1,709 research outputs found

    Improved supervised learning-based approach for leaf and wood classification from LiDAR point clouds of forests

    Get PDF
    Accurately classifying 3-D point clouds into woody and leafy components has been an interest for applications in forestry and ecology including the better understanding of radiation transfer between canopy and atmosphere. The past decade has seen an increase in the methods attempting to classify leaves and wood in point clouds based on radiometric or geometric features. However, classification purely based on radiometric features is sensor-specific, and the method by which the local neighborhood of a point is defined affects the accuracy of classification based on geometric features. Here, we present a leaf-wood classification method combining geometrical features defined by radially bounded nearest neighbors at multiple spatial scales in a machine learning model. We compared the performance of three different machine learning models generated by the random forest (RF), XGBoost, and lightGBM algorithms. Using multiple spatial scales eliminates the need for an optimal neighborhood size selection and defining the local neighborhood by radially bounded nearest neighbors makes the method broadly applicable for point clouds of varying quality. We assessed the model performance at the individual tree- and plot-level on field data from tropical and deciduous forests, as well as on simulated point clouds. The method has an overall average accuracy of 94.2% on our data sets. For other data sets, the presented method outperformed the methods in literature in most cases without the need for additional postprocessing steps that are needed in most of the existing methods. We provide the entire framework as an open-source python package

    Leaf and wood classification framework for terrestrial LiDAR point clouds

    Get PDF
    Leaf and wood separation is a key step to allow a new range of estimates from Terrestrial LiDAR data, such as quantifying above-ground biomass, leaf and wood area and their 3D spatial distributions. We present a new method to separate leaf and wood from single tree point clouds automatically. Our approach combines unsupervised classification of geometric features and shortest path analysis. The automated separation algorithm and its intermediate steps are presented and validated. Validation consisted of using a testing framework with synthetic point clouds, simulated using ray-tracing and 3D tree models and 10 field scanned tree point clouds. To evaluate results we calculated accuracy, kappa coefficient and F-score. Validation using simulated data resulted in an overall accuracy of 0.83, ranging from 0.71 to 0.94. Per tree average accuracy from synthetic data ranged from 0.77 to 0.89. Field data results presented and overall average accuracy of 0.89. Analysis of each step showed accuracy ranging from 0.75 to 0.98. F-scores from both simulated and field data were similar, with scores from leaf usually higher than for wood. Our separation method showed results similar to others in literature, albeit from a completely automated workflow. Analysis of each separation step suggests that the addition of path analysis improved the robustness of our algorithm. Accuracy can be improved with per tree parameter optimization. The library containing our separation script can be easily installed and applied to single tree point cloud. Average processing times are below 10min for each tree

    Airborne and Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood: Current Situation and New Perspectives

    Get PDF
    LiDAR technology is finding uses in the forest sector, not only for surveys in producing forests but also as a tool to gain a deeper understanding of the importance of the three-dimensional component of forest environments. Developments of platforms and sensors in the last decades have highlighted the capacity of this technology to catch relevant details, even at finer scales. This drives its usage towards more ecological topics and applications for forest management. In recent years, nature protection policies have been focusing on deadwood as a key element for the health of forest ecosystems and wide-scale assessments are necessary for the planning process on a landscape scale. Initial studies showed promising results in the identification of bigger deadwood components (e.g., snags, logs, stumps), employing data not specifically collected for the purpose. Nevertheless, many efforts should still be made to transfer the available methodologies to an operational level. Newly available platforms (e.g., Mobile Laser Scanner) and sensors (e.g., Multispectral Laser Scanner) might provide new opportunities for this field of study in the near future

    Advances in measuring forest structure by terrestrial laser scanning with the Dual Wavelength ECHIDNAÂź LIDAR (DWEL)

    Get PDF
    Leaves in forests assimilate carbon from the atmosphere and woody components store the net production of that assimilation. Separate structure measurements of leaves and woody components advance the monitoring and modeling of forest ecosystem functions. This dissertation provides a method to determine, for the first time, the 3-D spatial arrangement and the amount of leafy and woody materials separately in a forest by classification of lidar returns from a new, innovative, lidar scanner, the Dual-Wavelength EchidnaŸ Lidar (DWEL). The DWEL uses two lasers pulsing simultaneously and coaxially at near-infrared (1064 nm) and shortwave-infrared (1548 nm) wavelengths to locate scattering targets in 3-D space, associated with their reflectance at the two wavelengths. The instrument produces 3-D bispectral "clouds" of scattering points that reveal new details of forest structure and open doors to three-dimensional mapping of biophysical and biochemical properties of forests. The three parts of this dissertation concern calibration of bispectral lidar returns; retrieval of height profiles of leafy and woody materials within a forest canopy; and virtual reconstruction of forest trees from multiple scans to estimate their aboveground woody biomass. The test area was a midlatitude forest stand within the Harvard Forest, Petersham, Massachusetts, scanned at five locations in a 1-ha site in leaf-off and leaf-on conditions in 2014. The model for radiometric calibration assigned accurate values of spectral apparent reflectance, a range-independent and instrument-independent property, to scattering points derived from the scans. The classification of leafy and woody points, using both spectral and spatial context information, achieved an overall accuracy of 79±1% and 75±2% for leaf-off and leaf-on scans, respectively. Between-scan variation in leaf profiles was larger than wood profiles in leaf-off seasons but relatively similar to wood profiles in leaf-on seasons, reflecting the changing spatial heterogeneity within the stand over seasons. A 3-D structure-fitting algorithm estimated wood volume by modeling stems and branches from point clouds of five individual trees with cylinders. The algorithm showed the least variance for leaf-off, woody-points-only data, validating the value of separating leafy and woody points to the direct biomass estimates through the structure modeling of individual trees

    Semi-automatic extraction of liana stems from terrestrial LiDAR point clouds of tropical rainforests

    Get PDF
    Lianas are key structural elements of tropical forests having a large impact on the global carbon cycle by reducing tree growth and increasing tree mortality. Despite the reported increasing abundance of lianas across neotropics, very few studies have attempted to quantify the impact of lianas on tree and forest structure. Recent advances in high resolution terrestrial laser scanning (TLS) systems have enabled us to quantify the forest structure, in an unprecedented detail. However, the uptake of TLS technology to study lianas has not kept up with the same pace as it has for trees. The slower technological adoption of TLS to study lianas is due to the lack of methods to study these complex growth forms. In this study, we present a semi-automatic method to extract liana woody components from plot-level TLS data of a tropical rainforest. We tested the method in eight plots from two different tropical rainforest sites (two in Gigante Peninsula, Panama and six in Nouragues, French Guiana) along an increasing gradient of liana infestation (from plots with low liana density to plots with very high liana density). Our method uses a machine learning model based on the Random Forest (RF) algorithm. The RF algorithm is trained on the eigen features extracted from the points in 3D at multiple spatial scales. The RF based liana stem extraction method successfully extracts on average 58% of liana woody points in our dataset with a high precision of 88%. We also present simple post-processing steps that increase the percentage of extracted liana stems from 54% to 90% in Nouragues and 65% to 70% in Gigante Peninsula without compromising on the precision. We provide the entire processing pipeline as an open source python package. Our method will facilitate new research to study lianas as it enables the monitoring of liana abundance, growth and biomass in forest plots. In addition, the method facilitates the easier processing of 3D data to study tree structure from a liana-infested forest

    The Burning Bush: Linking LiDAR-derived Shrub Architecture to Flammability

    Get PDF
    Light detection and ranging (LiDAR) and terrestrial laser scanning (TLS) sensors are powerful tools for characterizing vegetation structure and for constructing three-dimensional (3D) models of trees, also known as quantitative structural models (QSM). 3D models and structural traits derived from them provide valuable information for biodiversity conservation, forest management, and fire behavior modeling. However, vegetation studies and 3D modeling methodologies often only focus on the forest canopy, with little attention given to understory vegetation. In particular, 3D structural information of shrubs is limited or not included in fire behavior models. Yet, understory vegetation is an important component of forested ecosystems, and has an essential role in determining fire behavior. In this dissertation, I explored the use of TLS data and quantitative structure models to model shrub architecture in three related studies. In the first study, I present a semi-automated methodology for reconstructing architecturally different shrubs from TLS LiDAR. By investigating shrubs with different architectures and point cloud densities, I showed that occlusion, shrub complexity, and shape greatly affect the accuracy of shrub models. In my second study, I assessed the 3D architectural drivers of understory flammability by evaluating the use of architectural metrics derived from the TLS point cloud and 3D reconstructions of the shrubs. I focused on eight species common in the understory of the fire-prone longleaf pine forest ecosystem of the state of Florida, USA. I found a general tendency for each species to be associated with a unique combination of flammability and architectural traits. Novel shrub architectural traits were found to be complementary to the direct use of TLS data and improved flammability predictions. The inherent complexity of shrub architecture and uncertainty in the TLS point cloud make scaling up from an individual shrub to a plot level a challenging task. Therefore, in my third study, I explored the effects of lidar uncertainty on vegetation parameter prediction accuracy. I developed a practical workflow to create synthetic forest stands with varying densities, which were subsequently scanned with simulated terrestrial lidar. This provided data sets quantitatively similar to those created by real-world LiDAR measurements, but with the advantage of exact knowledge of the forest plot parameters, The results showed that the lidar scan location had a large effect on prediction accuracy. Furthermore, occlusion is strongly related to the sampling density and plot complexity. The results of this study illustrate the potential of non-destructive lidar approaches for quantifying shrub architectural traits. TLS, empirical quantitative structural models, and synthetic models provide valuable insights into shrub structure and fire behavior

    Leaf and wood classification framework for terrestrial LiDAR point clouds

    Get PDF
    Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society. Leaf and wood separation is a key step to allow a new range of estimates from Terrestrial LiDAR data, such as quantifying above-ground biomass, leaf and wood area and their 3D spatial distributions. We present a new method to separate leaf and wood from single tree point clouds automatically. Our approach combines unsupervised classification of geometric features and shortest path analysis. The automated separation algorithm and its intermediate steps are presented and validated. Validation consisted of using a testing framework with synthetic point clouds, simulated using ray-tracing and 3D tree models and 10 field scanned tree point clouds. To evaluate results we calculated accuracy, kappa coefficient and F-score. Validation using simulated data resulted in an overall accuracy of 0.83, ranging from 0.71 to 0.94. Per tree average accuracy from synthetic data ranged from 0.77 to 0.89. Field data results presented and overall average accuracy of 0.89. Analysis of each step showed accuracy ranging from 0.75 to 0.98. F-scores from both simulated and field data were similar, with scores from leaf usually higher than for wood. Our separation method showed results similar to others in literature, albeit from a completely automated workflow. Analysis of each separation step suggests that the addition of path analysis improved the robustness of our algorithm. Accuracy can be improved with per tree parameter optimization. The library containing our separation script can be easily installed and applied to single tree point cloud. Average processing times are below 10 min for each tree

    Remote Sensing of Biophysical Parameters

    Get PDF
    Vegetation plays an essential role in the study of the environment through plant respiration and photosynthesis. Therefore, the assessment of the current vegetation status is critical to modeling terrestrial ecosystems and energy cycles. Canopy structure (LAI, fCover, plant height, biomass, leaf angle distribution) and biochemical parameters (leaf pigmentation and water content) have been employed to assess vegetation status and its dynamics at scales ranging from kilometric to decametric spatial resolutions thanks to methods based on remote sensing (RS) data.Optical RS retrieval methods are based on the radiative transfer processes of sunlight in vegetation, determining the amount of radiation that is measured by passive sensors in the visible and infrared channels. The increased availability of active RS (radar and LiDAR) data has fostered their use in many applications for the analysis of land surface properties and processes, thanks to their insensitivity to weather conditions and the ability to exploit rich structural and texture information. Optical and radar data fusion and multi-sensor integration approaches are pressing topics, which could fully exploit the information conveyed by both the optical and microwave parts of the electromagnetic spectrum.This Special Issue reprint reviews the state of the art in biophysical parameters retrieval and its usage in a wide variety of applications (e.g., ecology, carbon cycle, agriculture, forestry and food security)
    • 

    corecore