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Abstract 1. Introduction

For a decade, induction motor drive-based
electrical actuators have been under investigation

as potential replacement for the conventional
hydraulic and pneumatic actuators in aircraft.
Advantages of electric actuator include lower

weight and size, reduced maintenance and
operating costs, improved safety due to the
elimination of hazardous fluids and high pressure

hydraulic and pneumatic actuators, and
increased efficiency.

Recently, the emphasis of research on
induction motor drives has been on sensorless
vector control which eliminates flux and speed
sensors mounted on the motor. Also, the

development of effective speed and flux estimators
has allowed good rotor flux-oriented (RFO)

performance at all speeds except those close to
zero. Sensorless control has improved the motor

performance, compared to the Volts/Hertz (or
constant flux) controls.

This report evaluates documented

schemes for speed sensorless drives, and discusses
the trends and tradeoffs involved in selecting a

particular scheme. These schemes combine the
attributes of the direct and indirect field-oriented
control (FOC) or use model adaptive reference

systems (MRAS) with a speed-dependent current
model for flux estimation which tracks the voltage
model-based flux estimator.

Many factors are important in comparing
the effectiveness of a speed sensorless scheme.
Among them are the wide speed range capability,
motor parameter insensitivity and noise
reduction. Although a number of schemes have
been proposed for solving the speed estimation,
zero-speed FOC with robustness against
parameter variations still remains an area of
research for speed sensorless control.

The induction motor has been the

workhorse of industry for many years. In

particular, the squirrel cage motor is one of the
most important ac machines because of its low
cost, high reliability, low inertia and high
transient torque capacity. Significant advances

in power electronics have permitted the
implementation of sophisticated methods for
control of induction motors, using FOC which

allows decoupling and separate control of the
torque and flux components of the stator currents.
Two types of field-oriented control are available.
One is the direct field-oriented control which

regulates the rotor flux using direct
measurements of rotor flux magnitude and

position. The other is the indirect field-orientation
in which the rotor flux is regulated by the slip

frequency, the stator currents and the rotor
speed.

There are a number of trends and

tradeoffs involved in implementing the different
forms of field-oriented control. First, most of the
field orientation methods require precise
estimation of either the rotor position or speed.

This implies the need for speed sensors such as
shaft-mounted tacho-generators, resolvers or
digital shaft encoders. The speed sensors lower
the system reliability and, also, require special
attention to measurement noise. Second, the
direct field-oriented scheme requires the rotor flux

which is measured using Hall effect sensors or
search coils. The Hall effect sensors degrade the

performance and reliability of the drive system.
Third, the implementation of direct field
orientation uses an open-loop integration of the
machine voltage to estimate the flux, which gives
problems at low speeds. Finally, although the
indirect field-oriented control scheme is simple
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and preferred, its performance is highly
dependent on an accurate knowledge of the
machine parameters.

Research in induction motor drives, for the

past fifteen years, has focused on improving the
different field-oriented schemes to remedy the

above problems. In particular, much work has
been done in decreasing the sensitivity of the

control system to the motor parameter estimates,
and estimating, rather than measuring, the rotor

flux or speed from the terminal voltages and
currents. This eliminates the flux or speed sensor,

thereby achieving sensorless control. The
estimators are, also, known as observers.
Another control scheme, known as direct self
control (DSC) or direct torque control (DTC),

requires only stator parameters, and has been
developed as an alternative sensor-less drive.

Fig 1 shows a general sensorless drive.
Signals representing the terminal voltages and
currents are fed to observers for estimating the

rotor flux magnitude, angle and speed. The
estimated quantities are compared with their
respective command values. The errors are fed
into the controllers which feed the power electronic
converters.
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Fig. 1 Speed Sensorless FOC System

A number of developed approaches for flux

and speed observers are documented in the
literature. In the past two years the University of
Akron, and the Power and On-Board Propulsion
Technology Division at NASA Lewis Research
Center have been investigating and developing an
induction motor drive system for aerospace

applications. An example of such applications is
replacing hydraulic actuators in launch vehicles
and aircraft with electrical actuators [43]-[44].

The motor drive system implemented uses a direct
FOC. A rotor flux observer has been developed to

overcome problems encountered in previous flux
observers. However, the observer requires the
motor rotor speed and a shaft encoder for speed
sensing.

Research reported here aimed at
eliminating the speed sensor. This required a
survey on and evaluation of more than thirty

technical papers on sensorless techniques for
induction motor drives. This report summarizes

of our findings. A follow-up of the study is to adopt
either one of the searched techniques, or combine
the attributes of many techniques to obtain a
better sensorless drive.

2. Essentials of Observer Theory

Most systems can be modeled by a state-
space description of the form [1]:

dx(t) _ A x(t) + B u(t) + G d(t)
dt

y(t) = C x(t) + H d(t) (1)

where :
x(t) is a state vector, u(t) is a vector of known

inputs, d(t) is a vector of unknown inputs, y(t) is a
vector of outputs and A, B, C, G & H are matrices
of appropriate dimensions. The observer theory
aims at providing real-time estimate of the state

x(t) using only u(t) and y(t). A state equation
representing the estimated state vector, x, is

d_(t) _ A _(t) + B u(t) + K(C_(t) - y(t))

dt (2)

where (Cx(t)- y(t)) is known as the prediction

error and K is known as the observer gain. The
effectiveness of the observer is assessed by

examining the dynamics of the estimation error

e(t) = _(t)- x(t)

the state equation of which is:

(3)

de(t) _ (A +KC)e(t) + (G + KIt) d(t)

(It (4)

The dynamics of Equation (4) iS governed by the

eigenvalues of the matrix (A + KC). If these

eigenvalueshave negative real part, then the
estimate x will approach the actual x. Fig. 2
shows a block diagram of a linear state observer.

The literature shows many approaches for

manipulating the induction machine equations so
as to develop observers for estimating the

machine fluxes, speed or position. This report
summarizes the observers used to estimate the

rotor speed, or eliminate the need for it, in field-
oriented schemes. The various approaches on
sensorless control are discussed in the sections
that follow.
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Fig. 2 Linear State Observer

3.0 Speed Identification Schemes

3.1 Kalman Filter Schemes

The Kalman filter algorithm and its
extension are robust and efficient observers for

linear and nonlinear systems, respectively. The
observers use knowledge about the system
dynamics and statistical properties of the system,
and measurement noise sources to produce an

optimal state estimation. A continuous time model
is used in case of the Kalman filter, whereas the

extended Kalman filter requires a discrete state-

space model. A major advantage of the Kalman
filtering approach is its fault tolerance which

permits system parameter drifts. Therefore,
exact models are not required.

The application of full- and reduced-order
versions of Kalman and Extended-Kalman filters

to speed estimation in induction motor and drives
has been investigated [11],[12] and [31]. Fig. 3
shows a typical structure of a Kalman filtering

approach.
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ig. 3 Kalman Filter Structure

The inputs to the plant are fed into a prediction
model. The output of the plant is compared with
the output from the model, and the resulting error
is fed into a correction Kalman gain stage to
reduce the error in the estimated states from the

prediction model.

Different models of the induction machine

for use with Kalman filter have been proposed in
Ref. [31]. The results indicate that the operating

range of the sensorless drive is not reduced for
static, dynamic or field weakening operation.

In Refs. [11] and [12] the full- and
reduced-order models Extended Kalman filter are

used for rotor flux and speed estimation, using
direct field orientation. The use of reduced-order
model has the advantage of saving computation

time, in comparison with the full-order extended
Kalman filter. The developments in the real time

computational speed of digital signal processing
chips make the Kalman filter a powerful approach
to sensorless vector control. However, the

robustness and sensitivity to parameter variation
needs further study [11].

3.2 Model Reference Adaptive Schemes

Adaptive control has emerged as a

potential solution for implementing high
performance control systems, especially when
dynamic characteristics of a plant are poorly
known, or have large and unpredictable
variations.

Model reference adaptive system (MRAS)
achieves robust and high performance. The main
innovation of MRAS is the presence of a reference
model which specifies the desired performance.
The output of the reference model is compared
with an adjustable observer-based model. The
error is fed into an adaptation mechanism which

is designed to assure the stability of the MRAS.
A number of MRAS-based speed

sensorless schemes have been described in the
literature for field-oriented induction motor drives

[5], [8], [9], [13], [15]-[17], [20], [23], [27]-[30]. Fig.
4 shows a typical MRAS speed estimator. The

output of the reference model does not have an
explicit dependence on the motor speed. The
output of the adjustable model has a speed-
dependence. For example, the inputs to both the
reference and adjustable models can be stator

voltages, and the outputs are fluxes or back emf.
The difference between the outputs is fed into a

speed adaptive scheme the output of which is the
estimated speed used to correct the adjustable
model.

Many simplified motor models have been
devised to estimate the speed of the induction

motor, using MRAS schemes. The voltage model,
shown in Fig. 5, for rotor flux estimation is
commonly used as a reference model, since it does
not depend on the rotor speed [36]-[37]. The
current model, shown in Fig. 6, is used for the

adjustable model, since it is speed-dependent [36]-
[37]. The implementation of the two models in
different reference frames affects the complexity
and robustness of the MRAS scheme [5].

Recently, a number of closed-loop observers that
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combinethe best attributes of the voltage and
current models with MRAS and other sensorless

approaches have been developed. This has
resulted in increased research in direct field

orientation, as compared to the standard indirect
field orientation employed in induction motor
drives [36]-[38].

Reference Model
Actual Output

Auxiliary +( _ ErrorInputs ,_
¢, -?

--_ Adjustable Estimated Output
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_ /
Estimated Speed Speed Adaptive Scheme /

Fig. 4 _¢pical MRAS For Speed Estimation.

The speed adaptive algorithm used affects
the stability and dynamic performance of the
closed-loop MRAS. In many cases, a proportional-
integral (PI) controller is found to be satisfactory
for the adaptive scheme.
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Fig. 5 Voltage Model for Rotor Flux Estimation.
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Fig. 6 Current Model for Rotor Flux Estimation.

3.3 High Frequency Signal Schemes

Recently, new rotor position and speed
estimations have been developed, using high

frequency measurements, based on machine
saliencies, rotor slotting and irregularities [24]-

[25]. Proper signal processing and filtering of the
resulting high frequency stator current are used
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to detect the induced saliencies present in the
stator model of the induction motor. High

frequency signals are injected into the stator
terminals using the same inverter that supplies
the fundamental excitation. Such detection

provides continuous estimate of the position and
magnitude of flux [18], [21], [24]-[25].

The above approaches have been shown to

have the potential for wide-speed and parameter-
insensitive sensorless control, particularly during

low speed operation, including zero speed.
Increased research is expected in this area.

3.4 Direct Self Control Schemes

A number of field-orientation methods have

been developed. These methods use only
measured stator voltages and currents to
implement a sensorless control [4], [31]-[33]. The
most promising scheme is the direct self control
(DSC), also known as direct torque control (DTC),
shown in Fig. 7. It is a variation of field oriented
control but uses only the stator resistance in its
calculations. This makes the DSC less sensitive to

parameter changes [4]. Such a control is. In
DSC, the flux position and the errors in the torque
and flux are directly used to choose the inverter

switching state.
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Fig. 7. Direct Self Controller.

Due to estimation of flux based on

integration of a voltage signal, DSC has
limitations at low speeds. Also, frequency and
temperature variations tend to cause
corresponding change in the actual motor
resistance, thereby creating an error in the
estimate of the stator flux. Tuning the stator
resistance used in the controller to track the

above changes in the actual motor resistance will
improve the DSC scheme, and increase its
potential as a simple sensorless control.

3.5 Intelligent Control Techniques

Neural Networks (NNs) and Fuzzy Logic

are gaining potential as estimators and controllers
for many industrial applications, due to the fact
that they present better properties than the
conventional controllers.
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NNs have learning capability to
approximate very complicated nonlinear functions,
and therefore considered as universal

approximation. Also, they have adaptive

capability which makes them very powerful in
applications where the dynamics of a plant are
time-variant or where the model of the system is

partially known. The main advantage of NNs is
their inherent fault tolerance. Fig. 8 shows a

typical NN and a general architecture of NN
control of a plant. Fig. 8 shows a typical neuron,
Artificial Neural Network (ANN) structure and NN

control of a plant (Fig. 8c).

neurons connections

input hidden layers output
layer layer

(a) Feedforward ANN structure.

ui_ ""*l_x_

2"_2"
(b) Single neuron structure

_(k-1)

(c) NN control of a plant

Fig. 8 NN Structure and Control System

of research and comparison of many training

algorithms.

4.0 Conclusions

A summary of the literature on schemes

for speed sensorless drives has been given. The
trends and tradeoffs of the different speed
sensorless schemes are discussed. Further
research areas needed in each scheme are noted.

Although a number of schemes have been
proposed for solving the speed estimation, many
factors remain important in comparing their
effectiveness. Among these factors are the wide
speed range capability, motor parameter
insensitivity and noise reduction. In particular,
zero-speed vector control with robustness against
parameter variations yet remains an area of
research for speed sensorless control.

Future work on induction motor drive-

based electrical actuators should develop a speed
sensorless scheme that will investigate and
effectively incorporate the above factors. Such a
sensorless drive is expected to yield more reliable,

high performance and cost-effective electrical
actuators which will benefit thrust vector control

of launch vehicles and, also, aircraft upgrade.
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[1]

A fuzzy controller converts a set of
linguistic rules, based on expert knowledge, into an
automatic control strategy. Such controllers have [2]

been found to be superior to conventional
controllers, especially when information being

processed is inexact or uncertain. Fig. 9 shows a
typical fuzzy control system.

In Ref. [34], neural networks are used to [3]
estimate feedback signals required for vector
control of induction motor drives. In Refs. [39]-[42],

NN and fuzzy logic have been used to implement
and tune the DSC discussed in Section 3.4. The

results obtained showed improvement over the

conventional DSC, especially at low speeds. [4]
The drawbacks of NN and fuzzy logic

include requirement of much training or knowledge
base to understand the model of a plant or a

process. The training algorithm used has an effect
on issues such as learning speed, stability and

weight convergence. These issues remain as areas
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