459 research outputs found

    Outlining where humans live -- The World Settlement Footprint 2015

    Full text link
    Human settlements are the cause and consequence of most environmental and societal changes on Earth; however, their location and extent is still under debate. We provide here a new 10m resolution (0.32 arc sec) global map of human settlements on Earth for the year 2015, namely the World Settlement Footprint 2015 (WSF2015). The raster dataset has been generated by means of an advanced classification system which, for the first time, jointly exploits open-and-free optical and radar satellite imagery. The WSF2015 has been validated against 900,000 samples labelled by crowdsourcing photointerpretation of very high resolution Google Earth imagery and outperforms all other similar existing layers; in particular, it considerably improves the detection of very small settlements in rural regions and better outlines scattered suburban areas. The dataset can be used at any scale of observation in support to all applications requiring detailed and accurate information on human presence (e.g., socioeconomic development, population distribution, risks assessment, etc.)

    Digital world meets urban planet – new prospects for evidence-based urban studies arising from joint exploitation of big earth data, information technology and shared knowledge

    Get PDF
    The digital transformation taking place in all areas of life has led to a massive increase in digital data – in particular, related to the places where and the ways how we live. To facilitate an exploration of the new opportunities arising from this development the Urban Thematic Exploitation Platform (U-TEP) has been set-up. This enabling instrument represents a virtual environment that combines open access to multi-source data repositories with dedicated data processing, analysis and visualisation functionalities. Moreover, it includes mechanisms for the development and sharing of technology and knowledge. After an introduction of the underlying methodical concept, this paper introduces four selected use cases that were carried out on the basis of U-TEP: two technology-driven applications implemented by users from the remote sensing and software engineering community (generation of cloud-free mosaics, processing of drone data) and two examples related to concrete use scenarios defined by planners and decision makers (data analytics related to global urbanization, monitoring of regional land-use dynamics). The experiences from U-TEP’s pre-operations phase show that the system can effectively support the derivation of new data, facts and empirical evidence that helps scientists and decision-makers to implement improved strategies for sustainable urban development

    Towards a 20m global building map from Sentinel-1 SAR Data

    Get PDF
    This study introduces a technique for automatically mapping built-up areas using synthetic aperture radar (SAR) backscattering intensity and interferometric multi-temporal coherence generated from Sentinel-1 data in the framework of the Copernicus program. The underlying hypothesis is that, in SAR images, built-up areas exhibit very high backscattering values that are coherent in time. Several particular characteristics of the Sentinel-1 satellite mission are put to good use, such as its high revisit time, the availability of dual-polarized data, and its small orbital tube. The newly developed algorithm is based on an adaptive parametric thresholding that first identifies pixels with high backscattering values in both VV and VH polarimetric channels. The interferometric SAR coherence is then used to reduce false alarms. These are caused by land cover classes (other than buildings) that are characterized by high backscattering values that are not coherent in time (e.g., certain types of vegetated areas). The algorithm was tested on Sentinel-1 Interferometric Wide Swath data from five different test sites located in semiarid and arid regions in the Mediterranean region and Northern Africa. The resulting building maps were compared with the Global Urban Footprint (GUF) derived from the TerraSAR-X mission data and, on average, a 92% agreement was obtained.Peer ReviewedPostprint (published version

    Land Consumption Monitoring with SAR Data and Multispectral Indices

    Get PDF
    Land consumption is the increase in artificial land cover, which is a major issue for environmental sustainability. In Italy, the Italian Institute for Environmental Protection and Research (ISPRA) and National System for Environmental Protection (SNPA) have the institutional duty to monitor land consumption yearly, through the photointerpretation of high-resolution images. This study intends to develop a methodology in order to produce maps of land consumption, by the use of the semi-automatic classification of multitemporal images, to reduce the effort of photointerpretation in detecting real changes. The developed methodology uses vegetation indices calculated over time series of images and decision rules. Three variants of the methodology were applied to detect the changes that occurred in Italy between the years 2018 and 2019, and the results were validated using ISPRA official data. The results show that the produced maps include large commission errors, but thanks to the developed methodology, the area to be photointerpreted was reduced to 7300 km2 (2.4% of Italian surface). The third variant of the methodology provided the highest detection of changes: 70.4% of the changes larger than 100 m2 (the pixel size) and over 84.0% of changes above 500 m2. Omissions are mainly related to single pixel changes, while larger changes are detected by at least one pixel in most of the cases. In conclusion, the developed methodology can improve the detection of land consumption, focusing photointerpretation work over selected areas detected automatically

    Fusion of Heterogeneous Earth Observation Data for the Classification of Local Climate Zones

    Get PDF
    This paper proposes a novel framework for fusing multi-temporal, multispectral satellite images and OpenStreetMap (OSM) data for the classification of local climate zones (LCZs). Feature stacking is the most commonly-used method of data fusion but does not consider the heterogeneity of multimodal optical images and OSM data, which becomes its main drawback. The proposed framework processes two data sources separately and then combines them at the model level through two fusion models (the landuse fusion model and building fusion model), which aim to fuse optical images with landuse and buildings layers of OSM data, respectively. In addition, a new approach to detecting building incompleteness of OSM data is proposed. The proposed framework was trained and tested using data from the 2017 IEEE GRSS Data Fusion Contest, and further validated on one additional test set containing test samples which are manually labeled in Munich and New York. Experimental results have indicated that compared to the feature stacking-based baseline framework the proposed framework is effective in fusing optical images with OSM data for the classification of LCZs with high generalization capability on a large scale. The classification accuracy of the proposed framework outperforms the baseline framework by more than 6% and 2%, while testing on the test set of 2017 IEEE GRSS Data Fusion Contest and the additional test set, respectively. In addition, the proposed framework is less sensitive to spectral diversities of optical satellite images and thus achieves more stable classification performance than state-of-the art frameworks.Comment: accepted by TGR

    Mapping and Monitoring Urban Environment through Sentinel-1 SAR Data: A Case Study in the Veneto Region (Italy)

    Get PDF
    Focusing on a sustainable and strategic urban development, local governments and public administrations, such as the Veneto Region in Italy, are increasingly addressing their urban and territorial planning to meet national and European policies, along with the principles and goals of the 2030 Agenda for the Sustainable Development. In this regard, we aim at testing a methodology based on a semi-automatic approach able to extract the spatial extent of urban areas, referred to as \u201curban footprint\u201d, from satellite data. In particular, we exploited Sentinel-1 radar imagery through multitemporal analysis of interferometric coherence as well as supervised and non-supervised classi\ufb01cation algorithms. Lastly, we compared the results with the land cover map of the Veneto Region for accuracy assessments. Once properly processed and classi\ufb01ed, the radar images resulted in high accuracy values, with an overall accuracy ranging between 85% and 90% and percentages of urban footprint di\ufb00ering by less than 1%\u20132% with respect to the values extracted from the reference land cover map. These results provide not only a reliable and useful support for strategic urban planning and monitoring, but also potentially identify a solid organizational data\ufb02ow process to prepare geographic indicators that will help answering the needs of the 2030 Agenda (in particular the goal 11 \u201cSustainable Cities and Communities\u201d)

    The European Settlement Map 2019 release

    Get PDF
    The ESM_2015 is the latest release of the European Settlement Map produced in the frame of the GHSL project. It is produced with the Global Human Settlement Layer (GHSL) technology of the Joint Research Centre (JRC) in collaboration with the Directorate General of Regional and Urban Policy. The workflow was executed on the JRC Big Data Analytics platform. It follows-up on the previous ESM_2012 derived from 2.5 m resolution SPOT-5/6 images acquired in the context of the pan-European GMES/Copernicus (Core_003) dataset for the reference year 2012. The ESM_2015 product exploits the Copernicus VHR_IMAGE_2015 dataset made of satellite images Pleiades, Deimos-02, WorldView-2, WorldView-3, GeoEye-01 and Spot 6/7 ranging from 2014 to 2016. Unlike the previous ESM versions, the built-up extraction is realized through supervised learning (and not only by means of image filtering and processing techniques) based on textural and morphological features. The workflow is fully automated and it does not include any post-processing. For the first time a new layer containing non-residential buildings was derived by using only remote sensing imagery and training data. The produced built-up map is delivered at 2 m pixel resolution (level 1 layer) while the residential/non-residential layer (level 2) is delivered at 10 m spatial resolution. ESM_2015 offers new opportunities in Earth observation related research by allowing to study urbanisation and related features across Europe in urban and rural areas, from continental to country perspective, from regional to local, until single blocks. ESM_2015 was validated against the LUCAS 2015 survey database both at 2 and 10 meters resolution (including also the non-residential class). The validation has resulted in a Balanced Accuracy of 0.81 for the 2 m resolution built-up layer and of 0.71 for the 10 m non-residential built-up layer.JRC.E.1-Disaster Risk Managemen
    • …
    corecore