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Abstract 

We developed a robust event detection and retrieval system for surveillance video. 

The proposed system offers vision-based capabilities for the detection and tracking of 

various objects of interest, and can recognize events such as: 1. a person with certain 

attributes being present in the scene; 2. two people meeting; 3. people carrying bags; 

4. bags being dropped; 5. bags being stolen; 6. bags being exchanged; 7. two people 

handshaking; 8. one person’s pointing gesture. We use an improved adaptive Gaussian 

mixture model for background modeling and foreground detection; a connected 

component labeling algorithm is then employed to label the foreground pixels. A 

Kalman filter approach is used to build models for the entities of interest (people and 

bags), which is combined with color histograms for tracking. We use shape symmetry 

analysis and color histograms to detect people carrying bags. Our experiments 

demonstrate the ability to search for instances of events according to specific attributes 

in large video sequences. 
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Chapter 1. Introduction 

Intelligent video surveillance is an important research topic in computer vision and 

has been widely used in many applications nowadays. Benefitting from the 

development of computer vision (and related fields) algorithms and computational 

capabilities, such as the expansion of massive digital storage or the more advanced 

video compression and intelligent learning algorithms, video surveillance systems are 

more and more powerful. For example, in an airport, an automated video surveillance 

system may be able to detect potential threats such as leaving a bag unattended; in a 

store, video surveillance may be used to detect and track people and/or analyze 

customer flow. For families with little children, such systems may be able to detect 

potentially dangerous activities that could hurt a child, and alert parents to prevent them. 

In traffic applications, video surveillance systems could detect and track vehicles and 

pedestrians in order to optimize the timing of traffic lights.  

The main goal of automated, video-based surveillance systems is to understand 

the activities in a scene as captured by a video stream, and give the (high-level) analysis 

results to human operators. This requires real-time processing, robust algorithms for 

the detection and tracking of objects of interest (such as vehicles, humans, or objects 

they are interacting with) and activity recognition and/or classification. In this thesis 

we developed a system for automated recognition and retrieval of events from 

surveillance video. 

The rest of the thesis is organized as follows. Chapter 2 discusses the previous 

work in video surveillance systems and their components: background modeling and 

foreground detection, blob detection and tracking, human activity recognition. Chapter 

3 gives a detailed description of our approach. Chapter 4 provides the experimental 
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results of our approach. Chapter 5 concludes this work and discusses potential 

directions of future work. 
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Chapter 2. Previous Work 

Most video surveillance systems have to address the following general sequence 

of tasks: first, they have to detect the moving objects from either a static or moving 

camera (with static cameras more often being used), such as people and objects they 

interact with, or vehicles. In this task, background modeling and foreground detection 

is a common and popular approach. Background modeling involves learning a dynamic 

model that represents the background of a scene, which should not contain moving 

objects. Each current image is then subtracted from the background image and the 

difference is used to segment out the foreground image, that typically corresponds to 

the objects of interest present in the scene. Subsequently, the system should be able to 

track the detected objects - i.e., continuously determine the location, shape, velocity 

and other information about these objects, such as distance from the camera (depth). 

Since the foreground regions are often moving objects, tracking them is relevant as 

both their temporal and spatial characteristics can be useful for recognizing activities 

in the scene. Next, the system should be able to recognize various kinds of activities 

(events), either predefined or generic. For example, in traffic applications, video 

surveillance systems could be designed to detect vehicles, their license plates and 

events such as a vehicle running a red light; in a security system, it would be relevant 

to detect people and their activities, such as interactions between humans or with 

various objects. Video surveillance systems have a wide range of applications and can 

have many other components and functionalities as well. In the following subsections, 

we will discuss the tasks of a typical video surveillance system, with examples of 

previous work for each. 
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2.1 Background Modeling and Foreground Detection 

Moving image regions are usually the entities most relevant in a video. In order to 

detect moving objects such as walking people in a sequence of images, one of the most 

frequently used approaches is background modeling and foreground detection, which 

is also an important first step in many other computer vision applications. The main 

goal of the background modeling and foreground detection is to classify each pixel in 

an image as background of foreground, based on a previously acquired model of the 

background (that does not contain any moving objects). Figure 1 is an example of 

background modeling and foreground detection.  

 
Figure 1. Original image (left); detected foreground (right). 

 

Background modeling can be difficult since the background could be affected by 

many factors; for example, the background might exhibit small motions or even large 

changes, such as those induced by rain or snow, waving tree branches, or moving water. 

Illumination conditions can also have an effect, for example in an outdoor environment, 

the light from the sun gradually changes with time, or indoors the flickering of artificial 

lighting may change the illumination suddenly, and the shadows of moving objects can 

be a problem as well since they will be detected as foreground. The presence of random 

noise in images is also a difficult issue. Figure 1 illustrates a problem with the person’s 
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lower body (which should be part of the foreground) where pixel values similar to the 

background result in a failure to detect this as part of the foreground. A good 

background model should be able to address such complex issues; otherwise 

foreground detection would fail and thus affect the subsequent tasks and the whole 

system performance.  

Many algorithms have been developed for background modeling and foreground 

detection in recent years, with [1] being a good survey paper of such techniques. Here 

we give a brief introduction to some traditional algorithms. 

A very simple method is to use the median [2] or the average [3] of several frames 

over time as the background image. By subtracting the background image from the 

current image and thresholding the absolute value of the difference we can classify the 

pixels as foreground of background: 

If |𝐼(x, y)–  𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑(x, y)| >  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then foreground pixel 

Otherwise background pixel 

These methods are based on a single threshold, which is very sensitive to noise 

and cannot adapt to dynamic backgrounds, thus failing in the presence of changing and 

noisy complex backgrounds. 

Statistical background modeling methods have been very popular since 1990s, 

when many background modeling techniques have been developed based on statistical 

approaches. Pfinder [4] assumes a single Gaussian model for each pixel independently 

in the image. This method needs a training period to learn the background model where 

there should be no foreground object in the scene. The mean µ and the variance σ of 

the model at time t+1 will be updated recursively based on their values at time t and 

the current pixel intensity value as follows: 



 6 

ttt uF )1(11     

22

1

2

1 )1()( tttt F     

where Ft+1 is the pixel intensity value and α is the learning rate. In the current image, 

each pixel value will be compared with its model, to check if the pixel intensity is 

within a threshold of the mean: 

 *11 ThF tt    

then the pixel is considered as a background pixel, otherwise a foreground pixel. 

Several improvements have been proposed based on the single Gaussian model. For 

example, the HSV color space is used instead of RGB space for modeling the 

background in [5]. Since HSV separates the intensity and chromatic information, using 

HSV can improve the robustness of the model to illumination changes. 

The single Gaussian model can be used for situations where changes of 

background illumination and motion are small and gradual. However, this model is still 

not powerful enough to handle more complex situations, such as shadows and waving 

trees. 

Based on the single Gaussian model, [7] proposed to use a Gaussian mixture model 

(GMM) to model background that can be more dynamic and complex. Similar to the 

single Gaussian model, GMM assumes that each pixel can be independently modeled 

by multiple Gaussian components based on the recent history of that pixel. The 

probability of observing the current pixel value is: 

P(𝑋𝑡) = ∑ 𝜔𝑖,𝑡 ∙ 𝜂(𝑋𝑡 ,  𝜇𝑖,𝑡 , 𝛴𝑖,𝑡)

𝐾

𝑖=1

 

where K is the number of Gaussian components, which can be specified by the user, 

with 3 to 5 typically used. Parameters 𝜔𝑖,𝑡,  𝜇𝑖,𝑡 , 𝛴𝑖,𝑡 are estimates of the weight, the 
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mean value and the covariance matrix of the ith Gaussian component in the mixture 

at time t, respectively, and 𝜂 is a Gaussian probability density function:  

𝜂(𝑋𝑡 ,  𝜇 , 𝛴) =  
1

(2𝜋)
𝑛
2|𝛴|

1
2

𝑒−
1
2

(𝑋𝑡−𝑢𝑡)𝑇𝛴−1(𝑋𝑡−𝑢𝑡)
 

In [7], the covariance matrices are constrained to be diagonal by assuming that the 

RGB color components are independent. Thus the distribution of recently observed 

values of each pixel is modeled by a mixture of K Gaussians. 

 Regarding the initialization of the parameters (weights, mean, covariance), 

Stauffer et al. [7] claimed that using an expectation maximization algorithm on each 

pixel would be expensive. Instead, an online K-means approximation is used. When a 

new frame comes at time t+1, each new observed pixel value 𝑋𝑡+1 is checked against 

the existing K Gaussians distribution until a match is found, where a match is defined 

as: 

((𝑋𝑡+1 − 𝑢𝑖,𝑡)
𝑇

𝛴𝑖,𝑡
−1(𝑋𝑡+1 − 𝑢𝑖,𝑡))

1 2⁄

< 𝑘𝜎 

where k is set to 2.5 in their paper. If a match is found, the pixel is then classified as 

the same group with that distribution, and the parameters of that Gaussian distribution 

are updated as follows: 

𝜔𝑖,𝑡+1 = (1 − 𝛼)𝜔𝑖,𝑡 + 𝛼 

𝜇𝑖,𝑡+1 = (1 − 𝜌)𝑢𝑖,𝑡 + 𝜌 ∙ 𝑋𝑡+1 

𝜎𝑖,𝑡+1
2 = (1 − 𝜌)𝜎𝑖,𝑡

2 + 𝜌(𝑋𝑡+1 − 𝜇𝑖,𝑡+1) ∙ (𝑋𝑡+1 − 𝜇𝑖,𝑡+1)
𝑇
 

where 𝛼 is a constant learning rate, ρ =  𝛼 ∙  𝜂(𝑋𝑡+1 ,  𝜇𝑖 
, 𝛴𝑖). 

More details about these update equations can be found in [1] [7] [41]. If none of 

the K distributions is matched with the current sample, the least probable distribution 
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k is replaced by a new distribution (Gaussian component) with the current value as its 

mean value, an initially high variance, and low prior weight.  

The Gaussian mixture models have been well studied, illustrating their advantages 

and disadvantages. For example, the number of Gaussians components is constant and 

should be pre-determined manually; the initialization/training stage requires a quite 

large number of frames without any moving objects. Many improvements have been 

proposed to address the drawbacks of GMM. For example, in our system we used an 

improved adaptive GMM for background modeling [39]. 

Using multiple Gaussian probability distributions gives the model capability to be 

adaptive for scenes where there are slow multimodal variations. However, when 

dealing with dynamic backgrounds like waving trees, this model does not perform well. 

In order to deal with backgrounds that have large areas with small motions, Elgammal 

et al. [8] proposed a non-parametric model approach for background modeling. They 

use a kernel density function K to model each pixel based on the N most recent samples 

of pixel intensity values, as follows: 

𝑃(𝑥𝑡) =
1

𝑁
∑ 𝐾(𝑥𝑡 − 𝑥𝑖)

𝑁

𝑖=1

 

where K(.) is the kernel density function. A standard Gaussian distribution is usually 

used for K(.), thus we can rewrite the above formula as: 

P(𝑥𝑡) =
1

𝑁
∑

1

(2𝜋)𝑑 2⁄ |𝛴|1 2⁄
𝑒−

1
2

(𝑥𝑡−𝑥𝑖)𝑇𝛴−1(𝑥𝑡−𝑥𝑖)

𝑁

𝑖=1

 

Similar to GMM, Elgammal et al. [8] constrained the covariance matrices to be 

diagonal by assuming that the RGB color components are independent, thus the 

probability density function can be further rewritten as follows: 
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P(𝑥𝑡) =
1

𝑁
∑ ∏

1

√2𝜋𝜎𝑗
2

𝑑

𝑗=1

𝑒−
1
2

(𝑥𝑡−𝑥𝑖)𝑇 𝜎𝑗
2⁄

𝑁

𝑖=1

 

For each new frame, each pixel 𝑥𝑡 is classified as a background or foreground 

pixel based on its probability density function P(𝑥𝑡) compared with a threshold T. 

Elgammal used two background models: a short term model, which consists of the 

most recent N background sample values; and a long term model, which consists of N 

pixels sampled from a larger window over time. Combining the two models for 

foreground detection has the advantage to eliminate the persistent false positives 

detection from the short term model and extra false positives detection that occur in 

the long term model results [1][8].  

Use kernel density estimation for background modeling can handle fast changes 

in backgrounds. However, the algorithm is not computationally efficient. Several 

improvements have been proposed based on KDE [42] [43] [44], we refer the reader 

to those papers for further details. 

In addition to statistical background modeling, many other algorithms have been 

developed for background modeling. For example, Culbrik et al. [45] proposed to train 

a neural network where the background area is represented by the weights. Messelodi 

et al. [46] used a Kalman filter to estimate the background, where if a pixel is 

significantly different from its predicted value by the filter, then it is considered 

foreground. Clustering methods have also been used in background modeling. K-

means [47] and Codebook [6] have been used to classify the samples into groups. 

 

2.2 Blob Extraction 



 10 

Background modeling and foreground detection determine whether a pixel is a 

background or a foreground pixel as a binary mask; however, it does not tell how pixels 

are related to each other in morphology. Blob Extraction (alternatively called 

connected component labeling) is an application in graph theory, which has been 

widely used in computer vision and pattern recognition to detect connected regions. A 

component labeling algorithm finds all connected components and assigns a unique 

label to all points in the same component. It is generally performed on binary images. 

Figure 2 is an example of a connected component labeling (figure from [25]). 

 
Figure 2. Example of a connected component labeling 

Several algorithms for connected components labeling have been proposed. 

Suzuki et al. [9] classified them into four categories: (1) algorithms [10,11] that 

perform multiple passes over the data; (2) algorithms [12 ,14,15] that perform two 

passes over the data; (3) algorithms [16,17,18,19] that use hierarchical tree structures 

to represent the image; (4) parallel algorithms [20,21,22] for parallel machine models. 

All these algorithms use a scanning operation, which checks whether the surrounding 

pixels of a current pixel have been assigned a label already or not to determine the label 

for the current pixel. 
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The idea of the algorithms in the first category is simple and easy to implement. It 

simply repeats the scanning through the data back and forth until all pixels have a label. 

Assumes that all the foreground pixels have the value 255 (white), and all the 

background pixels have value 0 (black). A simple recursive labeling algorithm is to 

first scan the image to find an unlabeled white pixel and assign it a new label L, then 

recursively assign L to all of its white neighbors, and stop if there are no more unlabeled 

white pixels around. This procedure is repeated until no more white pixels are 

unlabeled in the whole image. The algorithm does not require extra space, however, it 

requires a very high number of iterations and is not computation efficient. 

An easy to implement sequential approach in category 2 is called the two-pass 

algorithm [9], which requires two passes over the binary image: one pass to assign 

provisional labels to each pixel and record the equivalence information among pixels 

in a table array; the second pass to replace each provisional label by the smallest label 

of its equivalence class, which is usually performed by using a search algorithm such 

as the Union-Find algorithm with pointer based rooted trees [16,23, 24]. A simple 

conventional two-pass connected component labeling algorithm [25] is described as 

follows: 

(1) Scan the image from left to right, top to bottom. 

(2) If the pixel is foreground (white) and unlabeled, then: 

a)  If only one of its upper and left neighbors has a label or both have the same 

label, then copy the label. 

b)  If its upper and left neighbors have different labels, then copy the upper’s label 

and enter the labels in the equivalence table as equivalent labels. 
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c)  Otherwise assign a new label, which is the current label value increased by 1 

to this pixel and enter this label in the equivalence table with the new label 

value. 

(3) If there are no more foreground pixels around the current pixel to consider, go to 

step 2. 

(4) Find the lowest label for each equivalent set in the equivalence table. 

(5) Scan the image and replace each label by the lowest in its equivalent set. 

 

In the conventional two-pass algorithm, the number of iterations depends on the 

geometric complexity of the image data. Suzuki et al. proposed a linear-time algorithm 

for labeling connected components in binary images based on sequential local 

operations [9]. A one-dimensional table called the label connection table T, which 

memorizes label equivalences information, is used for uniting equivalent labels 

successively during the operations in forward and backward raster directions. Suzuki’s 

algorithm assigns the provisional labels as follows: 

The first scan: 

𝑔(𝑥, 𝑦) = {

𝐹𝐵, 𝑖𝑓 𝑏(𝑥, 𝑦) = 𝐹𝐵

m, (𝑚 = 𝑚 + 1), 𝑖𝑓 ∀{𝑖, 𝑗 ∈ 𝑀𝑠}𝑔(𝑥 − 𝑖, 𝑦 − 𝑗) = 𝐹𝐵

𝑇𝑚𝑖𝑛(𝑥, 𝑦), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑇𝑚𝑖𝑛(𝑥, 𝑦) = 𝑚𝑖𝑛[{𝑇[𝑔(𝑥 − 𝑖, 𝑦 − 𝑗)]|𝑖, 𝑗 ∈ 𝑀𝑠}]. 

where 𝐹𝐵  means the pixel is a background pixel, m is the label value, which is 

initialized to 1, 𝑀𝑠 indicates the region of the mask. The label connection table is 

updated simultaneously with the assignment of the provisional labels as follows: 

{

𝑛𝑜𝑛𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑖𝑓 𝑏(𝑥, 𝑦) = 𝐹𝐵

T[𝑚] = m, 𝑖𝑓 ∀{𝑖, 𝑗 ∈ 𝑀𝑠}𝑔(𝑥 − 𝑖, 𝑦 − 𝑗) = 𝐹𝐵

𝑇[𝑔(𝑥 − 𝑖, 𝑦 − 𝑗)] = 𝑇𝑚𝑖𝑛(𝑥, 𝑦), 𝑖𝑓 𝑔(𝑥 − 𝑖, 𝑦 − 𝑗) ≠ 𝐹𝐵
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After the first scan, the backward scan and the forward scan are performed alternately. 

This algorithm is based on only sequential local operations, and it has an execution 

time directly proportional to the number of pixels in connected components in the 

image. 

 

2.3 Object Tracking  

Object tracking is an important task in computer vision. Its task is to estimate the 

trajectory of an object in the image sequence as the object moves in the scene. In other 

words, a tracker assigns consistent labels to the detected objects in different frames of 

a video. Additionally, depending on the tracking domain, a tracker can also provide 

object-specific information, such as orientation, scale, area, or shape. A tracker usually 

consists of three parts [13]: (1) an appearance model (such as color information) which 

measures the similarity of the object between the previous and the current frame; (2) a 

motion model which connects the locations of the object; and (3) a search strategy for 

finding the most likely location. 

Tracking objects can be difficult due to many reasons. When capturing the video, 

some information is lost by projecting the 3D world to 2D images. Various entities (for 

example people) can have a non-rigid complex motion as well as a non-rigid shape. 

Object occlusion is significant in real situations, which makes tracking even more 

difficult. Illumination changes and imaging noise also pose problems for object 

tracking. 

Given these difficulties, we can simplify tracking by imposing some constraints 

on the motion and/or appearance of objects. It is possible to assume that the object 

motion is smooth with no abrupt changes. Prior information such as the number, the 
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size, the appearance and the shape of the objects can also be helpful in simplifying the 

problem. Numerous approaches for object tracking have been proposed. Here we give 

a brief description of these methods. 

 

2.3.1 Kalman Filter Tracking 

The Kalman filter [28] was proposed in 1960 as a recursive solution to the discrete 

data liner filtering problem. Since then, the Kalman filter has been used in many 

domains; in computer vision, the Kalman filter has been employed for object tracking 

and autonomous or assisted navigation. From a mathematical viewpoint, the Kalman 

filter and its extensions are an estimator which predicts and corrects the state of either 

linear or non-linear processes. This section will describe how the Kalman filter can be 

used in the problem of object tracking. 

Denote 𝑋𝑘 as the state vector at time k, 𝑍𝑘 as the measurement (or the observed) 

vector at time k, then the Kalman filter equation is: 

𝑋𝑘 = 𝐴𝑋𝑘−1 + 𝐵𝑈𝑘 + 𝑊𝑘 

𝑍𝑘 = 𝐻𝑋𝑘 + 𝑉𝑘 

where A is the state transition model applied to the previous state 𝑋𝑘−1 , U is an 

optional control vector to the state X, B is the optional control input model applied to 

U, W is the process noise which is usually assumed to be Gaussian noise with mean 0, 

H is the observation model which maps the true state vector to the observed data vector, 

and V is the observation noise which is assumed to be Gaussian noise with mean 0 as 

well. The Kalman filter consists of two phases: the first is predict, which uses the 

previous state vector to predict the current state vector; the second phase is update, 
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which combines the predicted current state vector and current observation information 

to refine the state estimate. Below is how the model is predicted and updated: 

Predicted state estimate:    �̂�𝑘|𝑘−1 = 𝐴𝑘�̂�𝑘−1|𝑘−1 + 𝐵𝑘𝑈𝑘 

Predicted estimate covariance:  𝑃𝑘|𝑘−1 = 𝐴𝑘𝑃𝑘−1|𝑘−1𝐴𝑘
𝑇 + 𝑄𝑘 

where 𝑃 is the posterior error covariance matrix and 𝑄 is the covariance of Gaussian 

noise of W. The update phase is as follows: 

Measurement residual:  �̂�𝑘 = 𝑍𝑘 − 𝐻𝑘�̂�𝑘|𝑘−1 

Residual covariance:   𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇 + 𝑅𝑘 

Optimal Kalman gain:  𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘
𝑇𝑆𝑘

−1 

Updated state estimate:  �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘�̂�𝑘 

Updated estimate covariance: 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 

 The Kalman filter has been used in object tracking, where the object’s geometric 

information such as location, shape, size, center can be seen as the state in the Kalman 

filter, and the observed state of the object is used to update the equation. 

 

2.4 Bag Detection 

While detecting and tracking people is an important task in video surveillance 

systems, detecting and tracking objects that people interact with is also important and 

even more challenging. In this section, we focus on the detection and tracking of bags 

that people carry in an image sequence. 

The W4 system [31] use an approach called backpack [32], which combines two 

basic observations to analyze people carrying objects. The first observation is that 

human body shape is considered to be symmetric; the second is the periodic motion 
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exhibited by people walking. Backpack utilizes each person’s silhouette, which is 

represented by a projection histogram. The vertical and horizontal projection 

histograms are computed by projecting the binary foreground region onto axes 

perpendicular to and along the major axis, respectively. Backpack computes a center 

axis for each person’s silhouette model by using Principal Component Analysis [33]. 

Figure 3 is an example of the silhouette model, the center axis. Figure 4 is an example 

of the projection histogram (figure 3, 4,5 are from [31]). 

 

Figure 3.Silhouette based shape feature:(a) input image, (b) detected foreground, 

(c)major axis, (d)contour of its boundary 

 

Figure 4. Horizontal (left) and vertical projection histogram 
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After generating the information above, a simple symmetry analysis is conducted 

on the information based on the body axis and the silhouette. Figure 5 illustrates this, 

where the gray areas are considered non-symmetric and the black areas are symmetric.  

 
Figure 5. Example of non-symmetry analysis 

Periodicity information is combined with the symmetry analysis to decide whether 

pixels correspond to objects carried by a person. The periodicity is computed by using 

the similarities of the last N projections over time. A non-symmetric region which does 

not have significant periodic motion is considered as an object carried by a person, 

otherwise it corresponds to a body part. 

Similar to [31], approaches in [32] and [34] proposed methods to detect carried 

objects by comparing temporal templates against view-specific exemplars generated 

offline for unencumbered pedestrians. A likelihood map of protrusions, obtained from 

the match, is combined in a Markov random field for spatial continuity, from which 

they obtain a segmentation of carried objects using the maximum posteriori probability 

(MAP) solution. 

 

2.5 Video Surveillance and Human Activity Detection 
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2.5.1 Video Surveillance 

 Video surveillance is an important research area concerning the real-time 

observation of entities of interest (e.g., people, vehicles) in an environment, resulting 

in a description of the activities of the objects within the environment. In general, a 

video surveillance system consists of the following procedures: background modeling 

and foreground detection, blob extraction, blob tracking, and if necessary, trajectory 

analysis and activity analysis. There are several video surveillance systems that have 

been developed. 

 Pfinder [4] is a real-time system for tracking people and interpreting their behavior. 

The system uses a multi-class statistical model of color and shape to obtain a 2D 

representation of head and hands in a wide range of viewing conditions. Pfinder has 

been successfully used in a wide range of applications including wireless interfaces, 

video databases, and low-bandwidth coding. 

KidRooms [35] is a tracking system based on “closed world regions.” These are 

regions of space and time in which the specific context of what is in the regions is 

known. These regions are tracked in real-time domains where object motions are not 

smooth or rigid and where multiple objects are interacting. It was one of the first 

multiple people, fully automated, interactive, narrative environment ever constructed 

using non-encumbering sensors. 

 W4 [31] is a real time visual surveillance system for detecting and tracking 

multiple people and monitoring their activities in an outdoor environment. W4 employs 

a combination of shape analysis and tracking to locate people and their parts (head, 

hands, feet, and torso) and to create models of people's appearance so that they can be 

tracked through interactions and occlusions. It can determine whether a foreground 
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region contains multiple people and can segment the region into its constituent people 

and track them. W4 can also determine whether people are carrying objects, can 

segment objects from their silhouettes and construct appearance models for them so 

they can be identified in subsequent frames. W4 can recognize events involving people 

and objects, such as depositing an object, exchanging bags, or removing an object. 
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Chapter 3. Description of Our Approach 

3.1 Overview of Our System 

The proposed vision-based event detection and retrieval system for surveillance is able 

to recognize events such as: 1. One person being present in the scene; 2. Two people 

meeting; 3. Two people shaking hands; 4. One person performing a pointing gesture; 

5. People carrying bags; 6. People dropping bags; 7. People stealing bags; 8. Two 

people exchanging bags. All these events can be constrained by adding specific visual 

attributes for the people involved. Figure 6 is the flow diagram of our system.  

 
Figure 6. System Overview 

In order to take advantage of depth data for better foreground detection and 

tracking, we use a single Kinect to capture videos as the input for our system. The 

following paragraphs provide a brief description of how we process the captured visual 

data.  
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First, the image frames containing both RGB and depth data from Kinect are used 

by the background modeling and foreground detection module. The detected 

foreground is then used by the blob extraction module to generate blobs; the blobs are 

then processed by a blob analysis module to decide whether they are noise (as the 

foreground detection does not guarantee perfect results), or contain one or multiple 

people. 

Second, the color histograms of these blobs are computed, and combined with the 

Kalman filter tracker to match the blobs with existing people and bags. If a blob is 

matched with a person, the information of the person will be updated; if it is matched 

with a bag, then the bag might be dropped since itself is an individual blob; if this 

happens, further analysis is done to confirm whether it is a dropped bag or not; if the 

blob is not matched with anything, then we assume that the blob might be a new person. 

Third, after updating people and bags status, another module is used to detect 

activities involving people and bags. We consider the following activities in this bag-

related context: bag being dropped by a person, being picked up, being stolen, and bag 

being exchanged between two people; for people-only activities, we detect these 

following events: people walking, people meeting, people handshaking and one person 

pointing something to another person. In the following sections, we describe the details 

of our approach for each module. 

 

3.2 Background Modeling and Foreground Detection  

As discussed before, background modeling and foreground detection is a very 

important step prior to other procedures in many computer vision applications. The 

results of background modeling and foreground detection are usually propagated to 
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higher level modules and thus have heavy impact on the quality of the whole system. 

For our system, we tested several algorithms and decided to use an improved adaptive 

Gaussian mixture model [39] for foreground detection, which is very fast and produces 

generally good results. 

 The Gaussian mixture model that we used can automatically choose the number 

of Gaussians that are needed for each pixel, thus fully adapting to the scene 

characteristics. As discussed in section 2.1, the equation used to update the weights of 

a Gaussian mixture model is: 

�̂�𝑚 = �̂�𝑚 + 𝛼(𝑜𝑚
(𝑡)

− �̂�𝑚) 

where �̂�𝑚  is the weight of Gaussian m in a pixel model, 𝛼  is an exponentially 

decaying envelope to limit the effect of old samples, 𝑜𝑚
(𝑡)

 is set to 1 if the new sample 

is close to the Gaussian m, otherwise 0, where the distance is defined as the 

Mahalanobis distance. The method used to update the weight is by adding (as prior 

knowledge) coefficients c to the equation. 

 Since we are using a multinomial distribution, prior knowledge can be utilized for 

better estimation. We denote a coefficient 𝑐𝑚 as the number of samples that belong to 

Gaussian m a priori, then the Dirichlet prior [40] is: 

P =  ∏ 𝜋𝑚
𝑐𝑚

𝑀

𝑚=1
 

By using the Dirichlet prior, we accept that the Gaussian m exists only if there is 

enough evidence from the previous samples. 

 Assume that the number of samples belonging to Gaussian m from time 1 to t is: 

𝑛𝑚 = ∑ 𝑜𝑚
(𝑖)𝑡

𝑖=1 . 

Taking the Dirichlet prior into account, the Maximum Likelihood Estimation is: 
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𝜕

𝜕�̂�𝑚
(𝑙𝑜𝑔𝐿 + 𝑙𝑜𝑔𝑃 + 𝜆 (∑ �̂�𝑚 − 1

𝑀

𝑚=1
)) = 0 

where L = ∏ 𝜋𝑚
𝑛𝑚𝑀

𝑚=1 , and 𝜆 is the Lagrange multiplier to constrain the weights to 

sum to 1. According to [41], we use negative coefficients 𝑐𝑚 =  −𝑐. Solving the MLE, 

we get: 

�̂�𝑚
(𝑡)

=
∑ 𝑜𝑚

(𝑖)𝑡
𝑖=1 − 𝑐

𝑡 − 𝑀𝑐
 

If we assume that c/t is fixed to 𝑐𝑇 = 𝑐/𝑇 with some large 𝑇 and 1 − M𝑐𝑇 ≈ 1, 

we can rewrite the formula above as a recursive equation: 

�̂�𝑚 = �̂�𝑚 + 𝛼(𝑜𝑚
(𝑡)

− �̂�𝑚) − 𝛼𝑐𝑇 

where 𝛼 = 1/t. The equation above is used as the weight update equation in our 

system. For each pixel, we start modeling by using only one Gaussian distribution, and 

new Gaussians are added if none of the current Gaussian models are matched with the 

current sample. Gaussians whose weight becomes negative will be discarded. Figure 7 

and Figure 8 show example results using the method described above. 

 

Figure 7. Original image (left); detected foreground (right) 
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Figure 8. Original image (left); detected foreground (right) 

 

3.3 Blob Extraction and Analysis 

Background modeling and foreground detection determine whether a pixel 

belongs to the background or foreground. In order to integrate the foreground pixels 

into regions, we use a blob extraction algorithm. In our system, we use a two-pass 

connected component labeling algorithm as discussed in Section 2.2, as it provides 

good results in terms of both accuracy and speed. 

Once the blobs are obtained, we cannot use the raw blobs directly for subsequent 

processing for several reasons. First, the background modeling and foreground 

detection does not guarantee absolutely reliable results - for example, when there is a 

large area of false foreground detection due to abrupt changes of illumination, the 

resulting blobs should not be used for further processing and thus must be ignored. In 

our approach we impose simple constrains for the blobs by limiting their size, width 

and height that cannot exceed a certain ratio of the image size. Second, multiple objects 

may be adjacent and connected, and they will be detected as a single blob in the blob 

extraction step. To make the subsequent processing easier, at this time we need to 

decide whether there are multiple people in a single blob. Figure 9 shows a situation 

when two people are adjacent, with only one blob detected. 
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Figure 9. Original image where two people are adjacent (left) ; detected foreground 

of the original image, with only one blob (right). 

 

We use a similar approach to W4 that deals with people in groups [31]. Our method 

has two phases: first, we try to determine whether there are multiple people in a blob 

by identifying the number of potential heads; second, if the number of potential heads 

is larger than 1, the blob will be split into sub-blobs, which will be used to match with 

existing people, where the matching method is described later in this chapter. 

Considering a general situation where a group of people are adjacent, we assume 

that their heads lie on the silhouette boundary and are visible most of the time. Based 

on this assumption and the fact that the head is always at the top of a blob, we use the 

vertical projection histogram of the binary silhouette to detect heads. Between each 

two adjacent peaks at the top of the blob, we denote the number of pixels that belong 

to the head by n1, and denote the number of pixels that are between two peaks but do 

not belong to the blob (the “gap” between two heads) by n2. We threshold the two 

numbers and their ratio in order to decide whether they may be two heads.  

If the number of potential heads n is larger than 1, the blob is split into n sub-

blobs equally. These sub-blobs are then verified by matching with the existing people 
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models, according to the method described later. If a sub-blob is not matched, it is 

discarded. 

This simple multiple people analysis performs well in our experiments. For the 

frames with people totally occluded by others, they are ignored since we employ other 

mechanisms to deal with such issues during later stages of processing. 

 

3.4 Human Tracking 

Tracking is another important step in video surveillance systems. We use a method 

that combines Kalman filter tracking and a simple blob matching approach. In this 

section, we describe our method for human tracking in detail. 

After the blobs are obtained from the blob extraction and analysis module, the 

blobs are matched with existing people and bags. We combine two types of information: 

color histograms and geometric information, trying to obtain the best tracking 

(matching) results. When a new person is detected, we initialize a Kalman filter tracker 

for the person. When a new blob matches existing people, for the geometric 

information we calculate the size and position difference 𝐷𝑖 between the blob in the 

current frame and all people’s true position and size in the previous frame. Since the 

motion of people may be abrupt and unstable, in order to get a smooth motion we also 

use the true position and size vector to update the Kalman filter tracker. By comparing 

the prediction of the position and size from the filter with the blob in the current frame 

we obtain the difference 𝐾𝐷𝑖. We use the smaller of 𝐾𝐷𝑖 and 𝐷𝑖 as the final distance 

𝐹𝐷𝑖  for each person, where 𝐹𝐷𝑖  are further normalized to (0,1). For color 

information, we compute the color histogram of each blob, compare it with each 

people’s color histogram by using the Bhattacharyya distance [37] to get a similarity 
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value 𝐶𝑖. Then the distance 𝐹𝐷𝑖 and the color histogram similarity 𝐶𝑖 are combined 

by a weight 𝑤 to get the match score for each person i: 

Match Score = 𝑤 ∗ 𝐹𝐷𝑖 + (1 − 𝑤) ∗ 𝐶𝑖 

We use the highest match score as the best match with the blob if it exceeds a threshold. 

If matched, the model for that person is updated with the blob information, including 

the position, size, width, height, and the color histogram. The Kalman filter model is 

updated by the new position and size.  

If the none of the match scores is higher than a threshold, then none of the people 

are considered to match with the blob. If this happens for several consecutive frames, 

then the blob is considered as a new person, and a Kalman filter is initialized for it. 

 

3.5 Bag Detection, Tracking and Related Activities Detection  

In this section we describe our approach to detect people carrying bags, and bag-

related activities: bag drop, pickup, steal, and exchange. 

 

3.5.1 Bag Detection 

 We use an approach inspired from W4 [31] to detect people carrying bags. The 

major difference between our approach and W4 is that we utilize color information. 

We assume that the color of the bag is different from the clothing color of the person 

who carries the bag. Here we describe our approach to bag detection in detail. 

Similar to W4, we define a center axis of a person. W4 [31] calculates the axis by 

applying Principal Component Analysis to the silhouette pixels. The best fit axis is 

constrained by minimizing the sum of absolute perpendicular distances to that axis. 
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This method does not consider the fact that the bag can affect the center axis position, 

since the bag affects the silhouette of the whole blob (person and bag). Here, we use a 

different method to determine the center axis; instead of considering the whole blob 

silhouette, we only use the top part of the blob, which is the head. We compute the 

center axis based on the position of the head in the image. We consider the center axis 

of the head as the center axis of the whole body. 

In case of a new person (for which a bag has not been detected yet), we perform a 

symmetry analysis as follows. First we determine the pixels that are non-symmetric 

with respect to the center axis. Pixels are classified into two groups based on whether 

they are in the bottom right or bottom left side of the axis. Then we count the number 

of the pixels in each group and compute the color histogram of the pixels in each group. 

The two histograms are then compared with the histogram of the symmetric pixels at 

the bottom by using the Bhattacharyya distance [37].  

Assume that the number of non-symmetric pixels of the two sides are Cl and Cr, 

and the results of the histogram comparison are Hl and Hr respectively. We use a 

threshold 𝑇𝑐 as the minimum number of pixels for a bag. We use the following method 

to determine whether a person is carrying a bag or not: 

p(carry bag on left | person) =  𝑤 ∗ (max(0, (𝐶𝑙 − 𝑇𝑐)/𝑁) + (1 − 𝑤) ∗ Hl 

p(carry bag on right | person) =  𝑤 ∗ (max(0, (𝐶𝑟 − 𝑇𝑐)/𝑁) + (1 − 𝑤) ∗ Hr 

where N is a constant. We use the larger p from above and compare it with a threshold 

𝑇𝑏 to determine if the person is carrying a bag at time t. If p is larger than 𝑇𝑏 in a 

certain period of time (t − k, t + k), then the person is considered to be carrying a bag. 

Figure 10 is an example showing a person carrying a bag. 



 29 

 

Figure 10. Original image, a person carrying a bag (left); detected foreground (right) 

 

 When a bag is detected with a person, we use the same method to track the bag as 

for tracking the person; we build a Kalman filter for the bag, combined with the color 

histogram to track the bag in subsequent frames. When a person is detected 

carrying a bag, we use a different (lower) threshold for color histogram comparison 

and a different (lower) threshold for the total number of pixels to track the bag. The 

reason is that bag detection should use more restrictive constraints to prevent false 

positives. 

 

3.5.2 Bag Drop Detection 

 When a bag is dropped by a person, the bag itself becomes a blob. We use this 

information to detect whether a bag is being dropped. For each new blob, we compare 

it with the existing bags as well as the existing people. For each existing bag, we 

compute the match score with the blob using a method similar to the one used for 

computing the match score between the blob and people, except that we add the total 

number of pixels. The match score is computed as follows: 

Match Score = 𝑤1 ∗ 𝐹𝐷𝑖 + w2 ∗ 𝐶𝑖 + 𝑤3 ∗ (𝑆𝑏 − 𝑆𝑏𝑖) 
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where 𝐹𝐷𝑖 is the smaller value of the distance estimated from observed bags and the 

prediction of the Kalman filter of the 𝑖𝑡ℎ  bag, 𝐶𝑖  is the result of histogram 

comparison, and 𝑆𝑏 , 𝑆𝑏𝑖 are the number of pixels of the blob and the 𝑖𝑡ℎ bag. 

 When a match score is larger than a threshold, we hypothesize that the bag may be 

dropped by a person at time t. If this happens for a certain number of times in the time 

interval (t − k, t + k), then we infer that the bag is indeed dropped. 

 

3.5.3 Bag Pickup and Steal Detection 

 When a bag is detected as dropped, the information for the bag is saved, including 

pixel coordinates and their RGB values. This information can be used for detecting 

whether someone picks up the bag later. If a bag is dropped, then in later frames the 

pixels values at the position where the bag is dropped will be monitored. If the change 

of the RGB values in these positions is larger than a threshold for a period of time, then 

the bag is considered to be picked up by someone. If the person who picked it up is 

different from the one who dropped it, then the person is considered to steal the bag.  

 

3.5.4 Bag Exchange Detection 

 Detecting a bag being exchanged between two persons is performed as follows. 

We assume that the two people are close and have no large motion in a period of time. 

If this condition is satisfied, then we examine the distance between the bag and the two 

people; if the distance of the bag to the original owner is getting larger and the distance 

to the other person is getting smaller for a certain number of frames in a time interval, 

then the bag is considered to be exchanged from the owner to the other person. 
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3.6 Human Activity Recognition  

Human activity recognition is one of the major goals of video surveillance 

applications. In our system, we focus on activities between two people: (i) handshaking, 

and (ii) one person pointing something to a second person. In this section, we describe 

how these activities are detected. 

 

3.6.1 Handshaking Recognition  

 The method we used in handshake detection is quite intuitive. First, there are at 

least two people being almost static and their blobs are close and connected; second, 

the hands of the two people are connected in a line/curve. We utilize these two criteria 

to perform the detection. Figure 11 is an example of two people handshaking.  

 

Figure 11. People shake hands 

 

fi 
We first check whether two people that are close to each other are connected, and 

whether they are relatively static. Since they should be connected, they must come 

from the same parent blob, as they are the sub-blobs obtained from splitting the parent 
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blob. If these conditions are satisfied, then the following method is used to detect 

handshake. 

We define a rectangle window, whose vertices are located at the intersection of the 

two vertical axes, the higher headline and the center horizontal axis of the two people. 

Then we count the number of pixels h that belong to the foreground (hands), as well as 

the number of pixels b that belong to the background . We compare the two numbers 

with two thresholds Th and Tb, as well as the ratio of the two numbers h/b with a 

threshold T to hypothesize whether a handshake may be occurring. If this happens for 

a number of consecutive frames, then we infer a handshake event.  

 

3.6.2 Pointing Somewhere Recognition 

 We use a similar approach to detect pointing gestures. We assume that two people 

are close to each other and they stay still for a while. If this condition is satisfied, then 

we detect whether one person stretches out a hand by the following method. We use 

the center axis, the leftmost/rightmost vertical lines, the 2/5 upper body line and the 

top horizontal line to form a rectangle, as shown in Figure 12. Within the rectangle, we 

count the number of non-symmetric pixels that belong to the person (denoted by N1), 

the pixels that belong to the background (denote by N2), and compute their ratio R =

 N1 N2⁄ . If N1, N2 and R satisfy some thresholds for a number of consecutive frames, 

the pointing gesture is inferred. 
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Figure 12. A person’s pointing gesture (left); detected foreground objects (right). 

3.7 System Interface and Functionality 

 We developed an interface for our system, based on Qt under Ubuntu. The 

interface is shown in Figure 13. 

 

Figure 13. System interface 
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 The OPEN button opens an RGB video and the associated results file, while the 

DEPTH button opens a Depth video and is optional. When no correspondent depth 

video is available, the system will process RGB video only. The PROCESS button is 

used to process the video. Time and frame numbers are showed at the bottom.  

When the processing is completed, the results are saved to a file, which can be opened 

and used to see the results directly, without repeating the processing. The result file 

contains the video path, frame index, people and bag information. The information for 

a person includes its identifier, position, color, whether is carrying a bag (and if so the 

bag identifier), whether it is involved in handshaking, in a pointing gesture, etc. The 

information for a bag includes its identifier, position, whether it is dropped, picked up, 

stolen, or exchanged, and the related person’s information.  

The TRACK button is used to generate tracks (instances) of events, according to visual 

attributes specified through the interface. Clicking on each track will play the 

corresponding portion of the video where the event was detected. 
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Chapter 4. Experimental Results 

 We tested our approach on a computer equipped with an Intel Core 2 Duo CPU 

E8500 at 3.16GHz. Two videos taken with a Kinect camera from different locations 

and at different times have been used. 

 

4.1 One Person Tracking Results 

For the one person tracking, we specify a color through the interface, then the 

people with clothing of that color will be tracked. In our system, the accuracy of one 

person tracking is nearly 100%. Figure 14 shows results of one person tracking. 

 

Figure 14. Example of one person tracking; a person with the selected color “Gold” is 

shown with a thick green ellipse in the image. 

 

4.2 Two People Meeting Detection 
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The user can specify one or both colors for detecting and tracking people meeting. 

Figure 15 shows an example where we select “Gold” as the color of the first person, 

and “Any” for the second person. 

 

Figure 15. Two people meeting detection 

 

4.3 Bag Drop 

 In figure 16, we specify a color for the person who drops a bag, while in figure 17, 

we are interested in bag drop events involving persons with any visual attributes. 
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Figure 16. A person with color “Gold” drops a bag. 

 

Figure 17. Any person drops a bag. 
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4.4 Bag Steal 

In this experiment, the person with the gold color is the owner of the bag; at frame 

2080 the person dropped the bag; at frame 2227, another person (in red) stole the bag. 

Figure 18 is an example of the owner dropped a bag, Figure 19 is an example of another 

person stole the bag.  

 

Figure 18. Owner dropped a bag 
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Figure 19. A person stole the bag 

 

4.5 Bag Exchange 

 Figure 20 is an example of bag exchange between two people. 
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Figure 20. A person is handing a bag to another person. 

 

4.6 Handshake 

 Figure 21 shows results for handshake detection between two people. In frame 283, 

the two people attempt to have a handshake; from frame 288, their hands start to be 

connected; from frame 294, the system starts to recognize the activity, which means 

that it only took 6 frames to detect the event; the system stops detecting the activity at 

frame 306, and the hands are taken back at frame 314. 
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(a)         (b)  

 
 (c)         (d) 

 
(e) 

Figure 21. Example of handshake (a) people attempt to shake hands; (b) people start 

to shake hands; (c) handshaking starts to be detected; (d) last frame where the 

handshaking is detected; (e) Hands are taken back. 
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4.7 Pointing Gesture 

In our experiment, the pointing gesture started at frame 460; the system detected 

the gesture from frame 467 to 490; the gesture ended at frame 491. Figure 22 shows 

the results. 

 

(a)          (b) 

 

(c)         (d) 

Figure 22. Example of Pointing gesture: (a) Pointing gesture started; (b) Gesture being 

recognized (c) Last frame being recognized; (d) Pointing gesture ended. 
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Chapter 5. Conclusion 

We presented an system that can robustly detect and retrieve events from large 

surveillance video, which has the following capabilities: 

1. Detect and track multiple people and bags; 

2. Detect bags being dropped, picked up, stolen, and exchanged; 

3. Detect handshaking between two people; 

4. Detect one person’s pointing gesture to another person. 

 

5.1 Discussion 

 We use an efficient background modeling and foreground detection technique, 

which is based on a mixture of Gaussians model. The parameters of the model are 

constantly and recursively updated, the number of Gaussians for each pixel is also 

adaptively updated. 

 We use a stable connected component labeling algorithm to extract blobs from the 

detected foreground pixels. We also use a simple but reliable method to detect multiple 

people in a single blob that achieves very high accuracy. 

 We developed a novel method that combines geometric and color information to 

track people and bags, while other algorithms such as Camshift [48] were found to be 

rather unstable and unreliable in our experiments (especially in the presence of 

occlusion). Our approach for tracking is quite reliable, with an accuracy for tracking 

people as high as 95% when good results were obtained in foreground detection.  
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 We use shape symmetry analysis and color information to detect people carrying 

bags. With good results for bag detection, bag drop and bag steal events have been 

recognized very reliably. 

 We also developed algorithms for human activity recognition. We detect two kinds 

of activities between two people: handshaking and pointing gestures. In our 

experiments, the results showed that our methods achieve both a high accuracy rate 

and a correct duration for the detected events. 

 

5.2 Future Work 

 Our system heavily depends on the results of background modeling and 

foreground detection. As the modeling technique we used in our system is quite 

sensitive to illumination conditions, we noticed that the exposure in the video captured 

by Kinect would change sometimes due to the instability of the fluorescent lighting. 

More effort should be dedicated to develop more stable algorithms for background 

modeling and foreground detection. 

 For bag detection we assumed that the color of the bag is somewhat different from 

the color of the lower body of the person, which is not always the case. Methods that 

can detect and track the bag under complex condition in real-time video are desirable. 

 While handshaking and pointing gestures are relatively simple activities, detecting 

more complex activities and gestures would be very relevant for surveillance 

applications.  
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