
Department of Computer Architecture

This thesis is submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy (PhD)

Deep Learning that Scales:
Leveraging Compute and Data

by

Víctor Campos Camúñez

Supervised by
Jordi Torres Viñals & Xavier Giró i Nieto

October 2020

A mi yayo, Pruden,

por enseñarme a dar siempre lo mejor de mí

i

Abstract

Deep learning has revolutionized the field of artificial intelligence in the past decade.

Although the development of these techniques spans over several years, the recent advent

of deep learning is explained by an increased availability of data and compute that have

unlocked the potential of deep neural networks. They have become ubiquitous in domains

such as natural language processing, computer vision, speech processing, and control,

where enough training data is available. Recent years have seen continuous progress

driven by ever-growing neural networks that benefited from large amounts of data and

computing power.

This thesis is motivated by the observation that scale is one of the key factors driving

progress in deep learning research, and aims at devising deep learning methods that scale

gracefully with the available data and compute. We narrow down this scope into two

main research directions. The first of them is concerned with designing hardware-aware

methods which can make the most of the computing resources in current high perfor-

mance computing facilities. We then study bottlenecks preventing existing methods from

scaling up as more data becomes available, providing solutions that contribute towards

enabling training of more complex models.

This dissertation studies the aforementioned research questions for two different learning

paradigms, each with its own algorithmic and computational characteristics. The first

part of this thesis studies the paradigm where the model needs to learn from a collec-

tion of examples, extracting as much information as possible from the given data. The

second part is concerned with training agents that learn by interacting with a simu-

lated environment, which introduces unique challenges such as efficient exploration and

simulation.

ii

Acknowledgements

This thesis is the product of a long journey that has shaped me as a researcher, but also

as a person, and I would like to thank everyone that has been a part of it.

I am extremely thankful to Xavi Giró for introducing me to the exciting field of deep

learning research. His enthusiasm and hard work have brought many students, including

myself, opportunities that we had never dreamt of. I would like to thank him for making

me aim high, encouraging me to pursue goals I would have never considered and for

believing in me since the first day. I would also like to thank Jordi Torres for his

unconditional support, and for making sure that I always had the resources I needed to

develop my research. He has never hesitated to take the bumpy road with me, for which

I will always be grateful. I thank Obra Social “la Caixa” for funding my doctoral studies

through La Caixa - Severo Ochoa International Doctoral Fellowship program.

I would like to acknowledge all the colleagues at BSC and UPC, past and present, who

have made this journey more fun and easier to bear. I wish to extend my special gratitude

to Míriam, with whom I have shared the high and lows of the PhD, and has been a

constant source of support and inspiration. I feel lucky to have been desk buddies with

her throughout the last four years.

Besides BSC and UPC, I had the opportunity to pursue my research at DFKI, Columbia

University, Salesforce Research and DeepMind, and I would like to acknowledge all the

friends and colleagues I met there. I am particularly grateful to Brendan Jou for mentor-

ing me during my first steps in research. He taught me to think critically and to conduct

rigorous research, and has always been a role model for the kind of researcher I would

like to become.

Esta tesis no hubiera sido posible sin Paula. Por su apoyo incondicional, celebrando

los éxitos y levantándome el ánimo en los momentos de frustración. Gracias por haber

adaptado tu plan de vida a mis constantes viajes, y por animarme a perseguir mis

objetivos aunque eso te lo pusiera más difícil a ti. Me siento extremadamente afortunado

de estar a tu lado y ojalá vivamos juntos las aventuras que están por venir.

iii

Me gustaría concluir extendiendo mi máximo agradecimiento a mi familia, especialmente

a mis padres y abuelos – Mari, Paco, Lola, Cruz, Manolo y Pruden. Por haberme

transmitido los valores de la humildad, el esfuerzo y la perseverancia; por haberme

apoyado y empujado a perseguir mis sueños, por difíciles y lejanos que parecieran; y

porque esta tesis ha sido posible gracias a que habéis dedicado vuestra vida a brindarme

las oportunidades de las que vosotros nunca gozasteis. Es tan vuestra como mía.

Contents

Abstract ii

Acknowledgements iii

Acronyms ix

1 Introduction 1
1.1 Research Questions . 3
1.2 Major Contributions . 4
1.3 List of Publications . 5
1.4 Dissertation Outline . 6

2 Deep Learning 8
2.1 Neural Networks . 8

2.1.1 Convolutional Neural Networks . 9
2.1.2 Recurrent Neural Networks . 10

2.2 Training Neural Networks . 12
2.2.1 Stochastic Gradient Descent . 12
2.2.2 Transfer Learning . 13

3 Reinforcement Learning 14
3.1 Formal Definition . 15
3.2 Value Functions . 16

3.2.1 Definitions . 16
3.2.2 Optimality . 17

3.3 Types of Learning . 17
3.4 Common Approaches . 18

3.4.1 Value-Based . 18
3.4.2 Policy Gradient . 19
3.4.3 Direct Policy Search . 20

I Learning from Examples 21

4 Distributed Training of Convolutional Neural Networks 24

v

Contents vi

4.1 Related Work . 25
4.2 Distributed Training through Data Parallelism 25
4.3 Adjective Noun Pair Detection . 27
4.4 Experiments . 29

4.4.1 Intra-Node Parallelism . 30
4.4.2 Distributed Training . 30

4.4.2.1 Throughput Analysis . 31
4.4.2.2 Convergence Analysis . 32

4.5 Discussion . 34

5 Learning to Skip State Updates in Recurrent Neural Networks 35
5.1 Related Work . 36
5.2 Model Description . 37

5.2.1 Error Gradients . 39
5.2.2 Limiting Computation . 40

5.3 Experiments . 41
5.3.1 Adding Task . 41
5.3.2 Frequency Discrimination Task . 43
5.3.3 MNIST Classification from a Sequence of Pixels 44
5.3.4 Sentiment Analysis on IMDB . 44
5.3.5 Action Classification on UCF-101 47
5.3.6 Temporal Action Localization on Charades 47

5.4 Discussion . 50

6 Robust Initialization for WeightNorm & ResNets 51
6.1 Related Work . 52
6.2 Weight Normalized ReLU Networks . 53

6.2.1 Forward Pass . 54
6.2.2 Backward Pass . 54
6.2.3 Implementation Details . 56

6.3 Residual Networks . 56
6.3.1 Forward Pass . 57
6.3.2 Backward Pass . 57
6.3.3 Implementation Details . 58

6.4 Experiments . 58
6.4.1 Robustness Analysis . 59
6.4.2 Comparison with Batch Normalization 60
6.4.3 Initialization Method and Generalization Gap 62
6.4.4 Preliminary Reinforcement Learning Results 63

6.5 Discussion . 65

II Learning from Interaction 66

7 Importance Weighted Evolution Strategies 70
7.1 Evolution Strategies . 71

7.1.1 Formulation . 71
7.1.2 Scalability Analysis . 72

Contents vii

7.2 Importance Weighted Evolution Strategies 72
7.2.1 Formulation . 73
7.2.2 Scalability Analysis . 74

7.3 Experiments . 75
7.3.1 Effect of the Number of IW Updates 75
7.3.2 Effect of the Model Size . 76
7.3.3 Effect of the Learning Rate . 77

7.4 Related Work . 78
7.5 Discussion . 79

8 Unsupervised Discovery of State-Covering Skills 80
8.1 Information-Theoretic Skill Discovery . 81

8.1.1 Reverse Form of the Mutual Information 83
8.1.2 Forward Form of the Mutual Information 84

8.2 Limitations of Existing Methods . 85
8.2.1 Assumptions . 85
8.2.2 Reverse Form of the Mutual Information 85
8.2.3 Forward Form of the Mutual Information 87
8.2.4 Summary of Findings . 88

8.3 Proposed Method . 89
8.4 Experiments . 91
8.5 Related Work . 97
8.6 Discussion . 99

9 Conclusion 101

A Qualitative Results for Skip RNN 104
A.1 Adding Task . 105
A.2 Frequency Discrimination Task . 106

B Choice of Mutual Information’s Form for EDL 107

C Implementation Details 109
C.1 Robust Initialization for WeightNorm & ResNets 109

C.1.1 Synthetic Data . 109
C.1.2 Residual Network Architecture . 110
C.1.3 MNIST . 111
C.1.4 CIFAR . 111

C.2 Unsupervised Discovery of State-Covering Skills 113
C.2.1 Environments . 113
C.2.2 RL Agents . 113
C.2.3 Exploration . 114
C.2.4 Skill Discovery . 115

D Proofs 117

Contents viii

Bibliography 125

Acronyms

A3C Asynchronous Advantage Actor-Critic

ANP Adjective Noun Pair

BN Batch Normalization

CNN Convolutional Neural Network

CPU Central Processing Unit

EDL Explore, Discover and Learn

ES Evolution Strategies

FC Fully Connected

FLOP Floating Point Operation

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

IW-ES Importance Weighted Evolution Strategies

KL Kullback–Leibler

LSTM Long Short-Term Memory

MDP Markov Decision Process

MI Mutual Information

MLP Multilayer Perceptron

MSE Mean Squared Error

ix

Acronyms x

MVSO Multilingual Visual Sentiment Ontology

PPO Proximal Policy Optimization

RAM Random Access Memory

ReLU Rectified Linear Unit

ResNet Residual Network

RL Reinforcement Learning

RNN Recurrent Neural Network

SAC Soft Actor-Critic

SGD Stochastic Gradient Descent

SMM State Marginal Matching

UVFA Universal Value Function Approximator

VAE Variational Autoencoder

WN Weight Normalization

WRN Wide Residual Network

1
Introduction

Can machines think? Alan Turing posed this question in his famous 1950 paper, Comput-

ing Machinery and Intelligence [1], where he proposed the Imitation Game as a general

method to test machine intelligence. In this test, a human evaluator would engage in

a conversation through a text-based channel with two players – a machine and a hu-

man. The difficult question of whether machines can think was then reformulated into

evaluating whether a machine’s behavior is indistinguishable from that of a human in

the imitation game. Although Turing’s work was clearly concerned with machine in-

telligence, the term artificial intelligence that is widely used nowadays was not coined

until six years later, when John McCarthy organized the Dartmouth Summer Research

Project on Artificial Intelligence. This workshop served as a catalyst for decades of ar-

tificial intelligence research, field that has since then interleaved episodes of important

investment and interest with winters produced by an excess of optimism in estimating

the pace at which progress could be made.

The proposal for the Dartmouth workshop was based on the conjecture that “every

aspect of learning or any other feature of intelligence can in principle be so precisely

described that a machine can be made to simulate it” [2]. Inspired by this vision, an

important part of the almost 70 years of artificial intelligence research has been devoted

to developing expert systems that are able to mirror human reasoning. Expert systems

excel at tasks that we fully understand, those for which we can formalize the underlying

decision process of a solution. This enabled successful applications of rule-based systems

in domains such as chemical analysis and medical diagnostics in the 1960s and 1970s. Our

own understanding of the world turns out to be the main limitation of these approaches.

Indeed, this was well-known from the early days of computer programs, as can be found

1

Introduction 2

in the notes written by Ada Lovelace on Babbage’s Analytical Engine in 1842: “The

Analytical Engine has no pretensions to originate anything. It can do whatever we know

how to order it to perform.” [3].

The aspiration of artificial intelligence is grander than just automating solutions for

problems that we fully understand, but this will require providing artificial intelligence

systems with information that is beyond our knowledge. This observation has given rise

to a research trend concerned with designing machines that can learn from experience.

Instead of requiring a complete set of expert-designed rules, learning is possible as long

as a feedback signal can be provided. This makes it a much more flexible paradigm for

addressing challenging tasks. It offers a less engineering-focused view of the problem,

which aims at designing general purpose methods whose quality is not limited by our

own understanding of the world. The responsibility for the decision-making is no longer

on us, and it is turned over to the artificial intelligence system itself.

Machine learning is a discipline within artificial intelligence that is concerned with de-

signing systems that can learn from data. Within machine learning, the field of deep

learning has attracted much research interest in the last decade. It studies general pur-

pose systems, usually known as artificial neural networks, that can autonomously build

a hierarchy of representations from data. These methods have contributed towards im-

portant breakthroughs in domains such as computer vision, natural language processing,

speech recognition, and control. An important reason explaining the success of deep

learning systems in all these seemingly unrelated fields is their ability to leverage compu-

tation. Thanks to the continuous improvements in hardware, general purpose methods

that can leverage computation are ultimately the most effective – in a sense, by trading

off compute for knowledge. This observation was recently formalized by Richard Sutton

as the bitter lesson: “One thing that should be learned from the bitter lesson is the great

power of general purpose methods, of methods that continue to scale with increased

computation even as the available computation becomes very great.” [4].

Data, compute and large neural networks are the three key components explaining the

recent success of deep learning methods. The recent history of deep learning research

hints at an ever-growing availability of high quality data, either in the form of datasets

or simulated environments. The generalized version of Moore’s law suggests a similar

trend for computational power, with the cost of each unit of computation decreasing

exponentially over time. In order to understand the importance of scale and computa-

tion in deep learning, let us take a closer look at the task of object recognition from

images. The ImageNet dataset [5], containing over 1M images belonging to 1, 000 dif-

ferent object categories, used to be one of the grand challenges in artificial intelligence

research. In 2012, Krizhevsky et al. [6] showed the potential of deep learning methods

Introduction 3

for such a challenging task, outperforming competing solutions by a large margin. The

quality of deep learning-based solutions has quickly improved since then, with current

methods already surpassing human performance on this task [7]. The neural network

by Krizhevsky et al. [6] had only eight layers and still took about two weeks to train

on a machine with two GPUs, while it is now possible to use hundreds of accelerators

to train more accurate models with dozens of layers in a matter of minutes [8]. Such is

the pace of progress that even ImageNet has become too small for training some of the

largest models currently considered by researchers, who are already experimenting with

datasets containing billions of examples [9]. Similar trends have been observed in fields

like natural language processing [10, 11] and reinforcement learning [12, 13].

1.1 Research Questions

Large scale compute and data were necessary conditions to unlock the potential of deep

learning, but they alone do not explain the recent advances in the field. In parallel, deep

learning research has kept the pace in developing methods that are able to leverage the

increased amount of compute and data. In this context, the research conducted in this

dissertation can be understood as laying stepping stones towards answering the following

question: How can we design deep learning methods that are able to leverage

unlimited compute and data? The scope of such a research question is broad, and

we narrow our focus into two more specific areas of research.

The first direction we consider is that of designing deep learning algorithms that

can make the most of the available hardware. Given that the increase in CPU clock

speed has stagnated in recent years, specialized accelerators and distributed systems have

become the de facto strategies for building machines with increased compute capabilities.

This motivates the design of hardware-aware deep learning architectures and distributed

training methods that can make the most of the hardware that is available to the system.

The second direction is concerned with devising deep learning methods that can

scale up with the amount of available data. When richer datasets or environments

become available, the capacity and learning capabilities of our agents should be increased

accordingly to make the most of the data they are exposed to. However, there are

multiple bottlenecks preventing us from scaling up existing methods naively. This opens

up multiple research directions, ranging from solving low-level optimization issues to

designing objectives that result in efficient learning.

We can distinguish two different computational paradigms depending on the nature of the

data used to train a deep learning model. The data can be given beforehand, in the form

Introduction 4

of a static dataset, which is the standard setting in most supervised and unsupervised

learning problems. Since the data can be read from disk, the computational burden falls

on the accelerator where the model is deployed. On the other hand, agents can learn from

interaction with an environment, a paradigm that is often formulated through the lens of

reinforcement learning. This setup puts much more pressure on the devices that simulate

the environment, often CPUs, and its computational requirements can differ substantially

from those of settings where the model is trained using a fixed dataset. This dissertation

considers the aforementioned research questions in both settings. Part I is devoted to

learning from fixed collections of examples, whereas Part II considers the setting where

an agent learns from interaction.

1.2 Major Contributions

The technical contributions of this dissertation can be listed under each of the learning

paradigms presented earlier:

Part I: Learning from Examples

[C1] We explore how to accelerate training of Convolutional Neural Networks on a dis-

tributed GPU cluster.

[C2] We introduce Skip RNN, a Recurrent Neural Network architecture that learns to

skip state updates and can be trained for different computational budgets.

[C3] We propose a novel initialization strategy for weight normalized and residual net-

works, which improves robustness and enables training deeper networks.

Part II: Learning from Interaction

[C4] We introduce Importance Weighted Evolution Strategies, which improves the data

efficiency of Evolution Strategies while preserving its scalability.

[C5] We provide theoretical analysis and empirical evidence showing that existing un-

supervised skill discovery methods based on information-theoretic objectives fail

at learning state-covering skills. We propose EDL, a method for optimizing the

same information-theoretic objective while overcoming the limitations of previous

methods.

Introduction 5

1.3 List of Publications

All the technical contributions presented in this dissertation have been published at

peer-reviewed venues.

Part I: Learning from Examples

[C1] Víctor Campos, Francesc Sastre, Maurici Yagües, Míriam Bellver, Xavier Giró-i-

Nieto, and Jordi Torres. Distributed training strategies for a computer vision deep

learning algorithm on a distributed GPU cluster. Procedia Computer Science, 2017

[C2] Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, and Shih-Fu Chang.

Skip RNN: Learning to skip state updates in recurrent neural networks. In ICLR,

2018

[C3] Devansh Arpit*, Víctor Campos*, and Yoshua Bengio. How to initialize your

network? Robust initialization for WeightNorm & ResNets. In NeurIPS, 2019

Part II: Learning from Interaction

[C4] Víctor Campos, Xavier Giró-i-Nieto, and Jordi Torres. Importance Weighted Evo-

lution Strategies. In NeurIPS Deep RL Workshop, 2018

[C5] Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i-

Nieto, and Jordi Torres. Explore, Discover and Learn: Unsupervised discovery of

state-covering skills. In ICML, 2020

As a product of other research activities

[Extension of V. Campos’ BSc Thesis] Víctor Campos, Brendan Jou, and Xavier

Giró-i-Nieto. From pixels to sentiment: Fine-tuning CNNs for visual sentiment

prediction. Image and Vision Computing, 2017

[X. Lin’s BSc Thesis] Xunyu Lin, Víctor Campos, Xavier Giró-i-Nieto, Jordi Torres,

and Cristian Canton Ferrer. Disentangling motion, foreground and background

features in videos. In CVPR Brave New Motion Representations Workshop, 2017

[Initial results for C1] Víctor Campos, Francesc Sastre, Maurici Yagües, Jordi Torres,

and Xavier Giró-i-Nieto. Scaling a convolutional neural network for classification

of adjective noun pairs with tensorflow on gpu clusters. In CCGRID, 2017

*Equal contribution

Introduction 6

[D. Fernández’s MSc Thesis] Dèlia Fernández, Alejandro Woodward, Víctor Cam-

pos, Xavier Giró-i-Nieto, Brendan Jou, and Shih-Fu Chang. More cat than cute?:

Interpretable prediction of adjective-noun pairs. In ACM MM MUSA Workshop,

2017

[D. Fojo’s BSc Thesis] Daniel Fojo, Víctor Campos, and Xavier Giró-i-Nieto. Com-

paring fixed and adaptive computation time for recurrent neural networks. In ICLR

Workshop Track, 2018

[Collaboration with GPI (UPC)] Amaia Salvador, Míriam Bellver, Víctor Campos,

Manel Baradad, Ferran Marqués, Jordi Torres, and Xavier Giró-i-Nieto. Recur-

rent neural networks for semantic instance segmentation. In CVPR DeepVision

Workshop, 2018

[Follow-up of V. Campos’ BSc Thesis] Víctor Campos, Xavier Giró-i-Nieto, Bren-

dan Jou, Jordi Torres, and Shih-Fu Chang. Sentiment concept embedding for visual

affect recognition. In Multimodal Behavior Analysis in the Wild. Elsevier, 2019

1.4 Dissertation Outline

Table 1.1 illustrates the structure of this dissertation and summarizes the main contribu-

tion made in each chapter. Each part is devoted to a different learning paradigm. Within

each part, we classify our contributions depending on the the axes of scale being studied.

In particular, we separately study how to develop algorithms that scale gracefully as

more compute and data become available.

Part I explores the paradigm of learning from examples, where the model needs to ex-

tract knowledge from a fixed set of samples. Chapter 4 studies strategies for distributed

training of Convolutional Neural Networks (CNNs) on a GPU cluster, shortening training

times thanks to increased compute. Given that empirical evidence plays an important

role in deep learning research, fast iteration is important for both academic and in-

dustrial applications. Chapter 5 introduces a novel Recurrent Neural Network (RNN)

architecture, Skip RNN, that learns to solve tasks while using only a fraction of the

elements in the input sequence. This provides important computational savings at in-

ference, i.e. when making predictions on new inputs, which are obtained by learning

skipping patterns from data. Chapter 6 presents a robust initialization for neural net-

works that stabilizes training and provides improved generalization. This initialization

scheme allows training much deeper models reliably, which is key to leveraging larger

data collections.

Introduction 7

compute data

algorithms

compute data

algorithms

Part I
Learning from

examples

Chapter 4
Distributed training on

GPUs (case study: CNNs) [C1]

Chapter 5
Novel RNN architecture [C2]

Chapter 6
Robust initialization

for neural networks [C3]

Part II
Learning from
interaction

Chapter 7
Distributed training on

CPUs (case study: ES) [C4]

Chapter 8
Better unsupervised
skill discovery [C5]

Table 1.1: Thesis structure. Each part is dedicated to a different learning paradigm. For each
learning paradigm, we separately study how to develop algorithms that scale gracefully as more
compute and data become available.

Part II considers agents that need to learn by interacting with a simulated environment.

Simulations are often performed on CPU, and evolutionary methods have been shown

to scale gracefully when using hundreds of cores in a distributed setting. This usually

comes at the cost of reduced data efficiency, i.e. the agent needs more interactions with the

environment to solve the task, which can be troublesome when simulation is expensive.

Chapter 7 extends a state of the art evolutionary approach in order to improve its data

efficiency. This is achieved with a minimal impact in its scalability, and we report gains

both in terms of data efficiency and wall-clock time. When enough compute is available,

what agents can learn in complex environments is often limited by our own ability to

define objectives and tasks. Chapter 8 studies methods that let agents set their own goals,

self-supervising their learning and overcoming the limitations of handcrafted objectives.

Through theoretical and empirical evidence, we show that existing methods do not let

agents explore all the possibilities that are available to them in the environment. We

then propose Explore, Discover and Learn (EDL), an alternative approach that overcomes

these limitations and offers several advantages over existing methods.

2
Deep Learning

Computers can solve problems by running algorithms, i.e. a list of instructions that

need to be carried out in order to transform inputs into the desired outputs. Numerous

problems can be solved with human designed algorithms, such as sorting, encrypting

messages or compressing signals. However, how can computers solve problems for which

we do not know the right algorithm? Note that this set of problems includes some that

are simple for people to perform, such as those related to cognition and perception, but

are hard to describe formally. Assuming that we are able to compile a collection of inputs

and their corresponding outputs, machine learning aims at designing machines that are

capable of extracting (learning) the algorithm from the provided examples.

There exist numerous machine learning algorithms, and we refer the reader to Alpaydin

[26] for an overview. The best solutions to many difficult machine learning problems

are based on deep neural networks, which allow computers to learn from experience by

building a hierarchy of concepts. This results on a deep computational graph with many

layers, so this sub-field of machine learning is commonly referred to as deep learning.

This chapter covers the basics of deep learning, and we refer the reader to Goodfellow

et al. [27] for a deeper introduction to the field.

2.1 Neural Networks

Neural networks can be seen as flexible function approximators whose parameters are

fitted in a data-driven fashion. They are built by stacking a series of simple non-linear

mappings, usually referred to as layers. Note that a composition of linear mappings can

8

Deep Learning 9

be reduced to a single linear mapping, so it is crucial to build neural networks off of

non-linear layers. In its most generic form, a feedforward neural network with L layers

can be defined recursively as follows:

hl = φ
(
Wlhl−1 + bl

)
(2.1)

where hl ∈ Rnl is the output vector of the l-th layer, h0 = x ∈ Rnx is the input vector,

φ is a non-linear function, and Wl ∈ Rnl×nl−1 and bl ∈ Rnl are trainable weights and

biases, respectively. We will refer to each of the scalar elements in the output vector of

a layer as units or neurons.

The capacity of the network to model complex mappings can be increased by adding

intermediate layers between inputs and outputs, also known as hidden layers. The intu-

ition behind stacking multiple layers is that it lets networks build a hierarchy of feature

extractors. There exist strong theoretical results showing that a neural network with

a single hidden layer can approximate any function [28]. Unfortunately, these results

do not tell us how to design our neural networks to achieve such property, which might

require too many neurons to be implemented in practice. For this reason, it is com-

mon to increase the capacity of neural networks through depth by adding more hidden

layers [29].

The concept of inductive bias is crucial for understanding recent advances in deep learn-

ing. It refers to ways of incorporating prior knowledge about the task in the architecture

of neural networks, so that they can learn from fewer examples and generalize more eas-

ily to unseen inputs. Similar cognitive biases have been observed in children, which let

them eliminate broad swaths of the hypothesis space when learning new words [30]. In

the context of neural networks, these priors shape the properties of the mappings that

a model can learn, and bias them towards those that practitioners deem useful for the

task at hand. Leveraging the right inductive biases has been key for scaling up neural

networks and making them perform well on complex tasks involving high-dimensional

inputs such as images or speech. The following subsections describe some of the most

common neural network types and the inductive biases they implement.

2.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) implement a weight-tying scheme that induces

translation equivariance1. Tying weights across input locations results in an operation

that is akin to convolving the learned kernels and the input.
1The translation equivariance property implies that any shift in the input will result in the same

shift in the output. This should not to be mistaken for translation invariance, which implies that any
shifted version of the input will produce the same output.

Deep Learning 10

CNNs are widely used for computer vision applications, where they leverage the fact that

the appearance of objects is independent of their location. Moreover, since objects have

a local spatial support, they usually feature small convolutional kernels that only take

into consideration the neighborhood of each location. Stacking several layers increases

the actual receptive field of each filter, making it possible for the output of the network to

be a function of the whole input image if needed. These assumptions result in a massive

reduction of the number of trainable parameters at each layer, which enables training

very deep CNNs without catastrophically overfitting to the training set [31]. The use

of CNNs is not limited to computer vision, as similar architectures have been used to

process other modalities such as text [32] and speech [33].

2.1.2 Recurrent Neural Networks

The basic layer model described in Equation 2.1 assumes a fixed input size. Fully con-

volutional architectures are able to process inputs of arbitrary size, but the size of their

output will change accordingly [34]. This raises the question of how to design neural

network architectures that can process variable-length inputs and produce an output of

constant size.

Let us consider a sequence of input vectors, x = (x1, ...,xT). When applied to each

input vector separately, the feedforward model described in Equation 2.1 would output

a sequence of activation vectors at each layer, hl =
(
hl1, ...,h

l
T

)
, which are agnostic to

previous activations. Recurrent Neural Networks (RNNs) extend the feedforward model

by adding a recurrent connection in time:

hlt = φ
(
Wlhl−1t + Ulhlt−1 + bl

)
(2.2)

where h0 = x denotes the input sequence, similarly to Equation 2.1. Ul ∈ Rnl×nl oper-
ates on the hidden state in the previous time step, hlt−1, allowing information to persist.

Providing models with memory and enabling them to model the temporal evolution of

signals is a key factor in many sequence classification and transduction tasks where RNNs

excel, such as machine translation [35], language modeling [36] or speech recognition [37].

Given the dependency on the hidden state of the previous time step, many of the com-

putations in an RNN need to be performed sequentially. This results in a computation

time that grows linearly with the input length. Chapter 5 presents a novel neural net-

work architecture that is able to skip some of those computations, providing important

savings when deployed on modern accelerators like GPUs.

Deep Learning 11

As will be described in Section 2.2, neural networks are often trained using gradient-

based methods. In such a setup, the multiplicative memory mechanism in Equation 2.2

might result in vanishing or exploding gradients that preclude training, motivating the

design of alternative recurrent architectures.

Long Short-Term Memory (LSTM) [38]. The LSTM cell overcomes vanishing and

exploding gradient issues by interacting with the memory vector in an additive fashion:

ilt = σ
(
Wl

ih
l−1
t + Ul

ih
l
t−1 + bli

)
(2.3)

f lt = σ
(
Wl

fh
l−1
t + Ul

fh
l
t−1 + blf

)
(2.4)

olt = σ
(
Wl

oh
l−1
t + Ul

oh
l
t−1 + blo

)
(2.5)

ĉlt = tanh
(
Wl

ch
l−1
t + Ul

ch
l
t−1 + blc

)
(2.6)

clt = f ltc
l
t−1 + iltĉ

l
t (2.7)

hlt = olt tanh(clt) (2.8)

where σ is the sigmoid function, ilt ∈ Rnl is the input gate, f lt ∈ Rnl is the forget gate,

olt ∈ Rnl is the output gate, clt ∈ Rnl is the cell state, and hlt ∈ Rnl is the hidden state

that is exposed to subsequent blocks in the computational graph. The different gates

control which elements are stored, forgotten and exposed to the output depending on

the current input and previous hidden state.

Gated Recurrent Unit (GRU) [39]. The GRU can be seen as a simplified version

of the LSTM cell that does not keep separate cell and hidden states, and merges the

forget and input gate. This results in a smaller number of trainable parameters, which

generally exhibits similar performance to that of LSTMs:

zlt = σ
(
Wl

zh
l−1
t + Uzh

l
t−1 + blz

)
(2.9)

rlt = σ
(
Wl

rh
l−1
t + Urh

l
t−1 + blr

)
(2.10)

ĥlt = tanh
(
Wl

hh
l−1
t + rltUhh

l
t−1 + blh

)
(2.11)

hlt = (1− zlt)h
l
t−1 + zltĥ

l
t (2.12)

where zlt ∈ Rnh plays a similar role to the input and forget gates in the LSTM cell, and

rlt ∈ Rnh is the reset gate that allows erasing information in the hidden state.

Deep Learning 12

2.2 Training Neural Networks

This section discusses how to optimize the parameters of a neural network to perform

some given task. Let us assume that we have access to a dataset of input and desired

output tuples D = {(x(i),y(i))}Ni=1, and we would like to train our network fθ param-

eterized by θ. Following notation in Equation 2.1, θ = {(Wl,bl)}Ll=1. We will aim

at minimizing some loss or cost function L between the outputs of our model and the

ground truth values. Common choices for this loss function are the Mean Squared Error

for regression tasks or the cross-entropy loss for classification problems. We can then

frame the optimization task as

θ∗ = argmin
θ

E(x,y)∼D [L (fθ(x),y)] (2.13)

2.2.1 Stochastic Gradient Descent

The gradient of a function points towards its direction of maximum increase. When the

loss function is differentiable with respect to the parameters of the model, we can follow

the opposite direction of the gradient in order to update the parameters and find a point

with smaller loss value:

θi+1 ←− θi − α∇θiL (fθi(x),y) , (x,y) ∼ D (2.14)

where the learning rate α determines the magnitude of the step taken. This method

is known as Stochastic Gradient Descent (SGD), as it replaces the actual gradient that

would be computed over the whole dataset with a single sample estimate. In practice,

a batch of samples is commonly used in order to reduce the variance of the gradient

estimate, which incurs into a negligible computational overhead when leveraging the

parallelization capabilities of modern accelerators such as GPUs. Chapter 4 studies

methods to accelerate training of neural networks through distributed computation.

In multi-layered networks, the gradients can be propagated through all layers by applying

the chain rule. This process is known as the backpropagation algorithm [40]. The

optimization task can become difficult due to the high dimensionality of the parameter

space and the noisy and potentially non-stationary gradients. Numerous techniques have

been proposed to improve the convergence properties of the original update rule, which

range from including momentum in the updates [41] to re-scaling gradients based on

adaptive estimation of their moments [42, 43].

Deep Learning 13

The computation made when training neural networks with SGD can be decomposed

in two main steps: forward and backward passes through the net. The forward pass

computes the outputs for a batch of data, and an error with respect to the desired result

is calculated. In the backward pass, such error is backpropagated through the neural

network in order to compute gradients with respect to every parameter. These gradients

are then used to update the weights of the model following Equation 2.14. These steps

are repeated until a termination condition is met, e.g. when the loss function plateaus

or after a fixed number of updates.

SGD is an iterative algorithm for updating the current set of parameters, but it does not

define how to set the initial value of such parameters. Parameter initialization turns out

to be crucial for proper gradient-based learning, as poor initialization schemes can lead

to vanishing or exploding gradients problems. Chapter 6 studies parameter initialization

schemes that are well-suited for gradient-based optimization of neural networks.

2.2.2 Transfer Learning

Humans are able to leverage prior knowledge, experience, and skills when faced with new

tasks or situations. On the other hand, most of our machine learning systems start from

scratch every time they are tasked with solving a new problem. This generally results in

inefficient learning, forcing practitioners to collect a huge number of annotated examples

for the task at hand.

A particularly successful strategy for reusing knowledge in neural networks consists in

initializing some of their parameters using those from a pre-trained model. The intuition

behind this approach is that deep neural networks build a hierarchy of feature extractors,

and most of the levels in the hierarchy might be similar for related tasks. For instance,

one can initialize the backbone of an object localization network with the parameters

of an object recognition model to boost performance when the number of annotated

examples is scarce [44]. Similarly, the features extracted by bidirectional language models

trained on a huge corpora have been found to transfer to a plethora of natural language

processing tasks [10]. Depending on the size of the available training set, one can choose

to freeze the pre-trained parameters or fine-tune them. We will follow this practice in

several chapters of this thesis in order to accelerate training of our models.

3
Reinforcement Learning

An important part of our knowledge of the world is acquired through interaction, without

an external teacher telling us what the outcomes of every single action we take will be.

This contrasts with some of the assumptions made in Chapter 2, where we considered

learning from a collection of training examples for which an expert has provided the right

outputs – a paradigm known as supervised learning. Reinforcement Learning (RL) is a

computational approach to goal-directed learning from interaction that does not rely on

expert supervision. Note that this setting also differs from unsupervised learning, which

is generally about finding patterns and hidden structure in unlabelled data.

The RL problem can be described by the loop depicted in Figure 3.1, where at each

time step the agent observes the state of the environment and acts accordingly. The

consequences of such action are evaluated and returned to the agent in the form of a

scalar reward and the updated state. The goal of the agent is to discover behaviors

that maximize the rewards obtained from the environment. Defining proper reward

functions is crucial in order to obtain the desired behaviors, but this task can become

very challenging in complex environments. Chapter 8 presents methods that enable

agents to set their own reward functions and acquire knowledge autonomously.

Agent Environment

Figure 3.1: Illustration of the RL setting. An agent interacts with an environment, trying to
produce actions that lead to high rewards.

14

Reinforcement Learning 15

This chapter provides a high-level overview of basic concepts in RL. All approaches used

in this thesis are model-free, meaning that they do not rely on a model of the environment

in order to maximize reward. For this reason, the remaining of this chapter is devoted

to explaining the basic concepts of model-free methods. We note that there exist model-

based methods that plan using a model of the environment, which can be either given

or learned from experience. We refer the reader to Sutton and Barto [45] for a deeper

introduction to the field.

3.1 Formal Definition

The RL problem is formalized as a Markov Decision Process (MDP),M≡ (S,A, p,R),

where S is the state space and A is the action space; p : S×S×A −→ [0,∞) represents the

probability density of the next state given the current state and action; and R : S×A −→
R represents a scalar reward function. We will consider an episodic setting where the

agent interacts with the environment in discrete time steps, generating trajectories of

states, actions, and rewards:

S0, A0, R1, S1, A1, R2, S2, A2, . . . (3.1)

where we use Rt+1 to denote the reward obtained by performing action At in state St.

An initial state S0 ∼ p(s0) is sampled at the beginning of each episode. After the agent

performs an action At, the environment transitions to a new state St+1 ∼ p(St+1|St, At).
It is important to note that all states in an MDP must fulfill the Markov property:

p(St+1|St, At) = p(St+1|St, At, . . . , S0, A0) (3.2)

which implies that the future is conditionally independent of the past, and it depends

only on the current state and action. This should not be seen as a limitation of the

framework but as a condition on how states for each task should be defined, i.e. the state

must encode all information about the past that is useful for the future.

The outcome of solving the RL problem is a policy π : S −→ A that maps states to actions.

Such mapping can be deterministic or stochastic1. The goal is finding the optimal policy

that maximizes the expected sum of future discounted returns when deployed in the
1Stochastic policies might be optimal in some situations, e.g. when facing an opponent that could

otherwise exploit the determinism of the policy. Deterministic policies are often preferred when some
actions might lead to catastrophic outcomes, e.g. in robotics.

Reinforcement Learning 16

environment:

π∗ = argmax
π

Est+1∼p(st+1|st,at),at∼π(a|s),s0∼p(s0)

[∞∑
k=0

γkRt+k+1

]
(3.3)

where γ ∈ [0, 1] is the discount factor that controls how strongly future rewards are

taken into account. There are different interpretations for the meaning of the discount

factor, and why an agent should prioritize immediate rewards over delayed ones. Here

we highlight the most pragmatic view, and note that the infinite sum in Equation 3.3

diverges when γ = 1 (i.e. in the undiscounted case).

3.2 Value Functions

Value functions are useful measures that quantify the goodness of states and actions, and

most state of the art RL methods rely on value function estimates. This section covers

the definition of these measures and their relationship to the optimal policy.

3.2.1 Definitions

Before diving into the definition of different value functions, let us define the return as

the discounted sum of future rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
k=0

γkRt+k+1 (3.4)

We can define different types of value functions by building off of the definition of re-

turn. For brevity, we will use Eπ to denote expectation over trajectories produced when

following policy π. Note that this operator integrates over action distributions induced

by π as well as over the stochastic transition dynamics of the environment.

State-value function. It measures the expected return one would obtain by following

policy π from state s onward:

Vπ(s) = Eπ [Gt|St = s] (3.5)

Action-value function. It measures the expected return one would obtain by taking

action a at state s and following policy π afterwards:

Qπ(s, a) = Eπ [Gt|St = s,At = a] (3.6)

Reinforcement Learning 17

These two value functions are tightly related, as the state-value function is recovered

when computing the expectation over Q values under policy π:

Vπ(s) =
∑
a∈A

Qπ(s, a)π(a|s) (3.7)

Advantage function. When all rewards have the same sign, it might be difficult

to assess the quality of an action by estimating its Q value. The advantage function

measures the goodness of an action with respect to the expected quality over all valid

actions:

Aπ(s, a) = Qπ(s, a)− V (s) (3.8)

Intuitively, the sign of A(s, a) tells us whether an action is better or worse than average

for each state.

3.2.2 Optimality

We can define optimal value functions over the set of all valid policies:

V ∗(s) = max
π

Vπ(s) (3.9)

Q∗(s, a) = max
π

Qπ(s, a) (3.10)

These are useful definitions, as they let us define the optimal policy introduced in Equa-

tion 3.3 in terms of value functions:

π∗(s) = argmax
π

Vπ(s) = argmax
π

Qπ(s, a) (3.11)

where Vπ∗(s) = V ∗(s) and Qπ∗(s, a) = Q∗(s, a). These definitions are leveraged by some

methods, which estimate the optimal value function and then derive the optimal policy

following Equation 3.11.

3.3 Types of Learning

Training RL agents consists in iterating over two phases: collecting experience and learn-

ing from it. This section is concerned with the distribution of the data we are going to

learn from, and discussion on what to learn from the gathered experience is deferred to

the following sections.

Reinforcement Learning 18

In the most general setting, we would like to learn about some target policy π using

data collected from an arbitrary behavior policy µ. We can distinguish between two

different scenarios depending on the relationship between π and µ, namely on-policy and

off-policy learning.

On-policy learning. The behavior and target policy are the same, i.e. π = µ. This

setup simplifies the mathematical formulation, as there is no mismatch between data

distributions. Since the collected data needs to be discarded after every update to the

target policy, on-policy learning is often data inefficient.

Off-policy learning. The behavior policy is different from the target policy, i.e. π 6= µ.

Note that this is the case even when using data collected by a slightly outdated version

of the target policy. All value functions and objectives we discussed so far compute

expectations with respect to the target policy π, forcing us to account for the mismatch

in the data distribution (e.g. through importance sampling). This setting is more generic

and data efficient than on-policy learning, but these advantages come at the cost of a

more complex and potentially unstable formulation.

3.4 Common Approaches

We will now discuss some of the major families of model-free RL methods. Within each

of these families, one can derive on-policy and off-policy variants with different properties

and requirements. The goal of this section is not to give an extensive overview of all

existing approaches, but to provide a comprehensive introduction to the most common

ways of parameterizing agents. We refer interested readers to Sutton and Barto [45] for

detailed descriptions of commonly used methods.

3.4.1 Value-Based

As their name suggests, these methods are based on value function estimation. There

need not be an explicit policy, which can be implicitly derived from the value function

estimate. Assuming access to an initial estimate of Q(s, a), which can be random, these

methods repeatedly apply the following steps:

Policy improvement. A new policy is derived from the action-value function estimate,

π(s) ←− argmaxaQ(s, a). If the action space is discrete and its cardinality is low, this

can be achieved through exhaustive search. Otherwise, one can train an approximate

sampler that predicts which actions would achieve the maximum value at each state [46].

Reinforcement Learning 19

Policy evaluation. The action-value function estimate Q(s, a) is updated using data

collected with the behavior policy. There exist multiple ways of defining the targets

for the estimates, e.g. using Monte Carlo over complete episodes or bootstrapping with

current estimates in a temporal-difference learning fashion.

There exist proofs demonstrating that value-based methods converge to the optimal

value function Q∗(s, a) under certain assumptions, from which the optimal policy can be

derived.

3.4.2 Policy Gradient

These methods directly optimize the parameters of an explicit policy, πθ(a|s), to maxi-

mize the objective in Equation 3.3. Let us rewrite the objective in terms of the policy

parameters:

J (θ) = Eπθ

[∞∑
t=1

γt−1Rt

]
= Eπθ [G0] (3.12)

We can now frame the optimization problem:

θ∗ = argmax
θ
J (θ) (3.13)

We can use the Policy Gradient Theorem [45, Section 13.2] to derive the gradient of the

objective J (θ) with respect to the policy parameters θ:

∇θJ (θ) = Eπθ [G0∇θ log π(a|s)] (3.14)

which provides a strategy for optimizing θ by gradient ascent, using any of the methods

discussed in Section 2.2.1. The implications of this result is that the log-likelihood of

actions should be increased proportionally to the rewards they lead to.

Equation 3.14 presents the most basic form of the policy gradient update rule, which

provides an unbiased but high variance direction of improvement, and there exist many

ways improvements to it. For instance, one could replace G0 with Gt in Equation 3.12 to

account for the fact that current actions cannot change the past, or subtract a learned

baseline to reduce variance. A common practice for trading off bias and variance in the

policy gradient update consists in using a learned value estimate, giving rise to actor-

critic algorithms. These methods bootstrap with a learned value function estimate after

a few steps instead of using full Monte Carlo estimates. For instance:

Gt ≈
N∑
k=1

γk−1Rt+k + γNV (st+N+1) (3.15)

Reinforcement Learning 20

where the intuition is that Monte Carlo returns are unbiased and high variance, whereas

the learned estimate is biased but has a low variance. Bootstrapping also allows updat-

ing the policy more often, as the return estimate does not rely on full episodes, which

generally leads to faster convergence.

These are just some of the multiple variants of the policy gradient update rule that can

be found in the literature. We refer the interested reader to Schulman et al. [47] for a

detailed overview of these variants.

3.4.3 Direct Policy Search

Derivative-free methods, also known as zero-order methods, optimize the objective by

evaluating it only at some positions of the parameter space. Each iteration of these

methods generally consists of three steps: (1) generating a list of candidate solutions,

(2) evaluating the loss function on the candidates, and (3) returning the best solution.

The families of genetic algorithms and evolution strategies are well known examples of

derivative-free methods, and we refer the reader to Ha [48] for a comprehensive intro-

duction to the field. Direct policy search methods apply this strategy to RL tasks by

directly searching in parameter space for the vector of weights θ that maximizes the

returns obtained by a policy πθ.

Direct policy search methods have recently achieved impressive results in RL benchmarks

while offering almost perfect scalability to thousands of cores [49, 50]. Their scalability

make them very appealing when short iteration times are needed, which compensates for

their reduced data efficiency when simulating the environment is cheap. We will present

improvements to a state of the art evolutionary approach in Chapter 7.

Part I

Learning from Examples

21

Introduction

Methods based on deep neural networks that are trained from examples have established

the state-of-the-art in multiple domains and tasks such as computer vision [6], machine

translation [51] and speech generation [52]. The power of these methods stems from their

ability to learn arbitrary input to output mappings from example pairs. This mapping,

which is initially random, is progressively improved by comparing the predictions made

by the model with the correct outputs. Learning complex and accurate mappings with

these self-correcting systems requires from many iterations and examples. This explains

why, despite their development spans over many decades [53], their potential has been

only recently unlocked thanks to the creation of large-scale datasets [5, 54] and the

increased computational power of specific accelerators such as GPUs.

Even with the use of specific hardware devices, training these algorithms is so computa-

tionally intensive that it can take days, or even weeks, to converge on a single machine.

The pace of advances in machine learning is frequently upper bounded by the time taken

to train models, and shortening training times has become a crucial challenge both for

research and industrial applications. Even though hardware manufacturers continuously

provide improvements in computational power [55], the community has turned to dis-

tributed solutions for further reducing training times [56] and training larger models [57].

However, accelerating an algorithm by distributing it across several computing devices

is not always a trivial task. The communication overhead precludes the distribution

of some methods beyond a reduced number of machines [58], and sometimes parallel

training can even hinder the final performance of the model when done naively [59].

This motivates research efforts towards developing algorithms that are well suited for

parallel training, from both learning and computational standpoints. Chapter 4 presents

strategies for accelerating training of neural networks on a homogeneous GPU cluster.

We obtain important speedups when leveraging a large number of GPUs, enabling faster

iteration over research ideas and hypotheses.

Neural networks are often trained on high performance computing facilities, leveraging

distributed training techniques for shortening training times and training larger models.

22

Learning from Examples 23

Large models are generally more accurate, but their computational demands might pre-

clude their deployment on devices with limited computational power. Devising strategies

for managing the trade-off between computational requirements and model accuracy is

crucial for deploying deep learning models on devices with varying computational pow-

ers. In Chapter 5, we address this problem in the context of Recurrent Neural Networks

(RNNs) that process sequential inputs. We introduce a novel RNN architecture that

not only maximizes accuracy on the task at hand, but attempts to do so while skipping

as many elements in the input sequence as possible. The skipping patterns are auto-

matically discovered by the model, without explicit supervision, based on the training

data and the limitations imposed on the available computation. By making the neural

network aware of its own computational requirements, we are able to train a variety of

models for different computational budgets with little impact in its final accuracy.

Increased compute and larger datasets alone are not enough for training very large and

accurate models. Naively increasing the model depth generally leads to unstable training

dynamics caused by exploding or vanishing signals within the network. Modern architec-

tures composed of dozens of layers base their success on a series of building blocks that

have been developed over the years, such as initialization schemes [7, 60], normalization

techniques [61, 62], residual connections [63], and advanced optimizers [42, 43]. Most of

these advances provide solutions for problems that are only revealed with scale, high-

lighting that low-level algorithmic improvements are key when it comes to developing

large-scale deep learning models. Motivated by this observation, Chapter 6 introduces a

novel initialization scheme for weight normalized and residual networks, two important

building blocks in the deep learning toolbox. We show that our initialization strategy

provides more stable training dynamics, which ultimately results in stronger generaliza-

tion, and enables training much deeper networks with hundreds of layers.

4
Distributed Training of

Convolutional Neural Networks

Víctor Campos, Francesc Sastre, Maurici Yagües, Míriam Bellver, Xavier

Giró-i-Nieto, and Jordi Torres. Distributed training strategies for a com-

puter vision deep learning algorithm on a distributed GPU cluster. Procedia

Computer Science, 2017

Increasing the scale of deep learning models with respect to the number of training exam-

ples and the number of model parameters can drastically improve their accuracy. These

improvements come at the cost of increased computational demands, which are often

hard to meet when using a single machine, and distributed computation has emerged as

a useful strategy towards training larger models on more examples [56]. However, from

both learning and high performance computing standpoints, the best strategy for dis-

tributing training of neural networks is strongly influenced by the underlying hardware

configuration. The main contribution of this chapter is an empirical evaluation of dis-

tributed training strategies on a homogeneous GPU cluster. We start by studying how to

take advantage of the fact that nodes are equipped with multiple GPUs. We then com-

pare different strategies for distributing the training process, and show that this choice

can have a strong impact in the hardware utilization due to the homogeneous nature

of the cluster. Finally, we analyze the impact of distributed training on the learning

progress and the final quality of the model.

24

Distributed training of Convolutional Neural Networks 25

4.1 Related Work

The massive number of convolutions and matrix multiplications in neural networks has

led to GPU implementations with CUDA [64] and efficient task-specific primitives using

cuDNN [65]. Early deep learning frameworks such as Caffe [66] provided fast and easy ac-

cess to such primitives, but were initially designed for single machine operation, without

support for distributed environments. Efforts towards distributing the former frame-

works with traditional high performance computing tools resulted in projects such as

SparkNet [67] or Theano-MPI [68]. Native support for distributed settings is included in

more recent frameworks such as TensorFlow [69], MXNet [70] and PyTorch [71]. However,

scaling the training algorithms from a single machine environment to a distributed set-

ting poses two main challenges. From the computing performance standpoint, the main

goal is optimizing the resource utilization. From the learning side, the final accuracy of

the model should not suffer a drop when compared to its single machine counterpart.

We can distinguish two main approaches to train large neural networks using multiple

GPUs, namely model parallelism and data parallelism [72]. Model parallelism splits

layers in the neural network among different GPUs, i.e. each GPU operates over the

same batch of input data, but applying different operations on them. This strategy is

mostly used for models with a large number of parameters that may not fully fit in a

single GPU. Data parallelism places a replica of the model on each GPU, which then

operates on a different batch of data. Since model replicas share parameters, this method

is equivalent to virtually increasing the memory of a single GPU so that it can fit larger

batches. Unlike model parallelism, data parallelism only introduces one synchronization

point regardless of the number of GPUs, thus reducing communication overhead and

making it more suitable for current neural network architectures. Balancing the load

between GPUs is straightforward in this paradigm, while it would require from careful

tuning for each specific model architecture and number of GPUs in a model parallelism

approach. For these reasons, we will consider multi-GPU data parallelism for both single

machine and distributed settings.

4.2 Distributed Training through Data Parallelism

The distributed data parallelism paradigm generally considers two types of nodes: pa-

rameter servers and workers [58]. Parameter server nodes store and update the model

parameters [69]. Worker nodes hold replicas of the model, each operating on a separate

batch of data. Each worker loops over three steps: (1) receiving updated model param-

eters from the parameter servers, (2) performing forward and backward passes through

Distributed training of Convolutional Neural Networks 26

the model to compute gradients over a batch of data, and (3) communicating gradients

to the parameter servers in order to update the model. Figure 4.1 depicts the informa-

tion flow in the distributed data parallel setting with multiple parameter servers and

nodes. We can distinguish different flavours of data parallelism depending on how the

communication between workers and parameter servers is handled.

Dataset

GPU learner

Parameter servers

examples

Worker 1

Dataset

GPU learner

examples

Worker 2

Dataset

GPU learner

examples

Worker N

gradients gradients gradientsparameters parameters parameters

…

…

Figure 4.1: Distributed data parallel setting with multiple parameter servers and nodes. Each
worker performs forward and backward passes through the model on independent batches of
data, and communicates the gradients to the parameter servers. The latter aggregate gradients
from the different workers, update the model and broadcast the most recent set of parameters.

Synchronous mode. Parameter servers wait until all worker nodes have computed the

gradients with respect to their data batches. Once the gradients are received by the

parameter servers, they are applied to the current weights and the updated model is sent

back to all the worker nodes. The speed of the system will be determined by the slowest

node, as no updates are performed until all worker nodes finish the computation. Some

clusters might suffer from unbalanced network speeds, e.g. when shared with other users,

which might hamper the training process. On the other hand, aggregating gradients

over larger batch sizes might reduce the variance of the updates and provide faster

convergence. Chen et al. [58] trade off hardware efficiency for resilience by using backup

workers, i.e. launching M > N workers but computing updates only over the fastest N

workers at each iteration.

Distributed training of Convolutional Neural Networks 27

Asynchronous mode. Model parameters are updated using gradients received from ev-

ery worker individually. This prevents workers from waiting until all results are available

to the parameter servers, increasing the throughput of the system. The price to pay for

such throughput increase is gradient staleness, as workers will generally compute updates

on slightly outdated versions of the model1. This introduces bias in gradient estimates,

which in practice results in models trained with asynchronous updates needing a larger

number of updates to reach a given loss target than their synchronous counterparts. Too

large a number of asynchronous workers might create a bottleneck on the parameter

servers side, which now need to update and communicate weights more frequently. This

issue can be alleviated by increasing the number of parameter servers as the number of

workers grows.

Mixed mode. The pace at which pairs of nodes can communicate might differ depend-

ing on the topology of the cluster. The mixed mode aims at taking advantage of this by

performing synchronous aggregation of gradients over subsets of workers, and then per-

forming asynchronous updates in the parameter server side. This offers the advantages of

reduced gradient variance of the synchronous mode, with the high throughput achieved

by asynchronous updates. Moreover, aggregating gradients over subsets of workers re-

duces the communication burden on the parameter servers and the level of gradient

staleness.

Others. For completeness, we note that there exist improvements on the traditional

Stochastic Gradient Descent algorithm that can be applied to distributed settings [73–

75]. We instead focus on scaling problems from single node to distributed settings with

minimal modifications to the underlying training algorithm.

4.3 Adjective Noun Pair Detection

We will consider the task of Adjective Noun Pair (ANP) detection from as images as a case

study for analyzing distributed training of Convolutional Neural Networks (CNNs). This

is an important task within Affective Computing [76], a field that has recently garnered

much research attention. Machines that are able to understand and convey subjectivity

and affect would lead to a better human-computer interaction that is key in some fields

such as robotics or medicine. Despite the success in some constrained environments such

as emotional understanding of facial expressions [77], automated affect understanding

in unconstrained domains remains an open challenge which is still far from other tasks

where machines are approaching or have even surpassed human performance.
1In a setting with N asynchronous workers, each worker will compute gradients on a model replica

that is on average N − 1 updates behind the latest version.

Distributed training of Convolutional Neural Networks 28

The inherent complexity to emotions, i.e. a high intensity, but relatively brief experience,

onset by a stimuli [78, 79], and sentiment, i.e. an attitude, disposition or opinion towards

a certain topic [80], is reflected in categories that suffer from a large intra-class variance.

This challenge has been addressed with the creation of Visual Sentiment Ontologies [81,

82], consisting of a large-scale collection of ANPs, which focus on emotions expressed

by content owners in the images. These concepts, while exhibiting a reduced intra-class

variance as compared to emotions or sentiments, still convey strong affective connotations

and can be used as mid-level representations for visual affect related tasks. The noun

component in an ANP can be understood to ground the visual appearance of the entity,

whereas the adjective polarizes the content towards a positive or negative sentiment, or

emotion [82]. These properties try to bridge the affective gap between low level image

features and high level affective semantics, which goes far beyond recognizing the main

object in an image. Whereas a traditional object classification algorithm may recognize

a baby in an image, a finer-grained classification such as happy baby or crying baby

is usually needed to fully understand the affective content being conveyed. Capturing

the sophisticated differences between ANPs poses a challenging task that benefits from

leveraging large-scale annotated datasets by means of high learning capacity models [83].

Jou et al. [82] built a Multilingual Visual Sentiment Ontology (MVSO) with over 156,000

ANPs from 12 different languages, extending the Visual Sentiment Ontology [81]. In or-

der to guarantee a link between emotions and the concepts in the ontology, emotion key-

words from a well-known emotion model derived from psychology studies, the Plutchik’s

Wheel of Emotions [78], were used to query the Flickr API2 and retrieve a large corpus

of images with related tags and metadata. After a data-driven filtering of ANP candi-

dates, visual examples for these concepts were retrieved by querying the Flickr API for

images containing them either in their tags or metadata. The resulting MVSO dataset

contains over 15M images annotated with sentiment-biased ANPs. MVSO presents a

major challenge when training visual concept detectors: there is no human-level super-

vision for the ground truth, so that the annotations have to be considered as weak labels.

This issue can be mitigated by using a restricted set of the English partition of MVSO,

namely the tag-restricted subset [84], that contains over 1.2M images belonging to 1,200

classes where the associated ANP was found in the image tags and are more likely to

have reliable annotations.

The high level of abstraction of ANPs makes their detection a challenging task. This

problem was originally addressed with hand-crafted features and Support Vector Ma-

chines [85], which have been surpassed by CNNs [82–84]. Motivated by its importance

for Affective Computing applications, as well as the strong performance shown by CNNs
2https://www.flickr.com/services/api

Distributed training of Convolutional Neural Networks 29

on this task, we will study distributed training of CNNs in the context of ANP detection

from images.

4.4 Experiments

We run experiments on the bullx R421-E4 servers of the Minotauro3 supercomputer at

the Barcelona Supercomputing Center. These 39 nodes form a homogeneous GPU cluster

with a peak performance above 250TFLOPs. Each node is equipped with two NVIDIA

Kepler K80 dual-GPU cards, two Intel Xeon E5-2630 8-core processors, and 128GB of

RAM. Inter-node communication is performed trough a 56Gb/s InfiniBand network. The

model is implemented with TensorFlow [69], running on CUDA 7.5 and using cuDNN

5.1.3 primitives for improved performance. The training process is submitted through

the Slurm Workload Manager, which schedules and assigns resources for each job in the

cluster. Task distribution and communication between nodes within each job is handled

by Greasy [86], which is able to schedule and run a list of tasks in parallel using the

resources assigned to each job.

All experiments consider the ResNet50 architecture [63]. It contains 50 layers of trainable

parameters mapping a 224×224×3 input image to a 1,200-dimensional vector represent-

ing a probability distribution over the ANP classes in the tag-restricted subset of MVSO.

The model contains over 25 × 106 single-precision floating-point parameters, which are

involved in over 4 × 109 floating-point operations and are tuned during training. It is

important to notice that computationally demanding models can benefit the most from

distributed training, as the added communication overhead will be small when compared

to the time spent parallelizing computation.

Models are trained to minimize the cross-entropy loss between the output of the model

and the the real class distribution. This cost function is minimized using the RM-

SProp [42] optimizer with a learning rate of 0.1, decay of 0.9, ε = 1.0, and a weight

decay rate of 10−4. Each GPU processes 32 images at a time. To prevent overfitting,

data augmentation consisting in random crops and/or horizontal flips is asynchronously

performed on CPU while previous batches are processed by the GPUs. The weights of

the network are initialized using a model pre-trained on ImageNet [5], practice that has

been proven beneficial even when training on large-scale datasets [87].
3https://www.bsc.es/marenostrum/minotauro

https://www.bsc.es/marenostrum/minotauro

Distributed training of Convolutional Neural Networks 30

4.4.1 Intra-Node Parallelism

We first study the scalability of data parallelism with synchronous model updates on a

single multi-GPU machine. Due to the dual nature of the NVIDIA K80 cards, up to four

model replicas can be deployed per node. The variables in the computation graph are

stored in RAM in order to ensure proper weight sharing between model replicas. Each

GPU performs the forward and backward passes through the network on independent

batches of data. Gradients computed for each replica are averaged before performing the

weights update, step that becomes the synchronization point in the graph.

The evolution of the throughput as a function of the number of GPUs is reported in

Figure 4.2. We observe that the speedup is almost linear when increasing the number of

GPUs, confirming the adequacy of synchronous updates for intra-node parallelism.

Figure 4.2: Throughput increase when parallelizing training over different number of GPUs
within a single node. Throughput is measured in processed images per second.

4.4.2 Distributed Training

Based on the results for the single-node scenario, we adopt a mixed distributed training

approach. Gradients over the four model replicas in each node are aggregated syn-

chronously, resulting in an effective batch size of 128 samples per worker. The results

from different nodes are then aggregated asynchronously at the parameter servers. This

strategy differs from that of previous works, where each worker is defined as a single

GPU [58, 88], and offers two main advantages: (1) communication overhead is reduced,

as only a single collection of gradients needs to be exchanged through the network for

each set of four model replicas, and (2) each worker has a larger effective batch size, pro-

viding better gradient estimates and allowing the use of larger learning rates for faster

convergence.

Distributed training of Convolutional Neural Networks 31

4.4.2.1 Throughput Analysis

Previous studies on distributed training with TensorFlow tend to use different node

configurations for worker and parameter server tasks [58, 69]. Given that a parameter

server only stores and updates the model and there is no need for GPU computations,

CPU-only machines are used for this task. Worker jobs need to perform forward and

backward passes over the model, which can be greatly accelerated on GPU. Since the

cluster used in our experiments is homogeneous, placing parameter servers and workers in

different nodes would result in under-utilization of GPU resources. This section studies

the impact of sharing resources between parameter servers and workers instead of using

dedicated machines for the parameter servers.

We start by running distributed training experiments with 16 GPUs. These resources

are split across four asynchronous workers, each averaging gradients over four models

replicas. A round robin strategy is followed when splitting model variables across pa-

rameter servers, so we always consider an odd number of such nodes to obtain a balanced

partition. Table 4.1 reports the speedups obtained under different settings, and the trade-

off between throughput and resource utilization when using dedicated parameter server

nodes in a homogeneous cluster. Using three dedicated parameter servers provides the

largest speedups, but does not compensate for the increased hardware requirements.

Nodes Configuration Throughput Speedup Efficiency

1 – 124.18 img/sec - -
4 4W, 1PS 292.22 img/sec 2.35 0.58
4 4W, 3PS 383.09 img/sec 3.09 0.77
7 4W, 3PS 396.62 img/sec 3.19 0.46

Table 4.1: Scalability analysis for a varying number of nodes and parameter servers (PS), given a
fixed number of workers (W). Using dedicated nodes for the parameter servers slightly improves
the throughput, but involves a much larger resource utilization. Efficiency is computed as the
ratio between speedup and the number of nodes, providing a more accurate measure of resource
utilization.

Results suggest that sharing resources across workers and parameter servers might be

the most efficient strategy for homogeneous GPU clusters. To further evaluate this

hypothesis, we run experiments where we vary the number of workers and parameter

servers for a given number of nodes. Figure 4.3 confirms that sharing resources across

parameter servers and workers provides important throughput gains.

A useful way for assessing the scalability of a distributed method consists in measuring

how throughput changes as the amount of resources increases. We measure this for the

setting where all nodes are fully utilized by sharing resources between parameter servers

and workers. We run experiments with N nodes and workers, with N ∈ {1, 2, 3, 4}.

Distributed training of Convolutional Neural Networks 32

Figure 4.3: Throughput comparison between different distributed setups, where we vary the num-
ber of nodes, workers (W), and parameter servers (PS). Setting the proper number of parameter
servers is key to maximizing throughput.

The best configuration in Figure 4.3 is adopted for each value of N , which corresponds

to launching N − 1 parameter servers. Figure 4.4 confirms that the throughput scales

gracefully with the amount of resources.

Figure 4.4: Throughput increase in the distributed setting, computed with respect to the single-
GPU scenario. We employ nodes with four GPUs each.

4.4.2.2 Convergence Analysis

There are two mains aspects to take into consideration when studying the impact of

distributed training on the learning process. The time required to reach a target loss

value on the training set, which is the metric that is being optimized, is a good proxy

for measuring the actual speedup on the training process. On the other hand, the

Distributed training of Convolutional Neural Networks 33

Workers GPUs Accuracy Time (h) Speedup

1 4 0.228 106.43 1.00
2 8 0.217 62.78 1.69
4 16 0.202 37.99 2.80
8 32 0.217 22.50 4.73

Table 4.2: Accuracy on the validation set for different numbers of asynchronous workers. We
pick the highest validation accuracy over the whole training run, and report the time elapsed to
achieve it. Setups with more nodes achieve higher throughputs, but also require a larger number
of iterations to converge.

final accuracy achieved by the model will determine whether distributing training across

several machines has an impact on the capabilities for finding the desired minima of the

cost function.

We start by analyzing the time required to reach some target loss value. Despite the

throughput increase is close to linear with respect to the number of nodes, Figure 4.5

shows that the rate at which the loss decreases does not improve so gracefully as addi-

tional nodes are used. This result is explained by the gradient staleness problem, which

increases linearly with the number of nodes in asynchronous schemes.

Figure 4.5: Train loss evolution for the different distributed configurations. The more nodes, the
faster a target loss value is reached.

The final accuracy rates on the validation set for different distributed configurations is re-

ported in Table 4.2. None of them is able to reach the final accuracy of the model trained

in a single node, confirming that the stale gradients have a negative impact on the local

optima to which training converges. Another possible reason for the performance drop

might be related to the lack of hyperparameter tuning, which were not optimized for

each configuration due to the cost of running distributed experiments. An important ob-

servation is that balancing the throughput across workers was critical in order to achieve

a successful learning process. Workers that are constantly lagging behind aggravate the

stale gradients problem and destabilize training.

Distributed training of Convolutional Neural Networks 34

4.5 Discussion

Distributed training strategies for deep learning architectures will become more impor-

tant as the size of datasets increases. They allow researchers to receive earlier feedback

on their ideas and increase the pace at which algorithms are developed, thus understand-

ing the best practices to distribute training of these models is a key research area. We

studied how to adapt the training algorithm to the available hardware resources in order

to accelerate the training of a CNN on a homogeneous GPU cluster. First, we showed

how close to linear speedups can be achieved through intra-node parallelism. Based on

these results, we developed a mixed approach where this efficiency is leveraged and the

amount of inter-node communication is reduced as compared to a pure asynchronous

policy. When properly tuning the number of parameter servers for each configuration,

this method yields an important speedup in the number of samples per second processed

by the system even for the setup with the minimum hardware overhead.

In spite of the good scalability demonstrated in terms of throughput, configurations with

more nodes require from additional training steps to reach the same target loss value,

although the increased throughput compensates this issue and still reduces the training

time considerably. This drawback becomes more important when increasing the number

of nodes, and our results suggest that different strategies should be employed for highly

distributed settings with dozens of nodes.

Creating tools that provide insight on the performance of each individual component can

help with detecting bottlenecks and pushing even further the scalability of the system.

We believe that insights from other domains within high performance computing might

help in improving the scalability of distributed training strategies. Improving the per-

formance of the synchronous setting is an important research direction, as it overcomes

the stale gradients problem but is currently limited by the performance of the slowest

worker. Developing a better understanding of the role of the batch size in neural network

optimization and generalization [89] is also key in order to scale up approaches that rely

on data parallelism.

5
Learning to Skip State Updates in

Recurrent Neural Networks

Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, and Shih-

Fu Chang. Skip RNN: Learning to skip state updates in recurrent neural

networks. In ICLR, 2018

Recurrent Neural Networks (RNNs) have become the standard approach for practitioners

when addressing machine learning tasks involving sequential data. Such success has been

enabled by the appearance of larger datasets, more powerful computing resources and

improved architectures and training algorithms. Gated units, such as the Long Short-

Term Memory (LSTM) [38] and the Gated Recurrent Unit (GRU) [39], were designed

to deal with the vanishing gradients problem commonly found in RNNs [90]. These

architectures have been popularized, in part, due to their impressive results on a variety

of tasks in machine translation [35], language modeling [36] and speech recognition [37].

Some of the main challenges of RNNs are in their training and deployment when dealing

with long sequences, due to their inherently sequential behaviour. These challenges

include throughput degradation, slower convergence during training and memory leakage,

even for gated architectures [91]. Sequence shortening techniques, which can be seen as

a sort of conditional computation [92–94] in time, can alleviate these issues. The most

common approaches, such as cropping discrete signals or reducing the sampling rate in

continuous ones, are based on heuristics and can be suboptimal. In contrast, we propose

a model that is able to learn which samples (i.e., elements in the input sequence) need

to be used in order to solve the target task. Consider a video understanding task as an

35

Learning to Skip State Updates in Recurrent Neural Networks 36

example: scenes with large motion may benefit from high frame rates, whereas only a

few frames are needed to capture the semantics of a mostly static scene.

The main contribution of this chapter is a novel modification for existing RNN archi-

tectures that allows them to skip state updates, decreasing the number of sequential

operations performed, without requiring any additional supervision signal. This model,

called Skip RNN, adaptively determines whether the state needs to be updated or copied

to the next time step. We show how the network can be encouraged to perform fewer

state updates by adding a penalization term during training, allowing us to train models

under different computation budgets. The proposed modification can generally be in-

tegrated with any RNN, and we show implementations with well-known RNNs, namely

LSTM and GRU. The resulting models show promising results on a series of sequence

modeling tasks. In particular, we evaluate the proposed Skip RNN architecture on six

sequence learning problems: an adding task, sine wave frequency discrimination, digit

classification, sentiment analysis in movie reviews, action classification in video, and

temporal action localization in video.

5.1 Related Work

Conditional computation has been shown to gradually increase model capacity without

proportional increases in computational cost by exploiting certain computation paths

for each input [57, 92, 95–97]. This idea has been extended in the temporal domain,

such as in learning how many times an input needs to be "pondered" before moving

to the next one [98], or designing RNN architectures whose number of layers depend

on the input data [99]. Other works have addressed time-dependent computation in

RNNs by updating only a fraction of the hidden states based on the current hidden state

and input [100], or following periodic patterns [91, 101]. However, due to the inherently

sequential nature of RNNs and the parallel computation capabilities of modern hardware,

reducing the size of the matrices involved in the computations performed at each time

step generally has not accelerated inference as dramatically as hoped. The proposed

Skip RNN model can be seen as form of conditional computation in time, where the

computation associated to the RNN updates may or may not be executed at every

time step. This idea is related to the UPDATE and COPY operations in hierarchical

multiscale RNNs [99], but applied to the whole stack of RNN layers at the same time.

This difference is key to allowing our approach to skip input samples, effectively reducing

sequential computation and shielding the hidden state over longer time lags. Learning

whether to update or copy the hidden state through time steps can be seen as a learnable

Learning to Skip State Updates in Recurrent Neural Networks 37

Zoneout mask [102] which is shared between all the units in the hidden state. Similarly,

it can be interpreted as an input-dependent recurrent version of stochastic depth [103].

Selecting parts of the input signal is similar in spirit to the hard attention mechanisms

that have been applied to image regions [104], where only some patches of the input image

are attended in order to generate captions [105] or detect objects [106]. Our model can

be understood as generating a hard temporal attention mask on-the-fly given previously

seen samples, deciding which time steps should be attended and operating on a subset of

input samples. Subsampling input sequences has been explored for visual storylines gen-

eration [107], although jointly optimizing the RNN weights and the subsampling mecha-

nism is often computationally infeasible and an Expectation-Maximization algorithm is

used instead. Similar research has been conducted for video analysis tasks, discovering

minimally needed evidence for event recognition [108] and training agents that decide

which frames need to be observed in order to localize actions in time [109, 110]. Mo-

tivated by the advantages of training recurrent models on shorter subsequences, efforts

have been conducted on learning differentiable subsampling mechanisms [111], although

the computational complexity of the proposed method precludes its application to long

input sequences. In contrast, our proposed method can be trained with backpropagation

and does not degrade the complexity of the baseline RNNs.

Accelerating inference in RNNs is difficult due to their inherently sequential nature,

leading to the design of Quasi-Recurrent Neural Networks [112] and Simple Recurrent

Units [113], which relax the temporal dependency between consecutive steps. With the

goal of speeding up RNN inference, LSTM-Jump [114] augments an LSTM cell with

a classification layer that will decide how many steps to jump between RNN updates.

Despite its promising results on text tasks, the model needs to be trained with REIN-

FORCE [115], which requires defining a reasonable reward signal. Determining these

rewards is non-trivial and may not necessarily generalize across tasks. Moreover, the

number of tokens read between jumps, the maximum jump distance and the number of

jumps allowed all need to be chosen in advance. These hyperparameters define a reduced

set of subsequences that the model can sample, instead of allowing the network to learn

any arbitrary sampling scheme. Unlike LSTM-Jump, our proposed approach is differ-

entiable, thus not requiring any modifications to the loss function and simplifying the

optimization process, and is not limited to a predefined set of sample selection patterns.

5.2 Model Description

An RNN takes an input sequence x = (x1, . . . ,xT) and generates a state sequence

s = (s1, . . . , sT) by iteratively applying a parametric state transition model S from

Learning to Skip State Updates in Recurrent Neural Networks 38

t = 1 to T :

st = S(st−1,xt) (5.1)

We augment the network with a binary state update gate, ut ∈ {0, 1}, selecting whether

the state of the RNN will be updated (ut = 1) or copied from the previous time step

(ut = 0). At every time step t, the probability ũt+1 ∈ [0, 1] of performing a state update

at t + 1 is emitted. The resulting architecture is depicted in Figure 5.1 and can be

characterized as follows:

ut = fbinarize(ũt) (5.2)

st = ut · S(st−1,xt) + (1− ut) · st−1 (5.3)

∆ũt = σ(Wust + bu) (5.4)

ũt+1 = ut ·∆ũt + (1− ut) · (ũt + min(∆ũt, 1− ũt)) (5.5)

where Wu is a weights vector, bu is a scalar bias, σ is the sigmoid function and fbinarize :

[0, 1] → {0, 1} binarizes the input value. Should the network be composed of several

layers, some columns of Wu can be fixed to 0 so that ∆ũt depends only on the states

of a subset of layers (c.f. Sections 5.3.5 and 5.3.6 for examples with two layers). We

implement fbinarize as a deterministic step function ut = round(ũt), although a stochastic

sampling from a Bernoulli distribution ut ∼ Bernoulli(ũt) would be possible as well.

The model formulation encodes the observation that the likelihood of requesting a new

input to update the state increases with the number of consecutively skipped samples.

Whenever a state update is omitted, the pre-activation of the state update gate for the

following time step, ũt+1, is incremented by ∆ũt. On the other hand, if a state update

is performed, the accumulated value is flushed and ũt+1 = ∆ũt.

The number of skipped time steps can be computed ahead of time. For the particular

formulation used in this work, where fbinarize is implemented by means of a rounding

function, the number of skipped samples after performing a state update at time step t

is given by:

Nskip(t) = min{n : n ·∆ũt ≥ 0.5} − 1 (5.6)

where n ∈ Z+. This enables more efficient implementations where no computation at

all is performed whenever ut = 0. These computational savings are possible because

∆ũt = σ(Wust + bu) = σ(Wust−1 + bu) = ∆ũt−1 when ut = 0 and there is no need to

evaluate it again, as depicted in Figure 5.1d.

Learning to Skip State Updates in Recurrent Neural Networks 39

fbinarize

S
st

ũt+1

σ
Δũt

ut

xt

0

1

0

1

st-1

ũt
+

(a)

S st

σ

Δũt

xt

st-1

ũt ũt+1

(b)

xt

st-1

ũt

st

ũt+1

σ

Δũt

+

(c)

xt

st-1

ũt

st

Δũt-1

ũt+1

Δũt

+

(d)

Figure 5.1: Model architecture of the proposed Skip RNN. (a) Complete Skip RNN architecture,
where the computation graph at time step t is conditioned on ut. (b) Architecture when the
state is updated, i.e. ut = 1. (c) Architecture when the update step is skipped and the previous
state is copied, i.e. ut = 0. (d) In practice, redundant computation is avoided by propagating
∆ũt between time steps when ut = 0.

There are several advantages in reducing the number of RNN updates. From the com-

putational standpoint, fewer updates translates into fewer required sequential operations

to process an input signal, leading to faster inference and reduced energy consump-

tion. Unlike some other models that aim to reduce the average number of operations per

step [91, 100], ours enables skipping steps completely. Replacing RNN updates with copy

operations increases the memory of the network and its ability to model long term depen-

dencies even for gated units, since the exponential memory decay observed in LSTM and

GRU [91] is alleviated. During training, gradients are propagated through fewer updating

time steps, providing faster convergence in some tasks involving long sequences. More-

over, the proposed model is orthogonal to recent advances in RNNs and could be used in

conjunction with such techniques, e.g. normalization [116, 117], regularization [36, 102],

variable computation [91, 100] or even external memory [118, 119].

5.2.1 Error Gradients

The whole model is differentiable except for fbinarize, which outputs binary values. A com-

mon method for optimizing functions involving discrete variables is REINFORCE [115],

Learning to Skip State Updates in Recurrent Neural Networks 40

although several estimators have been proposed for the particular case of neurons with

binary outputs [92]. We select the straight-through estimator [92, 120], which consists

of approximating the step function by the identity when computing gradients during the

backward pass:

∂fbinarize (x)

∂x
= 1 (5.7)

This yields a biased estimator that has proven more efficient than other unbiased but

high-variance estimators such as REINFORCE [92] and has been successfully applied

in different works [99, 121]. By using the straight-through estimator as the backward

pass for fbinarize, all the model parameters can be trained to minimize the target loss

function with standard backpropagation and without defining any additional supervision

or reward signal.

5.2.2 Limiting Computation

The Skip RNN is able to learn when to update or copy the state without explicit infor-

mation about which samples are useful to solve the task at hand. However, a different

operating point on the trade-off between performance and number of processed samples

may be required depending on the application, e.g. one may be willing to sacrifice a few

accuracy points in order to run faster on machines with a low computational power, or

to reduce energy impact on portable devices. The proposed model can be encouraged to

perform fewer state updates through additional loss terms, a common practice in neural

networks with dynamically allocated computation [95, 97, 98, 100]. In particular, we

consider a cost per sample condition

Lbudget = λ ·
T∑
t=1

ut, (5.8)

where Lbudget is the cost associated to a single sequence, λ is the cost per sample and T is

the sequence length. This formulation bears a similarity to weight decay regularization,

where the network is encouraged to slowly converge towards a solution where the norm

of the weights is small. Similarly, in this case the network is encouraged to converge

toward a solution where fewer state updates are required.

Although the above budget formulation is extensively studied in our experiments, other

budget loss terms can be used depending on the application. For instance, a specific

number of samples may be encouraged by applying a L1 or L2 loss between the target

value and the number of updates per sequence,
∑T

t=1 ut.

Learning to Skip State Updates in Recurrent Neural Networks 41

5.3 Experiments

In the following section, we investigate the advantages of adding this state skipping

capability to two common RNN architectures, LSTM and GRU, for a variety of tasks.

In addition to the evaluation metric for each task, we report the number of RNN state

updates (i.e., the number of elements in the input sequence used by the model) and the

number of Floating Point Operations (FLOPs) as measures of the computational load for

each model. Since skipping an RNN update results in ignoring its corresponding input,

we will refer to the number of updates and the number of used samples (i.e. elements

in a sequence) interchangeably. With the goal of studying the effect of skipping state

updates on the learning capability of the networks, we also introduce a baseline which

skips a state update with probability pskip. We tune the skipping probability to obtain

models that perform a similar number of state updates to the Skip RNN models.

Training is performed with Adam [43], learning rate of 10−4, β1 = 0.9, β2 = 0.999 and

ε = 10−8 on batches of 256. Gradient clipping [122] with a threshold of 1 is applied to

all trainable variables. Bias bu in Equation 5.4 is initialized to 1, so that all samples are

used at the beginning of training1. The initial hidden state s0 is learned during training,

whereas ũ0 is set to a constant value of 1 in order to force the first update at t = 1.

Experiments are implemented with TensorFlow [69] and run on a single NVIDIA K80

GPU. Code is available at https://github.com/imatge-upc/skiprnn-2017-telecom

bcn.

5.3.1 Adding Task

We revisit one of the original LSTM tasks [38], where the network is given a sequence

of (value, marker) tuples. The desired output is the addition of only two values that

are marked with a 1, whereas those marked with a 0 need to be ignored. We follow the

experimental setup by Neil et al. [91], where the first marker is randomly placed among

the first 10% of samples (drawn with uniform probability) and the second one is placed

among the last half of samples (drawn with uniform probability). This marker distribu-

tion yields sequences where at least 40% of the samples are distractors and provide no

useful information at all. However, it is worth noting that in this task the risk of missing

a marker is very large as compared to the benefits of working on shorter subsequences.
1In practice, forcing the network to use all samples at the beginning of training improves its ro-

bustness against random initializations of its weights and increases the reproducibility of the presented
experiments. A similar behavior was observed in other augmented RNN architectures such as Neural
Stacks [123].

https://github.com/imatge-upc/skiprnn-2017-telecombcn
https://github.com/imatge-upc/skiprnn-2017-telecombcn

Learning to Skip State Updates in Recurrent Neural Networks 42

Model Task solved State updates Inference FLOPs

LSTM Yes 100.0%± 0.0% 2.46× 106

LSTM, pskip = 0.2 No 80.0%± 0.1% 1.97× 106

LSTM, pskip = 0.5 No 50.1%± 0.1% 1.23× 106

Skip LSTM, λ = 0 Yes 81.1%± 3.6% 2.00× 106

Skip LSTM, λ = 10−5 Yes 53.9%± 2.1% 1.33× 106

GRU Yes 100.0%± 0.0% 1.85× 106

GRU, pskip = 0.02 No 98.0%± 0.0% 1.81× 106

GRU, pskip = 0.5 No 49.9%± 0.6% 9.25× 105

Skip GRU, λ = 0 Yes 97.9%± 3.2% 1.81× 106

Skip GRU, λ = 10−5 Yes 50.7%± 2.6% 9.40× 105

Table 5.1: Results for the adding task, displayed as mean ± std over four different runs. We
consider different values for the cost per sample, λ, in Equation 5.8. The task is considered
to be solved if the MSE is at least two orders of magnitude below the variance of the output
distribution.

We train RNN models with 110 units each on sequences of length 50, where the values are

uniformly drawn from U(−0.5, 0.5). The final RNN state is fed to a fully connected layer

that regresses the scalar output. The model is trained to minimize the Mean Squared

Error (MSE) between the output and the ground truth. We consider that a model is

able to solve the task when its MSE on a held-out set of examples is at least two orders

of magnitude below the variance of the output distribution. This criterion is a stricter

version of the one followed by Hochreiter and Schmidhuber [38].

While all models learn to solve the task, results in Table 5.1 show that Skip RNN models

are able to do so with roughly half of the updates of their corresponding counterparts.

We observed that the models using fewer updates never miss any marker, since the

penalization in terms of MSE would be very large (see Appendix A.1 for examples).

This is confirmed by the poor performance of the baselines that randomly skip state

updates, which are not able to solve the tasks even when the skipping probability is low.

Skip RNN models learn to skip most of the samples in the 40% of the sequence where

there are no markers. Moreover, most updates are skipped once the second marker is

found, since all the relevant information in the sequence has already been seen. This last

pattern provides evidence that the proposed models effectively learn whether to update

or copy the hidden state based on the input sequence, as opposed to learning biases in

the dataset only. As a downside, Skip RNN models show some difficulties skipping a

large number of updates at once, probably due to the cumulative nature of ũt.

Learning to Skip State Updates in Recurrent Neural Networks 43

5.3.2 Frequency Discrimination Task

In this experiment, the network is trained to classify between sinusoids whose period is in

range T ∼ U (5, 6) milliseconds and those whose period is in range T ∼ {(1, 5) ∪ (6, 100)}
milliseconds [91]. Every sine wave with period T has a random phase shift drawn from

U(0, T). At every time step, the input to the network is a single scalar representing the

amplitude of the signal. Since sinusoids are continuous signals, this tasks allows to study

whether Skip RNNs converge to the same solutions when their parameters are fixed but

the sampling period is changed. We study two different sampling periods, Ts = {0.5, 1}
milliseconds, for each set of hyperparameters.

We train RNNs with 110 units each on input signals of 100 milliseconds. Batches are

stratified, containing the same number of samples for each class, yielding a 50% chance

accuracy. The last state of the RNN is fed into a 2-way classifier and trained with cross-

entropy loss. We consider that a model is able to solve the task when it achieves an

accuracy over 99% on a held-out set of examples.

Table 5.2 summarizes results for this task. When no cost per sample is set (λ = 0),

the number of updates differ under different sampling conditions. We attribute this

behavior to the potentially large number of local minima in the cost function, since there

are numerous subsampling patterns for which the task can be successfully solved and we

are not explicitly encouraging the network to converge to a particular solution. On the

other hand, when λ > 0 Skip RNN models with the same cost per sample use roughly

the same number of input samples even when the sampling frequency is doubled. This is

a desirable property, since solutions are robust to oversampled input signals. Qualitative

results can be found in Appendix A.2.

Model Ts = 1ms (length 100) Ts = 0.5ms (length 200)

Task solved State updates Task solved State updates

LSTM Yes 100.0± 0.00 Yes 200.0± 0.00
Skip LSTM, λ = 0 Yes 55.5± 16.9 Yes 147.9± 27.0
Skip LSTM, λ = 10−5 Yes 47.4± 14.1 Yes 50.7± 16.8
Skip LSTM, λ = 10−4 Yes 12.7± 0.5 Yes 19.9± 1.5

GRU Yes 100.0± 0.00 Yes 200.0± 0.00
Skip GRU, λ = 0 Yes 73.7± 17.9 Yes 167.0± 18.3
Skip GRU, λ = 10−5 Yes 51.9± 10.2 Yes 54.2± 4.4
Skip GRU, λ = 10−4 Yes 23.5± 6.2 Yes 22.5± 2.1

Table 5.2: Results for the frequency discrimination task, displayed as mean ± std over four
different runs. We consider different values for the cost per sample, λ, in Equation 5.8. The
task is considered to be solved if the classification accuracy is over 99%. Models with the same
cost per sample (λ > 0) converge to a similar number of used samples under different sampling
conditions.

Learning to Skip State Updates in Recurrent Neural Networks 44

5.3.3 MNIST Classification from a Sequence of Pixels

The MNIST handwritten digits classification benchmark [53] is traditionally addressed

with Convolutional Neural Networks (CNNs) that efficiently exploit spatial dependencies

through weight sharing. By flattening the 28× 28 images into 784-d vectors, however, it

can be reformulated as a challenging task for RNNs where long term dependencies need

to be leveraged [124]. We follow the standard data split and set aside 5,000 training

samples for validation purposes. After processing all pixels with an RNN with 110 units,

the last hidden state is fed into a linear classifier predicting the digit class. All models

are trained for 600 epochs to minimize cross-entropy loss.

Table 5.3 summarizes classification results on the test set after 600 epochs of training.

Skip RNNs are not only able to solve the task using fewer updates than their counter-

parts, but also show a lower variance across runs and train faster (see Figure 5.2). We

hypothesize that skipping updates make the Skip RNNs work on shorter subsequences,

simplifying the optimization process and allowing the networks to capture long term

dependencies more easily. A similar behavior was observed for Phased LSTM, where

increasing the sparsity of cell updates accelerates training for very long sequences [91].

However, the drop in performance observed in the models where the state updates are

skipped randomly suggests that learning which samples to use is a key component in the

performance of Skip RNN.

The performance of RNN models on this task can be boosted through techniques like

recurrent batch normalization [116] or recurrent skip coefficients [125]. Cooijmans et al.

[116] show how an LSTM with specific weight initialization schemes for improved gradient

flow [124, 126] can reach accuracy rates of up to 0.989. Note that these techniques are

orthogonal to skipping state updates and Skip RNN models could benefit from them as

well.

Sequences of pixels can be reshaped back into 2D images, allowing to visualize the samples

used by the RNNs as a sort of hard visual attention model [105]. Examples depicted in

Figure 5.3 show how the model learns to skip pixels that are not discriminative, such as

the padding regions in the top and bottom of images. Similarly to the qualitative results

for the adding task (Section 5.3.1), attended samples vary depending on the particular

input being given to the network.

5.3.4 Sentiment Analysis on IMDB

The IMDB dataset [127] contains 25,000 training and 25,000 testing movie reviews an-

notated into two classes, positive and negative sentiment, with an approximate average

Learning to Skip State Updates in Recurrent Neural Networks 45

Model Accuracy State updates Inference FLOPs

LSTM 0.910± 0.045 784.00± 0.00 3.83× 107

LSTM, pskip = 0.5 0.893± 0.003 392.03± 0.05 1.91× 107

Skip LSTM, λ = 10−4 0.973± 0.002 379.38± 33.09 1.86× 107

GRU 0.968± 0.013 784.00± 0.00 2.87× 107

GRU, pskip = 0.5 0.912± 0.004 391.86± 0.14 1.44× 107

Skip GRU, λ = 10−4 0.976± 0.003 392.62± 26.48 1.44× 107

TANH-RNN [124] 0.350 784.00 –
iRNN [124] 0.970 784.00 –
uRNN [126] 0.951 784.00 –
sTANH-RNN [125] 0.981 784.00 –
LSTM [116] 0.989 784.00 –
BN-LSTM [116] 0.990 784.00 –

Table 5.3: Accuracy, used samples and average FLOPs per sequence at inference on the test set
of MNIST after 600 epochs of training. Results are displayed as mean ± std over four different
runs.

0 100 200 300 400 500 600
Epochs

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GRU
Skip GRU, = 10 4

Figure 5.2: Accuracy evolution during training on the validation set of MNIST. The Skip GRU
exhibits lower variance and faster convergence than the baseline GRU. A similar behavior is
observed for LSTM and Skip LSTM, but omitted for clarity. Shading shows maximum and
minimum over 4 runs, while dark lines indicate the mean.

length of 240 words per review. We set aside 15% of training data for validation pur-

poses. Words are embedded into 300-d vector representations before being fed to an RNN

with 128 units. The embedding matrix is initialized using pre-trained word2vec2 embed-

dings [128] when available, or random vectors drawn from U(−0.25, 0.25) otherwise [32].

Dropout with rate 0.2 is applied between the last RNN state and the classification layer

in order to reduce overfitting. We evaluate the models on sequences of length 200 and

400 by cropping longer sequences and padding shorter ones [114].

Results on the test are reported in Table 5.4. In a task where it is hard to predict which

input tokens will be discriminative, the Skip RNN models are able to achieve similar
2https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

Learning to Skip State Updates in Recurrent Neural Networks 46

Figure 5.3: Sample usage examples for the Skip LSTM with λ = 10−4 on the test set of MNIST.
Red pixels are used, whereas blue ones are skipped.

accuracy rates to the baseline models while reducing the number of required updates.

These results highlight the trade-off between accuracy and the available computational

budget, since a larger cost per sample results in lower accuracies. However, allowing the

network to select which samples to use instead of cropping sequences at a given length

boosts performance, as observed for the Skip LSTM (length 400, λ = 10−4), which

achieves a higher accuracy than the baseline LSTM (length 200) while seeing roughly

the same number of words per review. A similar behavior can be seen for the Skip RNN

models with λ = 10−3, where allowing them to select words from longer reviews boosts

classification accuracy while using a comparable number of tokens per sequence.

In order to reduce overfitting of large models, Miyato et al. [129] leverage additional

unlabeled data through adversarial training and achieve a state of the art accuracy of

0.941 on IMDB. For an extended analysis on how different experimental setups affect

the performance of RNNs on this task, we refer the reader to Longpre et al. [130].

Model Length 200 Length 400

Accuracy State updates Accuracy State updates

LSTM 0.843± 0.003 200.00± 0.00 0.868± 0.004 400.00± 0.00
Skip LSTM, λ = 0 0.844± 0.004 196.75± 5.63 0.866± 0.004 369.70± 19.35
Skip LSTM, λ = 10−5 0.846± 0.004 197.15± 3.16 0.865± 0.001 380.62± 18.20
Skip LSTM, λ = 10−4 0.837± 0.006 164.65± 8.67 0.862± 0.003 186.30± 25.72
Skip LSTM, λ = 10−3 0.811± 0.007 73.85± 1.90 0.836± 0.007 84.22± 1.98

GRU 0.845± 0.006 200.00± 0.00 0.862± 0.003 400.00± 0.00
Skip GRU, λ = 0 0.848± 0.002 200.00± 0.00 0.866± 0.002 399.02± 1.69
Skip GRU, λ = 10−5 0.842± 0.005 199.25± 1.30 0.862± 0.008 398.00± 2.06
Skip GRU, λ = 10−4 0.834± 0.006 180.97± 8.90 0.853± 0.011 314.30± 2.82
Skip GRU, λ = 10−3 0.800± 0.007 106.15± 37.92 0.814± 0.005 99.12± 2.69

Table 5.4: Accuracy and used samples on the test set of IMDB for different sequence lengths.
Results are displayed as mean ± std over four different runs. We consider different values for
the cost per sample, λ, in Equation 5.8.

Learning to Skip State Updates in Recurrent Neural Networks 47

5.3.5 Action Classification on UCF-101

One popular approach to video analysis tasks is to extract frame-level features with a

CNN and modeling temporal dynamics with an RNN [131, 132]. Videos are commonly

recorded at high sampling rates, generating long sequences with strong temporal redun-

dancies that are challenging for RNNs. Moreover, processing frames with a CNN is

computationally expensive and may become prohibitive for high frame rates. These is-

sues have been alleviated in previous works by using short clips [131] or by downsampling

the original data in order to cover long temporal spans without increasing the sequence

length excessively [132]. Instead of addressing the long sequence problem at the input

data level, we let the network learn which frames need to be used.

UCF-101 [133] is a dataset containing 13,320 trimmed videos belonging to 101 different

action categories. We use 10 seconds of video sampled at 25fps, cropping longer ones

and padding shorter examples with empty frames. Activations in the Global Average

Pooling layer from a ResNet-50 [63] CNN pretrained on the ImageNet dataset [5] are

used as frame-level features, which are fed into two stacked RNN layers with 512 units

each. The weights in the CNN are not tuned during training to reduce overfitting. The

hidden state in the last RNN layer is used to compute the update probability for the

Skip RNN models.

We evaluate the different models on the first split of UCF-101 and report results in Table

5.5. Skip RNN models do not only improve the classification accuracy with respect to the

baseline, but require very few updates to do so, possibly due to the low motion between

consecutive frames resulting in frame-level features with high temporal redundancy [134].

Moreover, Figure 5.4 shows how models performing fewer updates converge faster thanks

to the gradients being preserved during longer spans when training with backpropagation

through time.

Non-recurrent architectures for video action recognition that have achieved high per-

formance on UCF-101 comprise CNNs with spatiotemporal kernels [135] or two-stream

CNNs [136]. Carreira and Zisserman [137] show the benefits of expanding 2D CNN filters

into 3D and pretraining on larger datasets, obtaining an accuracy of 0.845 when using

RGB data only and 0.934 when incorporating optical flow information.

5.3.6 Temporal Action Localization on Charades

Charades [138] is a dataset containing 9,848 videos annotated for 157 action classes in

a per-frame fashion. Frames are encoded using fc7 features from the RGB stream of a

Learning to Skip State Updates in Recurrent Neural Networks 48

Model Accuracy State updates Inference FLOPs

LSTM 0.671 250.0 9.52× 1011

Skip LSTM, λ = 0 0.749 138.9 5.29× 1011

Skip LSTM, λ = 10−5 0.757 24.2 9.21× 1010

Skip LSTM, λ = 10−4 0.790 7.6 2.89× 1010

GRU 0.791 250.0 9.51× 1011

Skip GRU, λ = 0 0.796 124.2 4.73× 1011

Skip GRU, λ = 10−5 0.792 29.7 1.13× 1011

Skip GRU, λ = 10−4 0.793 23.7 9.02× 1010

I3D (RGB) [137] 0.845 – –
Two-stream I3D [137] 0.934 – –

Table 5.5: Accuracy, used samples and average FLOPs per sequence at inference on the validation
set of UCF-101 (split 1). We consider different values for the cost per sample, λ, in Equation 5.8.

0 50 100 150 200 250 300
Epochs

0

20

40

60

80

Ac
cu

ra
cy

 (%
)

LSTM
Skip LSTM, = 0
Skip LSTM, = 10 5

Skip LSTM, = 10 4

Figure 5.4: Accuracy evolution during the first 300 training epochs on the validation set of
UCF-101 (split 1). Skip LSTM models converge much faster than the baseline LSTM.

Two-Stream CNN provided by the organizers of the challenge3, extracted at 6fps. The

encoded frames are fed into two stacked RNN layers with 256 units each and the hidden

state in the last RNN layer is used to compute the update probability for the Skip RNN

models. Since each frame may be annotated with zero or more classes, the networks are

trained to minimize element-wise binary cross-entropy at every time step. Unlike the

previous sequence tagging tasks, this setup allows us to evaluate the performance of Skip

RNN on a task where the output is a sequence as well.

Evaluation is performed following the setup by Sigurdsson et al. [139], but evaluating

on 100 equally spaced frames instead of 25, and results are reported in Table 5.6. It

is surprising that the GRU baselines that randomly skip state updates perform on par

with their Skip GRU counterparts for low skipping probabilities. We hypothesize several

reasons for this behavior, which was not observed in previous experiments: (1) there is
3http://vuchallenge.org/charades.html

http://vuchallenge.org/charades.html

Learning to Skip State Updates in Recurrent Neural Networks 49

Model mAP (%) State updates Inference FLOPs

LSTM 8.40 172.9± 47.4 2.65× 1012

LSTM, pskip = 0.75 8.11 43.3± 13.2 6.63× 1011

LSTM, pskip = 0.90 7.21 17.2± 6.1 2.65× 1011

Skip LSTM, λ = 0 8.32 172.9± 47.4 2.65× 1012

Skip LSTM, λ = 10−4 8.61 172.9± 47.4 2.65× 1012

Skip LSTM, λ = 10−3 8.32 41.9± 11.3 6.41× 1011

Skip LSTM, λ = 10−2 7.86 17.4± 4.4 2.66× 1011

GRU 8.70 172.9± 47.4 2.65× 1012

GRU, pskip = 0.10 8.94 155.6± 42.9 2.39× 1012

GRU, pskip = 0.40 8.81 103.6± 29.3 1.06× 1012

GRU, pskip = 0.70 8.42 51.9± 15.4 7.95× 1011

GRU, pskip = 0.90 7.09 17.3± 6.3 2.65× 1011

Skip GRU, λ = 0 8.94 159.9± 46.9 2.45× 1012

Skip GRU, λ = 10−4 8.76 100.8± 28.1 1.54× 1012

Skip GRU, λ = 10−3 8.68 54.2± 16.2 8.29× 1011

Skip GRU, λ = 10−2 7.95 18.4± 5.1 2.82× 1011

Table 5.6: Mean Average Precision (mAP), used samples and average FLOPs per sequence at
inference on the validation set of Charades. We consider different values for the cost per sample,
λ, in Equation 5.8. The number of state updates is displayed as mean ± std over all the videos
in the validation set.

a supervision signal at every time step, (2) and the inputs and outputs are strongly cor-

related in consecutive frames. On the other hand, Skip RNN models clearly outperform

the random methods when fewer updates are allowed. Note that this setup is far more

challenging because of the longer time spans between updates, so properly distributing

the state updates along the sequence is key to the performance of the models.

Skip GRU tends to perform fewer state updates than Skip LSTM when the cost per sam-

ple is low or none. This behavior is the opposite of the one observed in the adding task

(Section 5.3.1), which may be related to the observation that determining the best per-

forming gated unit depends on the task at hand [140]. Indeed, GRU models consistently

outperform LSTM ones on this task. This mismatch in the number of used samples is

not observed for large values of λ, as both Skip LSTM and Skip GRU converge to a

comparable number of used samples.

A previous work reports better action localization performance by integrating RGB and

optical flow information as an input to an LSTM, reaching 9.60% mAP [139]. This boost

in performance comes at the cost of roughly doubling the number of FLOPs and memory

footprint of the CNN encoder, plus requiring the extraction of flow information during

a preprocessing step. Interestingly, our model learns which frames need to be attended

from RGB data and without having access to explicit motion information.

Learning to Skip State Updates in Recurrent Neural Networks 50

5.4 Discussion

We presented Skip RNN as an extension to existing recurrent architectures enabling

them to skip state updates thereby reducing the number of sequential operations in the

computation graph. Unlike other approaches, all parameters in Skip RNN are trained

with backpropagation. Experiments conducted with LSTMs and GRUs showed that Skip

RNNs can match or in some cases even outperform the baseline models while relaxing

their computational requirements. Skip RNNs provide faster and more stable training for

long sequences and complex models, owing to gradients being backpropagated through

fewer time steps resulting in a simpler optimization task. Moreover, the introduced

computational savings are better suited for modern hardware than those methods that

reduce the amount of computation required at each time step [91, 99, 101].

The presented results motivate several new research directions toward designing efficient

RNN architectures. Introducing stochasticity in neural network training has proven ben-

eficial for generalization [102, 141], which could be achieved by replacing the deterministic

rounding operation with stochastic sampling. We showed that the addition of a loss term

penalizing the number of updates is important in the performance of Skip RNN and al-

lows flexibility to specialize to tasks of varying budget requirements, e.g. the cost can

be increased at each time step to encourage the network to emit a decision earlier [142],

or the number of updates can be strictly bounded and enforced. Finally, understanding

and analyzing the patterns followed by the model when deciding whether to update or

copy the RNN state may provide insight for developing more efficient architectures.

6
Robust Initialization for

WeightNorm & ResNets

Devansh Arpit*, Víctor Campos*, and Yoshua Bengio. How to initialize your

network? Robust initialization for WeightNorm & ResNets. In NeurIPS, 2019

Parameter initialization is an important aspect of deep network optimization and plays

a crucial role in determining the quality of the final model. In order for deep networks to

learn successfully using gradient descent based methods, information must flow smoothly

in both forward and backward directions [60, 63, 143, 144]. Too large or too small

parameter scale leads to information exploding or vanishing across hidden layers in both

directions. This could lead to loss being stuck at initialization or quickly diverging at the

beginning of training. Beyond these characteristics near the point of initialization itself,

we argue that the choice of initialization also has an impact on the final generalization

performance. This non-trivial relationship between initialization and final performance

emerges because good initializations allow the use of larger learning rates which have

been shown in existing literature to correlate with better generalization [145–147].

Weight normalization [62] accelerates convergence of Stochastic Gradient Descent (SGD)

optimization by re-parameterizing weight vectors in neural networks. However, previ-

ous works have not studied initialization strategies for weight normalization and it is a

common practice to use initialization schemes designed for un-normalized networks as a

proxy. We study initialization conditions for weight normalized networks with Rectified

*Equal contribution

51

Robust Initialization for WeightNorm & ResNets 52

Linear Unit (ReLU) non-linearities [148], and propose a new initialization strategy for

both plain and residual architectures.

The main contribution of this chapter is the theoretical derivation of a novel initialization

strategy for weight normalized ReLU networks, with and without residual connections,

that prevents information flow from exploding/vanishing in forward and backward pass.

Extensive experimental evaluation shows that the proposed initialization increases ro-

bustness to network depth, choice of hyperparameters and seed. When combining the

proposed initialization with learning rate warmup, we are able to use learning rates

as large as the ones used with batch normalization [61] and significantly reduce the

generalization gap between weight and batch normalized networks reported in the litera-

ture [149, 150]. Further analysis reveals that our proposal initializes networks in regions

of the parameter space that have low curvature, thus allowing the use of large learning

rates which are known to correlate with better generalization [145–147].

6.1 Related Work

Weight Normalization. Previous works have considered re-parameterizations that

normalize weights in neural networks as means to accelerate convergence. In Arpit et al.

[151], the pre- and post-activations are scaled/summed with constants depending on

the activation function, ensuring that the hidden activations have zero mean and unit

variance, especially at initialization. However, their work makes assumptions on the

distribution of input and pre-activations of the hidden layers in order to make these

guarantees. Weight normalization [62] is a simpler alternative, and the authors propose

to use a data-dependent initialization [152, 153] for the introduced re-parameterization.

This operation improves the flow of information, but its dependence on statistics com-

puted from a batch of data may make it sensitive to the samples used to estimate the

initial values.

Residual Network Architectures. Residual Networks (ResNets) [63] have become

a cornerstone of deep learning due to their state-of-the-art performance in various ap-

plications. However, when using residual networks with weight normalization instead of

batch normalization [61], they have been shown to have significantly worse generaliza-

tion performance. For instance, Gitman and Ginsburg [149] and Shang et al. [150] have

shown that ResNets with weight normalization suffer from severe over-fitting and have

concluded that batch normalization has an implicit regularization effect.

Initialization strategies. There exists extensive literature on initialization schemes

for un-normalized plain networks (c.f. He et al. [7], Glorot and Bengio [60], Saxe et al.

Robust Initialization for WeightNorm & ResNets 53

[154], Poole et al. [155], Pennington et al. [156, 157], to name some of the most prominent

ones). Similarly, previous works have studied initialization strategies for un-normalized

ResNets [143, 158, 159], but they lack large scale experiments demonstrating the ef-

fectiveness of the proposed approaches and consider a simplified ResNet setup where

shortcut connections are ignored, even though they play an important role [160]. Zhang

et al. [161] propose an initialization scheme for un-normalized ResNets which involves ini-

tializing the different types of layers individually using carefully designed schemes. They

provide large scale experiments on various datasets, and show that the generalization gap

between batch normalized ResNets and un-normalized ResNets can be reduced when us-

ing their initialization along with additional domain-specific regularization techniques

like cutout [162] and mixup [163]. All the aforementioned works consider un-normalized

networks and, to the best of our knowledge, there has been no formal analysis of initial-

ization strategies for weight normalized networks that allow a smooth flow of information

in the forward and backward pass.

6.2 Weight Normalized ReLU Networks

We derive initialization schemes for weight normalized networks with ReLU activation

function in the asymptotic setting where network width tends to infinity, similarly to

previous analysis for un-normalized networks [60, 63]. We define an L layer weight

normalized ReLU network fθ(x) = hL recursively, where the lth hidden layer’s activation

is given by:

hl := ReLU(al)

al := gl � Ŵlhl−1 + bl l ∈ {1, 2, · · ·L} (6.1)

where al are the pre-activations, hl ∈ Rnl are the hidden activations, ho = x is the

input to the network, Wl ∈ Rnl×nl−1 are the weight matrices, b ∈ Rnl are the bias

vectors, and gl ∈ Rnl is a scale factor. We denote the set of all learnable parameters as

θ = {(Wl,gl,bl)}Ll=1. Notation Ŵl implies that each row vector of Ŵl has unit norm:

Ŵl
i =

Wl
i

‖Wl
i‖2

∀i (6.2)

thus gli controls the norm of each weight vector, whereas Ŵl
i controls its direction.

Finally, we will make use of the notion L(fθ(x),y) to represent a differentiable loss

function over the output of the network.

Robust Initialization for WeightNorm & ResNets 54

6.2.1 Forward Pass

We first study the forward pass and derive an initialization scheme such that for any

given input, the norm of the hidden activation of any layer and the input norm are

asymptotically equal. Failure to do so prevents training to begin, as studied by Hanin

and Rolnick [143] for vanilla deep feedforward networks. The theorem below shows that

a normalized linear transformation followed by ReLU non-linearity is a norm preserving

transform in expectation when proper scaling is used.

Theorem 1. Let v = ReLU
(√

2n/m · R̂u
)
, where u ∈ Rn and R̂ ∈ Rm×n. If Ri

i.i.d.∼ P

where P is any isotropic distribution in Rn, or alternatively R̂ is a randomly generated

matrix with orthogonal rows, then for any fixed vector u, E[‖v‖2] = Kn · ‖u‖2, where

Kn =


2Sn−1

Sn
·
(
2
3 ·

4
5 . . .

n−2
n−1

)
if n is even

2Sn−1

Sn
·
(
1
2 ·

3
4 . . .

n−2
n−1

)
· π2 otherwise

(6.3)

and Sn is the surface area of a unit n-dimensional sphere.

The constant Kn seems hard to evaluate analytically, but remarkably, we empirically find

that Kn = 1 for all integers n > 1. Thus applying the above theorem to Eq. 6.1 implies

that every hidden layer in a weight normalized ReLU network is norm preserving for an

infinitely wide network if the elements of gl are initialized with
√

2nl−1/nl. Therefore,

we can recursively apply the above argument to each layer in a normalized deep ReLU

network starting from the input to the last layer and have that the network output norm

is approximately equal to the input norm, i.e. ‖fθ(x)‖ ≈ ‖x‖. Figure 6.1 (top left) shows

a synthetic experiment with a 20 layer weight normalized Multilayer Perceptron (MLP)

that empirically confirms the above theory. Details for this experiment can be found in

Appendix C.1.1.

6.2.2 Backward Pass

The goal of studying the backward pass is to derive conditions for which gradients do

not explode nor vanish, which is essential for gradient descent based training. Therefore,

we are interested in the value of ‖∂L(fθ(x),y)
∂al

‖ for different layers, which are indexed by

l. To prevent exploding/vanishing gradients, the value of this term should be similar for

all layers. We begin by writing the recursive relation between the value of this derivative

Robust Initialization for WeightNorm & ResNets 55

1 5 10 15 20
Layer Index (i)

0

1

2

||h
i ||

/||
x|

|

2 5 10 15 19
Layer Index (i)

0

1

2

||
hi ||

/||
hL ||

1 5 10 15 20 25 30 35 40
Block Index (b)

1

2

3

4

||h
b ||

/||
x|

|

2 5 10 15 20 25 30 35 39
Block Index (b)

1

2

3

4

||
hb ||

/||
hB

||

He (g=1) Proposed (orthogonal) Proposed (He)

Figure 6.1: Experiments on weight normalized networks using synthetic data to confirm theo-
retical predictions. Top: feed forward networks. Bottom: residual networks. We report results
for networks of width ∼ U(150, 250) (solid lines) and width ∼ U(950, 1050) (dashed lines). The
proposed initialization prevents explosion/vanishing of the norm of hidden activations (left) and
gradients (right) across layers at initialization. For ResNets, norm growth is O(1) for an arbitrary
depth network. Naively initializing g = 1 results in vanishing/exploding signals.

for consecutive layers:

∂L(fθ(x),y)

∂al
=
∂al+1

∂al
· ∂L(fθ(x),y)

∂al+1
(6.4)

= gl+1 � 1(al)�
(
Ŵl+1T ∂L(fθ(x),y)

∂al+1

)
(6.5)

We note that conditioned on a fixed hl−1, each dimension of 1(al) in the above equation

follows an i.i.d. sampling from Bernoulli distribution with probability 0.5 at initialization.

This is formalized in Lemma 1 in Appendix D. We now consider the following theorem,

Theorem 2. Let v =
√

2 · z�
(
R̂Tu

)
, where u ∈ Rm, R ∈ Rm×n and z ∈ Rn. If each

Ri
i.i.d.∼ P where P is any isotropic distribution in Rn or alternatively R̂ is a randomly

generated matrix with orthogonal rows and zi
i.i.d.∼ Bernoulli(0.5), then for any fixed vector

u, E[‖v‖2] = ‖u‖2.

In order to apply the above theorem to Eq. 6.5, we assume that u := ∂L(fθ(x),y)
∂al+1 is

independent of the other terms, similar to He et al. [63]. This simplifies the analysis by

allowing us to treat ∂L(fθ(x),y)
∂al+1 as fixed and take expectation w.r.t. the other terms, over

Wl and Wl+1. Thus ‖∂L(fθ(x),y)
∂al

‖ = ‖∂L(fθ(x),y)
∂al+1 ‖ ∀l if we initialize gl =

√
2 ·1. This also

shows that ∂a
l+1

∂al
is a norm preserving transform. Hence applying this theorem recursively

to Eq. 6.5 for all l yields that ‖∂L(fθ(x),y)
∂al

‖ ≈ ∂L(fθ(x),y)
∂aL

∀l thereby avoiding gradient

explosion/vanishment. Note that the above result is strictly better for orthogonal weight

Robust Initialization for WeightNorm & ResNets 56

matrices compared with other isotropic distributions (see proof). Figure 6.1 (top right)

shows a synthetic experiment with a 20 layer weight normalized MLP to confirm the

above theory. The details for this experiment are provided in Appendix C.1.1.

We also point out that the
√

2 factor that appears in theorems 1 and 2 is due to the

presence of ReLU activation. In the absence of ReLU, this factor should be 1. We will

use this fact in the next section with the ResNet architecture.

6.2.3 Implementation Details

There is a discrepancy between the initialization required by the forward and backward

pass. We tested both, as well as combinations of them, in our preliminary experiments.

We found the one proposed for the forward pass to be superior, and therefore propose to

initialize weight matrices Wl to be orthogonal1, bl = 0, and gl =
√

2nl−1/nl · 1, where
nl−1 and nl represent the fan-in and fan-out of the lth layer respectively. Our results

apply to both fully-connected and convolutional2 networks.

6.3 Residual Networks

Similar to the previous section, we derive an initialization strategy for ResNets in the

infinite width setting. We define a residual network R({Fb(·)}B−1b=0 , θ, α) with B residual

blocks and parameters θ whose output is denoted as fθ(·) = hB, and the hidden states

are defined recursively:

hb+1 := hb + αFb(h
b) b ∈ {0, 1, . . . , B − 1} (6.6)

where h0 = x is the input, hb denotes the hidden representation after applying b residual

blocks and α is a scalar that scales the output of the b-th residual blocks. The b-th ∈
{0, 1, . . . , B − 1} residual block Fb(·) is a feed-forward ReLU network. We discuss how

to deal with shortcut connections during initialization separately. We use the notation

<·, ·> to denote dot product between the argument vectors.
1We note that Saxe et al. [154] propose to initialize weights of un-normalized deep ReLU networks

to be orthogonal with scale
√
2. Our derivation and proposal is for weight normalized ReLU networks

where we study both Gaussian and orthogonal initialization and show the latter is superior.
2For convolutional layers with kernel size k and c channels, we define nl−1 = k2cl−1 and nl = k2cl

[7].

Robust Initialization for WeightNorm & ResNets 57

6.3.1 Forward Pass

Here we derive an initialization strategy for residual networks that prevents information

in the forward pass from exploding/vanishing independent of the number of residual

blocks, assuming that each residual block is initialized such that it preserves information

in the forward pass.

Theorem 3. Let R({Fb(·)}B−1b=0 , θ, α) be a residual network with output fθ(·). Assume

that each residual block Fb(·) (∀b) is designed such that at initialization, ‖Fb(h)‖ = ‖h‖
for any input h to the residual block, and <u, Fb(u)> ≈ 0. If we set α = 1/

√
B, then

∃c ∈ [
√

2,
√
e], such that

‖fθ(x)‖ ≈ c · ‖x‖ (6.7)

The assumption <u, Fb(u)> ≈ 0 is reasonable because at initialization, Fb(u) is a ran-

dom transformation in a high dimensional space which will likely rotate a vector to

be orthogonal to itself. To understand the rationale behind the second assumption,

‖Fb(h)‖ = ‖h‖, recall that Fb(·) is essentially a non-residual network. Therefore we

can initialize each such block using the scheme developed in Section 6.2 which due to

Theorem 1 (see discussion below it) will guarantee that the norm of the output of Fb(·)
equals the norm of the input to the block. Figure 6.1 (bottom left) shows a synthetic

experiment with a 40 block weight normalized ResNet to confirm the above theory. The

ratio of norms of output to input lies in [
√

2,
√
e] independent of the number of residual

blocks exactly as predicted by the theory. The details for this experiment can be found

in Appendix C.1.1.

6.3.2 Backward Pass

We now study the backward pass for residual networks.

Theorem 4. Let R({Fb(·)}B−1b=0 , θ, α) be a residual network with output fθ(·). Assume

that each residual block Fb(·) (∀b) is designed such that at initialization, ‖∂Fb(h
b)

∂hb
u‖ = ‖u‖

for any fixed input u of appropriate dimensions, and < ∂L
∂hb

,
∂Fb−1

∂hb−1 · ∂L∂hb> ≈ 0. If α = 1√
B
,

then ∃c ∈ [
√

2,
√
e], such that

‖ ∂L
∂h1
‖ ≈ c · ‖ ∂L

∂hB
‖ (6.8)

The above theorem shows that scaling the output of the residual block with 1/
√
B

prevents explosion/vanishing of gradients irrespective of the number of residual blocks.

Robust Initialization for WeightNorm & ResNets 58

The rationale behind the assumptions is similar to that given for the forward pass above.

Figure 6.1 (bottom right) shows a synthetic experiment with a 40 block weight normalized

ResNet to confirm the above theory. Once again, the ratio of norms of gradient w.r.t.

input to output lies in [
√

2,
√
e] independent of the number of residual blocks exactly as

predicted by the theory. The details can be found in Appendix C.1.1.

6.3.3 Implementation Details

A ResNet often has K stages [63], where each stage is characterized by one shortcut

connection and Bk residual blocks, leading to a total of
∑K

k=1Bk blocks. In order to

account for shortcut connections, we need to ensure that the input and output of each

stage in a ResNet are at the same scale; the same argument applies during the backward

pass. To achieve this, we scale the output of the residual blocks in each stage using the

total number of residual blocks in that stage. Then Theorems 3 and 4 treat each stage

of the network as a ResNet and normalize the flow of information in both directions to

be independent of the number of residual blocks.

We consider ResNets with shortcut connections and architecture design similar to that

proposed by He et al. [63] with the exception that our residual block structure is Conv→
ReLU→ Conv, similar to B(3, 3) blocks in Wide Residual Networks (WRNs) [164]. More

generally, our residual block design principle is D × [Conv → ReLU →]Conv, where

D ∈ Z. We refer the reader to the Appendix C.1.2 for a more detailed description of

the architecture. Weights of all layers in the network are initialized to be orthogonal

and biases are set to zero. The gain parameter of weight normalization is initialized

to be g =
√
γ · fan-in/fan-out · 1. We set γ = 1/Bk for the last convolutional layer of

each residual block in the k-th stage (i.e., α in Equation 6.6 is absorbed into the gain

parameter g). For the rest of layers we follow the strategy derived in Section 6.2, with

γ = 2 when the layer is followed by ReLU, and γ = 1 otherwise.

6.4 Experiments

We study the impact of initialization on weight normalized networks across a wide va-

riety of configurations. Among others, we compare against the data-dependent initial-

ization proposed by Salimans and Kingma [62], which initializes g and b so that all

pre-activations in the network have zero mean and unit variance based on estimates

collected from a single minibatch of data.

Robust Initialization for WeightNorm & ResNets 59

2 5 10 20 100 200
Depth

0.00
0.25
0.50
0.75
1.00

Ac
cu

ra
cy

1 10 20 30 40
Hyperparameter Combination

MNIST MLP + WN

Data-dependent (He) Data-dependent (orthogonal) Proposed (He) Proposed (orthogonal)

Figure 6.2: Results for MLPs on MNIST. Dashed lines denote train accuracy, and solid lines
denote test accuracy. The accuracy of diverged runs is set to 0. Left: Accuracy as a function of
depth. A held-out validation set is used to select the best model for each configuration. Right:
Accuracy for each job in our hyperparameter sweep, depicting robustness to hyperparameter
configurations.

Experiments are implemented with PyTorch [71]. Code is publicly available at https:

//github.com/victorcampos7/weightnorm-init. We refer the reader to Appendix C.1

for detailed description of the hyperparameter settings for each experiment.

6.4.1 Robustness Analysis

The difficulty of training due to exploding and vanishing gradients increases with network

depth. In practice, depth often complicates the search for hyperparameters that enable

successful optimization, if any. This section presents a thorough evaluation of the impact

of initialization on different network architectures for increasing depths, as well as their

robustness to hyperparameter configurations. We benchmark fully-connected networks

on MNIST [165], whereas CIFAR-10 [166] is considered for convolutional and residual

networks. We tune hyperparameters individually for each network depth and initializa-

tion strategy on a set of held-out examples, and report results on the test set. We refer

the reader to Appendix C.1 for a detailed description of the considered hyperparameters.

Fully-connected networks. Results in Figure 6.2 (left) show that the data-dependent

initialization can be used to train networks of up to depth 20, but training diverges for

deeper nets even when using very small learning rates, e.g. 10−5. On the other hand,

we managed to successfully train very deep networks with up to 200 layers using the

proposed initialization. When analyzing all runs in the grid search, we observe that

the proposed initialization is more robust to the particular choice of hyperparameters

(Figure 6.2, right). In particular, the proposed initialization allows using learning rates

up to 10× larger for most depths.

Convolutional networks. We adopt a similar architecture to that in Xiao et al. [31],

where all layers have 3× 3 kernels and a fixed width. The two first layers use a stride of

2 in order to reduce the memory footprint. Results are depicted in Figure 6.3 (left) and

show a similar trend to that observed for fully-connected nets, with the data-dependent

initialization failing at optimizing very deep networks.

https://github.com/victorcampos7/weightnorm-init
https://github.com/victorcampos7/weightnorm-init

Robust Initialization for WeightNorm & ResNets 60

Residual networks. We construct residual networks of varying depths by controlling

the number of residual blocks per stage in the WRN architecture with k = 1. Training

networks with thousands of layers is computationally intensive, so we measure the test

accuracy after a single epoch of training [161]. We consider two additional baselines

for these experiments: (1) the default initialization in PyTorch3, which initializes gi =

‖Wi‖2, and (2) a modification of the initialization proposed by Hanin and Rolnick [143]

to fairly adapt it to weight normalized multi-stage ResNets. For the k-th stage with

Bk blocks, the stage-wise Hanin scheme initializes the gain of the last convolutional

layer in each block as g = 0.9b1, where b ∈ {1, . . . , Bk} refers to the block number

within a stage. All other parameters are initialized in a way identical to our proposal, so

that information across the layers within residual blocks remains preserved. We report

results over 5 random seeds for each configuration in Figure 6.3 (right), which shows

that the proposed initialization achieves similar accuracy rates across the wide range

of evaluated depths. PyTorch’s default initialization diverges for most depths, and the

data-dependent baseline converges significantly slower for deeper networks due to the

small learning rates used in order to avoid divergence. Despite the stage-wise Hanin

strategy and the proposed initialization achieve similar accuracy rates, we were able

to use an order of magnitude larger learning rates with the latter, which denotes an

increased robustness against hyperparameter configurations.

To further evaluate the robustness of each initialization strategy, we train WRN-40-

10 networks for 3 epochs with different learning rates, with and without learning rate

warmup [59]. We repeat each experiment 20 times using different random seeds, and

report the percentage of runs that successfully completed all 3 epochs without diverging

in Figure 6.4. We observed that learning rate warmup greatly improved the range of

learning rates that work well for all initializations, but the proposed strategy manages

to train more robustly across all tested configurations.

6.4.2 Comparison with Batch Normalization

Existing literature has pointed towards an implicit regularization effect of batch normal-

ization [167], which prevented weight normalized models from matching the final perfor-

mance of batch normalized ones [149]. On the other hand, previous works have shown

that larger learning rates facilitate finding wider minima which correlate with better gen-

eralization performance [89, 145–147], and the proposed initialization and learning rate

warmup have proven very effective in stabilizing training for high learning rates. This

section aims at evaluating the final performance of weight normalized networks trained

with high learning rates, and compare them with batch normalized networks.
3https://pytorch.org/docs/stable/_modules/torch/nn/utils/weight_norm.html

https://pytorch.org/docs/stable/_modules/torch/nn/utils/weight_norm.html

Robust Initialization for WeightNorm & ResNets 61

5 25 100
Depth

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

CIFAR-10 CNN+WN

10 100 1000 10000
Number of layers

CIFAR-10 WRN+WN

Data-dependent (He)
Data-dependent (orthogonal)

PyTorch default (orthogonal)
Proposed (He)

Proposed (orthogonal)
Stage-wise Hanin (orthogonal)

Figure 6.3: Accuracy as a function of depth on CIFAR-10 for CNNs (left), and WRNs (right).
Dashed lines denote train accuracy, and solid lines denote validation accuracy. Note that WRNs
are trained for a single epoch due to the computational burden of training extremely deep
networks.

0.001 0.005 0.01 0.05 0.1
Learning rate

50%

100%
Without learning rate warmup

0.001 0.005 0.01 0.05 0.1
Learning rate

With learning rate warmup

Data-dependent (orthogonal) PyTorch default (orthogonal) Proposed (orthogonal) Stage-wise Hanin (orthogonal)

Figure 6.4: Robustness to seed of different initialization schemes on WRN-40-10. We launch 20
training runs for every configuration, and measure the percentage of runs that reach epoch 3
without diverging. Weight normalized ResNets benefit from learning rate warmup, which enables
the usage of higher learning rates. The proposed initialization is the most robust scheme across
all configurations.

We evaluate models on CIFAR-10 and CIFAR-100. We set aside 10% of the training

data for hyperparameter tuning, whereas some previous works use the test set for such

purpose [63, 164]. This difference in the experimental setup explains why the achieved

error rates are slightly larger than those reported in the literature. For each architecture

we use the default hyperparameters for batch normalized networks, and tune only the

initial learning rate for weight normalized models.

Results in Table 6.1 show that the proposed initialization scheme, when combined with

learning rate warmup, allows weight normalized residual networks to achieve comparable

error rates to their batch normalized counterparts. We note that previous works reported

a large generalization gap between weight and batch normalized networks [149, 150]. The

only architecture for which the batch normalized variant achieves a superior performance

is WRN-40-10, for which the weight normalized version is not able to completely fit

the training set before reaching the epoch limit. This phenomena is different to the

generalization gap reported in previous works, and might be caused by sub-optimal

learning rate schedules that were tailored for networks with batch normalization.

Robust Initialization for WeightNorm & ResNets 62

Dataset Architecture Method Test Error (%)

CIFAR-10

ResNet-56

WN w/ datadep init 9.19 ± 0.24
WN w/ proposed init 7.87 ± 0.14
WN w/ proposed init + warmup 7.20 ± 0.12
BN (He et al. [63]) 6.97

ResNet-110

WN w/ datadep init 9.33 ± 0.10
WN w/ proposed init 7.71 ± 0.14
WN w/ proposed init + warmup 6.69 ± 0.11
WN (Shang et al. [150]) 7.46
BN (He et al. [63]) 6.61 ± 0.16

WRN-40-10

WN w/ datadep init + cutout 6.10 ± 0.23
WN w/ proposed init + cutout 4.74 ± 0.14
WN w/ proposed init + cutout + warmup 4.75 ± 0.08
BN w/ orthogonal init + cutout 3.53 ± 0.38

CIFAR-100 ResNet-164

WN w/ datadep init + cutout 30.26 ± 0.51
WN w/ proposed init + cutout 27.30 ± 0.49
WN w/ proposed init + cutout + warmup 25.31 ± 0.26
BN w/ orthogonal init + cutout 25.52 ± 0.17

Table 6.1: Comparison between Weight Normalization (WN) with proposed initialization and
Batch Normalization (BN). Results are reported as mean ± std over 5 runs.

6.4.3 Initialization Method and Generalization Gap

The motivation behind designing good parameter initialization is mainly for better op-

timization at the beginning of training, and it is not apparent why our initialization is

able to reduce the generalization gap between weight normalized and batch normalized

networks [149, 150]. On this note we point out that a number of papers have shown how

using SGD with larger learning rates facilitate finding wider minima which correlate with

better generalization performance [89, 145–147]. Additionally, it is often not possible to

use large learning rates with weight normalization with traditional initializations. There-

fore we believe that the use of large learning rate allowed by our initialization played an

important role in this aspect. In order to understand why our initialization allows using

large learning rates compared with existing ones, we compute the (log) spectral norm of

the Hessian at initialization (using Power method) for the various initialization methods

considered in our experiments using 10% of the training samples. They are shown in

Table 6.2. We find that the local curvature (spectral norm) is smallest for the proposed

initialization. These results are complementary to the seed robustness experiment shown

in Figure 6.4.

Robust Initialization for WeightNorm & ResNets 63

Dataset Model PyTorch default Data-dependent Stage-wise Hanin Proposed

CIFAR-10 WRN-40-10 4.68 ± 0.60 3.01 ± 0.02 7.14 ± 0.72 1.31 ± 0.12

CIFAR-100 ResNet-164 9.56 ± 0.54 2.68 ± 0.09 N/A 1.56 ± 0.18

Table 6.2: Log (base 10) spectral norm of Hessian at initialization for different initializations.
Smaller values imply lower curvature. N/A means that the computation diverged. The proposed
strategy initializes at a point with lowest curvature, which explains why larger learning rates can
be used.

6.4.4 Preliminary Reinforcement Learning Results

Despite its tremendous success in supervised learning applications, batch normalization

is seldom used in Reinforcement Learning (RL), as the online nature of some of the

methods and the strong correlation between consecutive batches hinder its performance.

These properties suggest the need for normalization techniques like weight normalization,

which are able to accelerate and stabilize training of neural networks without relying on

minibatch statistics.

We consider the Asynchronous Advantage Actor-Critic (A3C) algorithm [168], which

maintains a policy and a value function estimate which are updated asynchronously by

different workers collecting experience in parallel. Updates are estimated based on n-

step returns from each worker, resulting in highly correlated batches of n samples, whose

impact is mitigated through the asynchronous nature of updates. This setup is not well

suited for batch normalization and, to the best of our knowledge, no prior work has

successfully applied it to this type of algorithm.

We evaluate agents using Atari environments in the Arcade Learning Environment [169].

Our initial experiments with the deep residual architecture introduced by Espeholt et al.

[13] show that adding weight normalization improves convergence speed and robustness

to hyperparameter configurations across different environments. However, we did not

observe important differences between initialization schemes for these weight normalized

models. Despite being significantly deeper than previous architectures used in RL, this

model is still relatively shallow for supervised learning standards, and we observed in our

computer vision experiments that performance differences arise for deeper architectures

or high learning rates. The latter is known to cause catastrophic performance degradation

in deep RL due to excessively large policy updates [170], so we opt for building a much

deeper residual network with 100 layers. Collecting experience with such a deep policy

is a very slow process even when using GPU workers. Given this computational burden,

we use hyperparameters tuned in initial experiments for the deep network introduced by

Robust Initialization for WeightNorm & ResNets 64

Espeholt et al. [13], and report initial results in the game of Pong4 in Figure 6.5.

0 1M 2M 3M 4M 5M 6M 7M
Timesteps

21

10

0

10

21
Re

wa
rd

PongNoFrameskip-v4

No WN WN (proposed) WN (PyTorch default)

Figure 6.5: Learning progress in Pong. Shading shows maximum and minimum over 3 random
seeds, while dark lines indicate the mean. Weight normalization with the proposed initializa-
tion improves convergence speed and reduces variance across seeds. These results highlight the
importance of initialization in weight normalized networks, as using the default initialization in
PyTorch prevents training to start.

We observe that the weight normalized policy with the proposed initialization manages

to solve the task much faster than the un-normalized architecture. Perhaps surprisingly,

the weight normalized policy with the sub-optimal initialization is not able to solve the

environment in the given timestep budget, and it performs even worse than the un-

normalized policy. These results highlight the importance of proper initialization even

when using normalization techniques.

The deep network architecture considered in this experiment is excessively complex for

the considered task, which can be solved with much smaller networks. However, with

the development of ever complex environments [171] and distributed learning algorithms

that can take advantage of massive computational resources [13], recent results have

shown that RL can benefit from techniques that have found success in the supervised

learning community, such as deeper residual networks [13, 172]. The aforementioned

findings suggest that RL applications could benefit from techniques that help training

very deep networks robustly in the future.
4Collecting 7M timesteps of experience took approximately 10h on a single GPU shared by 6 work-

ers. Even though this amount of experience is enough to solve Pong, A3C usually needs many more
interactions to learn competitive policies in more complex environments.

Robust Initialization for WeightNorm & ResNets 65

6.5 Discussion

Weight normalization is frequently used in different network architectures due to its sim-

plicity. However, the lack of existing theory on parameter initialization of weight nor-

malized networks has led practitioners to arbitrarily pick existing initializations designed

for un-normalized networks. To address this issue, we derived parameter initialization

schemes for weight normalized networks, with and without residual connections, that

avoid explosion/vanishment of information in the forward and backward pass. To the

best of our knowledge, no prior work had formally studied this setting. Through thorough

empirical evaluation, we showed that the proposed initialization increases robustness to

network depth, choice of hyperparameters and seed compared to existing initialization

methods that are not designed specifically for weight normalized networks. We found

that the proposed scheme initializes networks in low curvature regions, which enable the

use of large learning rates. By doing so, we were able to significantly reduce the perfor-

mance gap between batch and weight normalized networks which had been previously

reported in the literature. Therefore, we hope that our proposal replaces the current

practice of choosing arbitrary initialization schemes for weight normalized networks.

We believe our proposal can also help in achieving better performance using weight

normalization in settings which are not well-suited for batch normalization. One such

scenario is training of recurrent networks in backpropagation through time settings,

which often suffer from exploding/vanishing gradients, and batch statistics are timestep-

dependent [116]. The current analysis was done for feedforward networks, and we plan

to extend it to the recurrent setting. Another application where batch normalization

often fails is RL, as good estimates of activation statistics are not available due to the

online nature of some of these algorithms. We confirmed the benefits of our proposal in

preliminary RL experiments.

Part II

Learning from Interaction

66

Introduction

Humans are able to discover solutions to new problems from interaction and experience,

acquiring knowledge about the world by actively exploring it. This contrasts with the

passive setting considered in Part I of this dissertation, where machines learned from

expert-provided outputs for each instance in the training set. We will study the problem

of agents learning from interaction with simulated environments through the lens of Re-

inforcement Learning (RL), a computational approach to goal-directed learning from in-

teraction that does not rely on expert supervision. RL algorithms have recently achieved

outstanding goals thanks to advances in simulation [169, 173], efficient and scalable learn-

ing algorithms [12, 13, 46, 170, 174, 175], function approximation [27, 176], and hardware

accelerators [55, 177]. These landmarks include outperforming humans in board [172]

and computer games [174, 178], and solving complex robotic control tasks [179, 180].

The process of training RL agents can be split into collecting experience and learning

from it. We will consider a generic pipeline consisting of three types of processes: actors,

learners and buffers [181]. Figure 6.6 shows how these processes interact with each other5.

Each actor has its own copy of the agent and the environment, and collects data that

is aggregated at the buffer. The learner samples experience from the buffer, improving

the agent and communicating updated parameters to the actors. This paradigm is very

flexible, and the nature of the algorithm being implemented will depend on the way

in which the different processes are deployed and communicate with each other. On-

policy methods will clear the buffer after every learner query and block actors until they

receive a new set of parameters. On the other hand, off-policy algorithms will store past

experience and support asynchronous acting and learning.

As is often the case in deep learning, devising methods that can leverage distributed

computation to address complex problems is at the frontier of RL research. The neu-

ral networks used in RL are relatively small when compared to the ones considered in
5For simplicity, we will consider a setting with a single learner and buffer. Multiple buffer processes

can be launched to allow storing a larger number of interactions. Similarly, multiple learners can be run
in parallel, akin to the settings studied in Chapter 4.

67

Learning from Interaction 68

Buffer

Learner

Actors

parameters

experienceexperience

Figure 6.6: Pipeline for training RL agents. We consider three types of processes: actors, learners
and buffers. Each actor has its own copy of the agent and the environment, and collects data
that is aggregated at the buffer. The learner samples experience from the buffer, improving the
agent and communicating updated parameters to the actors.

Part I, and the bottleneck for shortening training times is commonly found in the experi-

ence collection performed in the actors. Implementations on multi-core machines benefit

from parallelizing experience collection across several actors [168], but the number of

processes that can be run in parallel in a single machine soon becomes a limiting factor.

Distributing these processes across different machines allows running hundreds of actors

in parallel, but introduces several challenges. These include inefficient resource utiliza-

tion, unstable learning due to the off-policiness of the experience, or data inefficiency due

to the data being collected by different actors being redundant. Distributed RL solutions

have achieved outstanding results using heterogeneous hardware configurations [12, 13].

Unfortunately, these are hard to put together for many organizations with access to gen-

eral purpose clusters. Direct policy search methods have appeared as an alternative to

traditional RL approaches, obtaining competitive results in research benchmarks while

being scalable in homogeneous clusters. Chapter 7 presents a technique to improve the

data efficiency of Evolution Strategies [49], a direct policy search method that offers

almost linear speedups when distributed across hundreds of CPU cores.

The goal of RL agents is to maximize the rewards they can collect, but designing reward

functions is a complex task that often leads to undesired behaviors [182]. As stronger

and more efficient RL algorithms are developed, the bottleneck preventing more complex

agents to emerge is pushed towards the design of reward functions. Rich simulated

environments open the door to the discovery of a large plethora of behaviors, but defining

reward functions for all of them becomes a herculean task. For this reason, an important

step towards the next generation of RL agents might require devising methods that break

the dependency on handcrafted reward functions. Chapter 8 studies one family of such

methods, whose goal is letting agents discover useful skills in an unsupervised fashion.

In this setting, the learner has an additional task: autonomously discovering reward

functions from experience that will generate useful behaviors. Through theoretical and

Learning from Interaction 69

empirical evidence, we show that the reward functions learned by existing approaches

do not encourage agents to fully explore the environment. We then propose a novel

method to overcome such limitation and demonstrate its benefits with respect to existing

approaches.

7
Importance Weighted

Evolution Strategies

Víctor Campos, Xavier Giró-i-Nieto, and Jordi Torres. Importance Weighted

Evolution Strategies. In NeurIPS Deep RL Workshop, 2018

Evolution Strategies (ES) [49] was proposed as a scalable alternative to popular Rein-

forcement Learning (RL) techniques. Thanks to a reduced communication overhead,

ES can be scaled to over a thousand CPU cores with almost linear speedups, providing

massive improvements in wall-clock time when training agents in well-known RL bench-

marks. This property makes ES very appealing for institutions with access to large CPU

clusters. Thanks to the massive number of CPU cores in the MareNostrum IV super-

computer1 at the Barcelona Supercomputing Center, we can reduce training times from

several hours to only a few minutes by requesting more hardware resources.

The speedup of ES comes at the cost of a reduced data efficiency, i.e. more interactions

with the environment are needed in order to achieve the same score as with competing

methods. Even though this trade-off might not be problematic for simulated tasks, where

one can turn compute into data, data efficiency is crucial for the deployment of RL agents

in real world scenarios, e.g. robot manipulation tasks [183]. Research has been conducted

to improve the data efficiency of other RL methods [184, 185], and we believe that ES

would benefit from similar efforts as well.
1https://www.bsc.es/marenostrum/marenostrum

70

https://www.bsc.es/marenostrum/marenostrum

Importance Weighted Evolution Strategies 71

We aim at improving the data efficiency of ES while maintaining the scalability of the

original method. Our contributions can be summarized as follows: (1) we propose Im-

portance Weighted Evolution Strategies (IW-ES), an extension of ES that can perform

more than one update per batch of experience, (2) analyze the scalability of IW-ES from

the computational standpoint, and (3) report preliminary results for IW-ES under dif-

ferent configurations that provide insight on the potential of the method and possible

improvements to overcome its current limitations.

7.1 Evolution Strategies

The term Evolution Strategies [186] makes reference to a class of black box optimiza-

tion algorithms which implement heuristics inspired by natural evolution. However, we

will use the term to refer to the particular algorithm proposed by Salimans et al. [49].

This method, which belongs to the class of Natural Evolution Strategies [187, 188], was

shown to be competitive for solving RL problems while exhibiting some attractive fea-

tures. These features include invariance to action frequency and reward distribution, the

possibility to optimize non-differentiable policies, and being highly parallelizable thanks

to an efficient communication strategy.

7.1.1 Formulation

Let F denote the objective function acting on parameters θ. In RL problems, it is defined

as the stochastic score experienced by an agent after a complete trajectory following

policy πθ. ES seeks to maximize Eθ∼pψF (θ), the average objective over a population of

solutions pψ, using the score function estimator for the gradient. Salimans et al. [49]

instantiate the population as a multivariate Gaussian with diagonal covariance matrix

centered at θ, thus obtaining the following estimator:

∇θ Eε∼N(0,σ2I) F (θ + ε) =
1

σ2
Eε∼N(0,σ2I) [F (θ + ε)ε] (7.1)

which in practice is estimated with samples:

∇θF (θ) ≈ 1

nσ2

n∑
i=1

F (θ + εi)εi (7.2)

Notice that this reduces to sampling Gaussian perturbation vectors εi ∼ N(0, I), evalu-

ating the performance of the perturbed policies, and aggregating the results over a batch

of samples.

Importance Weighted Evolution Strategies 72

7.1.2 Scalability Analysis

The code released by Salimans et al. [49] uses a master-worker architecture. The master

broadcasts the parameters at the beginning of each iteration, and the workers send back

returns after running rollouts with perturbed versions of the policy. The communication

overhead between workers is drastically reduced by sharing random seeds, resulting in a

highly parallelizable method.

We adapt the code released by OpenAI2, which uses TensorFlow [69] and Redis3, to work

with the distributed setting in the MareNostrum IV supercomputer. We evaluate the

scalability of ES on the Humanoid-v2 environment in OpenAI Gym [189], where the goal

is solving a humanoid locomotion task using the Mujoco physics engine [173]. This is one

of the most challenging continuous control tasks solvable by current RL methods, and

was used by Salimans et al. [49] to showcase the scalability of ES. In these experiments,

we use the default hyperparameters provided by Salimans et al. [49] and sweep over the

number of CPU cores used for training agents. Figure 7.1 (top) shows how the number

of environment interactions per second grows linearly with the number of CPU cores

thanks to the reduced communication overhead. Since the number of perturbations to

evaluate is generally much larger than the number of cores, ES manages to converge

faster when given access to more resources. As shown in Figure 7.1 (bottom), the time

needed to reach the score at which the task is considered solved decreases almost linearly

when increasing the number of cores. ES is able to leverage 1, 440 cores in MareNostrum

IV in order to solve the challenging humanoid locomotion task in only 8 minutes.

7.2 Importance Weighted Evolution Strategies

ES samples large batches of data, in the order of thousands of trajectories, which are

discarded after performing a single policy update. When coupled with SGD and small

step sizes, this translates into a poor data efficiency. Such inefficiency is found in most

on-policy RL methods, which are unable to leverage previous experience once the policy

is updated.

Inspired by the multiple SGD updates per batch of experience in PPO [175], we propose

to modify the ES algorithm to perform several updates to the policy before moving on to

collecting a new batch of experience. Should each of these updates be small, it is likely

that the population distributions before and after the update will have some overlap,
2https://github.com/openai/evolution-strategies-starter/
3https://redis.io/

https://github.com/openai/evolution-strategies-starter/
https://redis.io/

Importance Weighted Evolution Strategies 73

102 103

Number of CPU cores

104

105

M
ed

ia
n

th
ro

ug
hp

ut
 (t

im
es

te
ps

/s
ec

) 1440 cores, 585.00k steps/sec

16 cores, 10.25k steps/sec

102 103

Number of CPU cores

101

102

M
ed

ia
n

tim
e

to
 so

lv
e

(m
in

ut
es

)

1440 cores, 8 minutes

16 cores, 570 minutes

Figure 7.1: Scalability of Evolution Strategies in the humanoid locomotion task as the number
of CPU cores grows. Top: throughput, measured as the number of environment interactions
per second. Bottom: time to reach a target score. We report the median throughput and time
over 7 individual runs for each setting.

thus making it possible to take more advantage of previous computations and reducing

the number of interactions with the environment.

7.2.1 Formulation

Let θt ∈ R|θ| denote the population mean after t updates, and εti ∈ R|θ| denote the

perturbations for which we computed fitness scores, F (θt + εti). We can reuse those

samples to update θt+k by relying on importance sampling to account for the discrepancy

between the distribution of the current population and the distribution from which we

Importance Weighted Evolution Strategies 74

are actually sampling:

∇θF (θ) ≈ 1

σ2
∑

i ci

n∑
i=1

F (θt + εti)(θ
t + εti − θt+k)ci (7.3)

where ci ∈ R is the importance weight for the i-th perturbation vector. For perturbations

drawn from a multivariate Gaussian distribution with diagonal covariance matrix, the

computation of ci can be decomposed as follows:

ci =
N(θt + εti − θt+k; 0, σ2I)

N(εti; 0, σ2I)
=

∏|θ|
j=1N(θtj + εti,j − θ

t+k
j ; 0, σ2)∏|θ|

j=1N(εti,j ; 0, σ2)
(7.4)

This process can be repeated iteratively for k = 0, . . . ,K, updating the policy up to

K + 1 times before collecting a new batch of experience4. We consider K as a fixed

hyperparameter, although future work will study strategies that optimally adapt K for

each batch.

7.2.2 Scalability Analysis

One of the most appealing features of ES is its almost perfect scalability to hundreds

of CPU cores, and any modification to the original method should retain such property.

This section analyzes the scalability of IW-ES under the master-worker architecture used

by Salimans et al. [49].

The proposed method requires the computation of importance weights, which has a

complexity of O(batch_size·|θ|). If those computations are performed sequentially in the

master, the time taken by sequential operations might eclipse the benefits of distributing

the rollouts across hundreds of workers. This issue can be alleviated by parallelizing

the computation of importance weights across all cores in the node hosting the master

process. This was enough to provide a throughput close to the baseline method in most

of our experiments, but setups with larger models or batch sizes might benefit from a

higher level of parallelization. In that case, the computation of importance weights can

be distributed across all workers just like the rollouts are: the master broadcasts the

updated parameter vector, and the workers send back the scalar importance weights.

Note that this incurs in a very little communication overhead, which is key to achieve

an efficient distributed computation.

Another implementation trick that can accelerate the computation of importance weights

consists in computing N(εti,j ; 0, σ2) for all possible perturbations at the start of training,

4The first update for each batch always reduces to the original gradient estimate in ES (Equation 7.2),
as θt+k = θt for k = 0. This is followed by K importance weighted updates.

Importance Weighted Evolution Strategies 75

trading off memory for computation. It takes advantage of the fact that each worker

instantiates a large block of Gaussian noise at the start of training, and εi is obtained

by sampling |θ| consecutive parameters at a random index in the noise block. This trick

might provide important savings for large models, as the computation of the denominator

in Equation 7.4 becomes O(1) instead of O(|θ|).

7.3 Experiments

We implement our method on top of the TensorFlow-based code released by OpenAI,

and run experiments on the MareNostrum IV supercomputer. Each experiment runs on

720 CPU cores, which are distributed across 15 machines with 48 cores each. The master

process runs on a single core, but the computation of importance weights is parallelized

across the 48 cores in the node hosting the master process to accelerate the execution.

We evaluate the method on the Ant-v2 environment5. We use the default hyperparam-

eters provided by Salimans et al. [49] unless otherwise stated. The policy is parame-

terized by a neural network with two hidden layers of 64 units each and a linear layer

that emits continuous actions. Hidden layers are followed by tanh non-linearities. Im-

portance weights are clipped at 1 for numerical stability [190, 191]. Following previous

works [49, 192], we evaluate the median reward over approximately 30 stochastic rollouts

at each iteration. All reported results are averaged over five different runs.

7.3.1 Effect of the Number of IW Updates

The proposed method relies on a high overlap between the population distributions

before and after each update, otherwise the variance of the importance sampling estimate

might become excessively large. For this reason, we first evaluate the effectiveness of

additional updates using a low learning rate of 10−4 that prevents large updates to the

policy parameters. As depicted in Figure 7.2a, we observe that additional importance

weighted updates provide a faster convergence for a given budget of interactions with the

environment. Increased data efficiency also translate in shorter wall-clock times thanks

to a reduced computational overhead (Figure 7.2b). However, performance does not

always improve when increasing K, e.g. setting K = 5 instead of K = 4 results in a

performance degradation. This behavior is likely caused by an increased variance in the

importance weighted updates for large values of K. These results suggest that IW-ES
5Although we provide an extensive analysis of IW-ES only on Ant-v2, we have observed similar

behaviors on other complex environments, e.g. Humanoid-v2.

Importance Weighted Evolution Strategies 76

might benefit from strategies that adapt K for each iteration, omitting updates with

excessive variance.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e9

1000

1500

2000

2500

3000

3500

M
ed

ia
n

Re
wa

rd

Ant-v2
ES
IW-ES (K = 1)
IW-ES (K = 2)
IW-ES (K = 3)
IW-ES (K = 4)
IW-ES (K = 5)

(a)

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

1000

1500

2000

2500

3000

3500

M
ed

ia
n

Re
wa

rd

Ant-v2
ES
IW-ES (K = 1)
IW-ES (K = 2)
IW-ES (K = 3)
IW-ES (K = 4)
IW-ES (K = 5)

(b)

Figure 7.2: Performance of ES and IW-ES as a function of (a) the number of interactions with the
environment, and (b) wall-clock time. K denotes the number of additional importance weighted
updates after each standard update. We observe that additional updates increase the data
efficiency of the method in the low learning rate regime, but performing too many importance
weighted updates can be detrimental due to an increased variance, e.g. K = 5 underperforms
K = 4. A similar trend is observed in terms of wall-clock time.

7.3.2 Effect of the Model Size

A potential source of instability for the proposed method is the computation of impor-

tance weights for large models, as they might approach zero or infinity much faster for

large values of |θ| (see Equation 7.4). We experimentally evaluate whether this hinders

the performance of IW-ES by training larger networks, with 256 and 512 units in each

hidden layer. These larger models have 97k and 324k parameters, respectively, whereas

previous experiments considered a much smaller network with 12k parameters. Results

reported in Figure 7.3 suggest that IW-ES is robust to the number of parameters in

the model, as the benefit of adding additional updates per batch are similar to those

observed for smaller models.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e9

1000

1500

2000

2500

3000

3500

M
ed

ia
n

Re
wa

rd

Ant-v2 (97k params)
ES
IW-ES (K = 1)
IW-ES (K = 2)

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e9

1000

1250

1500

1750

2000

2250

2500

M
ed

ia
n

Re
wa

rd

Ant-v2 (324k params)
ES
IW-ES (K = 1)
IW-ES (K = 2)

(b)

Figure 7.3: Performance of ES and IW-ES for larger networks with (a) 256 units per hidden
layer, and (b) 512 units per hidden layer.

Importance Weighted Evolution Strategies 77

Figure 7.4 shows the throughput degradation introduced by IW-ES for each model size

and number of importance weighted updates. Since our implementation only leverages 48

of the 720 available CPU cores for computing the importance weights, such computation

becomes a bottleneck for larger models and hinders the scalability of the method. This

observation motivates the distributed implementation described in Section 7.2.2, which

should accelerate IW-ES considerably for large models thanks to the reduced communi-

cation overhead between machines.

0 1 2 3 4 5
K

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ti
m

e
pe

r i
te

ra
tio

n

Ant-v2: wall-clock time comparison
12k params
97k params
324k params

Figure 7.4: Time per iteration for different values of K, normalized by the time taken by ES
(i.e. K = 0). Our implementation parallelizes the computation of importance weights only across
the CPU cores in the node hosting the master process, which becomes a bottleneck for larger
models.

7.3.3 Effect of the Learning Rate

ES benefits from larger learning rates than those employed in previous experiments, as

they provide faster convergence and thus increased data efficiency, but larger step sizes

might increase the variance of IW-ES updates as well due to a larger mismatch between

distributions. We evaluate this hypothesis by training policies with larger learning rates

of 10−3 and 10−2. Results reported in Figure 7.5 confirm that importance weighted

updates not only become less effective with larger learning rates, but can even become

unstable and underperform the baseline ES. We hypothesize that this might be caused

by an increased variance of the importance sampling estimates when using large learning

rates.

These experiments consider the learning rate as a proxy for controlling the overlap be-

tween the distributions before and after each update, which is the actual measure deter-

mining the variance of importance weighted updates. Even though a finer grained search

over learning rate values could be carried out in order to determine whether IW-ES can

outperform ES under optimal hyperparameters, we argue that next steps should aim at

Importance Weighted Evolution Strategies 78

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e9

1000

2000

3000

4000

5000

M
ed

ia
n

Re
wa

rd

Ant-v2 (learning rate = 10 3)

ES
IW-ES (K = 1)
IW-ES (K = 2)

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e9

1000

2000

3000

4000

5000

M
ed

ia
n

Re
wa

rd

Ant-v2 (learning rate = 10 2)

ES
IW-ES (K = 1)
IW-ES (K = 2)

(b)

Figure 7.5: Performance of ES and IW-ES with learning rates of (a) 10−3, and (b) 10−2. Larger
learning rates reduce the benefits of IW-ES, likely due to an increased variance of the importance
sampling estimate.

controlling the similarity between the distributions before and after each update. For

instance, drawing a parallelism with trust region-based methods [170, 193], a constraint

could be added on the KL divergence between distributions.

7.4 Related Work

Some works have proposed extensions or modifications to the original ES algorithm

proposed by Salimans et al. [49]. These include an update rule inspired by genetic

algorithms [50] and training a meta-population of agents that optimize both for reward

and novelty [192]. The possibility of optimizing non-differentiable functions with ES has

also allowed to learn loss functions for RL in a meta-learning setup [194].

The design of data-efficient methods for RL has garnered much research attention, mostly

through off-policy methods that can leverage experience collected by policies other than

the one being optimized. This advantage, often associated to value-based methods such

as Q-learning [174, 195], usually results in an increased data efficiency. Policy-based

methods may also leverage off-policy data by accounting for the discrepancy between

the behavior and target policies [191, 196]. PPO [175] performs several SGD updates for

every batch of collected experience, using importance sampling to leverage data collected

by an outdated version of the policy, in a similar fashion to our IW-ES update rule.

There exist other RL agents that are able to leverage distributed training to obtain high

throughputs. R2D2 [12] provides the DQN [174] family of agents with distributed acting,

which is coordinated through a centralized replay buffer and learner. IMPALA [13] can

scale training of actor-critic methods across many machines, enabling advances in multi-

task RL [197]. This is achieved through algorithmic contributions that ensure stable

Importance Weighted Evolution Strategies 79

learning, as well as engineering advances that enable efficient communication across ma-

chines. The main drawback of these approaches comes from a fairly uncommon hardware

setup, where each GPU learner is paired with hundreds of CPU cores that interact with

the environment. Such heterogeneous combination of hardware resources may not be

feasible to put together within many organizations. In comparison, ES requires from less

engineering efforts to achieve high throughputs, thanks to the reduced communication

overhead, and its hardware requirements are generally easier to meet.

7.5 Discussion

We introduced IW-ES, a variant of ES [49] that can perform several model updates with

a single of batch of data. Under the desired conditions, i.e. when samples from the

population distribution before the update are still likely under the updated distribution,

IW-ES demonstrated a higher data efficiency than that of ES. For small models, these

benefits can be introduced with a small increase in sequential computational load that

maintains the scalability of ES. For larger models, we describe how to leverage distributed

hardware to distribute further parallelize the added computation and achieve higher

throughput rates.

Besides implementing the completely distributed version of IW-ES that can make the

most of the available hardware, future work may focus on making IW-ES more resilient

to large divergences between distributions that increase the variance of the importance

sampling estimates. First, an adaptive strategy forK can be designed so that importance

weighted updates are made only when their variance is sufficiently low. On the other

hand, controlling the divergence after an update through a constraint in the training

objective can make IW-ES more robust for large learning rates, and avoid the collapse

observed in some experiments. Although applied in policy space instead of parameter

space, similar motivations have led to more efficient and stable policy gradient meth-

ods [170, 175]. These lines of research may also lead to revisiting the role of σ, which

controls the spread of the perturbation vectors in ES, but also plays an important role

in determining the importance weights in IW-ES.

8
Unsupervised Discovery of

State-Covering Skills

Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier

Giró-i-Nieto, and Jordi Torres. Explore, Discover and Learn: Unsupervised

discovery of state-covering skills. In ICML, 2020

Training of Reinforcement Learning (RL) agents typically aims to solve a particular

task, relying on task-specific reward functions to measure progress and drive learning.

This contrasts with how intelligent creatures learn in the absence of external supervi-

sory signals, acquiring abilities in a task-agnostic manner by exploring the environment.

Methods for training models without expert supervision have already obtained promising

results in fields like natural language processing [10, 198] and computer vision [199, 200].

In RL, analogous “unsupervised” methods are often aimed at learning generically use-

ful behaviors for interacting within some environment, behaviors that may naturally

accelerate learning once one or more downstream tasks become available.

The idea of unsupervised RL is often formulated through the lens of empowerment [201],

which formalizes the notion of an agent discovering what can be done in an environment

while learning how to do it. Central to this formulation is the concept of mutual in-

formation, a tool from information theory [202]. Mohamed and Rezende [203] derived

a variational lower bound on the mutual information which can be used to learn op-

tions [204] in a task-agnostic fashion. Following classical empowerment [201], options

are discovered by maximizing the mutual information between sequences of actions and

final states. This results in open loop options, where the agent commits to a sequence

80

Unsupervised Discovery of State-Covering Skills 81

of actions a priori and follows them regardless of the observations received from the

environment. Gregor et al. [205] developed an algorithm to learn closed loop options,

whose actions are conditioned on the state, by maximizing the mutual information be-

tween states and some latent variables instead of action sequences. This approach has

been extended by several works, which are surveyed in Section 8.1. Despite the inter-

est in developing information-theoretic skill discovery methods, very little research has

been conducted in understanding the limitations of these algorithms. We distinguish two

categories of such limitations. The first type has to do with the nature of the objective

itself, e.g. the difficulty of purely information-theoretic methods for capturing human pri-

ors [206]. We focus on the second group, i.e. on those issues introduced when adapting

the objective to current optimization methods.

In order to maximize empowerment, an agent needs to learn to control the environment

while discovering available options. It should not aim for states where it has the most

control according to its current abilities, but for states where it expects it will achieve

the most control after learning [205]. We empirically observe that this is not achieved

by existing methods, which prematurely commit to already discovered options instead of

exploring the environment to unveil novel ones. Figure 8.1 (top) showcases this failure

mode when deploying existing algorithms on a 2D maze. We provide theoretical anal-

ysis showing that these methods tend to reinforce already discovered behaviors at the

expense of exploring in order to discover new ones, resulting in behaviors that exhibit

poor coverage of the available state space. Figure 8.1 (bottom right) depicts the skills

discovered by our proposed Explore, Discover and Learn (EDL) paradigm, a three-stage

methodology that is able to discover skills with much better coverage.

Our contributions can be summarized as follows. (1) We provide theoretical analysis and

empirical evidence showing that existing skill discovery algorithms fail at learning state-

covering skills. (2) We propose EDL, an alternative approach to information-theoretic

option discovery that overcomes the limitations of existing methods. Crucially, EDL

achieves this while optimizing the same information-theoretic objective as previous meth-

ods. (3) We validate the presented paradigm by implementing a solution that follows

the three-stage methodology. Through extensive evaluation in controlled environments,

we demonstrate the effectiveness of EDL, showcase its advantages over existing methods,

and analyze its current limitations and directions for future research.

8.1 Information-Theoretic Skill Discovery

This section presents a generic mathematical framework that can be used to formulate,

analyze and compare information-theoretic skill discovery methods in the literature. Let

Unsupervised Discovery of State-Covering Skills 82

[Baseline] Forward MI [Baseline] Reverse MI

Samples from random policy EDL

Figure 8.1: Skills learned on a maze with bottleneck states. Each colored line represents a
trajectory initiated at the black dot by a different skill. Multiple rollouts per skill are reported
in order to account for the stochasticity of the policy. The bottom left plot depicts states
visited by a policy with random weights, showing which states are reachable by the agent at
the beginning of training. The top row shows that existing methods fail at expanding this set
of states, and end up committing to behaviors discovered by the random policy. This failure
happens with both forms of the mutual information (MI). On the other hand, EDL discovers
skills that provide a better coverage of the state space.

us consider a Markov Decision Process (MDP)M≡ (S,A, p) with state space S, action
space A and transition dynamics p. We learn latent-conditioned policies π(a|s, z), and
define skills or options as the policies obtained when conditioning π on a fixed value of

z ∈ Z [206, 207]. Let S ∼ p(s) be a random variable denoting states such that S ∈ S,
and Z ∼ p(z) be a random variable for latent variables. Using notation from information

theory, we use I(·; ·) and H(·) to refer to the mutual information and Shannon entropy,

respectively. Information-theoretic skill discovery methods seek to find a policy that

maximizes the mutual information between S and Z. Due to symmetry, this measure

can be expressed in the following two forms:

I(S;Z) = H(Z)−H(Z|S) // reverse (8.1)

= H(S)−H(S|Z) // forward (8.2)

For presentation clarity, we follow Gregor et al. [205] and refer to Equations 8.1 and 8.2

as the reverse and forward forms of the mutual information, respectively.

Unsupervised Discovery of State-Covering Skills 83

Our goal is to analyze which fundamental design choices are responsible for the properties

and limitations of such algorithms. We classify existing skill discovery methods depend-

ing on the form of the mutual information they optimize, and implement a canonical

algorithm for each form that allows for fair comparison. The following subsections de-

scribe existing skill discovery methods as well as the specific implementations considered

in this work.

8.1.1 Reverse Form of the Mutual Information

The objective can be derived by expanding the definition of the mutual information in

Equation 8.1, and then leveraging the non-negativity property of the KL divergence to

compute a variational lower bound [208]:

I(S;Z) = Es,z∼p(s,z)[log p(z|s)]︸ ︷︷ ︸
−H(Z|S)

−Ez∼p(z)[log p(z)]︸ ︷︷ ︸
H(Z)

(8.3)

≥ Es,z∼p(s,z)[log qφ(z|s)]− Ez∼p(z)[log p(z)] (8.4)

where qφ(z|s) is fitted by maximum likelihood on (s, z)-tuples collected by deploying

the policy in the environment. This implicitly approximates the unknown posterior as

p(z|s) ≈ ρπ(z|s), where ρπ(z|s) is the empirical posterior induced by the policy.

Note that computing this measure will require sampling from two distributions, p(z) and

p(s, z). The distribution over latent variables p(z) can be learned as part of the opti-

mization process or fixed beforehand, with the latter often yielding superior results [207].

However, sampling from the joint distribution over states and latents p(s, z) is more prob-

lematic. A common workaround consists in assuming a generative model of the form

p(s, z) = p(z)p(s|z) ≈ p(z)ρπ(s|z), where ρπ(s|z) is the stationary state-distribution

induced by π(a|s, z) [205].

This category includes a variety of methods with slight differences. VIC [205] considers

only the final state of each trajectory and a learnable prior p(z). SNN4HRL [209] intro-

duces a task-specific proxy reward, which encourages exploration and can be understood

as a bonus to increase the entropy of the stationary state-distribution. DIAYN [207] ad-

ditionally minimizes the mutual information between actions and skills given the state,

resulting in a formulation that resembles maximum entropy RL [210]. VALOR [206]

considers the posterior over sequences of states instead of individual states in order to

encourage learning dynamical modes rather than goal-attaining modes. VISR [211]

combines skill discovery with universal successor features approximators [212] to enable

Unsupervised Discovery of State-Covering Skills 84

fast task inference [213, 214]. DISCERN [215] and Skew-Fit [216] aim at learning a goal-

conditioned policy in an unsupervised fashion, which can be understood as skill discovery

methods where Z takes the form of states sampled from a buffer of previous experience.

We consider a variant of VIC [205] with a fixed prior p(z) and where all states in a

trajectory are considered in the objective1. This method can be seen as a version of

DIAYN [207] where the scale of the entropy regularizer H(A|S,Z) is set to 0. The

variational lower bound in Equation 8.4 is optimized by training the policy π(a|s, z)
using the reward function

r(s, z′) = log qφ(z′|s)− log p(z′), z′ ∼ p(z) (8.5)

8.1.2 Forward Form of the Mutual Information

A similar lower bound to that in Equation 8.4 can be derived by expanding the forward

form of the mutual information in Equation 8.2:

I(S;Z) = Es,z∼p(s,z)[log p(s|z)]︸ ︷︷ ︸
−H(S|Z)

−Es∼p(s)[log p(s)]︸ ︷︷ ︸
H(S)

(8.6)

≥ Es,z∼p(s,z)[log qφ(s|z)]− Es∼p(s)[log p(s)] (8.7)

where qφ(s|z) is fitted by maximum likelihood on (s, z)-tuples collected by deploying the

policy in the environment. This amounts to approximating p(s|z) with the stationary

state-distribution of the policy, p(s|z) ≈ ρπ(s|z).

To the best of our knowledge, DADS [217] is the only method within this category. DADS

follows a model-based setup where I(St+1;Z|St) is maximized. This is achieved by mod-

elling changes in the state, ∆s = st+1−st. When evaluated on locomotion environments

that encode the position of the agent in the state vector, this setup favors the discovery

of gaits that move in different directions. Similarly to methods in Section 8.1.1, p(s, z) is

approximated by relying on the stationary state-distribution induced by the policy and

p(s) ≈ ρπ(s) = Ez [ρπ(s|z)]. We will consider a model-free variant of DADS where the

variational lower bound in Equation 8.7 is optimized by training the policy π(a|s, z) with
a reward function

r(s, z′) = log qφ(s|z′)− log
1

L

L∑
i=1

qφ(s|zi), z′, zi ∼ p(z) (8.8)

1The original implementation by Gregor et al. [205] considered final states only, thus providing a
sparser reward signal to the policy.

Unsupervised Discovery of State-Covering Skills 85

where p(s) is approximated using qφ and L random samples from the prior p(z) as done

by Sharma et al. [217]. When using a discrete prior, we marginalize over all skills.

8.2 Limitations of Existing Methods

Recall that maximizing empowerment implies fulfilling two tasks, namely discovering

what is possible in the environment and learning how to achieve it. In preliminary

experiments, we observed that existing methods discovered skills that provide a poor

coverage of the state space. This suggests a limited capability for discovering what

options are available.

This section provides insight for why existing methods do not encourage the discovery

state-covering skills from a theoretical lens. This is achieved by analyzing the reward

function of these methods, and studying its asymptotic behavior for known and novel

states. Our main result shows that the agent receives larger rewards for visiting known

states than discovering new ones. The following subsections introduce the considered

assumptions and derive these results for both forms of the mutual information.

8.2.1 Assumptions

Maximizing the mutual information between states and latents requires knowledge of

some distributions. Methods based on the forward form of the mutual information make

use of p(s|z) and p(s), whereas those using the reverse form employ p(z|s). Note that

none of these are known a priori, so the common practice is to approximate them using

the distributions induced by the policy. Distributions over states are approximated

with the stationary state-distribution of the policy, p(s|z) ≈ ρπ(s|z) and p(s) ≈ ρπ(s) =

Ez [ρπ(s|z)]. The posterior p(z|s) is approximated with the empirical distribution induced

by running the policy, p(z|s) ≈ ρπ(z|s). In practice, these distributions are estimated

via maximum likelihood using rollouts from the policy.

8.2.2 Reverse Form of the Mutual Information

The objective for these methods is

I(S;Z) = Es,z∼p(s,z)[log p(z|s)]− Ez∼p(z)[log p(z)] (8.9)

≈ Es,z∼p(s,z)[log ρπ(z|s)]− Ez∼p(z)[log p(z)] (8.10)

Unsupervised Discovery of State-Covering Skills 86

where the unknown posterior p(z|s) is approximated by the distribution induced by the

policy, ρπ(z|s). This distribution is estimated with a model qφ(z|s) trained via maximum

likelihood on (s, z)-tuples collected by deploying the policy in the environment. For this

analysis, however, we will assume access to a perfect estimate of ρπ(z|s). When consid-

ering the discovery of N discrete skills under a uniform prior, the reward in Equation 8.5

becomes

r(s, z′) = log ρπ(z′|s)− log p(z′) (8.11)

= log ρπ(z′|s) + logN (8.12)

where z′ ∼ p(z). We will assume that
∑N

i=1 ρπ(zi|s) = 1 in our analysis.

Maximum reward for known states. The reward function encourages policies to

discover skills that visit disjoint regions of the state space where ρπ(z′|s)→ 1:

rmax = log 1 + logN = logN (8.13)

Reward for previously unseen states. Note that ρπ(z|s) is not defined for unseen

states, and we will assume a uniform prior over skills in this undefined scenario, ρπ(z|s) =

1/N,∀z:

rnew = log
1

N
+ logN = 0 (8.14)

Alternatively, one could add a background class to the model in order to assign null

probability to unseen states [218]. This differs from the setup in previous works, reason

why it was not considered in the analysis. However, note that in this scenario the agent

gets an even larger penalization for visiting new states:

r
′
new = lim

ρπ(z′|s)→0
log ρπ(z′|s) + logN = −∞ (8.15)

These observations explain why the learned skills provide a poor coverage of the state

space.

Unsupervised Discovery of State-Covering Skills 87

8.2.3 Forward Form of the Mutual Information

The objective for these methods is

I(S;Z) = Es,z∼p(s,z)[log p(s|z)]− Es∼p(s)[log p(s)] (8.16)

= Es,z∼p(s,z)[log ρπ(s|z)]− Es∼ρπ(s)[log ρπ(s)] (8.17)

where the unknown distributions p(s|z) and p(s) are approximated using the stationary

state-distribution, p(s|z) ≈ ρπ(s|z) and p(s) ≈ ρπ(s) = Ez [ρπ(s|z)]. The stationary

state-distribution is estimated with a model qφ(s|z) trained via maximum likelihood on

(s, z)-tuples collected by deploying the policy in the environment. For this analysis,

however, we will assume access to a perfect estimate of ρπ(s|z). When considering the

discovery of N discrete skills, the reward in Equation 8.8 can be expanded as follows:

r(s, z′) = log ρπ(s|z′)− log
1

N

∑
∀zi

ρπ(s|zi) (8.18)

= log
ρπ(s|z′)∑
∀zi ρπ(s|zi)

+ logN (8.19)

= lim
ε→0

log
1

1 +
∑
∀zi 6=z′

ρπ(s|zi)+ε
ρπ(s|z′)+ε

+ logN (8.20)

where z′, zi ∼ p(z) and we added ε→ 0 in the last step to prevent division by 0.

Maximum reward for known states. As observed by Sharma et al. [217], this reward

function encourages skills to be predictable (i.e. ρπ(s|z′)→ 1) and diverse (i.e. ρπ(s|zi)→
0,∀zi 6= z′):

rmax = log 1 + logN = logN (8.21)

Reward for previously unseen states. In novel states, ρπ(s|zi)→ 0,∀zi:

rmax = lim
ε→0

log
1

1 +
∑
∀zi 6=z′

ε
ε

+ logN (8.22)

= log
1

1 + (N − 1)
+ logN (8.23)

= log
1

N
+ logN (8.24)

= 0 (8.25)

This result shows that visiting known states instead of exploring unseen ones provides

larger rewards to the agent, producing options that provide a poor coverage of the state

space.

Unsupervised Discovery of State-Covering Skills 88

8.2.4 Summary of Findings

We analyzed the asymptotic behavior of the reward function for existing methods under

the aforementioned approximations through a theoretical lens. The analysis considered

an agent aiming to discover N discrete skills, and perfect estimations of all distributions.

Our main result shows that the agent receives larger rewards for visiting known states

than discovering new ones. Known states can receive a reward of up to rmax = logN .

On the other hand, previously unseen states will receive a smaller reward, rnew = 0.

These observations hold for the forward and reverse forms of the mutual information,

and provide theoretical insight for why existing methods do not discover state-covering

skills. Figure 8.2 provides a numerical example on a gridworld environment, where we

handcraft two skills and depict the reward landscape they generate.

ρπ(s|z = z0) ρπ(s|z = z1)

0 0 0 0 0

1/6 1/6 1/6 1/6 1/6

1/6

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1/6

1/6 1/6 1/6 1/6 1/6

0 0 0 0 0

r(s, z = z0) r(s, z = z1)

0 0 0 0 0

0.69 0.69 0.69 0.69 0.69

0

-∞ -∞ -∞ -∞ -∞

0 0 0 0 0

0 0 0 0 0

-∞ -∞ -∞ -∞ -∞

0

0.69 0.69 0.69 0.69 0.69

0 0 0 0 0

Figure 8.2: Analysis of the reward landscape on a toy gridworld with two handcrafted skills.
Assuming perfect density estimation, both forms of the mutual information generate the same
reward landscape. Each column depicts a different skill, and all rollouts always start from the
central tile which is highlighted in red. Since skills rewarded for visiting known states where
they are maximally distinguishable, but receive no reward for visiting novel states.

In order to provide preliminary experimental evidence for this result, we deploy the

described algorithms on a 2D maze with bottleneck states (see Section 8.4 for details on

the experimental setup). As shown in Figure 8.1 (top), existing methods fail at exploring

the maze and most options just visit different regions of the initial room. Figure 8.1

(bottom left) depicts states visited by a policy with the same architecture, but random

weights. Note that existing algorithms do not expand the set of states visited by this

Unsupervised Discovery of State-Covering Skills 89

random policy, but simply identify and reinforce different modes of behavior among them.

This observation confirms that existing formulations fail at discovering available options,

and motivates our study of alternative methods for option discovery.

8.3 Proposed Method

Maximizing the mutual information between states and latent variables requires access

to unknown distributions, which existing methods approximate using the distributions

induced by the policy. Instead of encouraging the agent to discover available options,

this approximation reduces the problem to that of reinforcing already discovered behav-

iors. Since the policy is initialized randomly at the beginning of training, the discovered

options seldom explore further than a random policy.

We propose an alternative approach, Explore, Discover and Learn (EDL), for modelling

these unknown distributions and performing option discovery. Existing methods make

use of the state distribution p(s) ≈ ρπ(s) = Ez [ρπ(s|z)], which focuses p(s) around states

where the policy receives a high reward. This dependency contributes to the pathological

learning dynamics described above. To break this dependency, EDL makes use of a fixed

distribution over states p(s) and is agnostic to the method by which this distribution is

discovered or obtained. For a given distribution over states, EDL makes use of variational

inference techniques to model p(s|z) and p(z|s). As its name suggests, EDL is composed

of three stages: (i) exploration, (ii) skill discovery, and (iii) skill learning. These can be

studied and improved upon independently, and the actual implementation of each stage

will depend on the problem being addressed. The compartmentalization of these facets

of the objective, together with the inclusion of a fixed distribution over states, are the

key features of EDL. Table 8.1 positions this new approach with respect to existing ones.

Exploration. In the absence of any prior knowledge, a reasonable choice for the dis-

tribution over states p(s) is a uniform distribution over all S, which will encourage the

discovery of state-covering skills. This stage comes with the challenge of being able

to generate or sample from the distribution of states that the learned skills should ul-

timately cover. This is generally a difficult problem, for which we consider possible

solutions. When an oracle is available, it can be queried for samples belonging to the

set of valid states. If such an oracle is not available, one can train an exploration policy

that induces a uniform distribution over states. Finding these policies is known as the

problem of maximum entropy exploration, for which provably efficient algorithms exist

under certain conditions [219]. When interested in some particular modes of behavior,

one can leverage a more specific state distribution or adopt a non-parametric solution by

Unsupervised Discovery of State-Covering Skills 90

Assumptions MI form Methods

p(z): fixed
p(z|s) ≈ ρπ(z|s)
p(s|z) ≈ ρπ(s|z)
p(s) ≈ ρπ(s) = Ez [ρπ(s|z)]

Forward DADS [217]

Reverse

VIC [205], SNN4HRL [209],
DIAYN [207], VALOR [206],
DISCERN [215], Skew-Fit [216],
VISR [211]

p(z), p(s): fixed Forward EDL (ours)
p(s|z), p(z|s): modelled with VI

Table 8.1: Types of methods depending on the considered generative model and the version
of the mutual information (MI) being maximized. Distributions denoted by ρ are induced by
running the policy in the environment, whereas p is used for the true and potentially unknown
ones. The dependency of existing methods on ρπ(s|z) causes pathological training dynamics by
letting the agent influence over the states considered in the optimization process. EDL relies
on a fixed distribution over states p(s) to break this dependency and makes use of variational
inference (VI) techniques to model p(s|z) and p(z|s).

sampling states from a dataset of extrinsically generated experience [220]. Note that un-

like approaches in imitation learning [221], learning from demonstrations [222, 223], and

learning from play [224], EDL does not require access to trajectories or actions emitted

by an expert policy.

Skill discovery. Whereas existing methods sample latents z ∼ p(z) directly as an input

to the latent-conditioned policy, EDL requires an indirect approach wherein latent codes

are inferred from p(s). More concretely, given a distribution over states, or samples from

it, we treat skill discovery as learning to model p(z|s) and p(s|z). We turn to variational

inference techniques for this purpose, and Variational Autoencoders (VAEs) [225] in

particular. Fortunately, we can approximate both distributions by training a VAE on

samples from p(s) – the encoder qψ models p(z|s), whereas the decoder qφ models p(s|z).
Intuitively, this process determines which latent codes are assigned to each region of the

state space, and which states should be visited by each skill. The fact that exploration

and skill discovery are disentangled enables learning variational posteriors for different

p(z) priors without needing to re-learn a new latent-conditioned policy every time. This is

an interesting property, as the task of defining the prior over skills is not straightforward.

In contrast, previous methods perform exploration and skill discovery at the same time,

so that modifying p(z) inevitably involves exploring the environment from scratch.

Skill learning. The final stage consists in training a policy πθ(a|s, z) that maximizes

the mutual information between states and latent variables. EDL adopts the forward

form of the mutual information, and the reader is referred to Appendix B for a detailed

explanation of this choice. Since p(s) is fixed, Equation 8.7 can be maximized in a

Unsupervised Discovery of State-Covering Skills 91

reinforcement learning-styled setup with the reward function

r(s, z′) = log qφ(s|z′), z′ ∼ p(z) (8.26)

where qφ(s|z) is given by the decoder of the VAE trained on the skill discovery stage.

This final stage can be seen as training a policy that mimics the decoder within the

MDP, i.e. a policy that will visit the state that the decoder would generate for each

latent code z. Note that the reward function is fixed, unlike that in previous methods

which continuously changes depending on the behavior of the policy.

8.4 Experiments

Some previous works have evaluated skill discovery methods on complex environments,

such as robotic locomotion [173] or 3D navigation [226], whose complexity renders policy

learning difficult. This burden falls on the underlying RL algorithm, which needs to

learn a more complicated policy in order to achieve the desired behavior. Note that this

does not necessarily make the task of discovering options more difficult. As an example,

consider the process of discovering useful locomotion skills. These options will likely

require the agent to move in different directions, no matter if it is controlling a simple

point mass or a complex humanoid.

We take a different approach and consider controlled synthetic environments. These

are fully-continuous 2D mazes where the agent observes its current position and out-

puts actions that control its location, which is affected by collisions with walls. Varying

the maze topology allows for an analysis of skill discovery methods in the face of spe-

cific challenges, providing insight on the properties and limitations of these algorithms.

The topology is not given to the agent, which needs to infer the position of walls from

interaction.

All experiments consider discrete priors over skills. This choice allows for a fair compar-

ison between methods, as those based on the reverse form of the mutual information are

not straightforward to combine with continuous priors. We consider the two methods

described in Section 8.1 as baselines. The skill discovery stage in EDL is performed

with a VQ-VAE [227] to handle the discrete prior, and the real-valued codes it discovers

are used to condition the policy. We adopt the common distributional assumption for

continuous data where p(s|z) is Gaussian [225], which does not consider the actual con-

nectivity within the MDP and results in reward functions that can become fraught with

local optima. For this reason, we use Sibling Rivalry [228] to escape local optima during

the skill learning stage in some environments. Note that the described implementation

Unsupervised Discovery of State-Covering Skills 92

is just a possible solution that follows the proposed paradigm, which is not limited to

the specific choices made in our experimental setup.

Figures 8.1–8.6 report 20 rollouts per skill to account for the stochasticity of the policy.

The initial state is denoted by a black dot and the color of the rollout denotes the skill

upon which it was conditioned, thus figures are best viewed in color. All experiments

consider agents that learn 10 skills, value that was selected to provide a good balance

between learning a variety of behaviors and ease of visualization. When visualizing

states visited by a random policy, we collect 100 rollouts with each (untrained) skill.

Trajectories from these skills highly overlap with each other, so we use a single color

for all of them to reduce clutter. We refer the reader to the appendix for a detailed

description of the experimental setup and the hyperparameters.

Exploration with SMM. In the absence of any prior knowledge, we would like to

discover skills across the whole state space by defining a uniform distribution over states,

p(s). In the controlled environments considered in this work, this can be achieved by

sampling states from an oracle. In order to understand the impact of not having access

to an oracle, we employ State Marginal Matching (SMM) [229] with a uniform target

distribution to perform the exploration stage in EDL. Evaluation is performed on a simple

maze where the forward and reverse baselines already fail to learn state-covering skills,

as depicted in Figure 8.3 (top). In contrast, Figure 8.3 (bottom) shows how EDL can

learn state-covering skills even in the realistic scenario where an oracle is not available2.

Impact of the initial state. Baseline methods rely on ρπ(s|z) to perform skill discovery,

which is initially induced by a random policy. This introduces a strong dependence on the

distribution over initial states, p(s0). Changes to p(s0) might make some behaviors harder

to learn, e.g. reaching a certain position becomes more difficult the further an agent

spawns from it. A change in p(s0) should have little impact on what options are deemed

important as long as all options are still achievable. We evaluate this phenomenon on

two corridor-shaped mazes, which have the same topology but differ in the position of the

initial state. We will refer to these environments as Ecenter and Eleft, in which the agent

spawns in the center and the left section of the corridor, respectively. Figure 8.4 (top)

shows how the baselines discover completely different skills depending on p(s0). When

replicating this experiment using EDL with SMM exploration, we get two different setups.

Figure 8.4 (bottom left) shows the result of performing exploration and skill discovery

in Ecenter and then learning skills in both Ecenter and Eleft. Figure 8.4 (bottom right)

depicts the impact of performing exploration and skill discovery in Eleft instead. Skills
2We succeeded at training skills discovered by EDL without Sibling Rivalry. However, it greatly

reduced the number of runs in the grid search that got trapped in local optima. The presented results
used Sibling Rivalry to take advantage of this fact and reduce variance in the results.

Unsupervised Discovery of State-Covering Skills 93

[Baseline] Forward MI [Baseline] Reverse MI

[EDL] Oracle [EDL] SMM exploration

Figure 8.3: Impact of replacing the oracle with SMM in the exploration stage. Top: baselines
fail at discovering skills that reach the right side of the maze. Bottom: EDL discovers skills
that are spread across the whole maze, even when replacing the oracle with SMM. We observed
that SMM tended to collect more samples near the walls, which explains the slight difference in
the discovered options.

learned in both setups are very similar, with differences coming from the slightly different

distribution over states collected by SMM.

[Baseline] Forward MI [Baseline] Reverse MI

[EDL] Exploration in Ecenter [EDL] Exploration in Eleft

Figure 8.4: Impact of the distribution over initial states, p(s0). Top: baselines are very sensitive
to p(s0) and discover very different skills depending on this distribution. Bottom: we report two
different experiments with EDL. The setup on the left performs exploration and skill discovery in
Ecenter and then learns skills in both Ecenter and Eleft. The one on the right performs exploration
and skill discovery in Eleft instead. Options discovered by EDL are very similar in both setups.

Encouraging specific behaviors. In many settings, the user has some knowledge

about which areas of state space will be most relevant for downstream tasks. Inducing

proper priors might help to overcome the curse of dimensionality in complex environ-

ments, where most skills discovered under a uniform prior might not be useful for the

tasks we are interested in. Existing methods can leverage prior knowledge by maximizing

Unsupervised Discovery of State-Covering Skills 94

I(f(S);Z) instead of I(S;Z), where f(S) is a function of the states. For instance, this

function can compute the center of mass of a robot in order to encourage the discovery

of locomotion skills [207]. However, this method fails at incorporating more complex pri-

ors, such as encouraging the agent to only learn locomotion skills that move in specific

directions or where the center of mass needs to be above a certain height to ensure that

the robot does not fall down. EDL offers more flexibility for leveraging priors through

the definition of p(s), e.g. by drawing samples from a dataset of human play [220]. We

simulate this scenario by performing skill discovery with an oracle that samples states

uniformly from a subset of the state space. Figure 8.5 reports results in a tree-shaped

maze, where we introduce the prior that skills should visit the right side of the maze only.

EDL effectively incorporates this prior, and learns state-covering skills in its absence.

[Baseline] Forward MI [Baseline] Reverse MI

[EDL] No prior over states

Prior over states

[EDL] With prior over states

Figure 8.5: Incorporating priors over skills, where we are interested in learning skills on the right
side of the maze. Top: this type of prior cannot be incorporated into baseline methods, whose
discovered options are agnostic to it. Bottom: in the absence of a prior, EDL learns options
across the whole state space. When incorporating the prior, the agent devotes all its capacity to
learning skills within the region of interest.

Impact of bottleneck states. The maze with bottleneck states from Figure 8.1, where

baseline approaches fail to explore a large extent of the state space, is a challenging envi-

ronment where the limitations of EDL can be evaluated. We were unable to explore this

type of maze effectively with SMM. Given that SMM relies on a curiosity-like bonus [229],

we attribute this failure to well-known issues of these methods such as derailment and

detachment [230]. Note that these problems are related to the sub-optimality of the

density estimation method and RL solver, as shown by the bounds derived by Hazan

et al. [219]. In light of this, we rely on an oracle to simulate perfect exploration and eval-

uate the skill discovery and learning stages of EDL. On this maze, the reward functions

that EDL introduces create deceptive local optima in which policies tend to get stuck

Unsupervised Discovery of State-Covering Skills 95

(c.f. Figure 8.10). Sibling Rivalry proved crucial to avoid these failures, and allowed

the policy to learn the skills depicted in Figure 8.1 (bottom right). These observations

suggest that the main bottlenecks for the proposed approach to skill discovery are maxi-

mum entropy exploration and avoiding local optima when learning to maximize the EDL

reward (Equation 8.26). Given that EDL decouples the process in three stages, advances

in these fields are straightforward to incorporate and will boost the performance of this

type of option discovery method.

Interpolating between skills. The skill discovery stage in EDL with a categorical

prior p(z) can be seen as the process of learning a discrete number of goals, together

with an embedded representation for each of them. In the experimental setup presented

in this work, each embedded representation corresponds to one of the continuous vectors

in the VQ-VAE’s codebook, zi, whereas each goal state is given by gi = argmaxsqφ(s|zi).
The idea of goal embeddings was introduced as part the Universal Value Function Ap-

proximator (UVFA) framework [231]. UVFAs can generalize to unseen goals, and here

we explore how the policies learned by EDL generalize to unseen latent codes z – where

we construct new codes by interpolating the ones discovered by EDL. The results in

Figure 8.6 suggest that the policy learns to generalize, with interpolated skills reaching

states that come from the interpolation in Euclidean space of the goals of the original

skills.

Figure 8.6: Interpolating skills learned by EDL. Interpolation is performed at the latent variable
level by blending the z vector of two skills. The first row and column show the original skills
being interpolated, which were selected randomly from the set of learned options. When plotting
interpolated skills, we blend the colors used for the original skills.

Unsupervised Discovery of State-Covering Skills 96

Additional visualizations. We include visualizations that provide further insight

about the results in Figure 8.1. These include the goal states discovered by methods

using the forward form of the mutual information (Figure 8.7), and a visualization of the

reward landscape of each method (Figures 8.8, 8.9 and 8.10).

[Baseline] Forward MI EDL

Figure 8.7: Goal states discovered by methods using the forward form of the mutual information
in Figure 8.1. We define a goal state as the most likely state under qφ(s|z) for each skill,
i.e. gi = argmaxsqφ(s|zi). The baseline method relies on the stationary state-distribution induced
by the policy to discover goals. This policy seldom leaves the initial room, limiting the goals
that can be discovered. In contrast, the uniform distribution over states in EDL enables the
discovery of goals across the whole maze.

r (s, z = z0) r (s, z = z1) r (s, z = z2) r (s, z = z3) r (s, z = z4)

r (s, z = z5) r (s, z = z6) r (s, z = z7) r (s, z = z8) r (s, z = z9)

80 60 40 20 0

Figure 8.8: Reward landscape per skill at convergence for the forward MI agent in Figure 8.1.
Trajectories from each skill starting from the black dot are plotted in gray. The yellow star
indicates the point of maximum reward for each skill. For some skills, this point belongs to an
unexplored region of the state space, contrary to the intuition in Section 8.2. Note that this is
due to the Gaussian assumption over p(s|z) in the density model.

Unsupervised Discovery of State-Covering Skills 97

q (z = z0|s) q (z = z1|s) q (z = z2|s) q (z = z3|s) q (z = z4|s)

q (z = z5|s) q (z = z6|s) q (z = z7|s) q (z = z8|s) q (z = z9|s)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 8.9: Approximate posterior qφ(z|s) at convergence for the reverse MI agent in Figure 8.1.
Recall that the reward function for this agent is r(s, z) = log qφ(z|s) − log p(z), and log p(z) is
constant in our experiments due to the choice of prior over latent variables. The state space
is partitioned in disjoint regions, so that skills only need to enter their corresponding region in
order to maximize reward. Note how qφ(z|s) extrapolates this partition to states that have never
been visited by the policy. When combined with an entropy bonus, this reward landscape results
in skills that produce highly entropic trajectories within each region.

r (s, z = z0) r (s, z = z1) r (s, z = z2) r (s, z = z3) r (s, z = z4)

r (s, z = z5) r (s, z = z6) r (s, z = z7) r (s, z = z8) r (s, z = z9)

120 100 80 60 40 20

Figure 8.10: Reward landscape per skill at convergence for the EDL agent in Figure 8.1. The
reward functions follow a bell shape centered at each of the centroids in Figure 8.7 (right). These
are dense signals that ease optimization, but training is prone to falling in local optima due to
their deceptive nature.

8.5 Related Work

Option discovery. Temporally-extended high-level primitives, also known as options,

are an important resource in the RL toolbox [204, 232, 233]. The process of defining op-

tions involves task-specific knowledge, which might be difficult to acquire and has moti-

vated research towards methods that automatically discover such options. These include

Unsupervised Discovery of State-Covering Skills 98

learning options while solving the desired task [234], leveraging demonstrations [235],

training goal-oriented low-level policies [236], and meta-learning primitives from a dis-

tribution of related tasks [237]. Skills discovered by information-theoretic methods have

also been used as primitives for Hierarchical RL [207, 209, 217].

Intrinsic rewards. Agents need to encounter a reward before they can start learning,

but this process might become highly inefficient in sparse reward setups when relying

on standard exploration techniques [238]. This issue can be alleviated by introduc-

ing intrinsic rewards, i.e. denser reward signals that can be automatically computed.

These rewards are generally task-agnostic and might come from state visitation pseudo-

counts [239, 240], unsupervised control tasks [241], learning to predict environment dy-

namics [242–244], self-imitation [245], and self-play [246, 247].

Novelty Search. Discovering a set of diverse and task-agnostic behaviors in the ab-

sence of a fitness function has been explored in the evolutionary computation commu-

nity [248, 249]. Quality Diversity algorithms aim at combining the best of both worlds by

optimizing task-specific fitness functions while encouraging diverse behaviors in a popu-

lation of agents [250–252]. These methods rely on a behavior characterization function,

which is tasked with summarizing the behavior of an agent into a vector representation.

There have been efforts towards learning such functions [253], but it is still a common

practice for practitioners to design a different function for each task [192].

Goal-oriented RL. The standard RL framework can be extended to consider policies

and reward functions that are conditioned on some goal g ∈ G [231]. Given a known

distribution over goals p(g) that the agent should achieve, this setup allows for efficient

training techniques involving experience relabeling [179] and reward shaping [228]. Defin-

ing such distribution requires expert domain knowledge, an assumption that is not always

fulfilled. As a result, methods that can learn to reach any given state have garnered re-

search interest [215, 216]. These approaches can be seen as skill discovery algorithms

where Z = S, i.e. where each goal state defines a different skill. This raises the question

of whether methods that can reach any state are superior to those learning a handful

of skills. We argue that the latter offer important benefits in terms of exploration when

used by a meta-controller to solve downstream tasks. When p(z) is a simple distribution,

the meta-controller benefits from a reduced search space, which is one of the motivations

behind building hierarchies and options [233]. On the other hand, exploring with state-

reaching policies involves a search space of size |S|. This figure will quickly increase as

the complexity of the environment grows, making exploration inefficient. Moreover, this

setup assumes that the meta-controller is able to sample from S in order to emit goals

for the goal-conditioned policy.

Unsupervised Discovery of State-Covering Skills 99

8.6 Discussion

We provided theoretical and empirical evidence that poor state space coverage is a pre-

dominant failure mode of existing skill discovery methods. The information-theoretic

objective requires access to unknown distributions, which these methods approximate

with those induced by the policy. These approximations lead to pathological training

dynamics where the agent obtains larger rewards by visiting already discovered states

rather than exploring the environment. We proposed EDL, a novel option discovery ap-

proach that leverages a fixed distribution over states and variational inference techniques

to break the dependency on the distributions induced by the policy. Importantly, this

alternative approach optimizes the same objective derived from information theory used

in previous methods. EDL succeeds at discovering state-covering skills in environments

where previous methods failed. It offers additional advantages, such as being more robust

to changes in the distribution of the initial state and enabling the user to incorporate

priors over which behaviors are considered useful. Our experiments suggest that EDL

discovers a meaningful latent space for skills even when tasked with learning a discrete

set of options, whose latent codes can be combined in order to produce a richer set of

behaviors.

The proposed EDL paradigm is not limited to the implementation considered in this

work. Each of the three stages of the method poses its own challenges, but can benefit

from advances in their respective research directions as well. This modular design al-

lows us to incorporate to our implementation recent advances such as exploration with

SMM [229], vector quantization techniques to impose discrete priors in VAEs [227], and

relabeling techniques to optimize deceptive reward functions [228]. Future breakthroughs

in these directions could contribute towards scaling up skill discovery methods to richer

environments, potentially leading to the emergence of complex behaviors [254].

There are several research directions to be explored in future work. Improvements in

pure exploration methods would make EDL applicable to a broader range of environ-

ments. Despite the existence of strong theoretical results [219], these approaches involve

the optimization of reward functions that are challenging for current algorithms [230].

In our experiments, we adopted the common distributional assumption for continuous

data where p(s|z) is Gaussian [225]. This assumption was responsible for the deceptive

reward functions discovered in our experiments, and might be detrimental in some other

environments. This motivates research towards discovering embedding spaces for states

where distances are related to the closeness of states within the MDP [255], and learning

reward functions that reflect similarity in controllable aspects of the environment [215].

Unsupervised Discovery of State-Covering Skills 100

Finally, leveraging information-theoretic methods to perform unsupervised task discovery

in the meta-RL framework [256] is another interesting direction for future research.

9
Conclusion

The last decade has seen extraordinary progress in machine learning applications, driven

by the fast pace of advances in deep learning research. Approaches based on representa-

tions derived from expert knowledge have been replaced by systems that can learn tasks

end to end, mapping raw signals to the desired output space. The quest towards solving

problems in an end to end fashion produced a first wave of groundbreaking advances in

domains where enough training data was available, including computer vision [6], speech

recognition [37], machine translation [257], and control [174]. While neural networks had

been used way before the recent advent of deep learning [53], the key factor behind their

current success is scale. In particular, this has been possible thanks to the development

of algorithms that can benefit from increased compute and data, and this dissertation

focused on pushing the limits of scale in these two axes.

The first research direction considered in this thesis was concerned with developing al-

gorithms that can make the most of the available hardware. Given that the current

trend in high performance computing consists in accelerating workloads by distribut-

ing them across devices, this required studying algorithms that are inherently parallel.

When learning from examples, Chapter 4 explored strategies for distributing training

of Convolutional Neural Networks (CNNs) in a homogeneous GPU cluster in order to

shorten training times. This enables faster iteration, which accelerates progress in both

research and industrial applications. When learning from interaction, Chapter 7 intro-

duced a technique to improve the data efficiency of Evolution Strategies (ES), a method

that scales gracefully to thousands of CPU cores. Importantly, these gains are achieved

without compromising the scalability of the original method.

101

Conclusion 102

The second research direction in this dissertation explored the design of methods that

can scale up with the amount of available data. This is a broad research question, and

we considered three relevant problems within this area of research. Chapter 5 introduced

a novel Recurrent Neural Network architecture that is able to solve tasks involving se-

quences while ignoring some of the input elements. Skipping patterns are decided based

on the data seen so far, which allows training models for different computational budgets

that learn how to make the most efficient usage of the available resources. In Chapter 6,

we derived a novel initialization for a particular class of neural networks that enables

robust training of very deep models. This is a very important direction, as increasing

the depth of neural networks allows training complex models on large collections of data,

but depth often leads to unstable training. Finally, Chapter 8 analyzed the limitations of

existing unsupervised skill discovery methods within the Reinforcement Learning (RL)

framework and proposed a novel method to overcome them. The proposed method leads

to the discovery of skills that provide a better coverage of what is possible in the envi-

ronment, and thus are more likely to be useful for solving downstream tasks. Providing

agents with the capability of autonomously acquiring useful and reusable knowledge, as

opposed to maximizing handcrafted reward functions, is key towards scaling up RL to

complex domains.

Unprecedented results have been obtained when pushing the limits of scale. AlphaGo [258],

a system combining model-based planning with neural networks, defeated the world

champion the game of Go – one of the grand challenges in artificial intelligence research.

Arguably, its most important component was self-play, which let the agent play against

itself in order to generate training data. This strategy enabled trading off large amounts

of compute for data, quickly accumulating the equivalent to years of human experience.

In a similar fashion, the very large-scale language models by OpenAI have shown out-

standing zero-shot [198] and few-shot [11] learning capabilities after ingesting a virtually

unlimited amount of data downloaded from the Internet. Despite the observation that

model quality grows sub-linearly with increased size, the limits of scale have yet to be

found. Continuous improvements have been obtained so far by training larger models

whenever enough training data and compute have become available. However, it is rea-

sonable to ask whether intelligence can be solved through scale only. Will we ever build

a dataset which contains everything needed for intelligence to emerge?

In spite of recent advances, all modern artificial intelligence solutions still belong to the

category of narrow artificial intelligence – methods that aim at solving a single task.

This type of systems already enabled numerous applications with which we interact in

our daily lives, such as voice assistants, predictive typing, translators or image retrieval

systems. In general, having mastered one task will not help these systems in solving

a new problem – which contrasts with how humans can leverage prior knowledge and

Conclusion 103

abilities when solving previously unseen problems. For instance, this means that an

agent controlling a robot will need to learn that objects fall, or that it cannot walk

through walls, every single time it needs to solve a new task. Solving the problem

of transfer, i.e. designing machines with the ability to accumulate and leverage prior

knowledge efficiently, is one of the grand challenges in artificial intelligence. Overcoming

this limitation will allow our agents to quickly become competent in new tasks for which

little data is available, likely creating a new wave of artificial intelligence advances.

Learning-based methods have revolutionized the field of artificial intelligence, with ca-

pabilities far beyond those of expert systems. They expand the types of problems that

can be addressed with artificial intelligence, relaxing the requirements from being able

to formalize a solution to simply providing feedback on the results. This setting pushes

the bottleneck towards our own ability for designing objectives and feedback signals.

Creating supervisory signals is an arduous process, which explains why only a handful

of them are available for current datasets or simulated environments. Moreover, they

are limited by our own creativity and needs. What if our agents could define their own

goals out of curiosity? This would definitely help in scaling up the number of tasks our

agents can solve, and likely encouraging them to build a better model of the world in

the process. From a pragmatic view, this would lead to more efficient learning systems

that can extract more bits of information from the available data. However, this might

have even more profound consequences – what if artificial intelligence systems could find

answers to questions we have not even thought of yet?

A
Qualitative Results for Skip RNN

This appendix contains additional qualitative results for the Skip RNN models.

104

Appendix – Qualitative Results for Skip RNN 105

A.1 Adding Task

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

0 10 20 30 40 50
time step

0

1

m
ar

ke
r v

al
ue

Figure A.1: Sample usage examples for the Skip GRU with λ = 10−5 on the adding task. Red
dots indicate used samples, whereas blue ones are skipped.

Appendix – Qualitative Results for Skip RNN 106

A.2 Frequency Discrimination Task

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

0 25 50 75 100 125 150 175 200
sample

1

0

1

am
pl

itu
de

Figure A.2: Sample usage examples for the Skip LSTM with λ = 10−4 on the frequency discrim-
ination task with Ts = 0.5ms. Red dots indicate used samples, whereas blue ones are skipped.
The network learns that using the first samples is enough to classify the frequency of the sine
waves, in contrast to a uniform downsampling that may result in aliasing.

B
Choice of Mutual Information’s

Form for EDL

The main novelty of EDL is an alternative for modelling the unknown distributions,

which in principle could work with either form of the mutual information. For the

sake of comparison with previous works, all experiments consider discrete skills. This

was achieved through a categorical posterior p(z|s) that was approximated with a VQ-

VAE [227]. The encoder of the VQ-VAE takes an input x, produces output ze(x), and

maps it to the closest element in the codebook, e ∈ RK×D. The posterior categorical

distribution q(z|x) probabilities are defined as one-hot as follows:

q(z = k|x) =

1 for k = argminj ||ze(x)− ej ||2

0 otherwise
(B.1)

One could consider the reverse form of the mutual information and train the policy with

a reward function as follows:

r(s, z) = q(z|s) (B.2)

where we assumed a uniform prior over z and removed the constant log p(z) term from

the reward.

We can foresee two issues with this reward function. It is sparse, i.e. many states provide

no reward at all, which might hinder training unless proper exploration strategies are

used [228, 230]. A similar behavior was observed in existing methods using the reverse

form of the mutual information (c.f. Figure 8.9). Moreover, the fact that many states

107

Appendix – Choice of Mutual Information’s Form for EDL 108

produce a maximum reward of 1 might lead to unpredictable skills when paired with

an entropy bonus. Such unpredictability might not be desirable when training a meta-

controller to solve a downstream task by combining the learned skills [217].

C
Implementation Details

C.1 Robust Initialization for WeightNorm & ResNets

C.1.1 Synthetic Data

Feedforward networks. We use a weight normalized 20 layer Multilayer Perceptron

with 1000 randomly generated input samples in R500. We test three initialization strate-

gies. (1) He initialization [63] for the weight matrices and the gain parameter g for all

layers are initialized to 1. (2) Proposed initialization, where weights are initialized to be

orthogonal and gains are set as
√

2nl−1/nl. (3) Proposed initialization, where weights

are initialized using He initialization and gains are set as
√

2nl−1/nl. In all cases biases

are set to 0. At initialization itself, we forward propagate the 1000 randomly generated

input samples, measure the norm of hidden activations, and compute the mean and stan-

dard deviation of the ratio of norm of hidden activation to the norm of the input. This is

shown in Figure 6.1 (top left). In Figure 6.1 (top right), we similarly record the norm of

hidden activation gradient by backpropagating 1000 random error vectors, and measure

the ratio of the norm of hidden activation gradient to the norm of the error vector. We

find that the proposed initialization preserves norm in both directions while vanilla He

initialization fails. This shows the importance of proper initialization of the γ parameter

of weight normalization.

Residual networks. We use a weight normalized residual network with 40 residual

blocks with 1000 randomly generated input samples in R500. The network architecture

is exactly as described in Equation 6.6, with a residual block composed of two Fully

109

Appendix – Implementation Details 110

Connected (FC) layers, i.e. FC1 → ReLU → FC2. The weight normalization layers are

inserted after FC layers. We test three initialization strategies. (1) He initialization [63]

for all the weight matrices, and gain parameter g = 1. (2) Proposed initialization

where weights are initialized to be orthogonal and gains are set as
√

2 · fan-in/fan-out
for FC1 and

√
fan-in/(40 · fan-out) for FC2. (3) Proposed initialization where weights

are initialized using He initialization and gains are set same as in the previous case. In all

cases biases are set to 0. At initialization itself, we forward propagate the 1000 randomly

generated input samples, measure the norm of hidden activations hb and compute the

mean and standard deviation of the ratio of norm of hidden activation to the norm of

the input x. This is shown in Figure 6.1 (bottom left). In Figure 6.1 (bottom right), we

similarly record the norm of hidden activation gradient by backpropagating 1000 random

error vectors and measure the ratio of the norm of hidden activation gradient ∂`
∂hb

to the

norm of the error vector ∂`
∂hB

. We find that the proposed initialization preserves norm in

both directions while vanilla He initialization fails. This shows the importance of proper

initialization of the g parameter of weight normalization.

C.1.2 Residual Network Architecture

Group name Output size Block type

conv1 32×32 [Conv2D 3×3, 16×k]

conv2 32×32 N×

 Conv2D 3×3, 16×k
ReLU

Conv2D 3×3, 16×k


conv3 16×16 N×

 Conv2D 3×3, 32×k
ReLU

Conv2D 3×3, 32×k


conv4 8×8 N×

 Conv2D 3×3, 64×k
ReLU

Conv2D 3×3, 64×k


out 1×1 [average pooling, 10-d fc, softmax]

weight	layer

weight	layer

ReLU

Figure C.1: Left: Architecture of Wide Residual Networks (WRNs) considered in this work.
Downsampling is performed through strided convolutions by the first layers in groups conv3 and
conv4. Right: Structure of a residual block. Note that there is no non-linearity after residual
connections, unlike He et al. [63].

Appendix – Implementation Details 111

C.1.3 MNIST

Parameter Value

Data split 10% of the original train is set aside for validation purposes
Number of hidden layers {2, 5, 10, 20, 100, 200}
Size of hidden layers {512, 1024}
Number of epochs 150
Initial learning rate∗ {0.1, 0.01, 0.001, 0.0001, 0.00001}
Learning rate schedule Decreased by 10× at epochs 50 and 100
Batch size 128
Weight decay 0.0001
Optimizer SGD with momentum = 0.9

Table C.1: Hyperparameters for MNIST experiments. Values between brackets were used in the
grid search. Learning rate of 0.00001 was considered for depths 100 and 200 only.

C.1.4 CIFAR

Parameter Value

Data split 10% of the original train is set aside for validation purposes

Architecture

2× [Conv2D 3× 3/2, 512]
(N− 2)× [Conv2D 3× 3/1, 512]
Global Average Pooling
10-d Linear, softmax

Number of hidden layers (N) {5, 25, 100}
Number of epochs 500
Initial learning rate {0.01, 0.001∗}
Learning rate schedule Decreased by 10× at epoch 166
Batch size 100
Weight decay {0.001, 0.0001}
Optimizer SGD without momentum

Table C.2: Hyperparameters for CNN experiments on CIFAR-10. Values between brackets were
used in the grid search. Learning rate of 0.001 was considered for depth 100 only.

Appendix – Implementation Details 112

Parameter Value

Data split 10% of the original train is set aside for
validation purposes

WRN’s N (residual blocks per stage) {1, 16, 166, 1666}
WRN’s k (width factor) 1
Number of epochs 1
Initial learning rate∗ {7 ·10−1, 3 ·10−1, 1 ·10−1, . . . , 10−5, . . . , 10−7}
Batch size 128
Weight decay 0.0005
Optimizer SGD with momentum = 0.9

Table C.3: Hyperparameters for WRN experiments on CIFAR-10. Values between brackets were
used in the grid search. Learning rates smaller than 10−5 were considered for N = 1666 (10,000
layers) only.

Appendix – Implementation Details 113

C.2 Unsupervised Discovery of State-Covering Skills

C.2.1 Environments

The maze environments are adapted from the open-source implementation1 by Trott

et al. [228]. The agent does not observe the walls, whose location needs to be inferred

from experience and makes exploration difficult. The initial state for each episode is

sampled from a 1 × 1 tile. See Table C.4 for details about the environments and the

topology of each maze.

Parameter Value

State space S ∈ R2

Action space A ∈ [−0.95, 0.95]2

Episode length 50

Size: Bottleneck maze (Figure 8.1) 10× 10
Size: Square maze (Figure 8.3) 5× 5
Size: Corridor maze (Figure 8.4) 1× 12
Size: Tree maze (Figure 8.5) 7× 7

Table C.4: Environment details.

C.2.2 RL Agents

Policy networks emit the parameters of a Beta distribution [259], which are then shifted

and scaled to match the task action range. Entropy regularization is employed to prevent

convergence to deterministic behaviors early in training. We use a categorical distribution

with uniform probabilities for the skill prior p(z). Agents are trained with PPO [175]

and the Adam optimizer [43]. Hyperparameters are tuned for each method independently

using a grid search. See Table C.5 for details.

1https://github.com/salesforce/sibling-rivalry

https://github.com/salesforce/sibling-rivalry

Appendix – Implementation Details 114

Hyperparameter Value

Discount factor 0.99
λGAE 0.98
λentropy {0.001, 0.005, 0.01, 0.025}
εSiblingRivalry {2.5, 5.0, 7.5}

Optimizer Adam
Learning rate {0.0003, 0.001}
Learning rate schedule Constant

Advantage normalization Yes
Input normalization {Yes, No}

Hidden layers 2
Units per layer 128
Non-linearity ReLU

Horizon 2500
Batch size 250
Number of epochs 4

Table C.5: Hyperparameters used in the experiments. Values between brackets were used in the
grid search, and tuned independently for each method.

C.2.3 Exploration

When relying on State Marginal Matching (SMM) [229] for exploration, we implement

the version that considers a mixture of policies with a uniform target distribution p∗(s).

The density model q(s) is approximated with a Variational Autoencoder (VAE). We use

states in the replay buffer as a non-parametric approach to sampling from the desired

p(s) [215]. Sampling states from the replay buffer is similar to a uniform Historical Aver-

aging strategy. This worked well in our experiments, but exponential sampling strategies

might be needed in other environments to avoid oversampling states collected by the ini-

tially random policies [219]. Our implementation follows the open-source code released

by the authors2, which relies on SAC [260] for policy optimization. Hyperparameters are

tuned for each environment independently using a grid search. See Table C.6 for details.

2https://github.com/RLAgent/state-marginal-matching

https://github.com/RLAgent/state-marginal-matching

Appendix – Implementation Details 115

Hyperparameter Value

Discount factor 0.99
Target smoothing coefficient 0.005
Target update interval 1
αentropy {0.1, 1, 10}
βVAE {0.01, 0.1, 1}

Optimizer Adam
Policy: Learning rate 0.001
SMM discriminator: Learning rate 0.001
VAE: Learning rate 0.01
Learning rate schedule Constant

Policies in the mixture 4
Input normalization No

Policy: Hidden layers 2
SMM discriminator: Hidden layers 2
VAE encoder: Hidden layers 2
VAE decoder: Hidden layers 2
Units per layer 128
Non-linearity ReLU

Gradient steps 1
Batch size 128
Replay buffer size 50k

Table C.6: Hyperparameters used for exploration using SMM. Values between brackets were
used in the grid search, and tuned independently for each environment. Training ends once the
buffer is full.

C.2.4 Skill Discovery

The skill discovery stage in the proposed method is done with a VQ-VAE [227], which

allows learning discrete latents. We implement the version that relies on a commitment

loss to learn the dictionary. The size of the codebook is set to the number of desired skills.

Hyperparameters are tuned for each environment and exploration method independently

using a grid search. See Table C.7 for details.

Appendix – Implementation Details 116

Hyperparameter Value

Code size 16
βcommitment {0.25, 0.5, 0.75, 1.0, 1.25}

Optimizer Adam
Learning rate 0.0002
Learning rate schedule Constant
Batch size 256

Number of samples 4096
Input normalization Yes

Encoder: Hidden layers 2
Decoder: Hidden layers 2
Units per layer 128
Non-linearity ReLU

Table C.7: Hyperparameters used for training the VQ-VAE in the skill discovery stage. Values
between brackets were used in the grid search, and tuned independently for each environment
and exploration method.

D
Proofs

Theorem 1. Let v = ReLU
(√

2n
m · R̂u

)
, where u ∈ Rn and R̂ ∈ Rm×n. If Ri

i.i.d.∼ P

where P is any isotropic distribution in Rn, or alternatively R̂ is a randomly generated

matrix with orthogonal rows, then for any fixed vector u, E[‖v‖2] = Kn · ‖u‖2 where,

Kn =


2Sn−1

Sn
·
(
2
3 ·

4
5 . . .

n−2
n−1

)
if n is odd

2Sn−1

Sn
·
(
1
2 ·

3
4 . . .

n−2
n−1

)
· π2 otherwise

(D.1)

and Sn is the surface are of a unit n-dimensional sphere.

Proof: During the proof, take note of the distinction between the notations R̂i and Ri.

Our goal is to compute,

E[‖v‖2] = E[
m∑
i=1

v2i] (D.2)

=
m∑
i=1

E[v2i] (D.3)

Suppose the weights are randomly generated to be orthogonal with uniform probability over

all rotations. Due to the linearity of expectation, when taking the expectation of any unit

vi over the randomly generated orthogonal weight matrix, the expectation marginalizes

over all the rows of the weight matrix except the ith row. As a consequence, for each

unit i, the expectation is over an isotropic random variable since the orthogonal matrix

is generated randomly with uniform probability over all rotations. Therefore, we can

117

Appendix – Proofs 118

equivalently write,

E[‖v‖2] = mE[v2i] (D.4)

Note that the above equality would trivially hold if all rows of the weight matrix were

sampled i.i.d. from an isotropic distribution. In other words, the above equality holds

irrespective of the two choice of distributions used for sampling the weight matrix.

We have,

E[v2i] = E[max(0,

√
2n

m
· R̂T

i u)2] (D.5)

=

∫
Ri

p(Ri) max(0,

√
2n

m
· ‖u‖ cos θ)2 (D.6)

where p(Ri) denotes the probability distribution of the random variable Ri, and θ is the

angle between vectors R̂i and u. Hence θ is a function of R̂i. Since Ri is sampled from

an isotropic distribution, the direction and scale of Ri are independent. Thus,

∫
p(Ri) max(0,

√
2n

m
· ‖u‖ cos θ)2 =

∫
Ri

p(‖Ri‖)
∫
R̂i

p(R̂i) max(0,

√
2n

m
· ‖u‖ cos θ)2

(D.7)

=

∫
R̂i

p(R̂i) max(0,

√
2n

m
· ‖u‖ cos θ)2 (D.8)

=
2n

m
· ‖u‖2

∫
R̂i

p(R̂i) max(0, cos θ)2 (D.9)

Since P is an isotropic distribution in Rn, the likelihood of all directions is uniform. It

essentially means that p(R̂i) can be seen as a uniform distribution over the surface area

of a unit n-dimensional sphere. We can therefore re-parameterize p(R̂i) in terms of θ

by aggregating the density p(R̂i) over all points on this n-dimensional sphere at a fixed

angle θ from the vector u. This is similar to the idea of Lebesgue integral. To achieve

this, we note that all the points on the n-dimensional sphere at a constant angle θ from

u lie on an (n− 1)-dimensional sphere of radius sin θ. Thus the aggregate density at an

angle θ from u is the ratio of the surface area of the (n−1)-dimensional sphere of radius

Appendix – Proofs 119

sin θ and the surface area of the unit (n)-dimensional sphere. Therefore,∫
R̂i

p(R̂i) max(0, cos θ)2 =

∫ π

0

Sn−1
Sn
· | sinn−1 θ| ·max(0, cos θ)2 (D.10)

=
Sn−1
Sn

∫ π/2

0
sinn−1 θ cos2 θ (D.11)

=
Sn−1
Sn

∫ π/2

0
sinn−1 θ(1− sin2 θ) (D.12)

=
Sn−1
Sn

∫ π/2

0
sinn−1 θ − sinn+1 θ (D.13)

Now we use a known result in existing literature that uses integration by parts to evaluate

the integral of exponentiated sine function, which states,∫
sinn θ = − 1

n
sinn−1 θ cos θ +

n− 1

n

∫
sinn−2 θ (D.14)

Since our integration is between the limits 0 and π/2, we find that the first term on the

R.H.S. in the above expression is 0. Recursively expanding the n− 2th power sine term,

we can similarly eliminate all such terms until we are left with the integral of sin θ or

sin0 θ depending on whether n is odd or even. For the case when n is odd, we get,∫ π/2

0
sinn θ =

(
2

3
· 4

5
. . .

n− 1

n

)∫ π/2

0
sin θ (D.15)

= −
(

2

3
· 4

5
. . .

n− 1

n

)
cos θ|π/20 (D.16)

=

(
2

3
· 4

5
. . .

n− 1

n

)
(D.17)

For the case when n is even, we similarly get,∫ π/2

0
sinn θ =

(
1

2
· 3

4
· 5

6
. . .

n− 1

n

)∫ π/2

0
sin0 θ (D.18)

=

(
1

2
· 3

4
· 5

6
. . .

n− 1

n

)∫ π/2

0
1 (D.19)

=

(
1

2
· 3

4
· 5

6
. . .

n− 1

n

)
· π

2
(D.20)

Thus,

∫ π/2

0
sinn−1 θ − sinn+1 θ =


1
n ·
(
2
3 ·

4
5 . . .

n−2
n−1

)
if n is odd

1
n ·
(
1
2 ·

3
4 . . .

n−2
n−1

)
· π2 otherwise

(D.21)

Appendix – Proofs 120

Define,

Kn =


2Sn−1

Sn
·
(
2
3 ·

4
5 . . .

n−2
n−1

)
if n is odd

2Sn−1

Sn
·
(
1
2 ·

3
4 . . .

n−2
n−1

)
· π2 otherwise

(D.22)

Then, ∫
R̂i

p(R̂i) max(0, cos θ)2 =
0.5Kn

n
(D.23)

Thus,

E[‖v‖2] = mE[v2i] (D.24)

= m · 2n

m
· ‖u‖2 · 0.5Kn

n
(D.25)

= Kn · ‖u‖2 (D.26)

which proves the claim. �

Lemma 1. If network weights are sampled i.i.d. from a Gaussian distribution with mean

0 and biases are 0 at initialization, then conditioned on hl−1, each dimension of 1(al)

follows an i.i.d. Bernoulli distribution with probability 0.5 at initialization.

Proof: Note that al := Wlhl−1 at initialization (biases are 0) and Wl are sampled

i.i.d. from a random distribution with mean 0. Therefore, each dimension ali is simply

a weighted sum of i.i.d. zero mean Gaussian, which is also a 0 mean Gaussian random

variable.

To prove the claim, note that the indicator operator applied on a random variable with

0 mean and symmetric distribution will have equal probability mass on both sides of 0,

which is the same as a Bernoulli distributed random variable with probability 0.5. Finally,

each dimension of al is i.i.d. simply because all the elements of Wl are sampled i.i.d.,

and hence each dimension of al is a weighted sum of a different set of i.i.d. random

variables. �

Theorem 2. Let v =
√

2 ·
(
R̂Tu

)
� z, where u ∈ Rm, R ∈ Rm×n and z ∈ Rn. If each

Ri
i.i.d.∼ P where P is any isotropic distribution in Rn or alternatively R̂ is a randomly

generated matrix with orthogonal rows and zi
i.i.d.∼ Bernoulli(0.5), then for any fixed vector

u, E[‖v‖2] = ‖u‖2.

Appendix – Proofs 121

Proof: Our goal is to compute,

E[‖v‖2] = 2 · E[‖(
n∑
i=1

R̂iui)� z‖2] (D.27)

= 2 · E[
m∑
j=1

(
n∑
i=1

R̂ijui)
2 · z2j] (D.28)

= 2 · E[z2j] · E[

m∑
j=1

(

n∑
i=1

R̂ijui)
2] (D.29)

= E[‖(
n∑
i=1

R̂iui)‖2] (D.30)

= E[

n∑
i=1

u2i ‖R̂i‖2 +
∑
i 6=j

uiuj · R̂T
i R̂j] (D.31)

= ‖u‖2 +
∑
i 6=j

uiuj · E[R̂T
i R̂j] (D.32)

= ‖u‖2 +
∑
i 6=j

uiuj · E[cosφ] (D.33)

where φ is the angle between R̂i and R̂j. For orthogonal matrix R̂ cosφ is always 0,

while for R̂ such that each Ri
i.i.d.∼ P where P is any isotropic distribution, E[cosφ] = 0.

Thus for both cases1 we have that,

E[‖v‖2] = ‖u‖2 (D.34)

which proves the claim. �

Theorem 3. Let R({Fb(·)}B−1b=0 , θ, α) be a residual network with output fθ(·). Assume

that each residual block Fb(·) (∀b) is designed such that at initialization, ‖Fb(h)‖ = ‖h‖
for any input h to the residual block, and < h, Fb(h) >≈ 0. If we set α = 1/

√
B, then,

‖fθ(x)‖2 ≈ c · ‖x‖2 (D.35)

where c ∈ [
√

2,
√
e].

Proof: Let x denote the input of the residual network. Consider the first hidden state

h1 given by,

h1 := x + αF1(x) (D.36)

1This also suggests that orthogonal initialization is strictly better than Gaussian initialization since
the result holds without the dependence on expectation in contrast to the Gaussian case.

Appendix – Proofs 122

Then the squared norm of h1 is given by,

‖h1‖2 = ‖x + αF1(x)‖2 (D.37)

= ‖x‖2 + α2‖F1(x)‖2 + 2α < x, F1(x) > (D.38)

Since ‖F1(x)‖2 = ‖x‖2 and < x, F1(x) >≈ 0 due to our assumptions, we have,

‖h1‖2 ≈ ‖x‖2 · (1 + α2) (D.39)

Similarly,

h2 := h1 + αF2(h
1) (D.40)

Thus,

‖h2‖2 = ‖h1‖2 + α2‖F2(h
1)‖2 + 2α < h1, F2(h

1) > (D.41)

Then due to our assumptions we get,

‖h2‖2 ≈ ‖h1‖2 · (1 + α2) (D.42)

Thus we get,

‖h2‖2 ≈ ‖x‖2 · (1 + α2)2 (D.43)

Extending such inequalities to the Bth residual block, we get,

‖hB‖2 ≈ ‖x‖2 · (1 + α2)B (D.44)

Setting α = 1/
√
B, we get,

‖hB‖2 ≈ ‖x‖2 ·
(

1 +
1

B

)B
(D.45)

Note that the factor
(
1 + 1

B

)B → e as B →∞ due to the following well known result,

lim
B→∞

(
1 +

1

B

)B
= e (D.46)

Since B ∈ Z,
(
1 + 1

B

)B/2 lies in [
√

2,
√
e].

Thus we have proved the claim. �

Appendix – Proofs 123

Theorem 4. Let R({Fb(·)}B−1b=0 , θ, α) be a residual network with output fθ(·). Assume

that each residual block Fb(·) (∀b) is designed such that at initialization, ‖∂Fb(h
b)

∂hb
u‖ = ‖u‖

for any fixed input u of appropriate dimensions, and < ∂L
∂hb

,
∂Fb−1

∂hb−1 · ∂L∂hb >≈ 0. If α = 1√
B
,

then,

‖ ∂L
∂h1
‖ ≈ c · ‖ ∂L

∂hB
‖ (D.47)

where c ∈ [
√

2,
√
e].

Proof: Recall,

hb := x + αFb(h
b−1) (D.48)

Therefore, taking derivative on both sides,

∂L
∂hb−1

= (I + α · ∂Fb
∂hb−1

) · ∂L
∂hb

(D.49)

=
∂L
∂hb

+ α · ∂Fb
∂hb−1

· ∂L
∂hb

(D.50)

Taking norm on both sides,

‖ ∂L
∂hb−1

‖2 = ‖ ∂L
∂hb
‖2 + α2 · ‖ ∂Fb

∂hb−1
· ∂L
∂hb−1

‖2 + 2α· < ∂L
∂hb

,
∂Fb
∂hb−1

∂L
∂hb−1

> (D.51)

Due to our assumptions, we have,

‖ ∂L
∂hb−1

‖2 ≈ ‖ ∂L
∂hb
‖2 + α2 · ‖ ∂L

∂hb−1
‖2 (D.52)

= (1 + α2) · ‖ ∂L
∂hb−1

‖2 (D.53)

Applying this result to all B residual blocks we have that,

‖ ∂L
∂h1
‖2 ≈ (1 + α2)B · ‖ ∂L

∂hB
‖2 (D.54)

Setting α = 1/
√
B, we get,

‖ ∂L
∂h1
‖2 ≈ (1 + 1/B)B · ‖ ∂L

∂hB
‖2 (D.55)

Note that the factor
(
1 + 1

B

)B → e as B →∞ due to the following well known result,

lim
B→∞

(
1 +

1

B

)B
= e (D.56)

Since B ∈ Z,
(
1 + 1

B

)B/2 lies in [
√

2,
√
e].

Appendix – Proofs 124

Thus we have proved the claim. �

Bibliography

[1] Alan Turing. Computing machinery and intelligence-am turing. Mind, 1950.

[2] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon.

A proposal for the Dartmouth summer research project on artificial intelligence,

August 31, 1955. AI magazine, 2006.

[3] Ada Lovelace. Sketch of the analytical engine invented by Charles Babbage, 1842.

[4] Richard Sutton. The bitter lesson. http://http://www.incompleteideas.net/, 2019.

URL http://incompleteideas.net/IncIdeas/BitterLesson.html.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:

A large-scale hierarchical image database. In CVPR, 2009.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification

with deep convolutional neural networks. In NIPS, 2012.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-

tifiers: Surpassing human-level performance on imagenet classification. In ICCV,

2015.

[8] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Ima-

genet training in minutes. In ICPP, 2018.

[9] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar

Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring

the limits of weakly supervised pretraining. In ECCV, 2018.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In NAACL,

2019.

[11] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

125

http://incompleteideas.net/IncIdeas/BitterLesson.html

Bibliography 126

et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165,

2020.

[12] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney.

Recurrent experience replay in distributed reinforcement learning. In ICLR, 2018.

[13] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,

Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA:

Scalable distributed deep-RL with importance weighted actor-learner architectures.

In ICML, 2018.

[14] Víctor Campos, Francesc Sastre, Maurici Yagües, Míriam Bellver, Xavier Giró-i-

Nieto, and Jordi Torres. Distributed training strategies for a computer vision deep

learning algorithm on a distributed GPU cluster. Procedia Computer Science, 2017.

[15] Víctor Campos, Brendan Jou, Xavier Giró-i-Nieto, Jordi Torres, and Shih-Fu

Chang. Skip RNN: Learning to skip state updates in recurrent neural networks.

In ICLR, 2018.

[16] Devansh Arpit*, Víctor Campos*, and Yoshua Bengio. How to initialize your

network? Robust initialization for WeightNorm & ResNets. In NeurIPS, 2019.

[17] Víctor Campos, Xavier Giró-i-Nieto, and Jordi Torres. Importance Weighted Evo-

lution Strategies. In NeurIPS Deep RL Workshop, 2018.

[18] Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i-

Nieto, and Jordi Torres. Explore, Discover and Learn: Unsupervised discovery of

state-covering skills. In ICML, 2020.

[19] Víctor Campos, Brendan Jou, and Xavier Giró-i-Nieto. From pixels to sentiment:

Fine-tuning CNNs for visual sentiment prediction. Image and Vision Computing,

2017.

[20] Xunyu Lin, Víctor Campos, Xavier Giró-i-Nieto, Jordi Torres, and Cristian Canton

Ferrer. Disentangling motion, foreground and background features in videos. In

CVPR Brave New Motion Representations Workshop, 2017.

[21] Víctor Campos, Francesc Sastre, Maurici Yagües, Jordi Torres, and Xavier Giró-i-

Nieto. Scaling a convolutional neural network for classification of adjective noun

pairs with tensorflow on gpu clusters. In CCGRID, 2017.

[22] Dèlia Fernández, Alejandro Woodward, Víctor Campos, Xavier Giró-i-Nieto, Bren-

dan Jou, and Shih-Fu Chang. More cat than cute?: Interpretable prediction of

adjective-noun pairs. In ACM MM MUSA Workshop, 2017.

Bibliography 127

[23] Daniel Fojo, Víctor Campos, and Xavier Giró-i-Nieto. Comparing fixed and adap-

tive computation time for recurrent neural networks. In ICLR Workshop Track,

2018.

[24] Amaia Salvador, Míriam Bellver, Víctor Campos, Manel Baradad, Ferran Marqués,

Jordi Torres, and Xavier Giró-i-Nieto. Recurrent neural networks for semantic

instance segmentation. In CVPR DeepVision Workshop, 2018.

[25] Víctor Campos, Xavier Giró-i-Nieto, Brendan Jou, Jordi Torres, and Shih-Fu

Chang. Sentiment concept embedding for visual affect recognition. In Multimodal

Behavior Analysis in the Wild. Elsevier, 2019.

[26] Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.

[27] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[28] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-

ematics of control, signals and systems, 1989.

[29] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the

number of linear regions of deep neural networks. In NIPS, 2014.

[30] Paul Bloom. How children learn the meanings of words. MIT press, 2002.

[31] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel S Schoenholz, and

Jeffrey Pennington. Dynamical isometry and a mean field theory of cnns: How to

train 10,000-layer vanilla convolutional neural networks. In ICML, 2018.

[32] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP,

2014.

[33] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn,

and Dong Yu. Convolutional neural networks for speech recognition. IEEE/ACM

Transactions on audio, speech, and language processing, 2014.

[34] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks

for semantic segmentation. In CVPR, 2015.

[35] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. In ICLR, 2015.

[36] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network

regularization. In ICLR, 2015.

Bibliography 128

[37] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition

with deep recurrent neural networks. In ICASSP, 2013.

[38] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 1997.

[39] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase represen-

tations using rnn encoder-decoder for statistical machine translation. In EMNLP,

2014.

[40] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Neurocomput-

ing: foundations of research. chapter: Learning internal representations by error

propagation, 1988.

[41] Yu Nesterov. A method of solving a convex programming problem with convergence

rate o(1/sqrt(k)). In Soviet Mathematics Doklady, 1983.

[42] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude. COURSERA: Neural Networks for

Machine Learning, 2012.

[43] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[44] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature

hierarchies for accurate object detection and semantic segmentation. In CVPR,

2014.

[45] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[46] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with

deep reinforcement learning. In ICLR, 2016.

[47] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

High-dimensional continuous control using generalized advantage estimation. In

ICLR, 2016.

[48] David Ha. A visual guide to evolution strategies. blog.otoro.net, 2017. URL

https://blog.otoro.net/2017/10/29/visual-evolution-strategies/.

[49] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolu-

tion strategies as a scalable alternative to reinforcement learning. arXiv preprint

arXiv:1703.03864, 2017.

https://blog.otoro.net/2017/10/29/visual-evolution-strategies/

Bibliography 129

[50] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Ken-

neth O Stanley, and Jeff Clune. Deep neuroevolution: genetic algorithms are a

competitive alternative for training deep neural networks for reinforcement learn-

ing. arXiv preprint arXiv:1712.06567, 2017.

[51] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging the gap between human and

machine translation. arXiv preprint arXiv:1609.08144, 2016.

[52] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:

A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[53] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 1998.

[54] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-

thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural

networks. In CVPR, 2014.

[55] NVIDIA. NVIDIA Tesla V100 GPU architecture. http://images.nvidia.com/co

ntent/volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2018.

[56] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed

deep networks. In NIPS, 2012.

[57] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Ge-

offrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer. In ICLR, 2017.

[58] Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.

Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981, 2016.

[59] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large

minibatch SGD: training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,

2017.

[60] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In AISTATS, 2010.

[61] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In ICML, 2015.

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Bibliography 130

[62] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameter-

ization to accelerate training of deep neural networks. In NIPS, 2016.

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[64] CUDA Nvidia. Compute unified device architecture programming guide. 2007.

[65] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John

Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep

learning. arXiv preprint arXiv:1410.0759, 2014.

[66] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional ar-

chitecture for fast feature embedding. In ACM MM, 2014.

[67] Philipp Moritz, Robert Nishihara, Ion Stoica, and Michael I Jordan. Sparknet:

Training deep networks in spark. arXiv preprint arXiv:1511.06051, 2015.

[68] He Ma, Fei Mao, and Graham W Taylor. Theano-mpi: a theano-based distributed

training framework. arXiv preprint arXiv:1605.08325, 2016.

[69] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.

Tensorflow: A system for large-scale machine learning. In OSDI symposium at

USENIX, 2016.

[70] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient

machine learning library for heterogeneous distributed systems. arXiv preprint

arXiv:1512.01274, 2015.

[71] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.

Pytorch: An imperative style, high-performance deep learning library. In NeurIPS,

2019.

[72] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks.

arXiv preprint arXiv:1404.5997, 2014.

[73] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic

averaging SGD. In NIPS, 2015.

[74] S Sundhar Ram, Angelia Nedic, and Venugopal V Veeravalli. Asynchronous gossip

algorithms for stochastic optimization. In GameNets, 2009.

Bibliography 131

[75] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic

gradient descent and application to data-parallel distributed training of speech

dnns. In Interspeech, 2014.

[76] Rosalind W. Picard. Affective Computing, volume 252. MIT Press Cambridge,

1997.

[77] Daniel McDuff, Rana El Kaliouby, Jeffrey F Cohn, and Rosalind W Picard. Pre-

dicting ad liking and purchase intent: Large-scale analysis of facial responses to

ads. IEEE Transactions on Affective Computing, 2015.

[78] Robert Plutchik. Emotion: A Psychoevolutionary Synthesis. Harper & Row, 1980.

[79] Michel Cabanac. What is emotion? Behavioural processes, 2002.

[80] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Information

Retrieval, 2008.

[81] Damian Borth, Rongrong Ji, Tao Chen, Thomas Breuel, and Shih-Fu Chang.

Large-scale visual sentiment ontology and detectors using adjective noun pairs.

In ACM MM, 2013.

[82] Brendan Jou, Tao Chen, Nikolaos Pappas, Miriam Redi, Mercan Topkara, and

Shih-Fu Chang. Visual affect around the world: A large-scale multilingual visual

sentiment ontology. In ACM MM, 2015.

[83] Tao Chen, Damian Borth, Trevor Darrell, and Shih-Fu Chang. DeepSentiBank:

Visual sentiment concept classification with deep convolutional neural networks.

arXiv:1410.8586, 2014.

[84] Brendan Jou and Shih-Fu Chang. Going deeper for multilingual visual sentiment

detection. arXiv preprint arXiv:1605.09211, 2016.

[85] Damian Borth, Tao Chen, Rongrong Ji, and Shih-Fu Chang. Sentibank: large-scale

ontology and classifiers for detecting sentiment and emotions in visual content. In

ACM MM, 2013.

[86] BSC Support Team. Greasy user guide. https://github.com/jonarbo/GREASY/

blob/master/doc/greasy_userguide.pdf, 2012.

[87] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are

features in deep neural networks? In NIPS, 2014.

[88] Peter H Jin, Qiaochu Yuan, Forrest Iandola, and Kurt Keutzer. How to scale

distributed deep learning? arXiv preprint arXiv:1611.04581, 2016.

https://github.com/jonarbo/GREASY/blob/master/doc/greasy_userguide.pdf
https://github.com/jonarbo/GREASY/blob/master/doc/greasy_userguide.pdf

Bibliography 132

[89] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,

and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization

gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

[90] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-

dencies with gradient descent is difficult. IEEE Transactions on Neural Networks,

1994.

[91] Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased LSTM: accelerating re-

current network training for long or event-based sequences. In NIPS, 2016.

[92] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating

gradients through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[93] Yoshua Bengio. Deep learning of representations: Looking forward. In SLSP, 2013.

[94] Andrew Davis and Itamar Arel. Low-rank approximations for conditional feed-

forward computation in deep neural networks. arXiv preprint arXiv:1312.4461,

2013.

[95] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Optimizing accuracy-

efficiency trade-offs by selective execution. arXiv preprint arXiv:1701.00299, 2017.

[96] Amjad Almahairi, Nicolas Ballas, Tim Cooijmans, Yin Zheng, Hugo Larochelle,

and Aaron Courville. Dynamic capacity networks. In ICML, 2016.

[97] Mason McGill and Pietro Perona. Deciding how to decide: Dynamic routing in

artificial neural networks. In ICML, 2017.

[98] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv

preprint arXiv:1603.08983, 2016.

[99] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recur-

rent neural networks. In ICLR, 2017.

[100] Yacine Jernite, Edouard Grave, Armand Joulin, and Tomas Mikolov. Variable

computation in recurrent neural networks. In ICLR, 2017.

[101] Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clock-

work rnn. In ICML, 2014.

[102] David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Bal-

las, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron

Courville, et al. Zoneout: Regularizing rnns by randomly preserving hidden acti-

vations. In ICLR, 2017.

Bibliography 133

[103] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep

networks with stochastic depth. In ECCV, 2016.

[104] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual

attention. In NIPS, 2014.

[105] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural

image caption generation with visual attention. In ICML, 2015.

[106] Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition

with visual attention. arXiv preprint arXiv:1412.7755, 2014.

[107] Gunnar A Sigurdsson, Xinlei Chen, and Abhinav Gupta. Learning visual storylines

with skipping recurrent neural networks. In ECCV, 2016.

[108] Subhabrata Bhattacharya, Felix X Yu, and Shih-Fu Chang. Minimally needed

evidence for complex event recognition in unconstrained videos. In ICMR, 2014.

[109] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning

of action detection from frame glimpses in videos. In CVPR, 2016.

[110] Yu-Chuan Su and Kristen Grauman. Leaving some stones unturned: dynamic

feature prioritization for activity detection in streaming video. In ECCV, 2016.

[111] Colin Raffel and Dieterich Lawson. Training a subsampling mechanism in expec-

tation. In ICLR Workshop Track, 2017.

[112] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-

recurrent neural networks. In ICLR, 2017.

[113] Tao Lei and Yu Zhang. Training rnns as fast as cnns. arXiv preprint

arXiv:1709.02755, 2017.

[114] Adams Wei Yu, Hongrae Lee, and Quoc V Le. Learning to skim text. In ACL,

2017.

[115] Ronald J Williams. Simple statistical gradient-following algorithms for connection-

ist reinforcement learning. Machine learning, 1992.

[116] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron

Courville. Recurrent batch normalization. In ICLR, 2017.

[117] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Bibliography 134

[118] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv

preprint arXiv:1410.5401, 2014.

[119] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv

preprint arXiv:1410.3916, 2014.

[120] Geoffrey Hinton. Neural networks for machine learning. Coursera video lectures,

2012.

[121] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Binarized neural networks: Training deep neural networks with weights

and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[122] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

recurrent neural networks. In ICML, 2013.

[123] Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blun-

som. Learning to transduce with unbounded memory. In NIPS, 2015.

[124] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize

recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

[125] Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin, Roland Memisevic, Ruslan R

Salakhutdinov, and Yoshua Bengio. Architectural complexity measures of recurrent

neural networks. In NIPS, 2016.

[126] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent

neural networks. In ICML, 2016.

[127] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and

Christopher Potts. Learning word vectors for sentiment analysis. In ACL, 2011.

[128] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In NIPS,

2013.

[129] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Adversarial training methods

for semi-supervised text classification. In ICLR, 2017.

[130] Shayne Longpre, Sabeek Pradhan, Caiming Xiong, and Richard Socher. A way out

of the odyssey: Analyzing and combining recent insights for lstms. arXiv preprint

arXiv:1611.05104, 2016.

[131] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,

Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent

convolutional networks for visual recognition and description. In CVPR, 2015.

Bibliography 135

[132] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol

Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep net-

works for video classification. In CVPR, 2015.

[133] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of

101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,

2012.

[134] Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor Darrell. Clockwork

convnets for video semantic segmentation. arXiv preprint arXiv:1608.03609, 2016.

[135] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.

Learning spatiotemporal features with 3d convolutional networks. In ICCV, 2015.

[136] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for

action recognition in videos. In NIPS, 2014.

[137] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model

and the kinetics dataset. In CVPR, 2017.

[138] Gunnar Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and

Abhinav Gupta. Hollywood in homes: Crowdsourcing data collection for activity

understanding. In ECCV, 2016.

[139] Gunnar A Sigurdsson, Santosh Divvala, Ali Farhadi, and Abhinav Gupta. Asyn-

chronous temporal fields for action recognition. arXiv preprint arXiv:1612.06371,

2016.

[140] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-

pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv

preprint arXiv:1412.3555, 2014.

[141] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.

The Journal of Machine Learning Research, 2014.

[142] Mohammad Sadegh Aliakbarian, Fatemehsadat Saleh, Mathieu Salzmann, Basura

Fernando, Lars Petersson, and Lars Andersson. Encouraging LSTMs to anticipate

actions very early. arXiv preprint arXiv:1703.07023, 2017.

[143] Boris Hanin and David Rolnick. How to start training: The effect of initialization

and architecture. In NeurIPS, 2018.

[144] Boris Hanin. Which neural net architectures give rise to exploding and vanishing

gradients? In NeurIPS, 2018.

Bibliography 136

[145] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fis-

cher, Yoshua Bengio, and Amos Storkey. Three factors influencing minima in sgd.

arXiv preprint arXiv:1711.04623, 2017.

[146] Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and

stochastic gradient descent. In ICLR, 2018.

[147] Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay

the learning rate, increase the batch size. In ICLR, 2018.

[148] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-

mann machines. In ICML, 2010.

[149] Igor Gitman and Boris Ginsburg. Comparison of batch normalization and weight

normalization algorithms for the large-scale image classification. arXiv preprint

arXiv:1709.08145, 2017.

[150] Wenling Shang, Justin Chiu, and Kihyuk Sohn. Exploring normalization in deep

residual networks with concatenated rectified linear units. In AAAI, 2017.

[151] Devansh Arpit, Yingbo Zhou, Bhargava U Kota, and Venu Govindaraju. Normal-

ization propagation: A parametric technique for removing internal covariate shift

in deep networks. In ICML, 2016.

[152] Dmytro Mishkin and Jiri Matas. All you need is a good init. arXiv preprint

arXiv:1511.06422, 2015.

[153] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell. Data-

dependent initializations of convolutional neural networks. arXiv preprint

arXiv:1511.06856, 2015.

[154] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks. In ICLR, 2014.

[155] Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya

Ganguli. Exponential expressivity in deep neural networks through transient chaos.

In NIPS, 2016.

[156] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. Resurrecting the sig-

moid in deep learning through dynamical isometry: theory and practice. In NIPS,

2017.

[157] Jeffrey Pennington, Samuel S Schoenholz, and Surya Ganguli. The emergence of

spectral universality in deep networks. In AISTATS, 2018.

Bibliography 137

[158] Masato Taki. Deep residual networks and weight initialization. arXiv preprint

arXiv:1709.02956, 2017.

[159] Wojciech Tarnowski, Piotr Warchoł, Stanisław Jastrzębski, Jacek Tabor, and Ma-

ciej A Nowak. Dynamical isometry is achieved in residual networks in a universal

way for any activation function. arXiv preprint arXiv:1809.08848, 2018.

[160] Stanisław Jastrzębski, Devansh Arpit, Nicolas Ballas, Vikas Verma, Tong Che, and

Yoshua Bengio. Residual connections encourage iterative inference. In ICLR, 2018.

[161] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual

learning without normalization. In ICLR, 2019.

[162] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional

neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[163] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. In ICLR, 2018.

[164] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

[165] Yann LeCun. The MNIST database of handwritten digits. ht tp : // ya nn .l ec

un .c om /e xd b/ mn is t/ , 1998.

[166] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[167] Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards understanding

regularization in batch normalization. In ICLR, 2019.

[168] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In ICML, 2016.

[169] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The ar-

cade learning environment: An evaluation platform for general agents. Journal of

Artificial Intelligence Research, 2013.

[170] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In ICML, 2015.

[171] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Ju-

lian Schrittwieser, et al. Starcraft II: A new challenge for reinforcement learning.

arXiv preprint arXiv:1708.04782, 2017.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Bibliography 138

[172] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja

Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,

et al. Mastering the game of go without human knowledge. Nature, 2017.

[173] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for

model-based control. In IROS, 2012.

[174] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,

2015.

[175] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[176] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.

[177] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.

In-datacenter performance analysis of a tensor processing unit. In ISCA, 2017.

[178] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, et al. Grandmaster level in Starcraft II using multi-agent reinforcement

learning. Nature, 2019.

[179] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-

ter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.

Hindsight experience replay. In NIPS, 2017.

[180] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-

Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael

Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint

arXiv:1910.07113, 2019.

[181] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon,

Alessandro De Maria, Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beat-

tie, Stig Petersen, et al. Massively parallel methods for deep reinforcement learning.

arXiv preprint arXiv:1507.04296, 2015.

[182] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario

Amodei. Deep reinforcement learning from human preferences. In NIPS, 2017.

Bibliography 139

[183] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas De-

grave, Tom van de Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg.

Learning by playing solving sparse reward tasks from scratch. In ICML, 2018.

[184] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized expe-

rience replay. In ICLR, 2016.

[185] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and

Sergey Levine. Q-prop: Sample-efficient policy gradient with an off-policy critic.

In ICLR, 2017.

[186] Ingo Rechenberg. Evolutionsstrategie–optimierung technisher systeme nach

prinzipien der biologischen evolution. 1973.

[187] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evo-

lution strategies. In WCCI, 2008.

[188] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen

Schmidhuber. Natural evolution strategies. JMLR, 2014.

[189] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint

arXiv:1606.01540, 2016.

[190] Paweł Wawrzyński. Real-time reinforcement learning by sequential actor–critics

and experience replay. Neural Networks, 2009.

[191] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and

efficient off-policy reinforcement learning. In NIPS, 2016.

[192] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Ken-

neth O Stanley, and Jeff Clune. Improving exploration in evolution strategies for

deep reinforcement learning via a population of novelty-seeking agents. In NIPS,

2018.

[193] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval

Tassa, Tom Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence

of locomotion behaviours in rich environments. arXiv preprint arXiv:1707.02286,

2017.

[194] Rein Houthooft, Richard Y Chen, Phillip Isola, Bradly C Stadie, Filip Wol-

ski, Jonathan Ho, and Pieter Abbeel. Evolved policy gradients. arXiv preprint

arXiv:1802.04821, 2018.

Bibliography 140

[195] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD

thesis, King’s College, Cambridge, 1989.

[196] Doina Precup, Richard S Sutton, and Satinder Singh. Eligibility traces for off-

policy policy evaluation. In ICML, 2001.

[197] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,

and Hado van Hasselt. Multi-task deep reinforcement learning with popart. arXiv

preprint arXiv:1809.04474, 2018.

[198] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. OpenAI Blog,

2019.

[199] Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.

Data-efficient image recognition with contrastive predictive coding. arXiv preprint

arXiv:1905.09272, 2019.

[200] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-

tum contrast for unsupervised visual representation learning. arXiv preprint

arXiv:1911.05722, 2019.

[201] Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment – an intro-

duction. In Guided Self-Organization: Inception. Springer, 2014.

[202] Claude E Shannon. A mathematical theory of communication. The Bell system

technical journal, 1948.

[203] Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximi-

sation for intrinsically motivated reinforcement learning. In NIPS, 2015.

[204] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement learning. Artificial

intelligence, 1999.

[205] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic

control. arXiv preprint arXiv:1611.07507, 2016.

[206] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational

option discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

[207] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity

is all you need: Learning skills without a reward function. In ICLR, 2019.

[208] David Barber and Felix V Agakov. The IM algorithm: a variational approach to

information maximization. In NIPS, 2003.

Bibliography 141

[209] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for

hierarchical reinforcement learning. In ICLR, 2017.

[210] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement

learning with deep energy-based policies. In ICML, 2017.

[211] Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-

Farley, and Volodymyr Mnih. Fast task inference with variational intrinsic successor

features. In ICLR, 2020.

[212] Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado

van Hasselt, David Silver, and Tom Schaul. Universal successor features approxi-

mators. In ICLR, 2019.

[213] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P

van Hasselt, and David Silver. Successor features for transfer in reinforcement

learning. In NIPS, 2017.

[214] Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel,

Daniel Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforce-

ment learning using successor features and generalised policy improvement. In

ICML, 2018.

[215] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven

Hansen, and Volodymyr Mnih. Unsupervised control through non-parametric dis-

criminative rewards. In ICLR, 2019.

[216] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey

Levine. Skew-fit: State-covering self-supervised reinforcement learning. arXiv

preprint arXiv:1903.03698, 2019.

[217] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.

Dynamics-aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657,

2019.

[218] Joan Capdevila, Jesús Cerquides, and Jordi Torres. Mining urban events from the

tweet stream through a probabilistic mixture model. Data mining and knowledge

discovery, 2018.

[219] Elad Hazan, ShamMKakade, Karan Singh, and Abby Van Soest. Provably efficient

maximum entropy exploration. In ICML, 2019.

Bibliography 142

[220] William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noboru

Kuno, Stephanie Milani, Sharada Mohanty, Diego Perez Liebana, Ruslan Salakhut-

dinov, Nicholay Topin, et al. The minerl competition on sample efficient reinforce-

ment learning using human priors. arXiv preprint arXiv:1904.10079, 2019.

[221] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In

NIPS, 2016.

[222] Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal

Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, et al.

Deep q-learning from demonstrations. arXiv preprint arXiv:1704.03732, 2017.

[223] Matej Večerík, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal

Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.

Leveraging demonstrations for deep reinforcement learning on robotics problems

with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

[224] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey

Levine, and Pierre Sermanet. Learning latent plans from play. arXiv preprint

arXiv:1903.01973, 2019.

[225] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR,

2014.

[226] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright,

Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al.

Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

[227] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete

representation learning. In NeurIPS, 2017.

[228] Alexander Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Keeping

your distance: Solving sparse reward tasks using self-balancing shaped rewards. In

NeurIPS, 2019.

[229] Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and

Ruslan Salakhutdinov. Efficient exploration via state marginal matching. arXiv

preprint arXiv:1906.05274, 2019.

[230] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff

Clune. Go-explore: a new approach for hard-exploration problems. arXiv preprint

arXiv:1901.10995, 2019.

[231] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value

function approximators. In ICML, 2015.

Bibliography 143

[232] Ronald Parr and Stuart J Russell. Reinforcement learning with hierarchies of

machines. In NIPS, 1998.

[233] Doina Precup. Temporal abstraction in reinforcement learning. 2001.

[234] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture.

In AAAI, 2017.

[235] Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of

deep options. arXiv preprint arXiv:1703.08294, 2017.

[236] Ofir Nachum, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierar-

chical reinforcement learning. arXiv preprint arXiv:1805.08296, 2018.

[237] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta

learning shared hierarchies. In ICLR, 2018.

[238] Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration

via randomized value functions. In ICML, 2016.

[239] Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,

and Remi Munos. Unifying count-based exploration and intrinsic motivation. In

NIPS, 2016.

[240] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan

Duan, John Schulman, Filip DeTurck, and Pieter Abbeel. # exploration: A study

of count-based exploration for deep reinforcement learning. In NIPS, 2017.

[241] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z

Leibo, David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsu-

pervised auxiliary tasks. In ICLR, 2017.

[242] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter

Abbeel. Vime: Variational information maximizing exploration. In NIPS, 2016.

[243] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-

driven exploration by self-supervised prediction. In ICML, 2017.

[244] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by

random network distillation. arXiv preprint arXiv:1810.12894, 2018.

[245] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning.

In ICML, 2018.

[246] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur

Szlam, and Rob Fergus. Intrinsic motivation and automatic curricula via asym-

metric self-play. arXiv preprint arXiv:1703.05407, 2017.

Bibliography 144

[247] Hao Liu, Alexander Trott, Richard Socher, and Caiming Xiong. Competitive ex-

perience replay. In ICLR, 2019.

[248] Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through

the search for novelty alone. Evolutionary computation, 2011.

[249] Joel Lehman and Kenneth O Stanley. Novelty search and the problem with objec-

tives. In Genetic programming theory and practice IX. Springer, 2011.

[250] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots

that can adapt like animals. Nature, 2015.

[251] Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites.

arXiv preprint arXiv:1504.04909, 2015.

[252] Justin K Pugh, Lisa B Soros, and Kenneth O Stanley. Quality diversity: A new

frontier for evolutionary computation. Frontiers in Robotics and AI, 2016.

[253] Elliot Meyerson, Joel Lehman, and Risto Miikkulainen. Learning behavior charac-

terizations for novelty search. In GECCO, 2016.

[254] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,

Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,

Avraham Ruderman, et al. Human-level performance in 3d multiplayer games

with population-based reinforcement learning. Science, 2019.

[255] Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias Springenberg, and

Martin Riedmiller. Self-supervised learning of image embedding for continuous

control. arXiv preprint arXiv:1901.00943, 2019.

[256] Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and

Chelsea Finn. Unsupervised curricula for visual meta-reinforcement learning. In

NeurIPS, 2019.

[257] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. In NIPS, 2014.

[258] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks

and tree search. Nature, 2016.

[259] Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic pol-

icy gradients in continuous control with deep reinforcement learning using the beta

distribution. In ICML, 2017.

Bibliography 145

[260] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochastic

actor. In ICML, 2018.

	Abstract
	Acknowledgements
	Acronyms
	1 Introduction
	1.1 Research Questions
	1.2 Major Contributions
	1.3 List of Publications
	1.4 Dissertation Outline

	2 Deep Learning
	2.1 Neural Networks
	2.1.1 Convolutional Neural Networks
	2.1.2 Recurrent Neural Networks

	2.2 Training Neural Networks
	2.2.1 Stochastic Gradient Descent
	2.2.2 Transfer Learning

	3 Reinforcement Learning
	3.1 Formal Definition
	3.2 Value Functions
	3.2.1 Definitions
	3.2.2 Optimality

	3.3 Types of Learning
	3.4 Common Approaches
	3.4.1 Value-Based
	3.4.2 Policy Gradient
	3.4.3 Direct Policy Search

	I Learning from Examples
	4 Distributed Training of Convolutional Neural Networks
	4.1 Related Work
	4.2 Distributed Training through Data Parallelism
	4.3 Adjective Noun Pair Detection
	4.4 Experiments
	4.4.1 Intra-Node Parallelism
	4.4.2 Distributed Training
	4.4.2.1 Throughput Analysis
	4.4.2.2 Convergence Analysis

	4.5 Discussion

	5 Learning to Skip State Updates in Recurrent Neural Networks
	5.1 Related Work
	5.2 Model Description
	5.2.1 Error Gradients
	5.2.2 Limiting Computation

	5.3 Experiments
	5.3.1 Adding Task
	5.3.2 Frequency Discrimination Task
	5.3.3 MNIST Classification from a Sequence of Pixels
	5.3.4 Sentiment Analysis on IMDB
	5.3.5 Action Classification on UCF-101
	5.3.6 Temporal Action Localization on Charades

	5.4 Discussion

	6 Robust Initialization for WeightNorm & ResNets
	6.1 Related Work
	6.2 Weight Normalized ReLU Networks
	6.2.1 Forward Pass
	6.2.2 Backward Pass
	6.2.3 Implementation Details

	6.3 Residual Networks
	6.3.1 Forward Pass
	6.3.2 Backward Pass
	6.3.3 Implementation Details

	6.4 Experiments
	6.4.1 Robustness Analysis
	6.4.2 Comparison with Batch Normalization
	6.4.3 Initialization Method and Generalization Gap
	6.4.4 Preliminary Reinforcement Learning Results

	6.5 Discussion

	II Learning from Interaction
	7 Importance Weighted Evolution Strategies
	7.1 Evolution Strategies
	7.1.1 Formulation
	7.1.2 Scalability Analysis

	7.2 Importance Weighted Evolution Strategies
	7.2.1 Formulation
	7.2.2 Scalability Analysis

	7.3 Experiments
	7.3.1 Effect of the Number of IW Updates
	7.3.2 Effect of the Model Size
	7.3.3 Effect of the Learning Rate

	7.4 Related Work
	7.5 Discussion

	8 Unsupervised Discovery of State-Covering Skills
	8.1 Information-Theoretic Skill Discovery
	8.1.1 Reverse Form of the Mutual Information
	8.1.2 Forward Form of the Mutual Information

	8.2 Limitations of Existing Methods
	8.2.1 Assumptions
	8.2.2 Reverse Form of the Mutual Information
	8.2.3 Forward Form of the Mutual Information
	8.2.4 Summary of Findings

	8.3 Proposed Method
	8.4 Experiments
	8.5 Related Work
	8.6 Discussion

	9 Conclusion
	A Qualitative Results for Skip RNN
	A.1 Adding Task
	A.2 Frequency Discrimination Task

	B Choice of Mutual Information's Form for EDL
	C Implementation Details
	C.1 Robust Initialization for WeightNorm & ResNets
	C.1.1 Synthetic Data
	C.1.2 Residual Network Architecture
	C.1.3 MNIST
	C.1.4 CIFAR

	C.2 Unsupervised Discovery of State-Covering Skills
	C.2.1 Environments
	C.2.2 RL Agents
	C.2.3 Exploration
	C.2.4 Skill Discovery

	D Proofs
	Bibliography

