 pixel colour video at a frame rate of 25Hz,

yielding sequences of 20 minutes duration. The data was spatially down-sampled to 360× 288

pixels to ease computational load. The short-term background model was obtained as described

using the method described in Chapter 4, based on blocks of 20 frames taken at 12 second

intervals. The L1 norm of the background-subtracted data was thresholded at a value of 30

given an intensity range of 0-255 per colour channel, and after morphological clean-up, identified

object areas were thresholded to reject those below 70 pixels. The Log Aspect Ratio feature
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(a) (b)

Figure 5.8: (a) Lattice for distance d = 15 generated by g(d)g(d)T . Point-wise multiplication

of such a lattice by the autocovariance matrix in (b) for a range of d identifies the fundamental

period. (b) Autocovariance of the Divergence matrix in Figure 5.7(b), showing the strong lattice

structure corresponding to a dominant fundamental temporal period in the video sequence.

range of +1 to -1 was split into bmax = 5 histogram bins, and the spatio-temporal histogram grid

was 8× 8 pixels wide spatially, and 180 frames deep temporally, giving hmax = 45, vmax = 36,

and nmax = 167. For each sequence, the entire spatial extent of the spatio-temporal matrix was

utilized to estimate the global fundamental period K f und for the scene using the method described

in Section 5.3. Allowing c = 5 cycles of this fundamental period of the temporal extent of the

dataset to be used for training, the remainder was left for testing. Figure 5.10 illustrates how

the state counter is correctly and consistently aligned with junction activity throughout the test

sequence, as measured by the actual brightness of pixels representing the green traffic light at the

bottom of the scene. Close synchronization is essential for the model to function properly.

The results for Scenarios 1 and 2, using bounding box aspect ratio as the feature, are shown

in Figures 5.11 and 5.12, which have 3 rows of 5 images, with each row representing an example

frame from the algorithm output. The left-most image is the original unprocessed frame, whilst

the second image is the short-term static background which has been labelled as ‘Layer 0’. The

objects detected to be anomalous according to the model are shown inserted into the static back-

ground and labelled as ‘Layer 2’ - the foreground. Similarly, the original image with background

inserted where the object was detected, is shown as ‘Layer 1’ - the dynamic background.
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Figure 5.9: Relative spectral power of the scene in Figure 5.2 for values of d between 4 and 50,

calculated as the sum of all values after point-wise multiplication of the lattice in Figure 5.8(a)

by the autocovariance matrix in Figure 5.8(b). Note the fundamental at d = 15, giving a period

of 15×7.5s = 112.5s corresponding to the cycle time of the junction traffic signals.

Finally in the right-hand column, for comparison purposes, the result of classification using a

non-temporal equivalent model derived from the same training data is shown. To achieve this, bin

values of each histogram Ph,v,k(b) are marginalized out over the time dimension to yield P′h,v(b).

Figures 5.13 and 5.14 show results from Scenario 3, this time using optical flow as the feature.

Candidate objects in the scene were identified as previously, but here connected items in the

foreground mask were used to estimate vehicle velocity according the Lucas-Kanade algorithm,

whereby each pixel in the mask permits a contribution to an over-determined system of equations

resulting in an estimate of the optical flow field at the object’s location. Details of this algorithm

are to be found in Appendix A and [77]. The two dimensional flow vector was coarsely quantized

into a 3×3 bin histogram for incorporation into the model.

The results in Figures 5.13 and 5.14 encode the optical flow vectors as coloured areas for

visualisation: hue represents direction, and intensity indicates vehicle speed.



5.5. Discussion 137

Figure 5.10: Timing diagram showing correct synchronization of model throughout test se-

quence. Top: Pixels from closest green traffic light in the scene, which is on for 9 of the 15

phases. Middle: Consensus of light over cycles in training data. Bottom: Internal state counter

cycling through states 1 to 15. Note consistent and stable phase relationship between all three

measurements, a vital condition for successful model operation.

Overall, when analyzing images, the algorithm achieves 3 frames per second throughput on

a 2GHz Athlon-based PC, although initially building the model carries a considerably higher

computational cost, dependent on the size of the training dataset.

5.5 Discussion

The results in Figures 5.11, 5.12, 5.13 and 5.14 demonstrate how, in spite of a background that is

non-stationary, the new algorithm has managed to split scene activity into 3 distinct layers. This

has been achieved partly by being able to make reliable estimates of true background amongst

a busy scene by utilising the method described in Chapter 4, but mostly by classifying objects

based on a spatio-temporal template learned from the scene during training.
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What is termed Layer 0 takes on the non-stationary background, permitting detection of less

persistently occurring objects such as people and vehicles. Having thus obtained reference to

the latter in isolation from the background, the spatio-temporal model classifies them into Layer

1, objects of a suitable aspect ratio for the part of state-space they occupy, and Layer 2, objects

which contradict the model. Within this framework, Layer 1 has taken on the role of a dynamic

background in relation to what might usually be referred to as foreground objects. Such a dy-

namic background has three dimensions, two spatial and one temporal, and a match in all three

of them is required as well as an acceptable probability value for the feature at those coordi-

nates in order that the object is deemed acceptable as a dynamic background item. Thus the

spatio-temporal model has gained more discriminative power than a spatial-only 2-D probabilis-

tic model, which is oblivious to time.

By marginalizing out the time dimension so that the model degenerates into a more conven-

tional temporally unaware type, one effectively increases the likelihood of an object at times in

the cycle when it should be considered rare, and reduces its likelihood at times when it should be

considered common. Thus the overall unwanted result is a desensitization of the model.

The upshot of this situation is that with no temporal processing (denoted as ‘NTP’ in the fig-

ures), too many relatively unimportant objects are detected, whilst use of the scene-synchronized

spatio-temporal model reveals far more salient detection amongst the ‘higher layers’ of temporal

change, associated with interesting and unexpected spatio-temporal events. Furthermore, all this

may be achieved without prior knowledge of the size and location of potential triggering objects

in the scene. Such a model clearly has benefits in a surveillance scenario.

In particular, among the results are examples of the new spatio-temporal model detecting

objects of interest, whilst the model without temporal processing fails to highlight these, but

identifies less truly interesting objects instead. That this remains so, however one decides to

select the detection thresholds for the respective models, strongly supports the claim that the

temporal aspect of the model is highly significant.
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5.6 Scenes Exhibiting Multiple Periodicities

It is clear that many scenes will be composed of more than one harmonically unrelated periodic

component. Instead of seeking a single global fundamental, the scene may be searched in a

systematic fashion using the estimation technique previously described, but on multiple smaller

regions. If somewhat optimal regions of common periodicity can be found, the ‘rolling up’

of periodic training data implemented above and depicted in Figures 5.1 and 5.6, is equally

applicable to different image areas, each with its own K f und .

As a step towards this, Figure 5.15 shows fundamental periods for Scenario 1 when split into a

regular array of blocks. This time using RGB intensity values over 64 bin histograms (4×4×4)

as the feature, with a spatial block size of 36× 36 pixels and 4s temporal blocks, the locally

evaluated periodicity is shown overlayed onto the image of Figure 5.2 for direct comparison.

From Figure 5.15, it is clear that different areas of the scene exhibit different periodicities,

whilst some remain aperiodic with regard to the RGB feature space. But overall, many of the

scene areas involving traffic still share the same periodicity of 112 seconds evaluated previously

by the global method, as might be expected. To maintain an individual model per block, each

with a potentially different periodicity, costs little extra resource in terms of computation time or

storage over the method enforcing a single global periodicity. However, the reduced spatial area

from which each local estimate of period derives an average may lead to less robust values of

K f und during training. A potential solution to this problem is presented in Section 5.8.

5.7 Verifying Periodicity Estimation

Demonstrating the effectiveness of the technique for identifying the fundamental period de-

scribed in Section 5.3 requires detailed knowledge of the ground truth for a given scene. Whilst

certain events, such as traffic light phase, may be readily analyzed manually by counting frames,

other aspects of scene activity, such as trends in traffic or pedestrian density, are more subtle.

Unlike a simple ground truth set consisting of a sequence of foreground masks for a single object

moving once across a scene, characterization of spectral content depends on widely distributed

temporal information, from which the fundamental period may not immediately be apparent us-

ing direct visualisation. A further problem with real scenes is that realistically they possess only a

few periodic processes, some of which may be related anyway. For these reasons, the possibility

for verification of the method in Section 5.3 using real data seems somewhat limited.
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Figure 5.15: Periodicities from Scenario 1, but calculated over RGB feature space. Much of

the junction shares the periodicity of the 112s traffic light system, whilst the rotating advertising

board (top right) changes every 28s, cycling in sequence through three different advertisements

in 84s. Areas marked ‘A’ are aperiodic. Pedestrians tracks shown in green, and vehicles in red are

based on the previous bounding box ratio approach, and shown here for comparison purposes.

An alternative approach involves using a synthetic scene dataset for which the ground truth

is completely known a priori. Although not directly representing real-world scenes, success

with synthetic data gives at least some confidence in the method evolved for period estimation.

Figure 5.16 shows two examples from a synthetic dataset of 16500 frames in which multiple

randomly-sized coloured ellipses are embedded in additive white Gaussian noise. The shapes

change colour independently according to a predetermined pattern consisting of a repeating set

of 2 to 6 phases, each of length between 50 and 500 frames. The colour of each phase is also

randomly pre-assigned from a set of 27 shades defined symmetrically in RGB colour space.

The results are shown in Figure 5.17 as a set of periods evaluated according to the method

in Section 5.3 for each 18× 18 pixel block, along with the ground truth from the synthesis

process. It is evident that the technique is relatively successful, even when the elliptical shapes

only partially fill a given square spatial block. The most obvious failure of the method is the

cases in which the period estimation is in error by a factor of almost exactly 2 or 3. This is due

to the general problem of the dataset being self-similar at all integer multiples of its own length.

The spectral plot in Figure 5.18 illustrates the difficulty in establishing the true fundamental peak

amongst several harmonically related components. Simply choosing the peak representing the
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Figure 5.16: Frames from a synthetic sequence in which the elliptical shapes change colour

according to a known repetitive predetermined random pattern. Additive white Gaussian noise

of variance σ2 = 0.2 represents severe sensor noise, compounding the estimation problem.

shortest period is the most obvious solution, but it is not clear how to determine the minimum

acceptable amplitude threshold of the selected peak. A related problem is discovering areas with

no intended periodicity - this is also a problem of choosing an appropriate minimum threshold.

However, in many cases the true period is discovered to within 2 seconds without problem.

5.8 Phase-Locked Loop

The spatio-temporal model described so far relies completely on its synchronization with scene

activity to provide meaningful results. Failure to maintain synchronization entails failure of the

model as a whole. Two significant problems are apparent in relation to this aspect of model

reliability. Firstly, the initial estimated periodicity of a block from training data may lack preci-

sion, and secondly, video data from the scene may be disrupted, corrupted, or some event in the

scene may occur to radically shift the phase of the learned dynamic behaviour. In these and other

possible cases, the model may become de-synchronized, and it is highly desirable that the state

counter recover automatically from such situations. Essentially this is a question of ensuring

temporal registration between model and scene. In [8], a Phase-Locked Loop (PLL) was used to

recover the frequency and phase of oscillation in the characterization of human gait. The same

technique is applied here in the context of the current problem, since the basic requirements of

synchronization are common to gait analysis and traffic junction monitoring alike.

A PLL is a negative feedback servo mechanism encountered ubiquitously in electronic sys-

tems [4]. Implemented in digital or analogue hardware, or software it is usually constructed from
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Figure 5.17: Results of periodicity analysis of the synthetic scene in Figure 5.16. Each white

square represents an 18× 18 pixel spatial block. The yellow figures are estimated period in

seconds, whilst the black figures are the ground truth. Many periodicity values are correctly

identified, whilst some are recognized as sub-harmonics.

the same functional building blocks as shown in Figure 5.19. It operates by synchronizing a local

oscillator in both frequency and phase to a potentially noisy or variable frequency input signal,

and is routinely used for demodulation, data recovery and frequency synthesis in communication

and data systems. The behaviour of a PLL is largely controlled by the s- or z-plane transfer

function of its loop filter, and is designed such that the PLL exhibits an overall system transfer

function suitable for a particular task. Common configurations and design equations are analyzed

extensively in [4].

Here use is made of the PLL’s ‘frequency filtering’ property to solve the above mentioned

shortcomings of the model. By this it is meant that short-term frequency variations, or jitter,

are rejected, such that the output adopts the long-term average of the input frequency and phase.
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Figure 5.18: Spectral content of synthetic scene in Figure 5.17 at block location (x,y) = (13,10)

showing how it is sometimes unclear which peak represents the dominant period. The first peak

at 26s is likely to be the fundamental, but components at twice and three times this period have

higher energy content so are also contenders for contributing the dominant effect.

This relies on the fact that although the purpose of the spatio-temporal model is to detect unusual

events in a scene, on average the behaviour will be largely consistent. Here, the ÷N counter

in Figure 5.19 causes the oscillator to run at an integral multiple of the scene’s fundamental

frequency. The oscillator is implemented in software as a counter or phase accumulator, and

the higher oscillator frequency yields a finer control of precision of output rate, and hence block

periodicity. The centre frequency of the oscillator, is that frequency which it produces with zero

at its control input. The constant KCO in Figure 5.19 determines the amount of deviation from

the centre frequency, up or down, with positive or negative bias at the control input.

5.8.1 Novel Phase Detector

One of the principle components of the PLL is the Phase Detector, which compares a reference

input signal with the output of the oscillator, in this case the state counter. The difference between
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Figure 5.19: A typical Phase Locked Loop (PLL) System consisting of four basic building

blocks arranged as a feedback network. Dynamic PLL behaviour is described by the s-plane

transfer function θout(s)
θin(s)

= KPDKF (s)KCO(s)/N
1+KPDKF (s)KCO(s)/N if all components except the Phase Counter exhibit

continuous-time functions, or an equivalent z-plane function if the components are implemented

in the digital domain. Design methodologies tend to be somewhat involved, but generally the

loop filter response KF(s) is tailored to yield the desired overall system response given the pa-

rameters of the other blocks. In the current application, the output θout(s) is designed to take on

the long-term average frequency and phase of a potentially noisy input signal θin(s) derived from

the traffic junction phase. Specific parameter selection is detailed in Section 5.8.2.

the two is then used to derive an error signal which corrects the frequency and phase of the

oscillator such that it matches the reference input. In the present application, the reference input

consists of data from previously unseen input frames. Using the KLD metric definition from

Equation (5.13), a novel type of phase detector is introduced here which compares histograms at

state l from Tf und most recent unseen frames in a circular fashion against the current model at all

possible K f und phases as shown in Figure 5.20, in order to determine the optimum

kR
opt(l) = argmin

j ∑
h,v∈R

∑
k

DKL(Pf und,h,v,k, Qh,v, mod ( j+l+k, KR
f und)) j,k ∈ {1 . . .KR

f und} (5.20)

for a given region R, where Q is the most recent set of KR
f und normalized histograms from the

scene. The phase kR
opt at index offset j exhibiting minimum KLD is considered the optimal target

towards which the state counter should be coerced to achieve convergence. Although potentially

transiently in error, this phase measurement ensures that on average the model is synchronized

to the scene, permitting accurate scene event classification. The loop filter is configured as a

Proportional plus Integral type controller, the integral term allowing minimization of zero-order

steady-state phase error between the state counter and scene.

A phase accumulator ΦR
acc for region R maintains a high resolution phase representation, and
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the state counter kR(l) for region R at time step l is then derived as a quantized version of this

phase accumulator, mapped into the range {1 . . .KR
f und} by the modulus operator

kR(l) = mod (bΦR
acc(l)
N

+0.5c,KR
f und)+1 (5.21)

Calculation of the phase error signal kR
di f f , which drives the loop towards the locked condition,

must be carried out using the following equation so that the shortest path around the ring to phase

Figure 5.20: The novel phase detector compares the histogram from each model state (inner

ring) with one from the K f und most recent histograms from the scene (outer ring) using KLD

(shown in red), and the results are summed together. The model (inner ring) is then imagined

to ‘rotate’ in order to evaluate the match at all possible K f und phases, the minimum of which is

the optimum kopt and the target for the model. The PLL advances or retards the phase of the

model by fractionally increasing or decreasing the oscillator frequency, hence rotating the inner

ring relative to the outer, the rate of convergence being determined by parameters GP and GI .
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lock is always found

kR
di f f (l) =


kR

opt(l)− kR(l)−KR
f und if kR

opt(l)− kR(l) > KR
f und/2

kR
opt(l)− kR(l)+KR

f und if kR
opt(l)− kR(l) < KR

f und/2

kR
opt(l)− kR(l) otherwise

(5.22)

The PLL oscillator, represented by the phase accumulator ΦR
acc for a given scene region R is then

updated by the following relationship

Φ
R
acc(l +1) = Φ

R
acc(l)+N +GP kR

di f f (l)+GI

l

∑
i=1

kR
di f f (i) (5.23)

where GP is the proportional gain, GI is the integral gain of the loop filter, and l is the current

time index. Without the integral term GI , a scene fundamental frequency different from the state

counter’s centre frequency would imply a non-zero steady state output from the Phase Detector,

and hence an unwanted continuous offset error between model phase and scene phase.

5.8.2 PLL Experiment

Evaluation of the effectiveness of the PLL stage was performed using the same dataset as pre-

viously described for Scenario 1 in Section 5.4. Rather than showing results detailing traffic

anomaly detection, the focus here is on maintaining synchronization between scene activity and

the model state counter. Failure to maintain track of scene activity will result in failure of the

spatio-temporal model as a whole, and this is bound to happen eventually in the absence of

any mechanism to prevent it. Thus if maintenance of synchronization, and recovery from de-

synchronization can be demonstrated under various conditions, then addition of the PLL will be

deemed successful.

A software-based PLL was constructed according to the previous description with a Phase

Detector configured as in Equation (5.20). The region R was set to comprise the 5×5 group of

blocks in the bottom right hand corner of Scenario 1 as depicted in Figure 5.15, having ascer-

tained the local period to be 112 seconds, or 28 four second states. If a spatio-temporal model

per block were required, then R would be equivalent to just the block in question.

The PLL loop filter was set up with a proportional gain of GP = 3 and an integral gain of GI =

0.02, these values being determined to be satisfactory by experiment, whilst the PLL multiplier

N = 100, and the oscillator (state counter) was set to have a centre frequency of N × 1
112 Hz =

0.893Hz, as governed by the local periodicity estimate of 112s.
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The results are shown in Figure 5.21 as plots of the estimated scene phase, and the model

phase as maintained by the PLL. Given that the vertical axis in each plot represents states in the

range 1 to 28, it is clear that when the large vertical serrations of the graph between states 1 and

28 line up, then the state counter is synchronized with scene activity. The centre trace, which

represents the state of the nearest green traffic light in the scene, supports the evidence that the

PLL has correctly achieved lock.

The PLL starts from the unsynchronized state at t = 0, but by t = 50 is almost completely syn-

chronized. A burst of noise at t = 100 makes it impossible to determine the instantaneous state

of the traffic junction, but the inertia bestowed by the integrating loop filter ensures a plausible

interpolation by the PLL until proper synchronization is re-established by t = 170.

Thus it can be concluded that inclusion of the PLL into the model framework has enabled

a more robust approach to accurately tracking scene activity patterns. Furthermore, the Propor-

tional plus Integral loop filter permits synchronization to a range of periods close to the fun-

damental period of the scene, so errors in initial estimation or quantization of K f und are easily

accommodated.

5.8.3 Assessing PLL Performance

The discussion so far has assumed that the PLL behaves in an ‘ideal’ way, performing perfect

fundamental period recovery in the presence of unquantified noise mechanisms without losing

lock. In reality, even PLLs modelled in software have performance limitations which must be

mitigated in order for the overall system to operate satisfactorily. The principal requirements

upon the PLL in the current application are that:

1. The PLL rapidly acquire the locked condition relative to scene activity, starting from the

unlocked condition.

2. The PLL maintain lock during and in spite of significant levels of noise, which potentially

may act as de-synchronizing information.

3. The short term frequency accuracy and stability of the PLL throughout the activity cycle

be sufficiently good to guarantee acceptably low rates of false positive and false negative

detections within the context of the application at hand.
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5.8.4 PLL Parameters

Translation of a particular set of design requirements into a detailed specification of PLL building

blocks is covered extensively in [4], but the main performance parameters are as follows:

1. Lock Time - This is the maximum time that the PLL takes to achieve the locked condition

starting from any possible combination of oscillator phase and external signal phase.

2. False Lock - This is the situation where the PLL has locked to an integer multiple or

fraction of the desired fundamental frequency. The harmonic content of the input signal

and the design of the phase detector both affect the likelihood of false lock occurring.

3. Capture Range - The range of frequencies above and below the natural PLL centre fre-

quency from which lock may be achieved. The absolute amplitude of the fundamental

component, and the relative amplitude of other components may affect the extremes of the

range.

4. Lock Range - The range of frequencies which may be continuously tracked without loss

of lock given that the PLL is already in the locked condition. The presence of noise may

affect achievable lock range.

5. Jitter Rejection - This represents the PLL’s ability to attenuate short-term timing errors

in the input signal, which might alternatively be viewed as Frequency Modulation of the

fundamental frequency by a combination of noise and unwanted correlated components.

This parameter, largely dictated by the loop filter, is directly related to the Lock Time and

Lock Range. In particular, the requirements on the loop filter for a fast Lock Time (a high

cut-off frequency) are directly opposed to those for achieving good Jitter Rejection (a low

cut-off frequency), so a compromise must be struck. It is possible to get the best of both

worlds by lowering the loop filter cut-off frequency once lock is achieved.

6. Phase Noise - The level of jitter produced by the oscillator itself. In a software model of

a PLL this parameter barely exists, but more generally, as a negative feedback system the

PLL should be able to attenuate its own jitter as well as that present in the input signal.

7. Transient Response - Closely related to the loop transfer function, this parameter defines

the dynamic behaviour of the oscillator with respect to step changes in the input signal.
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Design of a PLL to deliver a particular level of performance requires detailed knowledge of the

input signal. In the case of scene analysis, signal characteristics are concealed within activity

detected by the particular feature being derived. Although the fundamental period may be de-

termined manually by counting frames between crucial scene events, such as by monitoring the

pixels occupied by traffic lights, more subtle ground truth signal structure is much harder to

perceive, being largely stochastic in nature, and distributed throughout the training set.

5.8.5 PLL Evaluation

In the case of the Phase Detector described in Section 5.8.1, the content of a given cycle of scene

activity in isolation is of little value - it is the KLD of a cycle of recent histograms with respect

to other cycles which is important. Analysis of a sizeable block of training data should permit a

sufficiently accurate statistical description of the scene such as to enable sensible decisions to be

made about the requirements of the PLL. The procedure would involve determining both short

and long-term fundamental frequencies in the training data by the method described previously

in Section 5.3.

In the absence of a large body of typical training data, a given PLL configuration may be

analyzed based on synthetic data. Using artificial images generated as described in Section 5.7,

cyclic scene elements may be fabricated with a wide variety of characteristics. Most signifi-

cantly, the frequency may be modulated according to any arbitrary scheme, thus enabling the

PLL’s response in terms of Lock Time, Lock Range, Capture Range and Jitter Rejection all to

be determined directly. However, whilst responses to the synthetic data may be proven in this

manner, the subsequent suitability of a given PLL design for use in a real-world situation is still

a matter for future research.

5.8.6 The PLL as a Frequency Estimator

Given that a PLL can acquire and lock to any frequency in a signal presented to its input, it might

be thought that the complex process of determining K f und described in Section 5.3 could be

dispensed with. However, under certain conditions, it is possible for a PLL to lock to a frequency

component which is unrelated to the dominant fundamental. Furthermore, locking to a multiple

or sub-multiple of the dominant fundamental is also possible. For these reasons, the frequency

capture range of the PLL needs to be restricted by design so that the centre frequency and useful

operating range of the oscillator are in the vicinity of the true fundamental to be acquired. Thus,
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separate approximate evaluation of K f und is necessary, and subsequent PLL design parameters

should be determined directly from it. In addition, the novel Phase Detector as defined in Section

5.8.1 also requires initial knowledge of approximate state cycle length.

5.9 Summary

An algorithm capable of automatically learning periodic activity within a scene has been de-

scribed. The algorithm determines periodicity by analyzing self-similarity of PDF over some

feature with respect to time, and then builds a data driven model across multiple cycles of this

period from the training sequence. The model has been presented in two different ways, firstly

imposing a single global periodicity across a scene, and then on a block-wise basis, supporting

multiple periodicities within the scene. This scalability aspect is likely to be highly relevant in

practical systems.

The spatio-temporal model has been shown to be useful in the context of road junction

surveillance, where traffic regulated by consistently timed signals displays obvious periodicity.

It has been demonstrated by experiment that the method is more discriminating with regard to

the activity of a periodic scene than a model which is oblivious to recurrent temporal trends.

The marked improvement in detection sensitivity comes exclusively from exploiting the learned

model such that the expected instantaneous distribution over feature space is tightly coupled to

the junction state cycle. Furthermore, the method is not tied to any particular feature, and may

be deployed wherever a histogram over feature(s) is available.

By inclusion of a novel phase detector and control loop, it has been shown possible to main-

tain model synchronization in the presence of drift in the fundamental period, and to recover

synchronization following disruption due to noise. The logical progression of the technique is to

permit automatic on-line update of histogram data for a block when its PLL is known to be in the

locked condition. Lock detection should be possible by monitoring the mean and variance of the

Phase Detector output, which will both be small if the system is in lock.
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Chapter 6

Conclusion and Future Work

This thesis has set out to explore the possibility of using various support strategies in segmenta-

tion of foreground from background in video sequences. Here the term foreground refers to any

pixel or object which is deemed unusual in the context of the learned model, and background

represents the normality, which may include dynamic objects and activity. The underlying mo-

tivation is enhancement in the reliability of the decision process by augmenting evidence at a

given pixel with further consensus from its spatio-temporal locality, since there is a limit to what

can be done when considering pixels in isolation. Applications are numerous, but abnormality

detection in the field of surveillance and monitoring represents a strong candidate to benefit from

advanced techniques, whether for on-line threat analysis, or retrospective search.

As concluded in Chapter 2, the available literature strongly suggests that there is considerable

scope for providing or improving local support between pixels in a number of key ways, and the

investigation of each is summarized below.

6.1 Pattern-based Spatial Support

In terms of spatial support, the two most popular current algorithms consist of the per pixel

models [125] offering no pixel linkage, and at the opposite extreme, the subspace models of [94]

imposing total global connectivity. Other contemporary methods use Markov Random Fields

such as [111] in which a fixed penalty cost for a segmentation boundary helps to induce primitive

local support. The algorithm described in Chapter 3 develops the MRF approach further by

imposing penalties dependent on relative cooccurrence of a feature at adjacent image locations.
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The RSLBP4 operator is introduced as a feature representing local image pattern and gradi-

ent direction. This is a simple derivative of the commonly encountered LBP8 operator [136, 93]

which has deliberately been rendered sensitive to orientation. Because it generates only 16 dif-

ferent symbols, a cooccurrence matrix between two adjacent pixel locations has only 256 entries

and is thus practical in terms of memory requirement, and may be adequately estimated with a

modestly sized block of training data.

Cooccurrence between every pair of adjacent pixels in a 4-connected scheme is accumulated

from training data, and used to calculate penalty terms related to the conditional probability of

a symbol given its neighbour. The penalty terms form the inter-pixel weights in a binary graph

cut, yielding a segmentation in which evidence from a pixel’s locality lends support to the back-

ground/foreground decision. Asymmetric arc weights reflect the different mutual conditional

probabilities associated with the direction of the support.

Experiments have shown a useful degree of segmentation improvement in difficult situations

where objects are partially occluded by a fragmented chaotic background, in this case people

walking behind moving foliage.

6.1.1 Future Work

With regard to spatial support, although a model involving separate collection of training data is

described in Chapter 3, it is anticipated that an adaptive on-line derivative would also be possible.

In such a scenario, the cooccurrence database would be built and updated in the light of new in-

coming frames. Providing that a suitable learning rate can be found, the conditional distributions

Ch and Cv between adjacent pixels will approximately converge, become more refined, and be

tracked over time, exploiting the advantage of the ever-increasing body of training data.

From the point of view of the RSLBP4 operator, there are two obvious directions in which to

extend the technique:

1. The scale at which the operator is applied may be too small to yield a useful cooccurrence

distribution, in the sense that all pairs of neighbour symbols are equally likely, and no

selective support can be gained. But downsampling the image before applying the operator

may reveal a more stable structure and useful cooccurrence matrix.

2. Currently the operator deals only with the two spatial dimensions, but a similar operator in

three dimensions based on a 6-connected set of pixels would also be possible. Of course
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the set of generated symbols would increase to 64 and the cooccurrence matrix would then

have 4096 entries, but the new operator would be capable of detecting directional gradients

in the full spatio-temporal field, and thus have scope for capturing a yet wider variety of

motion patterns, such as may be present in a particular application.

With regard to the asymmetric binary graph-cut, there are also attractive extensions:

1. The present algorithm only considers cooccurrence between adjacent pixels in the spatial

plane, but there is no reason why temporal cooccurrence cannot be learned between the

same pixel location in two successive frames, or across a wider time interval. Certainly the

cooccurrence database would become much larger, commanding a greater volume of train-

ing data. But the required graph cut would still be binary, and hence soluble in polynomial

time.

2. Applying a graph cut to induce local support is not limited to being used with RSLBP4.

Any other feature for which a cooccurrence map can be obtained could be substituted. In

fact, any feature exhibiting asymmetric support between two locations may usefully be

exploited using this strategy.

The principle problem with generalizing the cooccurrence concept is the constraint on storage

of the cooccurrence map. For short discrete descriptors this approach is not an issue, but what

is really required is an efficient method of expressing the relationship between adjacent pixels

for any arbitrary continuous distribution. Direct storage of the map implies a dimensionality of

twice that of the chosen feature itself, and the relationship has to be formed between every pair

of adjacent pixels. But although some compression or approximation may well be possible, such

as PCA or Local Linear Embedding (LLE) [105], the computational complexity is likely to be

prohibitive.

6.2 Short-term Temporal Support in Busy Scenes

In many busy surveillance scenes, a significant part of the background is occluded by both ve-

hicles and pedestrians for a large proportion of the time. Such a situation makes it difficult to

reliably estimate the true background with much accuracy, whether using a Gaussian Mixture

Model or an eigenspace model. Although it could be argued that the traffic is an integral part of
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a dynamic background, if it is actually the traffic which is to be subsequently detected as fore-

ground, then ideally for maximum sensitivity, the background model should be constrained to

the truly static elements from which the scene is composed. Of course the question arises as to

how to separate vehicles and pedestrians from everything else, such that they can be ignored.

A method is detailed in [19] for selecting or rejecting image regions principally on the ba-

sis of temporal stability and spatial consistency. Using binary graph cuts and the α-expansion

technique [10] an approximately optimal short-term background may be obtained from a small

temporally localized block of frames by combinatorial optimization. The estimate is achieved by

pixel-wise assembly from the candidate input frames based on penalizing temporal stability and

presence of motion boundaries as the data terms, and intensity matching as the interaction term

between neighbouring pixels.

By applying the algorithm to successive blocks of frames, a series of estimates of the static

background is obtained, from which a conventional eigenspace model may be built. Thus a

degree of pre-filtering is applied to the data, resulting in the removal of much if not all of the un-

wanted clutter, and leaving longer-term effects such as illuminations changes to be incorporated

into the subsequent model.

Chapter 4 describes experiments in which this process is put into practice, showing that

the eigenspace model constructed from the pre-filtered ‘backgrounds’ models a much higher

proportion of scene variance energy with fewer eigenvectors than a model with no pre-filtering.

It is thus concluded that the approach has significant value in terms of background recovery

from busy scenes. The overall result is short-term support amongst appropriately selected pixels,

arrived at by rejecting combinations which fail some generic prerequisites.

Further experiments show that initial labelling of pixels from the candidate input frames

has little practical effect on the exact final labelling, suggesting that the α-expansion process is

reliably efficient, if not always exact. Experiments to vary the size and temporal spacing of the

candidate input frame block, and the balance between the three penalty contributions show the

algorithm to be fairly resilient to the exact choice of these parameters.

6.2.1 Future Work

The algorithm described in Chapter 4 currently relies on choosing the input sampling rate and

the input block size to suit the scene being modelled. Although the method is not particularly

sensitive to the exact values chosen, as the experiments show, it could be made more robust if the
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two parameters were estimated automatically. Given that the effect of inappropriate parameter

choices is to increase the amount of foreground clutter in the short-term estimates, automatic

adjustment should be possible either by maximizing the stability globally across the scene over

a number of estimates, or by monitoring the minimum values of the objective function being

achieved.

The graph in Figure 4.14 shows that above a certain number of images per block, the ad-

vantage gained per extra image in terms of energy minimization becomes small. Thus the op-

timization should maintain the number of images needed to keep the gradient of this graph at

a certain value, trading image estimate purity against processing requirement. Optimization of

the sampling rate should be easier, since according to the curve depicted in Figure 4.16 a clear

minimum in objective function energy is to be found.

6.3 Long-term Temporal Support in Recurrent Scenes

Much is to be found in the literature on the subject of learning motion and activity patterns

in video data relating to a fixed scene, mainly from a surveillance point of view, and with the

principal objective of detecting unusual behaviour with respect to training data [126, 78, 148].

But some types of scene depict activity of a repetitive nature, a prime example being road

traffic junctions regulated by accurately timed traffic lights. Here the activity of vehicles and

pedestrians at the junction may exhibit strong periodicity. In such cases, the task of identifying

motion patterns takes on a new dimension - the possibility of casting the concept of ‘unusual’

behaviour as that which fails to be explained by a specifically periodic model of the road junction.

In fact, in such situations, it should be considered a waste of the available information to ignore

this attribute, yet little is to be found in the literature on solving the problem.

In general, the techniques cited above concentrate on the probabilistic motion of an object

entering a scene, traversing some path across it, and leaving the scene, all as a single event

unrelated in any particular way to other events, apart from their stochastic coincidence. However,

Chapter 5 describes an approach which explicitly models periodic behaviour of objects in a scene,

with a view to detecting vehicles and pedestrians which violate the normal trend of activity.

Crucial to the success of a periodic model is a method of determining the fundamental period

of scene activity. This may be considered locally on a region or block basis in the case of scenes

which manifest multiple periodicity in different areas, or as a single period for the whole image,
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where the model amounts to a ‘signature’ of synchronized motion patterns within the scene. Both

approaches are covered in the experiments described.

Either way, the scene is characterized by a cyclic ring of histograms over some appropriate

feature, which is traversed by a timing index related directly to the phase of activity in the scene

- in the case of the road junction, the traffic light sequence and timing. New frames may be com-

pared with the model by extracting the same feature and comparing with the histogram selected

by the time index, providing this index is correctly synchronized. Errant behaviour of several

vehicles is depicted in experiments involving periodic road junctions by using optical flow or

bounding box aspect ratio as the feature.

In acknowledgment of the need for reliable synchronization between internal model time

index and scene activity in a practical system, Chapter 5 includes a description of an approach

using a Phase Locked Loop (PLL) to explicitly maintain synchronization. By using a novel

software phase detector, the PLL implementation ensures that the model regains synchronization

following disruption of the incoming data stream, and has the capability to overcome small errors

in estimation of the original period.

Overall, use of the periodic model described herein represents an exploitation of behaviour

support due to locality in periodic cycle rather than linear time.

6.3.1 Future Work

So far the method described in Chapter 5 has only been tested on datasets exhibiting cyclosta-

tionary statistics. A practical system for monitoring traffic junctions would need to be able to

adapt do scene statistics which vary over time, possibly daily, such as changes in relative traffic

light timing which anticipate tidal traffic flow. Updating model histogram data from recent input

frames should be possible, but it is essential that this learning process only be allowed to happen

when the PLL is in the locked state. Only under this condition is it certain that scene statistics

are contributing to the correct phase of the model.

The previously mentioned tidal traffic flow is also an example of a periodic process within

another periodic process - the changes in traffic flow over several minutes due to the cycle of the

traffic lights inside a daily shift in overall scene statistics due to the changing dominant flow of

traffic between the beginning and end of the working day. The two periods will not necessarily

be harmonically linked, so a more advanced form of fundamental frequency detection and model

structure would be required. A similar situation might arise if the model were used in a medical
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application to monitor heart activity, in which a separate and unrelated periodicity, perhaps due

to breathing, might affect the visible area.

A basic limitation of the current model is that it deals only with periodic activity. On the other

hand, previous work detailed in Section 2.4.1 describes methods which deal solely with stochastic

behaviour. An important goal of future research would be to define a mathematical framework

which naturally simultaneously encompasses both periodic and stochastic data. Although it is

not yet clear how such a model may be formulated, the current model with a state counter based

approach shares some similarities with the Hidden Markov Model technique detailed by Swears

et al. in [129]. A hybrid model could seamlessly exploit periodic information where it happened

to occur, yet automatically invoke probabilistic model aspects under other conditions.

6.4 Summary

Computer Vision research in general seems to be on a quest for the Holy Grail that is the ‘perfect’

background model, which learns all its own parameters, and avails ideal results in challenging en-

vironments. But in the end, it may well be the operational requirements and available computing

power which dictate the ‘optimal’ approach for any given application. In any case, good tech-

niques are likely to centre on compounding information between pixels to induce spatio-temporal

support in a model, since considering pixels in isolation goes only so far.

This thesis has investigated three radically different support mechanisms in response to the

quest for the ideal background model. None represents a panacea in its own right, but rational-

ization and unification with existing methods to maximize the depth of the modelled information

should be a goal for future research.

It may take many years of research to develop an artificial vision system to rival its biologi-

cal counterpart in terms of both high and low level visual processing. But some types of vision

problem, notably surveillance, stand to benefit significantly from the machine vision approach.

Computer systems hosting vision algorithms are deterministic, have vast storage capacity, and

can communicate quickly over wide areas via high bandwidth data connections. All of these at-

tributes facilitate an operational paradigm unavailable directly to biological systems, so it should

not be surprising that agents based on computer vision may excel in quite different, perhaps

complementary ways from humans.



163

Bibliography

[1] E. H. Adelson and J. R. Bergen. Spatiotemporal energy models for the perception of

motion. Journal of the Optical Society of America A, 2(2):284–299, 1985.

[2] E. H. Adelson and J. Y. A. Wang. Single lens stereo with a plenoptic camera. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2):99–106, 1992.

[3] R. E. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,

Princeton, NJ, 1961.

[4] R. E. Best. Phase-Locked Loops: Theory, Design and Applications. McGraw-Hill, New

York, 1993.

[5] M. J. Black and P. Anandan. A model for the detection of motion over time. In Interna-

tional Conference on Computer Vision, pages 33–37, Osaka, 1990.

[6] A. F. Bobick and J. W. Davis. The recognition of human movement using temporal tem-

plates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(3):257–267,

2001.

[7] O. Boiman and M. Irani. Detecting irregularities in images and in video. International

Conference on Computer Vision, 1:462–469, 2005.

[8] J. E. Boyd. Synchronization of oscillations for machine perception of gaits. Computer

Vision and Image Understanding, 96(1):35–59, October 2004.

[9] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-

rithms for energy minimization in computer vision. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(9):1124–1137, 2004.

[10] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph

cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–

1239, 2001.



164

[11] M. Brand. Incremental singular value decomposition of uncertain data with missing val-

ues. Preprint TR-2002-24, Mitsubishi Electric Research Laboratory, May 2002.

[12] J. R. Bunch and C. P. Nielsen. Updating the singular value decomposition. Numerische

Mathematik, 31:111–129, 1978.

[13] H. Buxton. Learning and understanding dynamic scene activity: a review. Image and

Vision Computing, 21(1):125–136, 2003.

[14] J. F. Canny. A computational approach to edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8:679–714, 1986.

[15] M. Casdagli. Recurrence plots revisited. Physica D, 108:12–44, 1997.

[16] S. Chandrasekaran, B. S. Manjunath, Y. F. Wang, J. Winkeler, and H. Zhang. An

eigenspace update algorithm for image analysis. Graphical Models and Image Processing,

59(5):321–332, September 1997.

[17] S. S. Cheung and C. Kamath. Robust techniques for background subtraction in urban

traffic video. In Proceedings of SPIE Visual Communications and Image Processing 2004,

volume 5308, pages 881–892, January 2004.

[18] L. Cohen. Time-Frequency Analysis: Theory and Applications. Prentice Hall, New Jersey,

1994.

[19] S. Cohen. Background estimation as a labeling problem. In International Conference on

Computer Vision, pages 1034–1041, Beijing, China, October 2005.

[20] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

[21] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial Optimization.

John Wiley and Sons Inc, New York, 1998.

[22] R. Cutler and L. S. Davis. Robust real-time periodic motion detection, analysis, and appli-

cations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):781–796,

2000.



165

[23] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The

complexity of multiterminal cuts. Society for Industrial and Applied Mathematics Journal

on Computing, 23(4):864–894, 1994.

[24] N. Dalal and W. Triggs. Histograms of oriented gradients for human detection. In Inter-

national Conference on Computer Vision and Pattern Recognition, pages 886–893, San

Diego, 2005.

[25] J. Davis. Mosaics of scenes with moving objects. In International Conference on Com-

puter Vision and Pattern Recognition, pages 354–360, 1998.

[26] R. D. DeGroat and R. A. Roberts. Efficient, numerically stabilized rank-one eigenstructure

updating. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(2):301–316,

February 1990.

[27] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological),

39(1):1–38, 1977.

[28] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-

matik, 1:269–271, 1959.

[29] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network with

power estimation. Soviet Math. Doklady, 11:1277–1280, 1970.

[30] E. R. Dougherty and R. A. Lotufo. Hands-on Morphological Image Processing. SPIE

Press, Bellingham, WA, 2003.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley and Sons Inc,

New York, 2001.

[32] J. Edmonds and R. Karp. Theoretical improvements in algorithmic efficiency for network

flow problems. Journal of the Association for Computing Machinery, 19(2):248–264,

1972.

[33] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for background sub-

traction. In European Conference on Computer Vision, pages 2:751–767, Dublin, Ireland,

May 2000.



166

[34] H. L. Eng, K. A. Toh, A. H. Kam, J. Wang, and W. Y. Yau. An automatic drowning

detection surveillance system for challenging outdoor pool environments. In International

Conference on Computer Vision, pages 532–539, Nice, France, October 2003.

[35] R. A. Fisher. Tests of significance in harmonic analysis. In Proceedings of the Royal

Society A, volume 125, pages 54–59, London, 1929.

[36] L. Ford and D. Fulkerson. Maximal flow through a network. Canadian Journal of Math-

ematics, 8:399–404, 1956.

[37] D. A. Forsyth and J. Ponce. Computer vision modern approach. Prentice Hall, 2002.

[38] N. Friedman and S. Russell. Image segmentation in video sequences: A probabilistic

approach. In Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pages

175–181, Providence, Rhode Island, August 1997.

[39] W. A. Gardner, A. Napolitano, and L. Paura. Cyclostationarity: Half a century of research.

Signal Processing, 86(4):639–697, 2006.

[40] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6(6):721–741, November 1984.

[41] M. Gill and A. Spriggs. Assessing the impact of CCTV. Technical Report No. 292, United

Kingdom Home Office Research, Development and Statistics Directorate, February 2005.

[42] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. Journal

of the Association for Computing Machinery, 35(4):921–940, 1988.

[43] O. Goldschmidt and D. S. Hochbaum. Polynomial algorithm for the k-cut problem for

fixed k. Mathematics of Operations Research, 19(1):24–37, 1994.

[44] G. H. Golub. Some modified matrix eigenvalue problems. Society for Industrial and

Applied Mathematics Review, 15(1):318–344, 1973.

[45] S. Gong and T. Xiang. Recognition of group activities using dynamic probabilistic net-

works. In International Conference on Computer Vision, Nice, France, 2003.



167

[46] P. M. Hall, A. D. Marshall, and R. R. Martin. Incremental eigenanalysis for classifica-

tion. In British Machine Vision Conference, pages 286–295, Southampton, UK, September

1998.

[47] P. M. Hall, A. D. Marshall, and R. R. Martin. Merging and splitting eigenspace mod-

els. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9):1042–1049,

September 2000.

[48] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, Cambridge, UK, 2003.

[49] M. H. Hayes. Statistical Digital Signal Processing and Modeling. John Wiley and Sons

Inc, New York, 1996.
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Appendix A

Calculation of Motion Vectors

Although the optical flow vector for an image does not generally directly represent the physical

motion of objects in the scene, for the current purpose, use of the optical flow as a ‘signature’

for types of local motion is entirely reasonable. In a surveillance environment motion is one of

the most important elements in detection of scene activity. However, the problem of deriving

the optical flow field for an image sequence is in general ill-posed when images contain areas of

constant intensity. The optical flow constraint equation

∇I.vp +
∂ I
∂ t

= 0 (A.1)

where ∇I = [ ∂ I
∂x

∂ I
∂y ]

T is the spatial image gradient at point p, enables calculation of the motion

vector v from the ratio of temporal gradient to spatial gradient in two dimensions. This compu-

tation is notoriously sensitive when the spatial gradient is small. The Lucas-Kanade algorithm

solves a set of constraint equations for a local spatial and temporal volume, yielding a more stable

solution. The equation

v = (AT A)−1AT b (A.2)

where A =



∂ I1
∂x1

∂ I1
∂y1

∂ I2
∂x2

∂ I2
∂y2

...
...

∂ I25
∂x25

∂ I25
∂y25


and b =



∂ I1
∂ t

∂ I2
∂ t
...

∂ I25
∂ t


(A.3)
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is the least squares solution to the over-constrained system of optical flow equations determined

at, in this example, the 25 locations in a 5× 5 pixel image block. A fast solution for Equation

(A.2) may be formulated using integral images [135], such that the flow based on any arbitrary

rectangle of pixels within an image may be arrived at in constant time. For the experiments in

Chapter 5, the average flow vector for a whole vehicle was estimated directly from pixels within

its bounding box using this method.

To further stabilize the calculation, a Gaussian filter of variance σ2 = 4 is applied over a

square 11×11 pixel block to each image before evaluating the motion vectors. Although sacri-

ficing spatial resolution, this filter tends to locally turn sharp edges into gentle slopes, leading to

more reliable motion estimates. Figure A.1 shows examples of the motion vectors from a typical

surveillance sequence.

Figure A.1: Examples of the recovered motion vectors in which flow direction and magnitude

for each pixel is derived from a 5×5 pixel block centred on it. Hue indicates direction whilst the

intensity represents vector magnitude.


