239 research outputs found

    Reinforcement Learning for Generative AI: A Survey

    Full text link
    Deep Generative AI has been a long-standing essential topic in the machine learning community, which can impact a number of application areas like text generation and computer vision. The major paradigm to train a generative model is maximum likelihood estimation, which pushes the learner to capture and approximate the target data distribution by decreasing the divergence between the model distribution and the target distribution. This formulation successfully establishes the objective of generative tasks, while it is incapable of satisfying all the requirements that a user might expect from a generative model. Reinforcement learning, serving as a competitive option to inject new training signals by creating new objectives that exploit novel signals, has demonstrated its power and flexibility to incorporate human inductive bias from multiple angles, such as adversarial learning, hand-designed rules and learned reward model to build a performant model. Thereby, reinforcement learning has become a trending research field and has stretched the limits of generative AI in both model design and application. It is reasonable to summarize and conclude advances in recent years with a comprehensive review. Although there are surveys in different application areas recently, this survey aims to shed light on a high-level review that spans a range of application areas. We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications. Notably, we also surveyed the fast-developing large language model area. We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI

    Deep learning that scales: leveraging compute and data

    Get PDF
    Deep learning has revolutionized the field of artificial intelligence in the past decade. Although the development of these techniques spans over several years, the recent advent of deep learning is explained by an increased availability of data and compute that have unlocked the potential of deep neural networks. They have become ubiquitous in domains such as natural language processing, computer vision, speech processing, and control, where enough training data is available. Recent years have seen continuous progress driven by ever-growing neural networks that benefited from large amounts of data and computing power. This thesis is motivated by the observation that scale is one of the key factors driving progress in deep learning research, and aims at devising deep learning methods that scale gracefully with the available data and compute. We narrow down this scope into two main research directions. The first of them is concerned with designing hardware-aware methods which can make the most of the computing resources in current high performance computing facilities. We then study bottlenecks preventing existing methods from scaling up as more data becomes available, providing solutions that contribute towards enabling training of more complex models. This dissertation studies the aforementioned research questions for two different learning paradigms, each with its own algorithmic and computational characteristics. The first part of this thesis studies the paradigm where the model needs to learn from a collection of examples, extracting as much information as possible from the given data. The second part is concerned with training agents that learn by interacting with a simulated environment, which introduces unique challenges such as efficient exploration and simulation

    Benchmarking and survey of explanation methods for black box models

    Get PDF
    The rise of sophisticated black-box machine learning models in Artificial Intelligence systems has prompted the need for explanation methods that reveal how these models work in an understandable way to users and decision makers. Unsurprisingly, the state-of-the-art exhibits currently a plethora of explainers providing many different types of explanations. With the aim of providing a compass for researchers and practitioners, this paper proposes a categorization of explanation methods from the perspective of the type of explanation they return, also considering the different input data formats. The paper accounts for the most representative explainers to date, also discussing similarities and discrepancies of returned explanations through their visual appearance. A companion website to the paper is provided as a continuous update to new explainers as they appear. Moreover, a subset of the most robust and widely adopted explainers, are benchmarked with respect to a repertoire of quantitative metrics

    Sentiment Analysis for Online Product Reviews and Recommendation Using Deep Learning Based Optimization Algorithm

    Get PDF
    Recently, online shopping is becoming a popular means for users to buy and consume with the advances in Internet technologies. Satisfaction of users could be efficiently improvised by carrying out a Sentiment Analysis (SA) of larger amount of user reviews on e-commerce platform. But still, it is a challenge to envision the precise sentiment polarity of the user reviews due to the modifications in sequence length, complicated logic, and textual order. In this study, we propose a Hybrid-Flash Butterfly Optimization with Deep Learning based Sentiment Analysis (HFBO-DLSA) for Online Product Reviews. The presented HFBO-DLSA technique mainly aims to determine the nature of sentiments based on online product reviews. For accomplishing this, the presented HFBO-DLSA technique applies data pre-processing at the preliminary stage to make it compatible. Besides, the HFBO-DLSA model uses deep belief network (DBN) model for classification. The HFBO algorithm is used as a hyperparameter tuning process to improve the SA performance of the DBN method. The experimental validation of the presented HFBO-DLSA method has been tested under a set of datasets. The experimental results reveal that the HFBO-DLSA approach surpasses recent techniques in terms of SA outcomes. Specifically, when compared to various existing models on the Canon dataset, the HFBO-DLSA technique achieves remarkable results with an accuracy of 97.66%, precision of 98.54%, recall of 94.64%, and an F-score of 96.43%. In comparative analysis, other approaches such as ACO, SVM, and NN exhibit poorer performance, while TextCNN, BiLSTM, and RCNN approaches yield slightly improved SA results

    Multilayer Cyberattacks Identification and Classification Using Machine Learning in Internet of Blockchain (IoBC)-Based Energy Networks

    Get PDF
    The world's need for energy is rising due to factors like population growth, economic expansion, and technological breakthroughs. However, there are major consequences when gas and coal are burnt to meet this surge in energy needs. Although these fossil fuels are still essential for meeting energy demands, their combustion releases a large amount of carbon dioxide and other pollutants into the atmosphere. This significantly jeopardizes community health in addition to exacerbating climate change, thus it is essential need to move swiftly to incorporate renewable energy sources by employing advanced information and communication technologies. However, this change brings up several security issues emphasizing the need for innovative cyber threats detection and prevention solutions. Consequently, this study presents bigdata sets obtained from the solar and wind powered distributed energy systems through the blockchain-based energy networks in the smart grid (SG). A hybrid machine learning (HML) model that combines both the Deep Learning (DL) and Long-Short-Term-Memory (LSTM) models characteristics is developed and applied to identify the unique patterns of Denial of Service (DoS) and Distributed Denial of Service (DDoS) cyberattacks in the power generation, transmission, and distribution processes. The presented big datasets are essential and significantly helps in identifying and classifying cyberattacks, leading to predicting the accurate energy systems behavior in the SG.© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)fi=vertaisarvioitu|en=peerReviewed

    Ensemble deep learning: A review

    Get PDF
    Ensemble learning combines several individual models to obtain better generalization performance. Currently, deep learning models with multilayer processing architecture is showing better performance as compared to the shallow or traditional classification models. Deep ensemble learning models combine the advantages of both the deep learning models as well as the ensemble learning such that the final model has better generalization performance. This paper reviews the state-of-art deep ensemble models and hence serves as an extensive summary for the researchers. The ensemble models are broadly categorised into ensemble models like bagging, boosting and stacking, negative correlation based deep ensemble models, explicit/implicit ensembles, homogeneous /heterogeneous ensemble, decision fusion strategies, unsupervised, semi-supervised, reinforcement learning and online/incremental, multilabel based deep ensemble models. Application of deep ensemble models in different domains is also briefly discussed. Finally, we conclude this paper with some future recommendations and research directions
    corecore