985 research outputs found

    Sensorless control of deep-sea ROVs PMSMs excited by matrix converters

    Get PDF
    The paper reports the development of model-based sensorless control methodologies for driving PMSMs using matrix converters. In particular, experimental results show that observer-based state-estimation techniques normally employed for sensorless control of PMSMs using voltage source inverters (VSIs), can be readily exported to matrix converter counterparts with minimal additional computational overhead. Furthermore, zero speed start-up and speed reversal are experimentally demonstrated. Finally, the observer is designed to be fault tolerant such that upon detection of a broken terminal (phase fault), the PMSM remains operational and could be utilized to provide a limp-home capabilit

    A sensorless state estimation for a safety-oriented cyber-physical system in urban driving : deep learning approach

    Get PDF
    In today's modern electric vehicles, enhancing the safety-critical cyber-physical system CPS 's performance is necessary for the safe maneuverability of the vehicle. As a typical CPS, the braking system is crucial for the vehicle design and safe control. However, precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy. In this paper, a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach. A deep neural network DNN is structured and trained using deep-learning training techniques, such as, dropout and rectified units. These techniques are utilized to obtain more accurate model for brake pressure state estimation applications. The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing. The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles. Based on these experimental data, the DNN is trained and the performance of the proposed state estimation approach is validated accordingly. The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.Published versio

    A sensorless virtual slave control scheme for kinematically dissimilar master-slave teleoperation

    Get PDF
    The use of telerobotic systems is essential for remote handling (RH) operations in radioactive areas of scientific facilities that generate high doses of radiation. Recent developments in remote handling technology has seen a great deal of effort being directed towards the design of modular remote handling control rooms equipped with a standard master arm which will be used to separately control a range of different slave devices. This application thus requires a kinematically dissimilar master-slave control scheme. In order to avoid drag and other effects such as friction or other non-linear and unmodelled slave arm effects of the common position-position architecture in nonbackdrivable slaves, this research has implemented a force-position control scheme. End-effector force is derived from motor torque values which, to avoid the use of radiation intolerant and costly sensing devices, are inferred from motor current measurement. This has been demonstrated on a 1-DOF test-rig with a permanent magnet synchronous motor teleoperated by a Sensable Phantom Omni® haptic master. This has been shown to allow accurate control while realistically conveying dynamic force information back to the operator

    Hybrid Switch Reluctance Drives For Pump Applications

    Get PDF

    Actuators and Sensors for Smart Systems

    Get PDF
    Smartness of technical systems relies also on appropriate actuators and sensors. Different to the prevalent definition of smartness to be embedded machine intelligence, in this paper elegance and simplicity of solutions is postulated be a more uniform and useful characterization. This is discussed in view of the current trends towards cyber physical systems and the role of components and subsystems, as well as of models for their effective realization. Current research on actuators and sensing in the fluid power area has some emphasis on simplicity and elegance of solution concepts and sophisticated modeling. This is demonstrated by examples from sensorless positioning, valve actuation, and compact hydraulic power supply

    State-of-art on permanent magnet brushless DC motor drives

    Get PDF
    Permanent magnet brushless DC (PMBLDC) motors are the latest choice of researchers due to their high efficiency, silent operation, compact size, high reliability and low maintenance requirements. These motors are preferred for numerous applications; however, most of them require sensorless control of these motors. The operation of PMBLDC motors requires rotor-position sensing for controlling the winding currents. The sensorless control would need estimation of rotor position from the voltage and current signals, which are easy to be sensed. This paper presents a state of art on PMBLDC motor drives with emphasis on sensorless control of these motors

    SDTC-EKF Control of an Induction Motor Based Electric Vehicle

    No full text
    International audienceThis paper presents the experimental implementation of sensorless direct torque control of an induction motor based electric vehicle. In this case, stator flux and rotational speed estimations are achieved using an extended Kalman filter. Experimental results on a test vehicle propelled by a 1-kW induction motor seem to indicate that the proposed scheme is a good candidate for an electric vehicle control

    Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs

    Get PDF
    For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control

    Drive control and real-time simulation for switched reluctance motor in a fuel cell power system.

    Get PDF
    Switched Reluctance Motor (SRM) drive is considered as a possible alternative to other conventional variable-speed drives because of several advantages [1], [2]. However, in order for the performance of a switched reluctance motor drive to suit several applications, it has to be tailored through appropriate control. Rotor position sensing is an integral part of SRM control because of the nature of torque production. Sensorless control reduces overall cost and dimension of the drive in addition to improving reliability. In this thesis, an Inductance Model Based Sensorless [8] Switched Reluctance Motor is used to design the drive controller for SRM. A hysteresis current controller and a speed controller were implemented to produce smooth torque and a stable speed for SRM. In addition, the do power supply for the SRM was derived from Fuel Cell Stack rather than from batteries or from utility lines through a front-end diode rectifier. In this research, first, the current controller and the speed controller are developed and connected to the Inductance Based Sensorless SRM model with the Fuel Cell Stack model and an offline simulation using Matlab/Simulink is obtained. A detailed computer model of the SRM control drive connected to the Fuel Cell stack model is developed in which the design of the proposed controller scheme is verified. As a next major step, a Real-Time simulation was obtained for the model using Opal-RT platform, and a comparison between the offline simulation results and real time simulation results is developed. As a final step, the characteristics of the SRM Inductance model, Controller model, and the Fuel Cell stack model are studied in detail, which is required in order to use them in future applications.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .S246. Source: Masters Abstracts International, Volume: 43-05, page: 1783. Adviser: X. Chen. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Noise and Vibration Reduction in Permanent Magnet Synchronous Motors –A Review

    Get PDF
    A detailed study of the mechanics of vibration and acoustic noise in permanent magnet synchronous motors due to electromagnetic origins. This paper reviews the various noise and vibrations reduction strategies from classical to state of art techniques. The recent research in development of wavelet controller, starting from brief review and the analytical analysis of acoustic noise and vibrations in Permanent magnet synchronous motor is presented. Application of wavelet transforms in the area of denoising and filtering is also explored.DOI:http://dx.doi.org/10.11591/ijece.v2i3.32
    • …
    corecore