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Abstract

Today, with the non-stop expansion of urbanization, mapping urban areas and monitoring their dynamic changes have become chal-
lenges for governments and also a hot topic for researchers. Remote sensing imageries play a key role in urban studies, the extraction of
urban built-up areas, and monitoring their changes. A variety of studies have proposed methods for the extraction of regional, national,
and global built-up areas. However, the majority of them used limited features and applied a manual sample selection strategy for clas-
sification, leading to time-consuming and low-efficient algorithms. This paper proposes a fully automatic procedure to real-time extract
built-up areas by integrating the Luojia 1–01 nighttime lights (NTL) images, Sentinel-2 multispectral data, Sentinel-1 Radar images, and
SRTM elevation data in cloud-computing Google Earth Engine. Firstly, potential built-up areas (PBA) and non-built-up areas (NBA)
are obtained by applying Otsu and multi-level thresholding to some of the extracted spectral-textural-spatial (STS) features and by apply-
ing logical rules. Secondly, built-up and non-built-up samples are automatically selected and are used to train a Support Vector Machine
(SVM) supervised classifier and to classify the hybrid feature set so that a preliminary classified map (PCM) can be obtained. Thirdly, the
PCMs are automatically corrected using the non-built-up area, and morphological operations in the so-called post-classification to pro-
vide a refined classified map (RCM) and final built-up map. Four study areas in Northern America, Europe (Scandinavia), the Middle
East, and Eastern Asia were selected to test the proposed method. Also, five state-of-the-art built-up products, accompanied by Google
Earth images, were used as the reference data. The results indicate that the proposed method can accurately and automatically select
samples and map built-up areas with a spatial resolution of 10 m. Its performance is validated with an average overall accuracy of
94.4% and an average Kappa coefficient of 0.89 and by visual comparison of our method results with other reference data. The proposed
method has significant potential to be used in real-time extracting built-up areas and in monitoring their dynamic changes on national
and global scales.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Urban built-up areas, as living spaces for the majority of
humans and a place for their activities, have rapidly
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expanded in recent decades (Jafari and Attarchi, 2021;
Liu et al., 2019). Due to the fast rate of urbanization
expansion, it is one of the most challenging issues for gov-
ernments and policy-makers (Esch et al., 2017). With this
regard, the accurate mapping of built-up areas and moni-
toring their dynamic changes is crucial for decision makers
to manage better human lives (Liu et al., 2019). Compared
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to mapping built-up areas on the ground, which is so time-
consuming and expensive, remote sensing (RS) science and
technology provide experts with the opportunity to accu-
rately extract built-up areas and monitor their dynamic
changes (Liu et al., 2019; Zhou et al., 2017). Therefore,
accurate and fast extraction of urban built-up areas has
always been a hot topic for researchers in RS (Djerriri
et al., 2019).

A variety of studies have been conducted so far on the
topic of urban built-up mapping, which from different
points of view can be categorized as follows:

(a) Categorization based on method or technique: In this
point of view, the literature can be categorized into
techniques that used spectral, spatial, or textural
indices (Bhatti and Tripathi, 2014; Djerriri et al.,
2019; Ghosh et al., 2018; He et al., 2010; Hidayati
et al., 2018; Prasomsup et al., 2020; Risky et al.,
2017; Zhang et al., 2014). With this regard, we may
mention those who implemented supervised classifi-
cation as an intelligent tool (Liu et al., 2019; Wang
et al., 2020a, 2020b), those who applied the
threshold-based built-up extraction technique (Li
et al., 2018), the papers that used the deep learning
(DL)-based method (Brown et al., 2022; He et al.,
2019; Huang et al., 2018; Tan et al., 2018; Tan
et al., 2020; Tan et al., 2021; Tian et al., 2018; Li
et al., 2016; Li et al., 2022; Zhang and Tang, 2018),
and the articles that conducted LULC mapping based
on the super-resolution technique (Chen et al., 2018a;
Jia et al., 2019; Wang et al., 2018; Wang et al., 2020a,
2020b).

(b) Categorization based on data: Some studies benefited
from the radar images as a feature of built-up extrac-
tion (Ban et al., 2015; Dell’Acqua and Gamba, 2006;
Esch et al., 2017; Farhadi et al., 2022; Holobâcă
et al., 2019; Jafari and Attarchi, 2021; Lino et al.,
2018; Mohammadnejad, 2020; Semenzato et al.,
2020; Zhou et al., 2017). High-resolution satellite
imageries were the input data for different studies
which focused on built-up mapping in regional scales
(Chen et al., 2018b; Iannelli et al., 2014; Huang et al.,
2018; Tao et al., 2013; Li et al., 2015; Tian et al.,
2018; Weizman and Goldberger, 2009; Zhang et al.,
2017). A group of researchers used moderate/low-
resolution data such as MODIS, Landsat, or
Sentinel-2 images for their works (Gong et al.,
2013; Bhatti and Tripathi, 2014; Darmanto et al.,
2015; Ettehadi et al., 2019; Guo et al., 2018;
Lefebvre et al., 2016; Rasul et al., 2018; Prasomsup
et al., 2020; Wang et al., 2017; Weizman and
Goldberger, 2009; Zhang and Tang, 2018; Zhang
and Wang, 2014). The nighttime light (NTL) satellite
images also were one of the most fashionable data
that are regularly used for built-up mapping pur-
poses. In this case, scholars primarily used the
Defense Meteorological Satellite Program (DMSP)
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and Operational Linescan System (OLS) images for
this task (Cao et al., 2009; Hu et al., 2017; Li et al.,
2017; Li and Zhou, 2017; Lu et al., 2008; Small
et al., 2005; Xie and Weng, 2016; Yan, 2019; Yu
et al., 2014; Zhang et al., 2013; Zhou et al., 2014).
Afterwards, by launching the Visible Infrared Imag-
ing Radiometer Suite Day/Night Band carried by
the Suomi National Polar-orbiting Partnership
(NPP-VIIRS) satellite with relatively better spatial
resolution, compared with the DMSP-OLS data, it
was majorly used for urban monitoring and built-
up extraction (Chen et al., 2020; Dou et al., 2017;
He et al., 2014; Li et al., 2018; Liu et al., 2019;
Small et al., 2013; Xie et al., 2014; Xu et al., 2016;
Xu et al., 2020; Yang et al., 2019; Yu et al., 2018;
Yuan et al., 2019; Zou et al., 2017). Nowadays, the
Chinese Luojia (LJ) 1–01 satellite NTL images with
the highest available spatial resolution (130 m) are
used for built-up mapping (He et al., 2021; Li et al.,
2018; Wang et al., 2021).

(c) Categorization based on the extent of the study area:

From this standpoint, the literature can be classified
into three groups: those who worked on a regional
scale (Lu et al., 2008; Wang et al., 2017a), those
who focused on a national scale (Ghorbanian et al.,
2020), and the works that provided outputs for the
whole globe (Ban et al., 2015; Esch et al., 2017;
Sharma et al., 2016).

The expansion of urban environments is taking place
rapidly, and to monitor and manage these urban areas,
many up-to-date and accurate maps are required. Since
the methods mentioned above do not allow the user to
effectively produce up-to-date maps for any parts of the
Earth in a short time we developed a fully automatic
framework that uses open-access RS data, real-time
cloud-based image processing tools, and efficient artifi-
cial intelligence (AI) algorithms to produce urban
built-up maps for any given study area and any time.
For this purpose, inspired by Liu et al. (2019) and in
continuation of our previous research on automatic
LULC mapping (Toosi et al., 2022), in this paper, an
improved, automatic, and real-time built-up area extrac-
tion method was proposed, which integrates LJ 1–01
NTL data, Sentinel-1 and Sentinel-2 imageries, and
SRTM DEM. In the developed method, first, a hybrid
feature space is established. Second, a variety of built-
up and non-built-up training and validation samples
are collected automatically using multi-level/Otsu thresh-
olding and logical rules. Third, the training samples are
used for machine learning (ML)-based supervised classi-
fication to obtain a preliminary classified map. Then, it
is corrected within a two-level post-classification phase
to obtain a fine classified thematic map and built-up
map. By using numerous powerful features, the fully
automatic proposed algorithm can reduce the confusion
between built-up areas and other similar land coverages,
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thereby improving the accuracy of built-up area
mapping.

The main contribution of this paper is to establish a fast
and simple method that enables the users to automatically
extract built-up areas at no charge for any desired region of
interest at any time using well-established powerful ML
techniques and open-access satellite data.
2. Materials and methods

2.1. Study area

The following four areas from North America, Europe
(Scandinavia), the Middle East, and Eastern Asia were
selected as study areas: Mexico City, Mexico; Stockholm,
Sweden; Tehran, Iran; and Seoul, South Korea (Fig. 1).
The above-mentioned study areas which are chosen ran-
domly are from continents with different climates, urban
structures, and levels of economic condition. The choice
of these four areas allows us to validate the proposed
method with different built-up area distribution character-
istics and to show the ability of the method for the efficient
and automatic extraction of urban built-up areas.
2.2. Dataset

We used 10 m Sentinel-2 level-2A multispectral ima-
geries, 10 m Sentinel-1 SAR images, and 130 m LJ 1–01
NTL data from the year 2018 for the selected study areas
as input data. The dataset is described in Table 1 and is
shown in Fig. 2. We used cloud-free Sentinel-2 images for
a short period of time within a year to avoid any issues
caused by any noticeable changes to built-up areas over
time. Sentinel-2 images are bottom of atmosphere (BOA)
or surface reflectance (SR) products which are not affected
Fig. 1. Location of
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by the atmosphere. The preprocessed Sentinel-1, Sentinel-
2, and SRTM DEM data were called back from the Google
Earth Engine (GEE) dataset repository (https://develop-
ers.google.com/earth-engine/datasets/), while the LJ 1–01
images were downloaded from the official website of Hubei
data and application network (https://www.hbeos.org.cn;
https://59.175.109.173:8888/).

2.3. Processing tool

The GEE cloud computing platform is used to access a
variety of open-source geospatial data without the need to
download them. On the other hand, some levels of pre-
processing (i.e. geometric and atmospheric corrections)
were applied by the developers to the data which can facil-
itate working with big satellite data.

3. Methodology

According to the block diagram in Fig. 3, the proposed
method of this study is made up of three steps including
‘‘data preparation and feature extraction,” ‘‘classification
and post-classification,” and ‘‘validation” which are sepa-
rately described as follows:

3.1. Data preparation and feature extraction

In this initial step, the Sentinel-1 SAR images are called
back from the GEE data repository, filtered by the bound-
ary (for each study area) and date (for the year 2018), and
all the available polarization/bands (in these case studies
VV and VH are available) are selected. Then, the subtrac-
tion of VV and VH (VV-VH) and their average (VVþVH

2
) are

calculated as features since they can help to discriminate
built-up areas from other land coverages (Lino et al.,
the study areas.

https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
https://www.hbeos.org.cn
https://59.175.109.173%3a8888/


Table 1
Data descriptions.

Satellite Bands (Polarization) Resolution (m) Total No. of Images

Sentinel-1 C (VV and VH) 10 287
Sentinel-2 RGB, RedEdge, NIR, and SWIR 10–60 73
SRTM Elevation 90 4
LJ 1–01 – 130 4

Fig. 2. Presentation of the dataset.
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2018). For Sentinel-2 data, the images are called back in
GEE and filtered by the boundary of study areas. Then,
the remaining images are filtered by date (the summer sea-
son was set for the date duration to have the least cloudy or
foggy pixels) and ‘‘percentage of cloudy pixels” where only
the images with cloudy pixels less than 1% are selected. All
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the spectral bands having a spatial resolution of more than
10 m are manipulated (resampled) so that all the channels
can reach a spatial resolution of 10 m (since the Sentinel-2
dataset lacks a high-resolution panchromatic band that has
complete spectral coverage with other bands, no pansharp-
ening operation has been carried out). Since built-up areas



Fig. 3. Flowchart of the proposed built-up extraction method.
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have different textures compared to other land coverages,
the first group of features that are obtained from the aver-
age of three original 10 m-visible (RGB) bands of the
Sentinel-2 dataset is textural indices which are used for dis-
criminating built-up from non-built-up areas. We calcu-
lated 11 commonly used textural descriptors including
mean, variance, homogeneity, contrast, dissimilarity, sec-
ond moment, correlation, prominence, inertia, shade, and
entropy which are calculated from Gray-Level Co-
occurrence Matrices (GLCM) (Haralick et al., 1973). The
formulas related to the textural indices are provided in
Table 2.

The second group of features is seven built-up indices
including Normalized Difference Built-up Index (NDBI)
(Zha et al., 2003), Built-up Index (BUI) (He et al., 2010),
Built-up Area Extraction Index (BAEI) (Bouzekri et al.,
2015), New Built-up Index (NBI) (Jieli et al., 2010), Vege-
tation Index Built-up Index (VIBI) (Stathakis et al., 2012),
Index-based Built-up Index (IBI) (Xu et al., 2008), and
Urban Index (UI) (Kawamura, 1996). A brief description
of the above-mentioned indices, accompanied by other
spectral indices including Normalized Difference Vegeta-
tion Index (NDVI), Modified Normalised Difference Water
Index (MNDWI) (McFeeters, 1996), and Soil Adjusted
Vegetation Index (SAVI) (Huete, 1988), is provided in
Table 3.

The SRTM slope maps and the features derived from
the arithmetic combination of Sentinel-1 Radar bands
form the spatial feature set. Due to their relatively coarse
spatial resolution, the SRTM slope maps are not included
in the hybrid feature set (which will be imported into the
classification), and they are only used for masking moun-
tainous areas. It is noteworthy that as the radar backscat-
terings are sensitive to the spatial pattern of the
phenomenon, we categorized them as spatial features,
and as their main duty, they can help to identify built-up
areas (Semenzato et al., 2020). Furthermore, as their sec-
Table 2
Textural features.

Index Formula

Mean lx=ly ¼
PG

i¼0

PG
j¼0Pði; jÞ � i=j (1)

Variance r2i =r
2
j ¼

PG�1
i¼0

PG�1
j¼0 P ði; jÞ � ði=j� liÞ2 (2)

Homogeneity PG�1
i¼0

PG�1
j¼0

Pði;jÞ
1þji�jj (3)

Contrast
PG

i¼0

PG
j¼0P ði; jÞ � ði� jÞ2(4)

Dissimilarity
PG�1

i¼0

PG�1
j¼0 Pði; jÞ � ji� jj2 (5)

Second Momentum
PG�1

i¼0

PG�1
j¼0 ðPði; jÞÞ2 (6)

Correlation PG�1
i¼0

PG�1
j¼0

i;jð Þ�P i;jð Þ�ðlx�ly Þ
rx�ry

(7)

Prominence
PG�1

i¼0

PG�1
j¼0 ðiþ j� 2rÞ4 � Pði; jÞ (8)

Inertia
PG

i¼0

PG
j¼0ði� jÞ2 � P ði; jÞ (9)

Shade
PG�1

i¼0

PG�1
j¼0 ðiþ j� 2rÞ3 � Pði; jÞ (10)

Entropy �PG�1
i¼0

PG�1
j¼0 P i; jð Þ � log P i; jð Þð Þ (11)

* P(i,j): the relative frequency with which two pixels occur within a given
neighborhood; i and j: pixels’ intensity values; G: number of grey levels.
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ondary task, radars can effectively help us in discriminating
water and vegetation from other objects (Bioresita et al.,
2018).

The Otsu thresholding is used to provide a threshold to
obtain water, no-water, vegetation, and no-vegetation
masks. It segments the indices by exhaustively searching
for the optimum threshold (T) that minimizes the intra-
class variance (Eq. (22)).

d2w tð Þ ¼ w1 � d21 Tð Þ þ w2 � d22 Tð Þ ð22Þ

where d21 Tð Þ and d22 Tð Þ are variances of the two desired

classes and w1 ¼
PT�1

i¼0 pðiÞ and w2 ¼
PL�1

i¼0 pðiÞ are the
probabilities of the two classes separated by T (Sezgin
et al., 2004; Toosi et al., 2022).

As the LJ 1–01 NTL images are not covered by the GEE
data repository, it is necessary to freely download them
from the official website of the Hubei data and application
network and then upload them to the GEE platform.
Regarding the breadth of products, image mosaicking is
necessary for case studies extending more than
250 km � 250 km. For some case studies, there may be
slight spatial misregistration between the LJ 1–01 and Sen-
tinel data that in such cases LJ 1–01 should be co-registered
to Sentinel-2 10 m bands, for instance. The basic format of
data is the digital numbers (DN) which are converted to
radiance (q) according to the exponential relation of Eq.
(23).

q ¼ DN 3=2 � 10�10 ð23Þ
where q is the input radiance (W=ðm2srlmÞ) and DN is an
abbreviation for the digital number of the LJ 1–01 images.

Afterward, multilevel thresholding is applied to q in
order to obtain q = 0 (completely dark areas on the Earth)
and q � T (T is a threshold that presents highly lit-up areas
on the Earth1). The reason is that the NTL images are cor-
related with human activities and that built-up areas have
higher DN values, compared to natural non-built-up areas
with very low DN values (and sometimes the values are
equal to zero) (Liu et al., 2019). It is noteworthy that the
LJ data are not significantly affected by different types of
noises (Li et al., 2019).

SRTM Digital Elevation Data (DEM) Version-4 is
called back in GEE, and its elevation band is filtered by
boundary and date. Then, the slope map is calculated from
the DEM layer. T = 15�is used as a threshold to obtain
mountain and no-mountain masks. T = 15� is the most
common threshold, which is used in studies conducted
for built-up mapping (Ban et al., 2015). The AND and
OR logical rules are applied to all the masks obtained from
the SRTM, LJ 1–01 and Sentinel-2 data to make two base
regions called potential built-up area (PBA) and non-built-
up area (NBA). The AND operator states that PBA is an
1 Regarding the minimum and maximum DN values, the threshold T is
a number that segments the top n% of DNs (n can be any number, i.e., 10,
20, etc.) from the total DN values.



Table 3
Spectral features.

Index Formula

NDVI ðNIR� RedÞ=ðNIRþ RedÞ (12)
MNDWI ðGreen� SWIR1Þ=ðGreenþ SWIR1Þ (13)
SAVI ððNIR� RedÞ=ðNIRþ Red þ 0:5ÞÞ � 1:5 (14)
NDBI ðSWIR1� NIRÞ=ðSWIR1þ NIRÞ (15)
BUI NDBI � NDVI (16)
BAEI ðRed þ LÞ=ðGreenþ SWIRÞ; L ¼ 0:3 (17)
NBI ðSWIR� RedÞ=NIR (18)
VIBI NDVI=ðNDVI þ NDBIÞ (19)
IBI ðNDBI � ðSAVI þMNDWIÞ=2Þ=ðNDBI þ ðSAVI þMNDWIÞ=2 (20)
UI ðððSWIR� NIRÞ=ðSWIRþ NIRÞÞ þ 1:0Þ � 100 (21)
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area that has high light-up and at the same time is neither
covered by vegetation nor located on steep slopes. In addi-
tion, the OR operator indicates that NBA is the summation
of completely dark (with no nighttime light) areas or areas
with steep slopes or covered with water/vegetation (at least
one of the conditions is needed so that it can true). On the
other hand, all the spectral, textural, and spatial features
are stacked together to obtain a hybrid feature space.

3.2. Classification and Post-classification

A variety of sample points are randomly and automati-
cally selected in the PBA and NBA regions. The samples
are generated based on the GEE ‘‘RandomPoints” func-
tion which generates points that are uniformly random
on the sphere and are within the given region (GEE Ref.,
2022). For random sample generation, the given polygon,
which are our study area, is decomposed into n different tri-
angles (i ¼ f1; 2; 3; � � � ; ng) with vertices V 1i, V 2i, and V 3i.
Therefore, a random point (Pj) can be generated uniformly
within triangle V 1iV 2iV 3i according to the convex combina-
tion of the vertices (Eq. (24)).

P j ¼ 1� ffiffiffiffiffiffi
w1i

pð Þ � V 1i þ ffiffiffiffiffiffi
w1i

p � 1� w2ið Þð Þ � V 2i

þ ð ffiffiffiffiffiffi
w1i

p � w2iÞ � V 3i ð24Þ
where w1i and w2i, which are called convex weights, are uni-
formly and randomly drawn from the range of [0,1] for the
ith triangle. It is also noteworthy that alwaysPðw1;w2Þ ¼ 1 (GIS, 2011; Osada et al., 2002; SOF, 2011).

A preliminary sample collection is obtained, which can
also be improved by human supervision/revision. It is
noteworthy that a manual sample selection module is also
set up, which allows the human expert to manually add
some samples or delete some of them. After the final sam-
ple collection is prepared, it is then split into training and
validation samples in an 80%-20% ratio. The training
samples are used to train the Support Vector Machine
(SVM) as one of the most fashionable ML supervised
classification methods (Yang et al., 2018), and the valida-
tion samples are used to evaluate the classification perfor-
mance. It is worth noting that here, traditional ML
methods are used instead of DL-based methods so that
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they can be suitable for real-time, fast (as one of the goals
of our proposed method), and precise processing. This is
because despite the relatively higher accuracy of DL
methods (Karaca et al., 2017), training of DL models is
so time-consuming in comparison to traditional methods
and the time will increase drastically with the increase
in the size of study areas (Yilmaz et al., 2020). It is also
noteworthy that in many cases, the well-established tradi-
tional ML methods, such as SVM, can provide compara-
ble results to the DL methods (Lai, 2019). The
classification process provides a preliminary classified
map (PCM). Post-classification operations are set up to
improve PCM. Post-classification is conducted in two
steps including (1) overlaying NBA to the PCM, and then
(2) applying morphological operations, i.e. opening and
closing. In the first step, the NBA is overlaid to the
PCM (Eq. (25)), i.e. an AND logical operation is per-
formed between the PCM and NBA binary images.
Assume the pixels in the PCM that are related to built-
up and non-built-up classes be shown by 1 and 0, respec-
tively. Also, the pixels with 1 in the NBA indicate the pix-
els that are definitely non-built-up. Thus, the refined
classified map (RCM) obtained by overlaying (RCMOL)
is a binary image in which the misclassified pixels are
corrected.

RCMOL ¼ PCM j f PCM ¼ 1ð Þ& ðNBA–1Þg ð25Þ

where | denotes conditional equality, which means that
RCM is the same as PCM with the condition that the state-
ment in the braces is exerted on the PCM. In the second
level, RCMOL is refined by morphological opening and
closing (Eq. (26)) to remove small misclassified pixels
(speckles) and to close (fill) the gaps and holes in the clas-
sified map.

RCMF ¼ RCMOL oHð Þ � H
¼ ðððRCM �HÞ �HÞ �HÞ �H ð26Þ

where RCMF is the final version of RCM. The opening,
closing, erosion, and dilation are presented by ‘‘o, _s, �,
and �”, respectively. Also, H represents the structural ele-
ment. After post-classification, the final built-up map is
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obtained, and the area of built-up area can be calculated
using the obtained maps, if necessary.

3.3. Validation

Validation is done in both quantitative and qualitative
manners. In the former method, the evaluation is con-
ducted using the elements of confusion (error) matrix,
while in the latter, the assessment is done visually by com-
paring the obtained results with base high-resolution Goo-
gle Earth images, state-of-the-art reference maps, and the
result of other studies. In our error matrix, rows and col-
umns correspond to reference and predicted classes (BU:
built-up and NBU: non-built-up), respectively. The ele-
ments of the error matrix are the User’s Accuracy (UA),
Producer’s Accuracy (PA), Overall Accuracy (OA), and
Kappa Coefficient (KC). UA indicates the probability that
a classified built-up pixel is truly a built-up area. On the
other hand, PA calculates the probability that a built-up
pixel is correctly identified. OA indicates the proportion
of pixels that are correctly identified. Finally, KC is an
indicator that indicates the agreement between classified
results and ground truth. UA, PA, OA, and KC are defined
as Eqs. (27)–(30), respectively.

UAi ¼ X ii

Xþi
� 100 ð27Þ

PAi ¼ X ii

X iþ
� 100 ð28Þ

OA ¼ ð1
N

X
X iiÞ � 100 ð29Þ

KC ¼ N
P

X ii �
P

X iþXþi

N 2 �P
X iþXþi

ð30Þ

where X ii represents the number of pixels that are correctly
identified, X iþ is the number of pixels that belong to class i,
Xþi is the number of pixels identified as class i, and N is the
total number of image pixels (Li et al., 2018; Pearson and
Blakeman, 1904).

4. Results and discussions

Fig. 4 presents the overall hybrid spectral, textural, and
spatial (STS) feature space including 65 feature images in
four study areas. In the case of textural descriptors, the
descriptors are obtained by setting the parameters as fol-
lows (based on the GEE’s default): The size of the neigh-
borhood is set to 1, and a 3 � 3 square window is
utilized, leading to four GLCMs with the offsets (�1,�1),
(0,�1), (1,�1), and (�1,0). It is noteworthy that to avoid
the low-quality STS features, i.e. features containing high
noise or with relatively low contrast, the quality of features
can be assessed both visually and numerically using the
simple no-reference quality assessment metrics such as
Standard Deviation, BRISQUE, DIIVINE, BLIINDS-II,
SSEQ, BIQI, etc. (here we used the well-established Stan-
dard Deviation metric) (Al-Wassai and Kalyankar, 2012;
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Javan et al., 2019; Mhangara et al., 2020) This led to keep-
ing only the high-quality STS features (that properly dis-
criminate between the phenomena) and deleting useless
features from the feature set.

As mentioned before, built-up indices form a significant
portion of spectral index groups. According to Fig. 5,
which shows the correlation between the corresponding
pixels of built-up indices for SA1 (as an example), it can
be seen that except in a few cases (with a weak correlation
or R�0) there is a significant positive correlation (R)
between different pairs of indices at the level of a = 0.01
in a two-tailed statistical test. What is more important than
the correlation of indices is the ability of indices to discrim-
inate between different land covers (the high power of the
indices to perform such a task is indicated in Fig. 4).

Fig. 6 shows the obtained PBA and NBA accompanied
by the Otsu thresholding outputs, i.e., water mask and veg-
etation mask. The thresholds of the histograms, i.e. T1-T8
are the Otsu thresholds that segment the water-covered and
vegetated areas. The sample points including training fea-
ture collection and validation feature collection for both
built-up and non-built-up classes are presented in Fig. 7.
Table 4 contains information on the number of sample
points. It is noteworthy that the number of samples is set
by trial and error, which provides the best outcomes.
Due to the computational load issue and the more accurate
selection of samples and avoiding the selection of mixed
pixels instead of pure pixels, a point-wise selection method
was used instead of the polygon-based strategy. Hence this
strategy can lead to a relatively faster classification process
and more accurate and reliable results (Toosi et al., 2022).
Furthermore, the manual sample selection method for
large-scale case studies such as provinces, countries, and
continents is so time-consuming; in some cases, human-
based errors may emerge. Thus, we believe the automatic
sample selection strategy of our method seems to be more
efficient, which decreases the number of mistakes.

In order to tune the SVM supervised classifier parame-
ters, the default values of GEE’s references are considered,
i.e. Radial Basis Function (RBF) is chosen as the kernel
type, and c and cost parameters are set to 0.5 and 10,
respectively. SVM is trained by training features, and then
the hybrid feature set is introduced to the classifier. By pro-
ducing the initial classified maps, the produced maps are
morphologically corrected using opening and closing oper-
ations with circle-shaped normalized Boolean structural
elements (kernels) of radius 1 to obtain the RCMs. The
mentioned 3 � 3 kernel is expressed as [0, 0.2, 0; 0.2, 0.2,
0.2; 0, 0.2, 0]. In this matrix, the semicolons separate the
rows, and the colons separate the elements in each row.
The RCMF and the final built-up map for all study areas
are produced, which are shown in Fig. 8.

The confusion (error) matrix for the classification per-
formance in all study areas is presented in Fig. 9. The aver-
age overall accuracy (OA) and Kappa coefficient (K) were
calculated as 94.4% and 0.89, respectively. According to
the USGS standard limit (OA � 85 %), all the classification



Fig. 4. The STS hybrid feature space.

Fig. 5. Correlation between the built-up indices.
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Fig. 6. The results of Otsu thresholding and the obtained PBAs and NBAs.
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Fig. 7. Training and validation sample collections.
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outputs are acceptable (Chen et al., 2018c). The obtained
results of our proposed method were also visually com-
pared with some other state-of-the-art national and global
built-up maps (Fig. 10). The products include 1000 m-
1062
Global Human Settlement Layers (GHSL) (Pesaresi
et al., 2016), 100 m-Copernicus Global Land Cover Layers,
i.e., CGLS-LC100 Collection 3 (CGLS) (Buchhorn et al.,
2020), ESA WorldCover 10 m v100 (ESA WC) (Van De



Table 4
Number of training and validation samples*.

SA Class Training (Pts) Validation (Pts) Total (Pts)

Mexico City BA
NBA

769
1,044

231
256

1,000
1,300

Total (Pts) 1,813 487
Stockholm BA

NBA
1612
1579

388
421

2,000
2,000

Total (Pts) 3,191 809
Tehran BA

NBA
778
757

222
243

1,000
1,000

Total (Pts) 1,535 465
Seoul BA

NBA
2,326
1,565

674
435

3,000
2,000

Total (Pts) 3,891 1,109

* BA: built-up; NBA: non-built-up; Pts: points; and SA: study area.

Fig. 8. The RCMF and final built-up

Fig. 9. Confusion matrices of our method in different st
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Kerchove et al., 2021; EEDC, 2022a), 10 m-World settle-
ment footprint 2015 (WSF 2015) (Marconcini et al.,
2020), Dynamic World (DW) V1 (Brown et al., 2022),
MODIS MCD12Q1 V6 (Friedl and Sulla-Menashe,
2019), Copernicus CORINE Land Cover (CLC)
(CLC2018, 2020), and 10 m-Iran Land Cover Map (ILCM)
(Ghorbanian et al., 2020).

The results showed that all the methods similarly and
effectively extracted the general pattern of urban built-up
areas and that the slight differences are related to some
challenging areas such as bare lands (which are similar to
built-up areas from the visual/spectral similarity point of
view) and narrow road network. By scrutinizing the results
and comparing them with each other, it is found that our
proposed method effectively extracts built-up areas and
maps produced by our method.

udy areas: (a) SA1; (b) SA2; (c) SA3; and (d) SA4.



Fig. 10. Visual comparison between our method and other state-of-the-art methods: (a) Google Earth images; (b) Our method; (c) GHSL; (d) CGLS; (e)
ESA WC; (f) WSF; (g) MCD12Q1; (h) DW V1; and (i) Local built-up maps (CLC and ILCM for SA2 and SA3, respectively).
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that even it has a good ability to map narrow roads. Fur-
thermore, the GHSL and ESA WC, with a spatial resolu-
tion of 30 m and 10 m, respectively, are two of the other
powerful methods that can effectively extract urban road
networks. Among the four high-resolution (10 m) built-
up maps, i.e. our produced maps, CLC, and DW V1, and
WSF, the first two better match the Google Earth ground
truth, while in DW V1 and WSF there are some slight dis-
continuities which are less consistent with reality. Due to its
spatial resolution (100 m) and with an OA of about 80%
(which was declared in Buchhorn et al., 2020), the CGLS
product can extract the overall pattern of urban built-up
areas, and it can model the road structure with a width less
than 100 m. Furthermore, with a resolution of about
500 m, MCD12Q1 is not able to extract small built-up
areas, i.e. like CGLS only mapped the urban area in a rel-
atively coarse scale. Our results and the WSF product have
the most similarity in terms of visual characteristics, i.e. in
both of them, there are the least possible discontinuities in
the final map. The two-level post-classification in our
method provides us with such results with the least unreal
discontinuities. For the SA3, the result of our method is
compared to 10 m-ILCM. According to Ghorbanian
et al. (2020), ILCM was produced with an OA of 95.6%,
which shows that our method had good accuracy in the
extraction of built-up areas in SA3 (Note that our method
has an OA of about 95.5% in SA3). It can be seen that the
OA and Kappa in SA40s results are smaller than other SAs.
To investigate the reason for this, it can be argued that due
to the nature of our proposed method, the algorithm has
been run several times and different amounts of training
and validation samples have been set each time. The exper-
iments indicate no significant variation of OA and Kappa in
this case. Moreover, based on Liu et al.’s (2019) research, it
was revealed that with a constant number of training and
validation samples, different built-up extraction methods
such as FROM-GLC, PII, and GUL can have considerably
different performances in different case studies. Therefore, it
is quite possible for a single method to perform completely
different in various cases. In addition, finding out the exact
reason for this still requires more effort.

In order to analyze the impact of the classifier algorithm
in the classification process, the statistical difference of the
SVM result is compared to that of the other well-known
classifier, i.e. Random Forest (RF). For such a compar-
ison, the non-parametric McNemar’s statistical test is used,
which defines a standardized normal indicator as Eq. (31)
(McNemar, 1947; Samadzadegan et al., 2017).

Z ¼ f 12 � f 21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 12 þ f 21

p ð31Þ

where f 12 indicates the number of samples classified cor-
rectly by SVM and incorrectly by RF, and f 21 indicates
the number of samples classified correctly by RF and incor-
rectly by SVM.

The test is carried out on the Seoul case study (SA4) in
which more samples (compared to the other three study
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areas) are involved in its classification process. For the
same training and validation samples (similar to that was
used for SVM), the confusion matrix was obtained as Eq.
(32) and Eq. (33) for SVM and RF, respectively. Thus
Z = 1.63 indicates that the difference in accuracy between
the two classifiers is not statistically significant (as |Z|less
than1.96). Furthermore, as Z greater than 0, it is inferred
that SVM is relatively more accurate than RF
(Samadzadegan et al., 2017). The indicator revealed that
our results are not much dependent on the classifier
method and that any well-established classifier with such
a large number of training samples and rich datasets can
provide acceptable results.

ESVM ¼ BUreference : 654 NBUreference : 18

BUclassification : 114 NBUclassification : 318

� �
ð32Þ

ERF ¼ BUreference : 655 NBUreference : 17

BUclassification : 119 NBUclassification : 313

� �
ð33Þ

One of the most prominent strength points of our real-
time method, compared to its competitors, is its high flexi-
bility. By the term ‘‘flexibility,” we mean that one can easily
manipulate the hybrid feature set (increase or decrease the
layers), the size of sample collections, and the key parame-
ters as fast as possible and re-run the algorithm for the same
(or even other) case study without running into any trouble.
Furthermore, the joint automatic and manual modules for
sample selection led to producing a sample feature collec-
tion from all kinds of built-up characteristics. This provides
a diverse and rich set of training data for training the SVM
classifier and prevents overfitting in the classification of new
inputs (as the classifier is trained with a variety of diverse
samples from all over the study area and it is somehow sat-
urated). In order to guarantee the robustness of our method
against the study area, i.e. to investigate if its performance
depends on the study area and also to find out whether or
not it works for any area with different built-up character-
istics, it should be implemented for a large number of study
areas (e.g. for tens of cases) all over the world.

Our proposed method was implemented on a laptop
with a 2.50 GHz Pentium Intel Core i7 CPU, NVIDIA
GeForce MX 130 GPU, and 16 GB of RAM. However,
Internet speed is very more important than hardware char-
acteristics. With a 10 Mb/s Internet speed, GEE codes con-
sume about three minutes to be run for the study areas of
this paper. As a result, the performance on national and
global scales would be time-consuming while having about
1,000–3,000 samples and a hybrid feature set containing
more than 15 STS bands. In the case of online cloud-
computing server-client platforms, such as GEE, where a
great portion of computational affairs are conducted on
the server side and only the final desired results are sent
to the client side, the process gets accelerated considerably,
compared to the traditional offline desktop-based image
processing platforms.

As the LJ 1–01 satellite was launched very recently (in
June 2018), its images do not cover the whole globe



Fig. 11. The global coverage of the LJ 1–01 NTL data (source: Hubei data and application network).
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(Fig. 11 shows that by the year 2022, about 30% of the
world is covered by 8,673 NTL image frames), and also
they have not been provided by the GEE platform yet. In
the upcoming years, by having the LJ 1–01 images in the
GEE data repository, it can be a good opportunity to auto-
matically extract the built-up areas for the whole globe
with a spatial resolution of 10 m and also to monitor
dynamic changes of built-up areas within two epochs in
real-time mode.
2 These images are provided only for some parts of the Earth and also
for some limited dates.
5. Conclusions

In this study, we proposed a fully automatic method to
integrate the LJ 1–01 NTL data, Sentinel-1 SAR, and
Sentinel-2 multispectral imagery for real-time mapping of
urban built-up areas in the GEE platform. A hybrid STS
feature space was established and was accompanied by
the training and validation sample collections, and then
they were entered into the well-established SVM classifica-
tion. The samples were automatically collected based on
the LJ image and the water and vegetation masks gener-
ated by the Sentinel-2 imagery and applying thresholding.
The hybrid STS feature set was classified to produce a pre-
liminary built-up map. Then, the mentioned map was auto-
matically improved in the two-level post-classification
process. The proposed method with an average OA of
94.4% was shown to efficiently extract the built-up area.
Also, compared to other state-of-the-art methods, our
algorithm has promising performance.

One of the good characteristics of our method is using
the cloud computing GEE platform, and this makes it suit-
able to be implemented in other case studies all over the
globe. In this study, GEE was shown to have a brilliant
capability to process multi-gigabyte big satellite data and
produce desired built-up maps in a short time. Our method
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may face some challenges. For instance, although we fil-
tered the input images to have the least possible cloud-
free data, the cloud may cause some problem for the results
by affecting the Sentinel-2 image, and the challenge may
intensify when the study area drastically increases (e.g.,
for the whole globe). Furthermore, obviously due to the
limitations in the input data, our method is not able to
map the urban roads with a width lower than the spatial
resolution of the Sentinel-2 images (10 m).

For future research to improve the performance of our
method, one can implement the algorithm using the DL-
based method (instead of traditional ML-based methods
such as SVM, RF, etc.) by linking the GEE and Google
Colaboratory (Colab) platforms. In order to make other
improvements in future research, one can use the super-
resolution (SR)-based DL techniques to sharpen the initial
Sentinel MS bands using their own spatial information
(Zhong et al., 2016) or the high-resolution SkySat and
NAIP satellite and aerial images provided by GEE2

(EEDC, 2022b). The image sharpening led to producing
enhanced Sentinel data with a spatial resolution better than
10 m. It is worth noting that in Zhong et al.’s (2016) self-
enhancement technique the resolution of the Sentinel
images improves using the spatial information of the Sen-
tinel multispectral bands themselves. Furthermore, a dis-
tinct module can be set up for extraction of road
networks out of the LJ 1–01 NTL data by distinguishing
the urban regions through a threshold-based method and
by means of an unsupervised pulse coupled neural network
(PCNN) (Wang et al., 2021). The output of the road
extraction module can be aggregated with our base built-
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up mapping method using an AND logical operation to
obtain the final built-up areas.

We hope that this research will open new horizons to the
RS scientific community and that its promising results will
be useful for them. Furthermore, it is desired that, accord-
ing to these geospatial maps, the decision makers make
appropriate and effective decisions toward sustainable
development.
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Hanke, W., Bachofer, F., Zeidler, J., Esch, T., Gorelick, N., Kakarla,
A., Paganini, M., 2020. Outlining where humans live, the World
Settlement Footprint 2015. Sci. Data 7 (1), 1–14.
1068
McFeeters, S.K., 1996. The use of the Normalized Difference Water Index
(NDWI) in the delineation of open water features. Int. J. Remote Sens.
17 (7), 1425–1432.

Mhangara, P., Mapurisa, W., Mudau, N., 2020. Image interpretability of
nSight-1 nanosatellite imagery for remote sensing applications. Aero-
space 7 (2), 19.

Mohammadnejad, V., 2020. Urban lands Extraction from Sentinel 1 and 2
satellite imagery based on Google Earth Engine (GEE). Geographical
Urban Planning Research (GUPR) 8 (3), 613–630.

Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D., 2002. Shape
distributions. ACM Transactions on Graphics (TOG) 21 (4), 807–832.

Pearson, K., Blakeman, J., 1904. Mathematical contributions to the
theory of evolution. XIII. On the theory of contingency and its relation
to association and normal correlation.

Pesaresi, M., Freire, S., 2016: GHS Settlement grid following the REGIO
model 2014 in application to GHSL Landsat and CIESIN GPW v4-
multitemporal (1975-1990-2000-2015). In: European Commission,
Joint Research Centre (JRC) [Dataset] PID: https://data.europa.eu/
89h/jrc-ghsl ghs_smod_pop_globe_r2016a.

Prasomsup, W., Piyatadsananon, P., Aunphoklang, W., Boonrang, A.,
2020. Extraction technic for built-up area classification in Landsat 8
imagery. Int. J. Environ. Sci. Dev. 11 (1), 15–20.

Rasul, A., Balzter, H., Ibrahim, G.R.F., Hameed, H.M., Wheeler, J.,
Adamu, B., Najmaddin, P.M., 2018. Applying built-up and bare-soil
indices from Landsat 8 to cities in dry climates. Land 7 (3), 81.

GEE Reference, 2022. https://developers.google.com/earth-engine/api-
docs/ee-featurecollection-randompoints.

Risky, Y.S., Aulia, Y.H. and Widayani, P., 2017, December. Spatiotem-
poral Built-up Land Density Mapping Using Various Spectral Indices
in Landsat-7 ETM+ and Landsat-8 OLI/TIRS (Case Study: Surakarta
City). In IOP Conference Series: Earth and Environmental Science
(Vol. 98, No. 1). IOP Publishing, p. 012006.

Samadzadegan, F., Hasani, H., Reinartz, P., 2017. Toward optimum
fusion of thermal hyperspectral and visible images in classification of
urban area. Photogramm. Eng. Remote Sens. 83 (4), 269–280.

Semenzato, A., Pappalardo, S.E., Codato, D., Trivelloni, U., De Zorzi, S.,
Ferrari, S., De Marchi, M., Massironi, M., 2020. Mapping and
monitoring urban environment through sentinel-1 SAR data: A case
study in the Veneto region (Italy). ISPRS Int. J. Geo Inf. 9 (6), 375.

Sezgin, M., Sankur, B., 2004. Survey over image thresholding techniques
and quantitative performance evaluation. J. Electron. Imaging 13 (1),
146–165.

Sharma, R.C., Tateishi, R., Hara, K., Gharechelou, S., Iizuka, K., 2016.
Global mapping of urban built-up areas of year 2014 by combining
MODIS multispectral data with VIIRS nighttime light data. Int. J.
Digital Earth 9 (10), 1004–1020.

Small, C., Pozzi, F., Elvidge, C.D., 2005. Spatial analysis of global urban
extent from DMSP-OLS night lights. Remote Sens. Environ. 96 (3–4),
277–291.

Small, C., Elvidge, C.D., Baugh, K., 2013. April. Mapping urban structure
and spatial connectivity with VIIRS and OLS night light imagery. In:
Joint Urban Remote Sensing Event 2013. IEEE, pp. 230–233.

Stackoverflow (SOF), 2011. https://stackoverflow.com/questions/
4778147/sample-random-point-in-triangle.

Stathakis, D., Perakis, K., Savin, I., 2012. Efficient segmentation of urban
areas by the VIBI. Int. J. Remote Sens. 33 (20), 6361–6377.

Tan, Y., Xiong, S., Yan, P., 2021. Accurate Detection of Built-Up Areas
in Remote Sensing Image via Deep Learning.

Tan, Y., Xiong, S., Li, Y., 2018. Automatic extraction of built-up areas
from panchromatic and multispectral remote sensing images using
double-stream deep convolutional neural networks. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 11 (11), 3988–4004.

Tan, Y., Xiong, S., Yan, P., 2020. Multi-branch convolutional neural
network for built-up area extraction from remote sensing image.
Neurocomputing 396, 358–374.

Tao, C., Tan, Y., Zou, Z.R., Tian, J., 2013. Unsupervised detection of
built-up areas from multiple high-resolution remote sensing images.
IEEE Geosci. Remote Sens. Lett. 10 (6), 1300–1304.

http://refhub.elsevier.com/S0273-1177(23)00371-X/h0190
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0190
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0195
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0195
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0200
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0200
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0200
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0200
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0205
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0205
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0205
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0205
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0210
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0210
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0210
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0215
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0215
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0215
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0215
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0220
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0220
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0220
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0230
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0230
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0230
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0230
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0240
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0240
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0240
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0245
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0245
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0245
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0245
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0255
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0255
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0255
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0260
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0260
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0260
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0260
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0265
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0265
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0265
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0265
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0270
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0270
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0275
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0275
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0280
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0280
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0285
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0285
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0285
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0290
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0290
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0290
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0300
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0300
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0300
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0300
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0305
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0305
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0305
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0315
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0315
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0315
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0320
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0320
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0320
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0325
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0325
https://data.europa.eu/89h/jrc-ghsl+ghs_smod_pop_globe_r2016a
https://data.europa.eu/89h/jrc-ghsl+ghs_smod_pop_globe_r2016a
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0340
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0340
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0340
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0345
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0345
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0345
https://developers.google.com/earth-engine/apidocs/ee-featurecollection-randompoints
https://developers.google.com/earth-engine/apidocs/ee-featurecollection-randompoints
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0365
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0365
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0365
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0370
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0370
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0370
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0370
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0375
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0375
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0375
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0380
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0380
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0380
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0380
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0385
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0385
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0385
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0390
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0390
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0390
https://stackoverflow.com/questions/4778147/sample-random-point-in-triangle
https://stackoverflow.com/questions/4778147/sample-random-point-in-triangle
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0400
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0400
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0410
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0410
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0410
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0410
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0415
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0415
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0415
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0420
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0420
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0420


F. Samadzadegan et al. Advances in Space Research 72 (2023) 1052–1069
Tian, T., Li, C., Xu, J., Ma, J., 2018. Urban area detection in very high
resolution remote sensing images using deep convolutional neural
networks. Sensors 18 (3), 904.

Toosi, A., Javan, F.D., Samadzadegan, F., Mehravar, S., Kurban, A.,
Azadi, H., 2022. Citrus orchard mapping in juybar, iran: Analysis of
ndvi time series and feature fusion of multi-source satellite imageries.
Eco. Inform. 70 101733.

Van De Kerchove, R., Zanaga, D., Keersmaecker, W., Souverijns, N.,
Wevers, J., Brockmann, C., Grosu, A., Paccini, A., Cartus, O.,
Santoro, M. and Lesiv, M., 2021, December. ESA WorldCover:
Global land cover mapping at 10 m resolution for 2020 based on
Sentinel-1 and 2 data. In: AGU Fall Meeting Abstracts (Vol. 2021),
pp. GC45I-0915.

Wang, J., Hadjikakou, M. and Bryan, B., 2020. Mapping built-up land
with high accuracy using Fourier transformation and temporal
correction.

Wang, R., Wan, B., Guo, Q., Hu, M., Zhou, S., 2017. Mapping regional
urban extent using NPP-VIIRS DNB and MODIS NDVI data.
Remote Sens. (Basel) 9 (8), 862.

Wang, P., Zhang, G., Leung, H., 2018. Improving super-resolution flood
inundation mapping for multispectral remote sensing image by
supplying more spectral information. IEEE Geosci. Remote Sens.
Lett. 16 (5), 771–775.

Wang, P., Wang, L., Leung, H., Zhang, G., 2020b. Super-resolution
mapping based on spatial–spectral correlation for spectral imagery.
IEEE Trans. Geosci. Remote Sens. 59 (3), 2256–2268.

Wang, L., Zhang, H., Xu, H., Zhu, A., Fan, H., Wang, Y., 2021.
Extraction of City Roads Using Luojia 1–01 Nighttime Light Data.
Appl. Sci. 11 (21), 10113.

Weizman, L., Goldberger, J., 2009. Urban-area segmentation using visual
words. IEEE Geosci. Remote Sens. Lett. 6 (3), 388–392.

Xie, Y., Weng, Q., Weng, A., 2014, June. A comparative study of NPP-
VIIRS and DMSP-OLS nighttime light imagery for derivation of
urban demographic metrics. In: 2014 Third International Workshop
on Earth Observation and Remote Sensing Applications (EORSA).
IEEE, pp. 335-339.

Xie, Y., Weng, Q., 2016. Updating urban extents with nighttime light
imagery by using an object-based thresholding method. Remote Sens.
Environ. 187, 1–13.

Xu, H., 2008. A new index for delineating built-up land features in satellite
imagery. Int. J. Remote Sens. 29 (14), 4269–4276.

Xu, T., Coco, G., Gao, J., 2020. Extraction of urban built-up areas from
nighttime lights using artificial neural network. Geocarto Int. 35 (10),
1049–1066.

Xu, M., He, C., Liu, Z., Dou, Y., 2016. How did urban land expand in
China between 1992 and 2015? A multi-scale landscape analysis. PloS
one 11 (5), e0154839.

Yan, J., 2019. Extraction Urban Clusters from Geospatial Data: A Case
Study from Switzerland. arXiv preprint arXiv:1903.07270.
1069
Yang, W., Si, Y., Wang, D., Guo, B., 2018. Automatic recognition of
arrhythmia based on principal component analysis network and linear
support vector machine. Comput. Biol. Med. 101, 22–32.

Yang, C., Yu, B., Chen, Z., Song, W., Zhou, Y., Li, X., Wu, J., 2019. A
spatial-socioeconomic urban development status curve from NPP-
VIIRS nighttime light data. Remote Sens. (Basel) 11 (20), 2398.

Yilmaz, A., Demircali, A.A., Kocaman, S., Uvet, H., 2020. Comparison of
Deep Learning and Traditional Machine Learning Techniques for
Classification of Pap Smear Images. arXiv preprint arXiv:2009.06366.

Yu, B., Shu, S., Liu, H., Song, W., Wu, J., Wang, L., Chen, Z., 2014.
Object-based spatial cluster analysis of urban landscape pattern using
nighttime light satellite images: a case study of China. Int. J. Geogr.
Inf. Sci. 28 (11), 2328–2355.

Yu, B., Tang, M., Wu, Q., Yang, C., Deng, S., Shi, K., Peng, C., Wu, J.,
Chen, Z., 2018. Urban built-up area extraction from log-transformed
NPP-VIIRS nighttime light composite data. IEEE Geosci. Remote
Sens. Lett. 15 (8), 1279–1283.

Yuan, X., Jia, L., Menenti, M., Zhou, J., Chen, Q., 2019. Filtering the
NPP-VIIRS nighttime light data for improved detection of settlements
in Africa. Remote Sens. (Basel) 11 (24), 3002.

Zha, Y., Gao, J., Ni, S., 2003. Use of normalized difference built-up index
in automatically mapping urban areas from TM imagery. Int. J.
Remote Sens. 24 (3), 583–594.

Zhang, T., Tang, H., 2018, November. Built-up area extraction from
Landsat 8 images using convolutional neural networks with massive
automatically selected samples. In: Chinese Conference on Pattern
Recognition and Computer Vision (PRCV) (pp. 492-504). Springer,
Cham.

Zhang, Q., Schaaf, C., Seto, K.C., 2013. The vegetation adjusted NTL
urban index: A new approach to reduce saturation and increase
variation in nighttime luminosity. Remote Sens. Environ. 129, 32–41.

Zhang, Q., Huang, X., Zhang, G., 2017. Urban area extraction by regional
and line segment feature fusion and urban morphology analysis.
Remote Sens. (Basel) 9 (7), 663.

Zhang, J., Li, P., Wang, J., 2014. Urban built-up area extraction from
Landsat TM/ETM+ images using spectral information and multivari-
ate texture. Remote Sens. (Basel) 6 (8), 7339–7359.

Zhou, S., Deng, Y., Wang, R., Li, N., Si, Q., 2017. Effective Mapping of
Urban Areas Using ENVISAT ASAR, Sentinel-1A, and HJ-1-C Data.
IEEE Geosci. Remote Sens. Lett. 14 (6), 891–895.

Zhou, Y., Smith, S.J., Elvidge, C.D., Zhao, K., Thomson, A., Imhoff, M.,
2014. A cluster-based method to map urban area from DMSP/OLS
nightlights. Remote Sens. Environ. 147, 173–185.

Zou, Y., Peng, H., Liu, G., Yang, K., Xie, Y., Weng, Q., 2017. Monitoring
urban clusters expansion in the middle reaches of the Yangtze River,
China, using time-series nighttime light images. Remote Sens. (Basel) 9
(10), 1007.

http://refhub.elsevier.com/S0273-1177(23)00371-X/h0425
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0425
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0425
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0430
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0430
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0430
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0430
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0445
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0445
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0445
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0450
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0450
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0450
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0450
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0455
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0455
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0455
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0460
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0460
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0460
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0465
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0465
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0475
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0475
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0475
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0480
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0480
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0485
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0485
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0485
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0490
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0490
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0490
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0500
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0500
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0500
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0505
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0505
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0505
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0515
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0515
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0515
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0515
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0520
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0520
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0520
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0520
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0525
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0525
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0525
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0530
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0530
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0530
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0545
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0545
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0545
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0550
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0550
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0550
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0555
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0555
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0555
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0565
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0565
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0565
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0570
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0570
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0570
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0575
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0575
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0575
http://refhub.elsevier.com/S0273-1177(23)00371-X/h0575

	Automatic built-up area extraction by feature-level fusion of Luojia �1–01 nighttime light and Sentinel satellite imageries in Google �Earth Engine
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Dataset
	2.3 Processing tool

	3 Methodology
	3.1 Data preparation and feature extraction
	3.2 Classification and Post-classification
	3.3 Validation

	4 Results and discussions
	5 Conclusions
	Declaration of Competing Interest
	References


