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Bayesian Foreground and Shadow Detection in
Uncertain Frame Rate Surveillance Videos

Csaba Benedek,Student member, IEEEand Tamás Szirányi,Senior member, IEEE

Abstract— In in this paper we propose a new model regarding
foreground and shadow detection in video sequences. The model
works without detailed a-priori object-shape information, and it
is also appropriate for low and unstable frame rate video sources.
Contribution is presented in three key issues: (1) we propose
a novel adaptive shadow model, and show the improvements
versus previous approaches in scenes with difficult lighting and
coloring effects. (2) We give a novel description for the foreground
based on spatial statistics of the neighboring pixel values, which
enhances the detection of background or shadow-colored object
parts. (3) We show how microstructure analysis can be used
in the proposed framework as additional feature components
improving the results. Finally, a Markov Random Field model is
used to enhance the accuracy of the separation. We validate
our method on outdoor and indoor sequences including real
surveillance videos and well-known benchmark test sets.

Index Terms— Foreground, Shadow, Texture, MRF.

I. I NTRODUCTION

FOREGROUND detection is an important early vision
task in visual surveillance systems. Shape, size, number

and position parameters of the foreground objects can be
derived from an accurate silhouette mask and used by many
applications, like people or vehicle detection, tracking and
event classification.
The presence of moving cast shadows on the background
makes it difficult to estimate shape [1] or behavior [2] of
moving objects. Since under some illumination conditions40−
50% of the non-background points may belong to shadows,
methods without shadow filtering [3][4][5] can be less efficient
in scene analysis.
In the paper we deal with an image segmentation problem
with three classes:foregroundobjects,backgroundandshadow
of the foreground objects being cast on the background. We
exploit information from local pixel-levels, microstructural
features and neighborhood connection. We assume having a
stable, or stabilized [6] static camera, since it is available
for several applications. Note that there are papers [3][7][8]
focusing on the presence of dynamic background and camera
ego-motion instead of the various shadow effects.
Another important issue is related to the properties of the
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video flow. For several video surveillance applications high-
resolution images are crucial. Due to the high bandwidth
requirement, the sequences are often captured at a low [9] or
unsteady frame rate depending on the transmission conditions.
These problems appear, especially, if the system is connected
to the video sources through narrow band radio channels
or over saturated networks. For another example, quick off-
line evaluation of the surveillance videos is necessary after a
criminal incident. Since all the video streams corresponding
to a given zone should be continuously recorded, these videos
may have a frame rate lower than 1 fps to save up storage
resources.
For these reasons, a large variety of temporal information,like
pixel state transition probabilities [10][11][12], periodicity cal-
culus [2][13], temporal foreground description [3], or tracking
[14][15], are often hard to derive, since they usually need a
permanently high frame rate. Thus, we focus on using frame
rate independent features to ensure graceful degradation if the
frame rate is low or unbalanced. On the other hand, our model
also exploits temporal information for background and shadow
modeling.
A technique used widely for background subtraction is the
adaptive Gaussian mixtures method of [4], which can be
used together with shadow filters of e.g. [16][17][18]. These
methods classify each pixel independently, and morphology
is used later to create homogenous regions in the segmented
image. That way, the shape of the silhouettes may be strongly
corrupted as it is shown in [12][19].
An alternative segmentation schema is a Bayesian approach
[12]. The background, shadow and foreground classes are con-
sidered to be stochastic processes which generate the observed
pixel values according to locally specified distributions.The
spatial interaction constraint of the neighboring pixels can be
modelled by Markov Random Fields (MRF) [20].
Some previous Bayesian methods [21][22] detect foreground
objects by building adaptive models regarding the background
and shadow, and the foreground pixels are purely recognized
as non-matching points to these models. That way, background
or shadow colored object-parts cannot be recognized. Spatial
object description has been used both for interactive [23] and
unsupervised image segmentation [24]. However, in the latter
case, only large objects with typical color or texture are de-
tected, since the model [24] penalizes the small segmentation
classes. The authors in [3] have characterized the foreground
by assuming temporal persistence of the color and smooth
changes in the place of the objects. Nevertheless, in case of
low frame rate, fast motion and overlaying objects, appropriate
temporal information is often not available.
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TABLE I

COMPARISON OF DIFFERENT CORRESPONDING METHODS AND THE PROPOSED MODEL. NOTES: * TEMPORAL FOREGROUND DESCRIPTION, ** PIXEL

STATE TRANSITIONS

Method High frame rate
requirement

Shadow detec-
tion

Shadow param-
eter update

Foreground
estimation from
current frame

indoor / out-
door

texture Dynamic back-
ground

Mikic 2000 [21] No global, constant
ratio

No No outdoor No No

Paragious 2001
[28]

No illumination in-
variant

No No indoor No No

Salvador 2004
[29]

No illumination in-
variant

No No both No No

Martel-Brisson
2005 [31]

No local process Yes No indoor No No

Sheikh 2005 [3] Yes: tfd * No - No both No Yes
Wang 2006 [12] Yes: pst ** global, constant

ratio
No No indoor first ordered

edges
No

Proposed
method

No global,
probabilistic

Yes Yes both different
microstructures

No

Our method (partly introduced in [25]) is a Bayesian technique
which uses spatial color information instead of temporal
statistics to describe the foreground. It assumes that foreground
objects consist of spatially connected parts and these parts
can be characterized by typical color distributions. Sincethese
distributions can be multi-modal, the object-parts shouldnot
be homogenous in color or texture, while we exploit the spatial
information without segmenting the foreground components.
In the literature, different approaches are available regarding
shadow detection. Although there are some methods [26][27]
which attempt to find and remove shadows in the single
frames independently, their performance may be degraded
[26] in video surveillance, where we must expect images
with poor quality and low resolution, while the computational
complexity is too high for practical use [27].
For the above reasons, we focus on video-based shadow mod-
eling techniques in the following. Here the ‘shadow invariant’
methods convert the images into an illumination invariant
feature space: they remove shadows instead of detecting them.
This task is often performed by color space transformation.
Widely used illumination-invariant color spaces are e.g. the
normalized rgb [16][28] andc1c2c3 spaces [29]. [30] exploits
hue constancy under illumination changes to train a weak clas-
sifier as a key step of a more sophisticated shadow detector. We
find an overview of the illumination invariant approaches in
[29] indicating that several assumptions are needed regarding
the reflecting surfaces and the light sources. These assumptions
are usually not fulfilled in a real-world environment. Outdoors,
for example, the illumination is the composition of the direct
sunlight, the diffused light corresponding to the blue sky,
and various additional light components reflected from the
field objects with significantly different spectral distributions.
Moreover, the camera sensors may be saturated, especially in
the case of dark shadows, therefore the measured colors cannot
be calculated by simplified physical models. Since some of
these color spaces ignore the luminance components of the
color, the resulting models become sensitive to noise.
In a ‘local’ shadow model [31] independent shadow processes
are proposed for each pixel. The local shadow parameters
are trained using a second mixture model similarly to the

background in [4]. In this way, the differences in the light
absorption-reflection properties of the scene points can be
notably considered. However, a single pixel should be shad-
owed several times till its estimated parameters converge,
whilst the illumination conditions should stay unchanged.
This hypothesis is often not satisfied in outdoor surveillance
environments, therefore, this local process based approach is
less effective in our case.
We follow another approach: shadow is characterized with
‘global’ parameters in an image (or in each subregion, in case
of videos having separated scene areas with different light-
ings), and the model describes how the background values of
the different sites change, when shadow is projected on them.
We consider the transformation between the shadowed and
background values of the pixels as a random transformation,
hence, we take several illumination artifacts into consideration.
On the other hand, we derive the shadow parameters from
global image statistics, therefore, the model performanceis
reasonable also on the pixel positions where motion is rare.
Color space choice is a key issue in several corresponding
methods. We have chosen the CIE L*u*v* space for two well
known properties: we can measure the perceptual distance
between colors with the Euclidean distance [32], and the
color components are approximately uncorrelated with respect
to camera noise and changes in illumination [33]. Since we
derive the model parameters in a statistical way, there is no
need for accurate color calibration and we use the common
CIE D65 standard. It is not critical to consider the exact
physical meaning of the color components, which is usually
environment-dependent [29]; we use only an approximate
interpretation of theL, u, v components and show the validity
of the model via experiments.
Besides the color values, we exploit microstructure informa-
tion to enhance the accuracy of the segmentation. In some
previous works [7][8] texture was used as the only feature for
background subtraction. That choice can be justified in caseof
strongly dynamic background (like a surging lake), but it gives
lower performance than pixel value comparison in a stable
environment. We find a solution for integrating intensity and
texture differences for frame differencing in [34]. However,
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that is a slightly different task than foreground detection, since
we should compare the image regions to background/shadow
models. Respect to the background class, our color-texture
fusion process is similar to the joint segmentation approach
of [12], which integrates gray level and local gradient fea-
tures. We extend it by using different and adaptively chosen
microstructural kernels, which suit better the local scene
properties. Moreover, we show how this probabilistic approach
can be used to improve our shadow model.
For validation we use real surveillance video shots and also
test sequences from a well-known benchmark set [35]. Table
I summarizes the different goals and tools regarding some of
the above mentioned state-of-the-art methods and the proposed
model. For detailed comparison see also Section VII.
In summary, the maincontributions of this paper can be
divided into three groups. We introduce astatistical shadow
modelwhich is robust regarding the forthcoming artifacts in
real-world surveillance scenes (Section III-B.), and a cor-
responding automatic parameter update procedure, which is
usually missing from previous similar methods (Section V-B).
We introduce a non-object based, spatial description of the
foregroundwhich enhances the segmentation results also in
low frame rate videos (Section IV). Meanwhile, we show how
microstructure analysiscan improve the segmentation in this
framework (Section III-C).
We also have a few assumptions in the paper. First, the camera
stands in place and it has no significant ego-motion. Secondly,
we expect static background objects (e.g. there is no waving
river in the background). The third assumption is related to
the illumination: we deal with one emissive light source in
the scene, however, we consider the presence of additional
diffused and reflected light components.

II. FORMAL MODEL DESCRIPTION

An image S is considered to be a two-dimensional grid
of pixels (sites), with a neighborhood system on the lattice.
The procedure assigns a labelωs to each pixels ∈ S form
the label-set:Φ = {fg,bg,sh} corresponding to three possible
classes: foreground (fg), background (bg) and shadow (sh).
Therefore, the segmentation is equivalent to a global labeling
Ω = {ωs | s ∈ S}. As it is typical, the label fieldΩ is modelled
as a Markov Random Field based on [20].
The image data at pixels is characterized by a 4 dimensional
feature vector:

xs = [xL(s), xu(s), xv(s), xT (s)]
T (1)

where the first three elements are the color components of the
pixel in the CIE L*u*v* space, andxT (s) is a microstructural
response which we introduce in Section III-C in detail. Set
X = {xs|s ∈ S} marks the global image data.
We use a Maximum A Posteriori (MAP) estimator for the
label field, where the optimal labelinĝΩ, corresponding to
the optimal segmentation, maximizes the probability:

P (Ω̂|X) ∝ P (X |Ω̂) · P (Ω̂) (2)

We assume that the observed image data in the different
pixel positions is conditionally independent given a labeling

Ω [36]: P (X |Ω) =
∏
s∈S P (xs|ωs), while to present smooth

connected regions in the segmented image, the a-priori proba-
bility of a labeling,P (Ω), is defined by the Potts model [37].
The key point in the model is to define the conditional density
functionspk(s) = P (xs|ωs = k), for all k ∈ Φ ands ∈ S. For
example,pbg(s) is the probability that the background process
generates the observed feature valuexs at pixels. Later onxs
in the background will also be featured as a random variable
with the probability density functionpbg(s).
We define the conditional density functions in Section III-V,
and the segmentation procedure will be presented in Section
VII in detail. Before continuing, note that in fact we minimize
the minus-log of eq. (2). Therefore, in the following we use the
ǫk(s) = − log pk(s) local energy terms, for easier notation.

III. PROBABILISTIC MODEL OF THE BACKGROUND AND

SHADOW PROCESSES

A. General model

We model the distribution of feature values in the back-
ground and in the shadow by Gaussian density functions, like
e.g. [11][12][35].
Considering the low correlation between the color components
[33], we approximate the joint distribution of the features
by a 4 dimensional Gaussian density function with diagonal
covariance matrix:

Σk(s) = diag{σ2
k,L(s), σ

2
k,u(s), σ

2
k,v(s), σ

2
k,T (s)}

for k ∈ {bg, sh}.
Accordingly, the distribution parameters are
µk(s) = [µk,L(s), . . . , µk,T (s)]

T mean, andσk(s) =
[σk,L(s), . . . , σk,T (s)]

T standard deviation vectors. With this
‘diagonal’ model we avoid matrix inversion and determinant
recovery during the calculation of the probabilities, and the
ǫk(s) = − log pk(s) terms can be directly derived from the
one dimensional marginal probabilities:

ǫk(s) = C +
∑

i={L,u,v,T}

log σk,i(s) +
1

2

(
xi(s)− µk,i(s)

σk,i(s)

)2

(3)
with C = 2 log 2π. According to eq. (3), each feature
contributes with its own additional term to the energy calculus.
Therefore, the model is modular: the one dimensional model
parameters,[µk,i(s), σ2

k,i(s)], can be estimated separately.

B. Color features

The use of a Gaussian distribution to model the observed
color of a single background pixel is well established in
the literature, with the corresponding parameter estimation
procedures such as in [4][38]. We train the color components
of the background parameters [µbg(s), σbg(s)] in a similar
manner to the conventional online K-means algorithm [4].
[µbg,L(s), µbg,u(s), µbg,v(s)]

T vector estimates the mean
background color of pixels measured over the recent
frames, while σbg(s) is an adaptive noise parameter. An
efficient outlier filtering technique [4] excludes most of the
non-background pixel values from the parameter estimation
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Fig. 1. Illustration of two illumination artifacts (the frame in theleft image has been chosen from the ‘Entrance pm’ test sequence).1: light band caused
by a non-Lambertian reflecting surface (a glass door) 2: darkshadow part between the legs (more object parts change the reflected light). The constant ratio
model (see image in themiddle) causes errors, while the proposed model (right image) is more robust.

process, which works without user interaction.
As we have stated in the introduction, we characterize
shadows by describing the background-shadow color value
transformation in the images. The shadow calculus is
based on the illumination-reflection model [39], which has
been originally introduced for constant lighting, flat and
Lambertian reflecting surfaces. Usually, our scene does not
fulfill these requirements. The presented novelty is that we
use a probabilistic approach to describe the deviation of the
scene from the ideal surface assumptions, and get a more
robust shadow detection.

1) Measurement of color in the Lambertian model:Accord-
ing to the illumination model [39] the responseg(s) of a given
image sensor placed at pixels can be written as

g(s) =

∫
e(λ, s)ρ(λ, s)ν(λ)dλ (4)

wheree(λ, s) is the illumination function,ρ(s) depends on the
surface albedo and geometry,ν(λ) is the sensor sensitivity. In
the ‘background’, the illumination function is the composition
of a direct and some diffused-reflected light components,
while a shadowed surface point is illuminated by the diffused-
reflected light only.
With further simplifications [39], eq. (4) implies the well-
known ‘constant ratio’ rule. Namely, the ratio of the shadowed
gsh(s) and illuminated valuegbg(s) of a given surface point
is considered to be constant over the image:gsh(s)

gbg(s)
= A.

The ‘constant ratio’ rule has been used in several applications
[11][12][21]. Here the shadow and background Gaussian terms
corresponding to the same pixel are related via a globally
constant linear density transform. In this way, the results
may be reasonable when all the direct, diffused and reflected
light can be considered constant over the scene. However, the
reflected light may vary over the image in case of several static
or moving objects, and the reflecting properties of the surfaces
may differ significantly from the Lambertian model (See Fig.
1).
The efficiency of the constant ratio model is also restricted
by several practical reasons, like quantification errors ofthe
sensor values, saturation of the sensors, imprecise estimation
of gbg(s) and A, or video compression artifacts. Based on
our experiments (Section VII), these inaccuracies cause poor
detection rates in some outdoor scenes.

Fig. 2. Histograms of theψL, ψu and ψv values for shadowed and
foreground points collected over a 100-frame period of the video sequence
‘Entrance pm’ (frame rate: 1 fps). Each row corresponds to a color component.

2) Proposed model:The previous section suggests that the
ratio of the shadowed and background luminance values of the
pixels may be useful, but not powerful enough as a descriptor
of the shadow process. Instead of constructing a more difficult
illumination model, for example in 3D with two cameras, we
overcome the problems with a statistical model. For each pixel
s, we introduce the variableψL(s) by:

ψL(s) =
xL(s)

µbg,L(s)
(5)

where, as defined earlier,xL(s) is the observed luminance
value ats, andµbg,L(s) is the mean value of the local Gaussian
background term estimated over the previous frames [4].
Thus, if theψL(s) value is close to the estimated shadow
darkening factor,s is more likely to be a shadowed point.
More precisely, in a given video sequence, we can estimate the
distribution of the shadowedψL values globally in the video
parts. Based on experiments with manually generated shadow
masks, a Gaussian approximation seems to be reasonable
regarding the distribution of shadowedψL values (Fig. 2 shows
the globalψ statistics regarding a 100-frame period of outdoor
test sequence ‘Entrance pm’). For comparison, we have also
plotted the statistics for the foreground points, which follows
a significantly different, more uniform distribution.
Due to the spectral differences between the direct and ambient
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illumination, cast shadows may also change theu and v

color components [40]. We have found an offset between the
shadowed and backgroundu values of the pixels, which can
be efficiently modelled by a global Gaussian term in a given
scene (similarly as for thev component). Hence, we define
ψu(s) (andψv(s)) by

ψu(s) = xu(s)− µbg,u(s) (6)

As Fig. 2 shows, the shadowedψu(s) andψv(s) values follow
approximately normal distributions.
Consequently, the shadow color process is characterized bya
three dimensional Gaussian random variable:

∀s ∈ S : ψ(s) = [ψL(s), ψu(s), ψv(s)]
T ← N [µψ, σψ]

According to eq. 5 and 6, the color values in the shadow at
each pixel position are also generated by Gaussian distribu-
tions,

[xL(s), xu(s), xv(s)]
T ← N [µsh(s), σsh(s)]

with the following parameters:

µsh,L(s) = µψ,L · µbg,L(s) (7)

σ2
sh,L(s) = σ2

ψ,L · µ
2
bg,L(s) (8)

Regarding theu (and similarly to thev) component:

µsh,u(s) = µψ,u + µbg,u(s), σ2
sh,u(s) = σ2

ψ,u (9)

The estimation and the time dependence of parameters
[µψ, σψ] are discussed in Section V-B.

C. Microstructural features

In this section, we define the4th dimension of the pixels’
feature vectors (eq. (1)), which contains local microstructural
responses.

1) Definition of the used microstructural features:Pixels
covered by a foreground object often have different local
textural features from the background at the same location,
moreover, texture features may identify foreground points
with background or shadow like color. In our model, texture
features are used together with color components and they
enhance the segmentation results as an additional component
in the feature vector. Therefore, we make restrictions regarding
the texture features: we search for components that we can
get by low additional computing time from the existing model
elements, in exchange for some accuracy.
According to our model, the textural feature is retrieved from
a color feature-channel by using microstructural kernels.For
practical reasons, and following the fact that the human visual
system mainly percepts textures as changes in intensity, weuse
texture features only for the ‘L’ color component. A noveltyof
the proposed model is (as being explained in Section III-C.3)
that we may use different kernels at different pixel locations.
More specifically, there is a set of kernel coefficients for each
site s: Ks = {as(r)|r ∈ Ns}, whereNs is the set of pixels
arounds covered by the kernel. FeaturexT (s) is defined by:

xT (s) =
∑

r∈Ns

as(r) · xL(r) (10)

2) Analytical estimation of the distribution parameters:
Here, we show that with some further reasonable assump-
tions, the features defined by eq. (10) have also Gaussian
distribution, and the distribution parameters[µk,T (s), σk,T (s)],
k ∈ {bg, sh} can be determined analytically.
As a simplification we exploit that the neighboring pixels have
usually the same labels, and calculate the probabilities by:

pk(s) = P (xs|ωs = k) ≈ P (xs|ωr = k, r ∈ Ns)

This assumption is inaccurate near the border of the objects,
but it is a reasonable approximation if the kernel size (and the
size of setNs) is small enough. To ensure this condition, we
use3× 3 kernels in the following.
Accordingly, with respect to eq. (10),xT (s) in the background
(and similarly in the shadow) can be considered as a linear
combination of Gaussian random variables from the following
setΛs:

Λs = {xL(r)| r ∈ Ns} (11)

wherexL(r) ← N [µbg,L(r), σbg,L(r)]. We assume that the
xL(r) variables have joint normal distribution, therefore,
xT (s) is also Gaussian with parameters[µbg,T (s), σbg,T (s)].
The mean valueµbg,T (s) can be determined directly [41] by

µbg,T (s) =
∑

r∈Ns

as(r) · µbg,L(r) (12)

On the other hand, to estimate theσbg,T (s) parameter, we
should model the correlation between the elements ofΛs.
In effect, thexL(r) variables inΛs are non-independent, since
fine alterations in global illumination or camera white balance
cause correlated changes of the neighboring pixel values.
However, very high correlation is not usual, since strongly
textured details or simply the camera noise result in some
independence of the adjacent pixel levels. While previous
methods have ignored this phenomenon e.g. by considering
the features to be uncorrelated [12], our goal is to give a
more appropriate statistical model by estimating the orderof
correlation for a given scene.
We model the correlation factor between the ‘adjacent’ pixel
values by a constant over the whole image. Letq and r be
two sites in the neighborhood ofs (q, r ∈ Ns), and denote the
correlation coefficient betweenq andr by cq,r. Accordingly,

cq,r =

{
1 if q = r

c if q 6= r

where c is a global constant. To estimatec, we randomly
choose some pairs of neighboring sites. For each selected site
pair (q, r), we make a setIq,r from time stamps correspond-
ing to common background occurrences of pixelsq and r.
Thereafter, we calculate the normalized cross correlationĉq,r

between time series{x[t]L (q)|t ∈ Iq,r} and {x[t]L (r)|t ∈ Iq,r},
where t indices are time stamps of thexL measurements.
Finally, we approximatec by the average of the collected
correlation coefficientŝcq,r over all selected site pairs.
Thereafter, we can calculateσ2

bg,T (s) according to the variance
theorem for sum of random variables [41]:

σ2
bg,T (s) =

∑

q,r∈Ns

as(q) · as(r) · σbg,L(q) · σbg,L(r) · cq,r

(13)
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Similarly, the Gaussian shadow parameters regarding the mi-
crostructural components by using eq. (7), (8), (12):

µsh,T (s) =
∑

r∈Ns

as(r) · µψ,L · µbg,L(r) = µψ,L · µbg,T (s)

(14)
σ2
sh,T (s) = σ2

ψ,L

∑

q,r∈Ns

bq,r(s) (15)

where

bq,r(s) = as(q) · as(r) · µbg,L(q) · µbg,L(r) · cq,r

3) Strategies for choosing kernels:In the following we
deal with zero-mean kernels(∀s :

∑
r∈Ns

as(r) = 0) as
a generalization of simple first-order edge features by [12].
Here we face an important problem from an experimental
point of view. Each kernel has an adequate pattern, for which
it generates a significant nonzero response, while most of the
pixel-neighborhoods in an image are ‘untextured’ with respect
to it. Therefore, one single kernel is unable to discriminate an
‘untextured’ object point on an ‘untextured’ background.
An evident enhancement uses several kernels which can recog-
nize several patterns. However, increasing the number of the
microstructural channels would intensify the noise, because
at a given pixel position all the ‘inadequate’ kernels give
irrelevant responses, which are accumulated in the energy term
eq. (3).
To overcome the above problem, we use one microstructural
channel only (see eq. (1)), and we use the most appropriate
kernel at each pixel. Our hypothesis is: if the kernel response
at s is significant in the background, the kernel gives more in-
formation for the segmentation there. Therefore, after we have
defined a kernel set for the scene, at each pixel positions the
kernel having the highest absolute response in the background
centered ats is used. According to our experiments, different
kernel-sets, e.g. corresponding to the Laws-filters [42], or the
Chebyshev polynomials [43][42], produce similar results.In
the following sections we use the kernels shown in Fig. 3,
which we have found reasonable for the scenes. Regarding the
‘Entrance pm’ sequence, each kernel of the set corresponds to
a significant number of background points according to our
choice strategy (distributed as 44-19-22-15%), showing that
each kernel is valuable.

Fig. 3. Kernel-set used in the experiments: 4 of the impulse response arrays
corresponding to the3× 3 Chebyshev basis set proposed by [43]

IV. FOREGROUND PROBABILITIES

The description of background and shadow characterizes the
scene and illumination properties, consequently it has been
possible to collect statistical information about them in time.
In our case, the color distribution regarding the foreground
areas is unpredictable in the same way. If the frame rate

is very low and unbalanced, we must consider consecutive
images containing different scenarios with different objects.
Previous works [21][22] used uniform distribution to describe
the foreground process which agrees with the long-term color
statistics of the foreground pixels (Fig. 2), but it presents
a weak description of the class. Since the observed feature
values generated by the foreground, shadow and background
processes overlap strongly in numerous real world scenes,
many foreground pixels are misclassified that way.
Instead of temporal statistics we use spatial color information
to overcome this problem by using the following assumption:
whenevers is a foreground pixel, we should find foreground
pixels with similar color in the neighborhood. Consequently, if
we can estimate the color statistics of the nearby foreground
sites, we can decide if a pixel with a given color is likely
part of the foreground or not. Unfortunately, when we want to
assign a probability value to a given pixel describing its fore-
ground membership, the positions of the nearby foreground
pixels are also unknown. However, to estimate the local color
distribution, we do not need to find all foreground pixels, just
some samples in each neighborhood. The key point is that
we identify some pixels whichcertainly correspond to the
foreground: these are the pixels having significantly different
levels from the locally estimated background and shadow
values, thus they can be found by a simple thresholding:

ω0
s =

{
fg if (ǫbg(s) > ζ) AND (ǫsh(s) > ζ)
bg otherwise

(16)

whereζ is a threshold (which is analogous with the uniform
value in previous models [22] choosingǫfg(s) = ζ), andω0

s

is a ‘preliminary’ segmentation label ofs.
Next, we estimate for each pixels the local color distribution
of the foreground, using thecertainly foreground pixels in the
neighborhood ofs. The procedure is demonstrated in Fig. 4
(for easier visualization with 1D grayscale feature vectors).
We use the following notations:F denotes the set of pixels
marked ascertainly foreground elements in the preliminary
mask:

F = {r | r ∈ S, w0
r = fg}

Note thatF may be a coarse estimation of the foreground
(Fig. 4b).
Let beVs the set of the neighboring pixels arounds, consid-
ering a rectangular neighborhood with window sizem × m
(Fig. 4a). Thereafter,Fs is defined with respect tos as the
set of neighboring pixels determined as ‘foreground’ by the
preprocessing step:Fs = F ∩ Vs (Fig. 4c).
The foreground color distribution arounds can be character-
ized by a normalized histogramhs overFs (Fig. 4d). However,
instead of using the noisyhs directly, we approximate it by a
‘smoothed’ probability density function,fs(x), and determine
the foreground probability term aspfg(s) = fs(xs).1

To deal with multi-colored or textured foreground components,
the estimatedfs(.) function should be multi-modal (see a

1In the spatial foreground model, we must ignore the texturalcomponent
of x, since different kernels are used in different pixel locations, and the
microstructural responses of the various pixels may be incomparable. Thus in
this section,x is considered to be a three dimensional color vector, andhs a
three dimensional histogram.
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Fig. 4. Determination of the foreground conditional probability term for a given pixels (demonstrated in grayscale). a) video image, with markings and
its neighborhoodVs (with window sidem = 45). b) noisy preliminary foreground mask c) SetFs: preliminary detected foreground pixels inVs. (Pixels of
Vs\Fs are marked with white.) d) Histogram ofFs, markingxs, and itsτ neighborhood e) Result of fitting a weighted Gaussian term for the [xs−τ, xs+τ ]
part of the histogram. Here,ζ = 2.71 is used (it would be the foreground probability value for each pixel according to the ‘uniform’ model), but the procedure
increases the foreground probability to4.03. f) Segmentation result of the model optimization with the uniform foreground calculus g) Segmentation result
by the proposed model

bimodal case in Fig. 4d). Note that we usefs(.) only to
calculate the foreground probability value ofs asfs(xs). Thus,
it is enough to estimate the parameters of the mode offs(.),
which coversxs (see Fig. 4e). Therefore, we considerfs(.) as
a mixture of a weighted Gaussian termη(.) and a residual term
ϑs(.), for which we only prescribe thatϑs(.) is a probability
density function andϑs(x) = 0 if ‖xs − x‖ < τ . (κs is a
weighting factor:0 < κs < 1.) Hence,

fs(x) =
[
κs · η(x|µs,Σs) + (1− κs) · ϑs(x)

]

Accordingly, the foreground probability value of sites is sta-
tistically characterized by the distribution of its neighborhood
in the color domain:

ǫfg(s) = − log fs(xs) = − log κs − log η(xs|µs,Σs)

The steps of the foreground energy calculation are detailed
in Fig. 5. We can speed up the algorithm, if we calculate
the Gaussian parameters by considering only some randomly
selected pixels inFs [19]. We describe the parameter settings
in Section V-A and in Table II.

V. PARAMETER SETTINGS

Our method works with scene-dependent and condition-
dependent parameters.Scene-dependentparameters can be
considered constant in a specific field, and are influenced by,
e.g. camera settings, a-priori knowledge about the appearing
objects or reflection properties. We provide strategies on how
to set these parameters if a surveillance environment is given.
Condition-dependentparameters vary in time in a scene,
therefore, we use adaptive algorithms to follow them.
We emphasize two properties of the presented model. Regard-
ing the background and shadow processes, only the one dimen-
sional marginal distribution parameters should be estimated
(Section III-A). On the other hand, we should estimate here the
color-distribution parameters only, since the mean-deviation
values corresponding to the microstructural component are
determined analytically (see Section III-C.2).

Algorithm 1: foreground probability calculation
1) The pixels ofFs whose pixel values are close enough toxs

are collected into a set:

FDs = {r | r ∈ Fs, ‖xs − xr‖ < τ}

2) The empirical mean and deviation values are calculated
regarding the color levels of setFDs : µDs , σDs . These values
estimate the mean and deviation parameters of the Gaussian
componentη(.).

3) Denote by#H the number of the elements in a given set

H . κ(1)
s =

#FD

s

#Fs
is introduced as the ratio of the number

of pixels with similar color tos and all pixels, among the
neighboring foreground initialized sites.

4) An extra term is used to keep the probability low if there are
none or only a few foreground pixels in the neighborhood.
Denote byκ(2)

s = #Fs

m2 the ratio of the number of pixels in
Fs and the size of the neighborhoodVs. This term biases
the weight through a sigmoid function:

κs = κ(1)
s ·

1

1 + exp [−(κ
(2)
s − κmin/2)]

(17)

5) Finally, the energy term is calculated as:

ǫfg(s) = − log κs − log η(xs, µ
D
s , σ

D
s ) (18)

Fig. 5. Algorithm for the estimation of the foreground probability term.
Notations are defined in Section IV.

A. Background and foreground model parameters

Thebackgroundparameter estimation and update procedure
is automated, based on the work in [4], which presents
reasonable results, and it is computationally more effective
than the standard EM algorithm.
The foregroundmodel parameters (Section IV) correspond to
a-priori knowledge about the scene, e.g. the expected size
of the appearing objects and the contrast. These features
exploit basically low-level information and are quite general,
therefore the method is able to consider a large variety of
moving objects in a scene. In our experiments, we set these

Author manuscript, published in IEEE Trans. on Image Processing, vol. 17, no. 4, pp. 608-621, 2008

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



8

TABLE II

FOREGROUND PARAMETER SETTINGS

Parameter Definition and setting strategy
m the size of the neighborhood windowVs in pixels consid-

ered in the process. It depends on the expected size of the
objects in the scene, usedm = 1/3

√
TB , whereTB is

the approximate average territory of the objects’ bounding
boxes

κmin control parameter for the minimum required number of
pre-classified foreground pixels in the neighborhood. If
the ratio of the pixels and the size of the neighborhood
is smaller thanκmin, the foreground probability will be
low there, due to the sigmoid function of eq. (17). Small
κmin increases the number of detected foreground pixels
and can be used if the objects are of compact shape like
in the sequence ‘Highway’. Otherwise smallκmin causes
high false foreground detection rate. Applyingκmin = 0.1
for vehicle monitoring andκmin = 0.25 for pedestrians
(including cyclists, baby carriages etc.) proved to be good.

τ the threshold parameter which defines the maximum dis-
tance in the feature space between pixels generated by
one Gaussian process. We use outdoors in high contrast,
τ = 0.2 · dmax, indoorsτ = 0.1 · dmax, wheredmax

is the maximum occurring distance in the feature space.

Fig. 6. Different periods of the day in the ‘Entrance’ sequence, segmentation
results. Above left: in the morning (‘am’), right: at noon, below left: in the
afternoon (‘pm’), right: wet weather.

parameters empirically. Table II shows a detailed overview
on the foreground parameters and how to set them. Notes on
parameterζ are given in Section VII and in Fig. 15.

B. Shadow parameters

The changes in the global illumination significantly alter
the shadow properties (Fig. 6). Moreover, changes can be
performed rapidly: indoors due to switch on/off different light
sources, while outdoors due to the appearance of clouds.
Regarding the shadow parameter settings, we discriminate
parameter initialization and re-estimation. From a practical
point of view, initialization may be supervised with marking
shadowed regions in a few video frames by hand, once after
switching on the system. Based on the training data, we
can calculate maximum likelihood estimates of the shadow
parameters. On the other hand, there is usually no opportunity
for continuous user interaction in an automated surveillance
environment, thus the system must adopt the illumination
changes raising a claim to an automatic re-estimation proce-
dure.

Fig. 7. Shadowψ statistics on four sequences recorded by the ‘Entrance’
camera of our University campus. Histograms of the occurring ψL, ψu and
ψv values of shadowed points. Rows correspond to video shots from different
parts of the day. We can observe, the peak of theψL histogram strongly
depends on the illumination conditions, while the change inthe other two
shadow parameters is much smaller.

Fig. 8. ψ statistics for all non-background pixels. Histograms of the
occurringψL, ψu andψv values of the non-background pixels in the same
sequences as in Figure 7.

For the above reasons, we use supervised initialization, and
focus on the parameter adaption process in the following. The
presented method is built into a 24-hour surveillance system
of our university campus. We validate our algorithm via four
manually evaluated ground truth sequences captured by the
same camera under different illumination conditions (Fig.6).
According to section III-B, the shadow parameters are 6
scalars: 3-3 components ofµψ respectivelyσψ vectors. Fig. 7
shows the one-dimensional histograms for the occurringψL,
ψu andψv values of shadowed points for each video shot. We
can observe that while the variation of parametersσψ, µψ,u
andµψ,v are low,µψ,L varies in time significantly. Therefore,
we update the parameters in two different ways.

1) Re-estimation of parameters [µψ,u, σψ,u] and
[µψ,v, σψ,v]: The procedure is similar to which was
used in [22]. We show it regarding theu component only,
since thev component is updated in the same way.
We re-estimate the parameters at fixed time-intervalsT .
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Denoteµψ,u[t], σψ,u[t] the parameters at timet. Wt is the set
containing the observedψu values collected over the pixels
detected as shadow between timet and t+ T :

Wt = {ψ
[φ]
u (s)|φ = t, . . . , t+ T − 1, ω[φ]

s = sh, s ∈ S}

where upper index[φ] refers to time,#Wt is the number of the
elements,Mt andDt are the empirical mean and the standard
deviation values ofWt. We update the parameters:

µψ,u[t+ T ] = (1 − ξt)µψ,u[t] + ξtMt

σ2
ψ,u[t+ T ] = (1− ξt)σ

2
ψ,u[t] + ξtD

2
t

Parameterξt is a weighting term (0 ≤ ξt ≤ 1) depending
on #Wt, namely greater number of detected shadow points
increaseξt and the influence of theMt respectivelyD2

t term.
We useT = 60 sec.

2) Re-estimation of parameters[µψ,L, σψ,L]: Parameter
µψ,L corresponds to the average background luminance dark-
ening factor of the shadow. Except from window-less rooms
with constant lightning,µψ,L is strongly condition dependent.
Outdoors, it can vary between 0.6 in direct sunlight and 0.95in
overcast weather. The simple re-estimation from the previous
section does not work in this case, since the illumination
properties between timet and t + T may rapidly change a
lot, which would result in absolutely false detected shadow
values in setWt presenting falseMt andDt parameters for
the re-estimation procedure.
For this reason, we derive the actualµψ,L from the statistics
of all non-backgroundψL-s (where the background filter-
ing should be done by a good approximation only, we use
the Stauffer-Grimson algorithm). In Fig. 8 we can observe
that the peaks of the ‘non-background’ψL-histograms are
approximately in the same location as they were in Fig. 7.
The video shots corresponding to the first and second rows
were recorded around noon where the shadows were relatively
small, however, the peak is still in the right place in the
histogram.
These experiments encourage us to identifyµψ,L with the
location of the peak on the ‘non-background’ψL-histograms
for the scene.
The description of the update-algorithm ofµψ,L is as follows.
We define a data structure which contains aψL value with
its timestamp:[ψL, t]. We store the ‘latest’ occurring[ψL, t]
pairs of the non-background points in a setQ, and update
the histogramhL of the ψL values inQ continuously. The
key point is the management of setQ. We define MAX and
MIN parameters which control the size ofQ. The queue
management algorithm, which is introduced in Fig. 9, follows
four intentions:

• Q contains always the latest availableψL values.
• The algorithm keeps the size ofQ between prescribed

bounds MAX and MIN ensuring the topicality and rele-
vancy of the data contained.

• The actual size ofQ is around MAX in case of cluttered
scenarios.

• In the case of few or no motion in the scene, the
size ofQ decreases until MIN. This fact increases the
influence of the forthcoming elements, and causes quicker

Algorithm 2: updating the µψ,L shadow parameter
1) For each framet we determine:

Ψt = { [ψ
[t]
L (s), t] | s ∈ S, ω[t]

s 6= bg}

2) We appendΨt to Q.
3) We may remove elements fromQ:

• if #Q < MIN, we keep all the elements.
• if #Q ≥ MIN we find the eldest timestampte in Q

and remove all the elements fromQ with time stamp
te.

4) If #Q > MAX after step 3: in order of their timestamp
we remove further (‘old’) elements from#Q till we reach
#Q ≤ MAX.

5) We update the histogramhL regardingQ and apply:

µ
[t+1]
ψ,L = argmax{hL}

Fig. 9. Updating algorithm for parameterµψ,L.

adaptation, since it is faster to modify the shape of a
smaller histogram.

Parameterσψ,L is updated similarly toσψ,u but only in the
time periods whenµψ,L does not change significantly.
Note that the above update process may fail in scenarios free
of shadows. However, that case occurs mostly under artificial
illumination conditions, where the shadow detector module
can be switched off using a priori knowledge.

VI. MRF OPTIMIZATION

The MAP estimator in eq. (2) is realized by combining
a conditional independent random field of signals and an
unconditional Potts model [37]. The optimal segmentation
corresponds to the global labeling,Ω̂, defined by

Ω̂ = argminΩ
∑

s∈S

− logP (xs|ωs)︸ ︷︷ ︸
ǫωs

(s)

+
∑

r,s∈S

Θ(ωr, ωs) (19)

where the minimum is searched over all the possible segmen-
tations (Ω) of a given input frame. The first part of eq. (19)
contains the sum of the local class-energy terms regarding the
pixels of the image (see eq. (3) and eq. (18)). The second part
is responsible for the smooth segmentation:Θ(ωr, ωs) = 0 if
s andr are not neighboring pixels, otherwise:

Θ(ωr, ωs) =

{
−β if ωr = ωs
+β if ωr 6= ωs

In applications using the Potts-MRF models, the quality of
the segmentation depends both on the appropriate probabilistic
model of the classes, and on the optimization technique which
finds a good global labeling with respect to eq. (19). The
latter factor is a key issue, since finding the global optimumis
NP hard [44]. On the other hand, stochastic optimizers using
simulated annealing (SA) [20][45] and graph cut techniques
[44][46] have proved to be practically efficient offering a
ground to validate different energy models.
The results shown in Section VII have been generated by a SA
algorithm which uses the Metropolis criteria [47] for accepting
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new states2, while the cooling strategy changes the temperature
after a fixed number of iterations. The relaxation parameters
are set by trial and error taking aim at the maximal quality.
Comparing the proposed model to reference MRF methods is
done using the same parameter settings.
After verifying our model with the above stochastic optimizer,
we have also tested some quicker techniques for practical
purposes. We have found the deterministic Modified Metropo-
lis (MMD) [36] relaxation algorithm similarly efficient but
significantly faster for this task: processing320× 240 images
runs with 1 fps. We note that a coarse but quick MRF
optimization method is the ICM algorithm [48]. If we use
ICM with our model, the running speed is3 fps, in exchange
for some degradation in the segmentation results.

VII. R ESULTS

The goal of this section is to demonstrate the benefit of
using the introduced contributions of the paper: the novel
foreground calculus, the shadow model and the benefit of the
textural features. The demonstration is done in two ways:
in Fig. 10–15 we show segmented images by the proposed
and previous methods, while regarding three sequences we
perform numerical evaluation.

A. Test sequences

We have validated our method on several test sequences.
Here, we show results regarding the following 7 videos:

• ‘Laboratory’ test sequence from the benchmark set [35].
This shot contains a simple environment where previous
methods [12] have already produced accurate results.

• ‘Highway’ video [35]. This sequence contains dark shad-
ows, but homogenous background without illumination
artifacts. In contrast with [21] our method reaches the
appropriate results without post processing, which is
strongly environment-dependent.

• ‘Corridor’ indoor surveillance video. Although, it is on
the face of a simple office environment the bright objects
and background elements often saturate the image sensors
and it is hard to accurately separate the white shirts of
the people from the white walls in the background.

• 4 surveillance video sequences captured by the ‘Entrance’
(outdoor) camera of our university campus in different
lightning conditions. (Fig 6). These sequences contain
difficult illumination and reflection effects and suffer
from sensor saturation (dark objects and shadows). Here,
the presented model improves the segmentation results
significantly versus previous methods.

B. Demonstration of the improvements via segmented images

In the introduction we gave an overview on the state-of-
the art methods (Table I) indicating their way of (i) shadow
detection (ii) foreground modeling (iii) textural analysis.

2A state is a candidate for the optimal segmentation.

1) Comparison of shadow models:Results of different
shadow detectors are demonstrated in Fig. 11. For the sake of
comparison we have implemented in the same framework an
illumination invariant (‘II’) method based on [29], and a con-
stant ratio model (‘CR’), similarly to [21]. We have observed
that the results of the previous and the proposed methods are
similar in simple environments, but our improvements become
significant in the surveillance scenes:

• In the ‘Laboratory’ sequence, the ‘II’ approach is rea-
sonable, while the ‘CR’ and the proposed method are
similarly accurate.

• Regarding the‘Highway’ video, although the ‘II’ and
‘CR’ find the objects without shadows approximately, the
results are much noisier than it is with our model.

• On the‘Entrance am’surveillance video, the ‘II’ method
fails completely: shadows are not removed, while the
foreground component is also noisy due to the lack of
luminance features in the model. The ‘CR’ model also
produces poor results: due to the long shadows and
various field objects the constant ratio model becomes
inaccurate. Our model handles these artifacts robustly.

The improvements of the proposed method versus the ‘CR’
model can be also observed in Fig. 14 (2nd and5th row).

2) Comparison of foreground models:In this paper we
have proposed a basically new approach regarding foreground
modeling, which needs neither high frame rate, in contrast
to [3][11][12], nor high level object descriptors [15]. Other
previous models [21][22] that have used the uniform calculus
expressing foreground may generate any colors in a given
domain with the same probability. As it is shown in Fig. 12, 13
and 14 (3rd and5th rows), the uniform model is often a coarse
approximation, and our method is able to improve the results
significantly. Moreover, we have observed that our model is
robust with respect to fine changes in the threshold parameter
ζ (Fig. 15, 3rd row). On the other hand, the uniform model
is highly sensitive to setζ appropriately, even in scenarios
which can be segmented properly with an adequate uniform
value (Fig. 15,2nd row).

3) Microstructural features:Complementing the pixel-level
feature vector with the microstructural component enhances
the segmentation result if the background or the foregroundis
textured. To demonstrate the additional information, Fig.10
shows a synthetic example. Consider Fig. 10a as a frame of a
sequence where the bright rectangle in the middle corresponds
to the foreground (image v. shows an enlarged part of it). The
background consists of four equal rectangular regions, each
of them has a particular texture, which are enlarged in i-iv.
images. Similarly to the real-world case, the observed pixel
values are affected by Gaussian noise. Below, we can see
results of background subtraction. First (image b), the feature
vector only consists of the gray value of the pixel. Secondly
(image c), we complete it with horizontal and vertical edge
detectors similarly to [12]. Finally (image d), we use the
kernel set of Fig. 3, with the proposed kernel selection strategy,
providing the best results.
In Fig 14, the4th and5th rows show the segmentation results
with and without the textural components, improvements are
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observable in the fine details, especially near the legs of the
people in the magnified regions.

C. Numerical evaluation

The quantitative evaluations are done through manually
generated ground truth sequences. Since the goal is foreground
detection, the crossover between shadow and background does
not count for errors.
Denote the number of correctly identified foreground pixels
of the evaluation sequence byTP (true positive). Similarly,
we introduceFP for misclassified non-foreground points, and
FN for misclassified foreground points.
The evaluation metrics consists of theRecall rate and the
Precisionof the detection.

Recall =
TP

TP + FN
Precision =

TP

TP + FP

For numerical validation, we used 100 frames from the ‘En-
trance pm’ sequence and 50-50 frames from the ‘Highway’
and ‘Entrance am’ video shots.
Advantages of using Markov Random Fields versus morphol-
ogy based approaches were examined previously [12][19],
therefore, we focus on the state-of-the-art MRF models. The
evaluation of the improvements is done by exchanging our new
model elements one by one for the latest similar solutions in
the literature, and we compare the segmentation results.
Regarding shadow detection, the ‘CR’ model is the reference,
and we compare the foreground model to the ‘uniform’
calculus again.
In Table III, we compare the shadow and foreground model
to the reference methods. The results confirm that our shadow
calculus improves the precision rate, since it decreases the
number of false negatively detected shadow pixels signif-
icantly. Due to the proposed foreground model, the recall
rate increases through detecting several background/shadow
colored foreground parts. If we ignore both improvements both
evaluation parameters decrease (#1 in Table III).

VIII. C ONCLUSION

The present paper has introduced a general model for
foreground segmentation without any restrictions on a-priori
probabilities, image quality, objects’ shapes and speed. The
frame rate of the source videos might also be low or unstable,
and the method is able to adapt to the changes in lighting
conditions. We have contributed to the state-of-the-art inthree
areas: (1) we have introduced a more accurate, adaptive
shadow model; (2) we have developed a novel description for
the foreground based on spatial statistics of the neighboring
pixel values; (3) We have shown how different microstructure
responses can be used in the proposed framework as additional
feature components improving the results.
We have compared each contribution of our model to previous
solutions in the literature, and observed its superiority.The
proposed method now works in a real-life surveillance system
(see Fig. 6) and its efficiency has been validated.

Fig. 10. Synthetic example to demonstrate the benefits of themicrostructural
features. a) input frame, i-v) enlarged parts of the input, b-d) result of
foreground detection based on: (b) gray levels (c) gray levels with vertical
and horizontal edge features [12] (d) proposed model with adaptive kernel

Fig. 11. Shadow model validation:Comparison of different shadow models
in 3 video sequences (From above: ‘Laboratory’,‘Highway’,‘Entrance am’) .
Col. 1: video image, Col. 2:C1C2C3 space based illumination invariants [29].
Col. 3: ‘constant ratio model’ by [21] (without object-based postprocessing)
Col 4: Proposed model
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Fig. 12. Foreground model validation:Segmentation results on the ‘Highway’ sequence. Row 1: video image; Row 2: results by uniform foreground model;
Row 3: Results by the proposed model

TABLE III

VALIDATION OF THE MODEL ELEMENTS. RESULTS WITH (#1) ‘CONSTANT RATIO’ SHADOW MODEL WITH THE ‘ UNIFORM’ FOREGROUND MODEL(#2)

‘ CONSTANT RATIO’ SHADOW MODEL WITH THE PROPOSED FOREGROUND MODEL(#3) ‘UNIFORM’ FOREGROUND MODEL WITH THE PROPOSED SHADOW

MODEL, (#4) RESULTS WITH OUR PROPOSED SHADOW AND FOREGROUND MODEL

Video Recall Precision
#1 #2 #3 #4 #1 #2 #3 #4

Entrance pm 0.89 0.97 0.85 0.96 0.66 0.62 0.85 0.83
Entrance am 0.85 0.92 0.86 0.93 0.62 0.63 0.82 0.81
Highway 0.82 0.84 0.86 0.90 0.73 0.72 0.80 0.80

Fig. 13. Foreground model validationregarding the ‘Corridor’ sequence.
Col. 1: video image, Col. 2: Result of the preliminary detector. Col. 3: Result
with uniform foreground calculus Col 4: Proposed foreground model

ACKNOWLEDGMENT

The authors would like to thank Zoltan Kato, Levente
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