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ABSTRACT 

DRIVE CONTROL AND REAL TIME SIMULATION FOR 
SWITCHED RELUCTANCE MOTOR IN A FUEL CELL 

POWER SYSTEM

Switched Reluctance Motor (SRM) drive is considered as a possible 

alternative to other conventional variable-speed drives because of several 

advantages [1], [2]. However, in order for the performance of a switched 

reluctance motor drive to suit several applications, it has to be tailored through 

appropriate control.

Rotor position sensing is an integral part of SRM control because of the 

nature of torque production. Sensorless control reduces overall cost and 

dimension of the drive in addition to improving reliability.

In this thesis, an Inductance Model Based Sensorless [8] Switched 

Reluctance Motor is used to design the drive controller for SRM. A hysteresis 

current controller and a speed controller were implemented to produce smooth 

torque and a stable speed for SRM. In addition, the dc power supply for the 

SRM was derived from Fuel Cell Stack rather than from batteries or from utility 

lines through a front-end diode rectifier.

In this research, first, the current controller and the speed controller are 

developed and connected to the Inductance Based Sensorless SRM model with 

the Fuel Cell Stack model and an offline simulation using Matlab/Simulink is 

obtained. A detailed computer model of the SRM control drive connected to the

iii
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Fuel Cell stack model is developed in which the design of the proposed controller 

scheme is verified.

As a next major step, a Real-Time simulation was obtained for the model 

using Opal-RT platform, and a comparison between the offline simulation results 

and real time simulation results is developed. As a final step, the characteristics 

of the SRM Inductance model, Controller model, and the Fuel Cell stack model 

are studied in detail, which is required in order to use them in future applications.

iv
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CHAPTER 1 

INTRODUCTION

1.1 Research Goals

The ultimate two goals for the project is to design and apply a controller 

based on the Proportional-Integral control strategy in the speed control of the 

Switched Reluctance Motor powered by a Fuel Cell system, and to simulate the 

proposed speed control system in a Real-time Simulation and also to investigate 

the performance and report on the results. Several drive control methods for 

SRM have been reported in literature in the last decade. The various drive 

control methods published in literature can be broadly classified into the 

following: Sensorless control method using mechanical position sensor [3], [4], 

Fuzzy logic control method [5], Artificial intelligence control [6], Fixed angle 

control [7] etc. The various methods suggested in literature have their own 

merits and demerits depending on their principles of operation. Ideally, it is 

desirable to have a drive control scheme which smoothes both the SRM torque 

and speed and does not require complicated nonlinear system to design it.

In this research, a new SRM drive control method using Hysteresis 

Current Controller and PI Speed Controller is developed. The proposed drive 

control scheme relies on the inductance model of the SRM drive using the four 

phases currents as a feedback to the Hysteresis current controller and the speed 

of the motor as the feedback to the PI speed controller. This chapter will give a 

brief introduction for the SRM and the Fuel Cell system. In the following chapters 

the SRM model, Fuel Cell model, and the proposed drive controller model will be

l
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explained in details as well as the offline simulation and the real time simulation 

results.

1.2 Control of The Switched Reluctance Motor

Control of the motor is made more complicated by the nonlinearities found 

not only in the motor, but also in the switching choppers, which arise due to the 

power switches. Most of the literature on Switched Reluctance Motor drives 

focuses on the design and modeling of the motor and on the configuration of 

power choppers. There are several papers that address the control aspects of 

the SRM.

Open-loop strategies have been suggested and investigations using angle 

and current amplitude regulation were reported. Use of constant input voltage 

[64] is the simplest and most commonly used control strategy for the SRM. The 

phases are turned off and on based on the switching imposed by the electronic 

commutator. Since this is an open-loop control strategy, a better design of the 

motor itself and its electronic commutator can only achieve improvement of the 

dynamic behavior. Such a scheme suffers from the fact that the response is not 

robust when the motor is exposed to internal or external disturbances.

Closed-loop control strategies for switched reluctance motors are 

proposed in [64-68]. [64] introduced for the first time the application of feedback 

linearization to electric drives. They reported the work on control of SRM for 

trajectory tracking in robotics applications. In this work they developed a 

nonlinear mathematical model based on experimentally measured data. It is 

assumed that all plant parameters are known and that the motor acceleration is

2
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measurable. Unfortunately, their controller is computationally quite complex and, 

moreover, requires the accurate model of external loads in addition to that of the 

SRM.

In [65], the equations of the SRM are expressed in a rotating reference 

frame. Constant speed as well as piecewise linearized inductance curves and 

known parameters are assumed. However instantaneous torque control is taken 

into account, while magnetic saturation is ignored. The paper shows that, under 

the assumption of constant velocity, the SRM may be modeled as a linear time- 

varying system. This design gives good results only for SRM operating at low 

speed. Moreover, a tradeoff is considered between peak torque and torque 

ripple.

In [66] a fuzzy logic controller is used to control the speed of a SRM drive. 

Fuzzy logic controllers are based on the theory of fuzzy sets and fuzzy logic.

The design of a fuzzy logic controller does not require an accurate model of the 

plant, which is appreciated in motor drive applications where the motor and/or the 

mechanical load are usually described by a set of nonlinear differential equations 

or are partially unknown. A conventional controller adjusts the system control 

parameters on the basis of a set of differential equations, which represents a 

model of the process dynamics. In a fuzzy logic controller, these adjustments 

are handled by a fuzzy rule-based expert system. While the overall fuzzy 

behavior avoids any speed overshoot, the ripples usually related to the switching 

are still unavoidable.

3
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In [67] a model-reference adaptive control of a variable reluctance motor 

for low speed, high speed mode of operation suitable for robotics applications 

has been considered. This model leads to an adaptive controller. This work 

concerns itself only with the low-speed operation. In this study, instead of using 

the full order system, a reduced-order model is considered. The paper also 

assumes that the magnetic saturation is due to the winding current only and is 

not a function of the rotor position.

In [68] the design of a feedback linearization controller for SRM is 

presented. The mathematical model of the motor takes the magnetic saturation 

into account. The main idea behind the feedback linearization control scheme is 

to transform the nonlinear system dynamics into a linear one.

[69] examines the feasibility of using artificial neutral networks to develop 

discrete time dynamic models for a SRM drive system that includes both faulty 

and fault-free behaviors. The purpose of this work is to present a methodology 

that can be used to construct an artificial neural network capable of modeling the 

dynamics of SRM drive systems, or any dynamical systems. The approach 

employed in this paper, however, appears to consume considerable 

computational resources.

While proportional-integral control scheme represents a simple strategy, 

its implementation for driving an SRM is rather novel, and its good performance 

is apparent. In the competition with more advanced controller, the P-l controller 

has generally been regarded as one of the most likely candidates to succeed in 

industrial applications. The main reasons for this include: simplicity, lower cost,

4
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ability to achieve zero steady-state error, ease of implementation, robustness, 

good speed of response, good stability, and other desirable features. P-l 

controllers are extensively used in many drives where speed control is desired.

In this thesis, a speed controller based on the proportional-integral control 

strategy is used.

1.3 Switched Reluctance Motor

Switched Reluctance Motor (SRM) drive has considered as a possible 

alternative in several variable speed applications because of its advantages [1], 

[2]. Rugged and simple construction, inherent variable speed capability, ease of 

control, etc. are some of the positive aspects of the SRM drive. Switched 

Reluctance Motor drives are being tried in aircraft starter/generator systems, 

automotive and home appliance applications.

SRM drives are also known for their fault tolerant operation. The rotor 

construction is very rugged and does not have windings or permanent magnets 

on it, which allows very high speed operation possible without much concern 

about the centrifugal forces. In the chopper side, since the phase windings are 

connected in series with the upper and lower switches, shoot-through fault does 

not happen in case one of the switches is shorted.

There are also few disadvantages of SRM drives, such as high level of 

acoustic noise [9]-[11] and torque ripple [12], [13] especially at low operating 

speeds, need for mechanical position sensor, etc.

SRM is a doubly salient, singly excited machine with unequal number of 

stator and rotor poles [1], [2], Most common stator to rotor pole configuration is

5
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6:4 and 8:6. The stator poles have concentrated windings and the coils on 

diametrically opposite poles are connected either in series or parallel to form one 

phase group.

3

Figure 1.1: SRM Cross-Section 

The above figure illustrates the cross-sectional view of an 8/6, four phases 

SRM with only one switching circuit for only one phase. The rotor poles are 

made of magnetic steel laminations and do not carry windings or permanent 

magnets. The rotor has a robust construction and is suitable for very high-speed 

application without any need for mechanical gears [14].

6
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In SRM, the torque is produced by the tendency of the rotor poles to align 

with the stator pole pairs that are energized. The energization of a pair of stator 

coils will attract a pair of rotor poles that are nearest to the corresponding stator 

poles. Thus, a sequential energization of the coils in the stator phases will result 

in continuous torque production causing the rotor to rotate [15].

For smooth rotation it is necessary to energize the SRM stator phases in 

synchronism with the reluctance variation, or in other words, in synchronism with 

the rotor position. A power chopper is used for achieving this, which basically 

controls the magnitude and timing of the stator phase currents. By controlling the 

magnitude and timing of the stator phase currents with reference to the rotor 

position, effective variable speed operation of the drive is thus achieved. The 

SRM inductance model as well as the power chopper model will be explained in 

details in chapter 2.

1.4 Fuel Cell Stack

Fuel Cells are electrochemical devices that convert the chemical energy of a 

gaseous fuel directly into electricity and are widely regarded as a potential 

alternative stationary and mobile power source. They complement heat engines 

and reduce the ubiquitous dependence on fossil fuels and thus have significant 

environmental and national security implications [16].

Fuel cell stack systems are under intensive development by several 

manufacturers, with the Proton Exchange Membrane (PEM) Fuel Cells (also 

known as Polymer Electrolyte Membrane Fuel Cells) currently considered by

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



many to be in a relatively more developed stage for ground vehicle applications 

[17]. Recent announcements of GM “Autonomy” concept and federal program 

“Freedom CAR” confirm an interest in developing fuel cell vehicles from both the 

government and automobile manufacturers [18].

To compete with ICE engines, however, fuel cell system must operate and 

function at least as well as conventional engines. Transient behavior is one of the 

key requirements for the success of fuel cell vehicles. The fuel cell system power 

response depends on the air and hydrogen feed, flow and pressure regulation, 

and heat and water management. During transient, the fuel cell stack control 

system is required to maintain optimal temperature, membrane hydration, and 

partial pressure of the reactants across the membrane in order to avoid 

degradation of the stack voltage, and thus, maintain high efficiency and extend 

the life of the stack [19].

The Fuel Cell principle was discovered in 1839 by a British Physicist 

called William R. Grove [20]. A fuel cell consists of an electrolyte sandwiched 

between two electrodes. The electrolyte has a special property that allows 

positive ions (protons) to pass through while blocking electrons. Hydrogen gas 

passes over one electrode, called an anode, and with the help of a catalyst, 

separates into electrons and hydrogen protons as shown in the following figure.

8
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Current — —*►

tad
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2 Hydrogen

Electrolyte Negative electrodePositive electrode
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Figure 1.2: Fuel Cell Chemical Reaction

2H2 => 4H+ + 4e"

The protons flow to the other electrode, called a cathode, through the 

electrolyte while the electrons flow through an external circuit, thus creating 

electricity. The hydrogen protons and electrons combine with oxygen flow 

through the cathode, and produce water.

0 2 + 4H+ + e’ => 2H20  

Therefore, the overall reaction of the fuel cell is

2H2 + 0 2 => 2H20

The voltage produced from one cell is between 0 to1 volts [21] depending 

on fuel cell operating conditions and the size of load connected to the fuel cell. 

The typical value of the fuel cell voltage is about 0.7 volts. To get higher voltage, 

multiple cells are stacked in series. The total stack voltage can be calculated 

from the number of cells multiplied by the average cell voltage. There are 

electrical resistances in the fuel cell like other electrical devices. The loss

9
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associated with the resistance is dissipated in the form of heat, which concludes 

that heat is released from the fuel cell reaction.

Fuel cells have several advantages over internal combustion engines 

(ICE) and batteries. To generate mechanical energy, the ICE first converts fuel 

energy to thermal energy by combusting fuel with oxygen at high temperature. 

The thermal energy is then used to generate mechanical energy. Since thermal 

energy is involved, the efficiency of the conversion process is limited by the 

Carnot Cycle [22]. On the other hand, unlike ICE, fuel cells directly convert fuel 

energy to electrical energy and its maximum efficiency is not subjected to Carnot 

Cycle limitations.

Higher energy conversion efficiency can potentially be achieved by fuel 

cells. If hydrogen is used as fuel, the outcome of the fuel cell reaction is water 

and heat. Therefore, fuel cells are considered to be a zero emission power 

generator. They do not create pollutants such as hydrocarbon or oxide of 

nitrogen. A battery is also an electrochemical device that converts chemical 

energy directly to electricity. However, the battery reactants are stored internally 

and when used up, the battery must be recharged or replaced. The reactants of 

fuel cell are stored externally. Oxygen is typically taken from atmospheric air and 

hydrogen is stored in high-pressure or cryogenic tanks, which can be refueled. 

Refueling tanks requires significantly less time than recharging batteries [22].

There are different types of fuel cells, distinguished mainly by the type of 

electrolyte used. Each type of fuel cell is suitable for different applications, 

because of the differences in each cell characteristics, such as cell material,

10
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operating temperature, and fuel diversity. The Polymer Electrolyte Membrane 

Fuel Cells (PEMFC) are suitable for automobile applications. PEMFCs have high 

power density, a solid electrolyte, long life, as well as low corrosion [22]. Also 

PEMFCs operate in the temperature range of 50 - 100°C which allows safer 

operation and eliminates the need of thermal insulation. All the information 

presented above were a brief introduction for Fuel cell’s history, advantages, 

uses and how it works, and the idea for using it as a power system for the SRM. 

Since the ultimate goal for this project is the design and modeling for the SRM 

drive control, a Simulink model representing the Fuel Cell stack designed by 

Emmeskay Inc. was used to supply the dc voltage for the SRM drive, which will 

be explained in detail in chapter 3.

1.5 Thesis Organization

Developing a drive control for SRM using the inductance model for the motor 

to achieve the current and the speed control is the central subject of this thesis.

In addition, the use of Fuel Cell stack as a power system to drive the motor and 

running the model in real-time platform is the second main subject of this thesis.

The thesis starts with an introduction in Chapter 1 about the Switched 

Reluctance Motor structure, advantages, it is need for drive control, and a brief 

survey for the various drive control methods that were presented in literature.

Also this chapter gave a brief introduction about the Fuel Cell Stack history, how 

it works, advantages, and uses.

l i
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The theory and the method of driving the SRM inductance model are 

presented in Chapter 2. Also the idea of using the inductance method to model 

the SRM other than using other methods is explained with a comparison between 

the inductance method and the other methods from literature. Moreover, the 

electromagnetic behavior of the SRM and the torque production mechanism in 

SRM are examined and the choppers used for winding current commutation are 

presented. In addition, this chapter will present the system interactions for the 

fuel cell and Emmeskay’s fuel cell simulink model.

Chapter 3 presents the SRM drive controller, which consists of the 

hysteresis current controller, commutation angle controller and the PI Speed 

controller. Moreover, the Offline simulation and Real time simulation for the 

model is presented in Chapter 4, and finally Chapter 5 gives a summary of the 

work done, the contribution of this research and future research in this area.

12
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CHAPTER 2 

SWITCHED RELUCTANCE MODEL AND FUEL CELL 
STACK MODEL

2.1 Switched Reluctance Motor Model

A power chopper and associated control system are required for Switched 

Reluctance Motor’s (SRM) basic operation. A well designed SRM drive system 

matches the performance of conventional ac motor drives and it has several 

advantages over them. Through appropriate control, it is possible to apply SRM 

drives for high performance applications.

A typical SRM drive system consists of the switched reluctance motor, the 

power chopper and associated control system. The chopper is connected to a dc 

power supply, which is derived from the Fuel Cell Stack voltage. The controller 

energizes each phase of the SRM in a sequence and the energization is 

synchronized with the rotor position in order to produce smooth unidirectional 

torque. This necessitates a mechanical position sensor, which is usually 

connected to the shaft of the SRM in order to provide rotor position feedback to 

the controller.

The controller reads the mechanical position and decides the appropriate 

phase to be energized. Ideally, each stator phase is excited with a square pulse 

of current. The energization of one phase coil results in a magnetic force of 

attraction with the nearest rotor pole pair thus producing torque. The magnitude

13
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and timing of the current pulse, in combination with the machine parameters 

have a direct effect on the magnitude of the torque developed [11], [23].

In order to design a control system for an SRM drive, it is essential to 

understand the static characteristics of the motor along with the mechanism of 

torque production and the commonly used chopper topologies.

2.1.1 Static Characteristics of The Switched Reluctance Motor

In the SRM, the reluctance of the magnetic flux path in a given phase 

changes with rotor movement. The reluctance is maximum when the stator and 

rotor poles are aligned and minimum when the poles are unaligned. This 

variation in reluctance reflects in the self-inductance of the respective stator 

phase. When the stator and rotor poles are aligned, the self-inductance of the 

stator phase will be maximum and when the poles are unaligned, the self

inductance of the phase will be minimum [23].

In order to have efficient electromechanical energy conversion, the 

switched reluctance motors are usually designed to operate at high levels of 

magnetic saturation and hence the air gap length is very small compared to other 

motors. The magnetic behavior of the steel lamination change with varying 

levels of saturation and it is reflected on the inductance as well. Thus, the stator 

phase inductance varies with the instantaneous phase current at any given rotor 

position [23].

Because of the magnetic saturation, the stator phase inductance at the 

aligned position varies considerably with the variation in the stator phase current.

14
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The unaligned inductance does not vary much mainly because of the large 

reluctance caused due to the huge air in the flux path. Though the inductance 

variation with rotor position is trapezoidal in nature, in reality, the edges in the 

trapezoid are rounded off due to local saturation effects, thus making the 

inductance variation look more like a distorted sinusoid with a dc offset [23].

The flux-linkage variation with rotor position and stator phase current can 

also represent the static characteristics of the SRM, as shown in the following 

figure.
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Figure 2.1: Flux-linkage as a function of stator phase current and rotor position.

Local and bulk saturation are two types of saturation that are to be 

considered. Local saturation occurs when the poles are just approaching or just 

leaving the overlapping position. This leads to tip saturation because of flux 

fringing. Bulk saturation occurs in fully aligned position resulting in a huge loss of 

torque produced by the machine [23].
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From figure 2.1, it should also be noted that there are two types of non- 

linearity present in the flux-linkage characteristics. First, the variation of flux- 

linkage with current at any given rotor position is non-linear due to magnetic 

saturation. Second, the flux lines are not displaced equally with respect to each 

other. As shown in figure 2.1, the flux-linkage lines are drawn for different 

currents with equal increments of rotor angle from unaligned position to aligned 

position. The iso-flux-linkage lines are crowded near the unaligned and aligned 

rotor position and they are less crowded at the middle. Therefore, it is difficult to 

analytically express the static characteristics [23].

Thus, the electromagnetic behavior of the SRM can be represented by its 

static characteristics, either by plotting the inductance variation or the flux-linkage 

variation with rotor position and stator phase current.

2.1.2 Torque Production Mechanism in SRM Drives

Figure 2.2 shows the flux-linkage versus current for a given rotor position. 

For a phase coil with current i|< linking with a flux T k , the stored field energy W f  

and the coenergy W ’ are indicated as shaded regions. Co-energy can be found 

from the definite integral [24],

W ’= 1Jo Tdi

The torque produced by one phase coil at any rotor position is given by,

T= [<9W /3®]t=constant

16
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Figure 2.2: Stored field energy and coenergy

In the absence of magnetic saturation, the magnetization curve in figure

2.2 would be a straight line and the coenergy would be equal to the stored field 

energy. The instantaneous torque then reduces to

T= 1/2 i2dL/dO

Positive (motoring) torque is produced by phase current flow in the rising 

inductance region, while placing the current pulses in the falling inductance 

region produces negative (generating) torque. The above equation suggests that 

the sign of the torque is independent of the direction of the current flow in the 

phase winding. Thus, in order to produce positive unidirectional torque, each 

phase should be energized during the rising inductance region. By sequentially 

exciting the phases, the total torque will be unidirectional. This clearly shows the 

necessity for an external position sensor [24].

17
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2.1.3 SRM Chopper Topologies

The magnetic behavior of the SRM and the torque production mechanism 

were explained in the two previous sections. It was mentioned that the torque 

developed by the motor can be controlled by varying the amplitude and the 

timing of the current pulses in synchronism with the rotor position. The input to 

the SRM drive is dc voltage, which is derived from the Fuel Cell stack in this 

research. In certain applications it could be derived from the utility through a 

front-end diode rectifier or batteries. The currents in SRM are unidirectional and 

the chopper configuration should suit this requirement.

In literature, several chopper topologies for SRM drives have been 

proposed [26]-[28] and the most commonly used chopper uses two-switches and 

two freewheeling diodes per phase and is called classic chopper, which is shown 

in the following figure.

A A N, A A
F u t l C t l l  

V o l t  i£i

A A A A

Figure 2.3: SRM Classic Chopper
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The main advantage of using a classic chopper is the flexibility in control. 

All the phases can be controlled independently which is very essential for very 

high speed operation, where there will be considerable overlap between the 

adjacent phase currents.

In the classic chopper, both the controlled switched are turned on 

simultaneously so that the motor winding will be connected to the dc bus voltage. 

Both the switches are turned off simultaneously when it is desired to turn off the 

phase, figure 2.4 shows the modes of operation for one phase of the SRM 

chopper. The phase current flows through the freewheeling diodes and returns 

the trapped magnetic energy into the dc link. During freewheeling, the motor 

phase is subjected to negative of the bus voltage through the freewheeling 

diodes. In order to provide current feedback to the controller, a current sensor 

can be connected in series with the phase winding [24].
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Figure 2.4: Modes of operation for one phase of the SRM chopper
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The choppers used for SRM drives usually employ IGBTs or power 

MOSFETs depending on the operating voltage levels. In certain automotive 

applications, the voltage level is limited and hence the SR motors are designed 

to be of low-voltage, high current type. For such applications, MOSFETs are 

employed. For home appliance applications, the voltage level corresponds to the 

main supply and hence IGBTs are ideally suited for the chopper. The 

freewheeling diodes used in the choppers should be ultra high-speed type and 

typically Schottky diodes are used. The chopper also has an input filter, which 

can supply the demanded ripple current. The SRM converter that is used for this 

research is the Classic Converter using MOSFETs as switches [25], which is 

shown in the following figure.

Figure 2.5: SRM Classic Chopper using Power MOSFETs 

Figure 2.6 shows one of the other types of the choppers that are used with 

SRM in other applications. This chopper is known as C-dump chopper, which is 

employing single-switch per phase in which the magnetic energy during 

freewheeling is dumped into a capacitor, which in turn is returned to the dc 

source [26]-[28].

20
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Figure 2.6: C-dump chopper

A chopper circuit is used to transfer the energy in the capacitor to the dc 

supply. Though the circuit is highly efficient, it requires additional components 

with accurate control of the chopping circuit for efficient energy recovery. There 

are three more types of choppers that were used with SRM in different 

applications in literatures, which are shown in the following figure.

21
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Figure 2.7: Three Different Types of SRM Chopper

The poor power factor is one of the main problems associated with SRM 

drives compared to the other motors like BLDC and induction motors. This is 

mainly because, the trapped energy is returned to the dc bus during the 

freewheeling action. Moreover, the magnetizing component of the current in an 

SRM is drawn from the dc bus itself unlike permanent magnet machines, where 

the flux component of the armature current is negligibly small. Therefore, the 

KVA rating of the inverter for an SRM drive is very high compared to that of 

BLDC and induction motor drives [25].
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2.1.4 Theory of The SRM Inductance Model

The SRM model that was used for this research is an inductance model 

that was previously designed in [23]-[25] (Author Dr. M. Ehsani). The idea of 

using this design model for SRM other than other design models came from the 

simplicity of the model and it is ability to run in real time with the drive controller 

that is designed in this research and the Fuel Cell stack model.

In the previous sections, the magnetic behavior of the SR motor and also 

the torque production mechanism were reviewed. From the mechanism of 

torque production, it is evident that the excitation of the stator phases needs to 

be synchronized with rotor position in order to produce unidirectional torque. In a 

switched reluctance motor, each active phase is represented by a first order non

linear differential equation which has inductance term in it as shown in the 

following equation [23]-[25].

m
V| J * t r  a *  *  Tfc' l* 'w , ' d t m  Wf

Moreover, the phase inductance varies with rotor position and 

instantaneous phase current and the nature of variation is highly non-linear. In 

the following voltage equation, the active phase voltage and current are 

measurable and the phase resistance is a constant parameter neglecting the 

temperature effects [23]-[25],

A<h§fki(8,l> 
v .  -  R t ,  +  2 *

it»ii I a-  dt
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In the following sections, the variation of the stator phase inductance with 

rotor position and instantaneous phase current is expressed analytically. This 

inductance expression is used in the voltage representing the active phase of the 

motor and the voltage equation is solved to estimate the rotor position indirectly. 

In the remaining sections of this chapter, the dynamic equations of the active 

phase are presented first, followed by the inductance model developed.

A. Dynamic Equations of The SRM Drive

A first order non-linear equation is used to describe each active phase in 

the SRM. Kirchhoff’s voltage law was applied to the active phase to obtain the 

above voltage equation.

Hence the voltage equation of one of the active phases is given by,

«S-t i, (0* i)
(2.1)

where, Vj is the active phase voltage in volts, R is the phase resistance in Ohms, 

lj is the phase current in Amps, \|/kj is the total flux-linkage of the active phase in 

Wb-turns, ‘m’ is the number of phases.

Both self and mutual flux-linkages are included in the flux-linkage in the 

active phase. The mutual fluxes in the SRM is a small percentage of the total 

flux and can be neglected [29] and hence (2.1) can be simplified to the following:
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The subscripts in the voltage equation are dropped for the sake of simplicity.

The product of the self-inductance and the instantaneous phase current 

gives the flux-linkage of the active phase.

y (0J) = (2.3)

where, L(0,i) is the self-inductance of the active phase in H.

Substituting (2.3) into (2.2) gives,

o* r dL(O.i) .dL(0,i) div s  Ri + L(0a)— + 1 — + 1 — ~— ■— (2.4)
dt d6 dt di dt

Or equivalently,

. d L ( i 4 )  . d L ( 0 , i )  d i  v =* Ri + L(0j )—■+*#— (2.5) 
d t m  d i d t

where, oo is the angular speed of the rotor, in radians/second.

In (2.4), the first term in the right hand side is the resistance drop and the 

second term is the self-inductance drop. The third term corresponds to the 

voltage drop due to the speed induced emf and the final term is the incremental 

inductance drop term.

The active phase quantities in (2.5) are measurable, and equation (2.5) 

can be solved to get the rotor position, if the inductance variation with rotor 

position and the stator phase current can be expressed analytically. The details 

of the SRM inductance model used in this research along with the procedure of 

deriving the model will be described in the next section.
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B. Derivation of The SRM Inductance Model

The phase inductance in the SRM is a periodic function of the rotor 

position. Because of the magnetic saturation, the phase inductance varies with 

instantaneous phase current at any given position. Several different ways have 

been developed to model the static characteristics of the SRM, either variation of 

the flux-linkage or the phase inductance with rotor position considering magnetic 

saturation [29], Some of these ways use look up tables based on experimental 

results, and some of them use analytical models to describe the inductance 

function.

To model the SRM inductance model, the static characteristics of the SRM 

are represented by inductance model rather than flux-linkage model. A 90KW, 

25,000 RPM, 8/6, 4-phase SRM is used to design the inductance model. The 

geometry details of the motor that was used in [23]-[25] to develop the 

inductance model are presented in Appendix A.

The phase inductance can be represented using the following expression:

m
L<0) * £ )  (2.6)is®

where ‘Nr’ is the number of rotor poles, ‘m’ is the order of approximation, ‘<t>n’ is 

the phase angle of the nth harmonic with respect to the fundamental.
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Because of magnetic saturation, the inductance depends on the 

instantaneous phase current. The coefficients of the Fourier series are 

expressed as functions of the instantaneous phase current, in order to represent 

the dependence of phase inductance on the phase current, which results in the 

following:

L(8J)» | ] L Bti)coKnNfft+#(l) {2.7}
R-ll

The above equation is expanded into the following:

L(8J) *  Mt)+L,(i)cos(Nr8 +♦,) + L,(i)c<M(2Nt8 + )+... {2.8}

At 0 = 0, L is maximum and at 0 = (7t/Nr), L is minimum when a cosine 

function is used. It can be shown that <|>n=0, for n=0,1,2,...m, by substituting 

these conditions in (2.8). In this research a four phase motor is used for the 

simulation. From [23]-[25] experimentally measured unsaturated inductance 

data, it is has been found that considering only the first three terms of the Fourier 

series results in a good approximation for the inductance. Therefore equation 

(2.8) gets simplified to the following:

L(0,i) -  L, (i) + L, (i)cos(Nr0) *  L, (i)*»(2N ,8) (2.9)
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The following step is to identify a function for the Fourier Coefficients L0(i), 

L-i(i), L2(i) in terms of the stator phase current that will take care of the effect of 

magnetic saturation on the inductance. There are two kinds of saturation in 

SRM, as mentioned earlier. The first saturation is called bulk saturation that 

occurs at the aligned position. The second saturation is called local saturation 

that occurs at discrete rotor positions, when the rotor poles just approach the 

stator poles and just begin to move towards the aligned position.

The aim of [23]-[25] work is to arrive at a model that very closely matches 

the inductance characteristics while requiring minimum amount of finite element 

data, which will give a useful SRM model for any other future work or research 

using SRM like this research.

The first step [23]-[25] started with is a two-dimensional finite element 

model of the experimental motor is built in Maxwell package [30]. From the data 

obtained through finite element analysis, it has been found that expressing the 

inductance at the aligned position as a polynomial function of the phase current 

results in good accuracy. The variation of the aligned phase inductance with 

current as obtained through finite element analysis [23]-[25] is shown in the 

following figure.
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Figure 2.8: Variation of inductance at the aligned position with current

The order of the polynomial function is limited to 5. Thus, the stator phase 

inductance at the aligned position can be expressed as,

L ,(i)-L (0 -O - ) -  £a„i“ (2.10)
i<*0

Because of the large air gap in the flux path, the phase inductance at the 

unaligned position can be assumed to be a constant and is given by,

Lu sL(S«~~-) (2,11}
N r

Moreover, the phase inductance at the unaligned position is assumed 

constant, because the phase current does not influence it. A point midway 

between the aligned and unaligned position is chosen for analysis. In order to 

obtain numerical data, the finite element model of the motor is modified to 

correspond to a rotor position midway between the aligned and unaligned 

position, which is expressed as,
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The Fourier coefficients in (2.8) need to be defined in terms of La(i), Lu, 

and Lm(i) as given by equations (3.10)-(3.12) respectively. The coefficients Lo(i), 

Li(i), L2(i) are related to the inductance terms La(i), Lu and Lm(i) using the 

following boundary conditions:

At 0 = 0, which corresponds to the aligned position,

1(0 i) ■ M D+L,(i>+ Lj(i>« L,(t) (2,13)

At 0 = 7i, which corresponds to the unaligned position,

L(*M ) ® L a(i) -  L , ( i )+ L j( i)  *  L„ (2 .14)

At 0 = 7t/2, which corresponds to the midway point between the aligned 

and unaligned position,

1fP
L * (0  •  U® -  -^rr->» £  \  i*  (2.15 )

Substituting equations (2.10)-(2.12) in equations (2.13)-(2.15), the 

following relations are derived:
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I  2
(2,16)

(2.1?)

(2,18)

Thus, the inductance model is derived by obtaining the finite element 

analysis data at three different rotor positions [23]-[25]. The order of the 

polynomial function is limited to 5, and the numerical values of the polynomial 

coefficients obtained are shown in appendix A. By this, the development of the 

SRM model for the phase inductance is complete.

2.2 Fuel Cell Stack Model

The ever increasing need for electrical power generation, rapid progress in 

power deregulation, and the environmental concerns over the use of fossil fuels 

for electric power generation have attracted much attention to fuel cell power 

generation system. Therefore, the idea of using fuel cell stack as a power 

generation for SRM in this research is based on the fact that the fuel cell as a 

power generation system has low pollution, high efficiency, and diversity of fuels, 

reusability of exhaust heat and many other advantages [31].

A fuel Cell is an electrochemical device that produces direct current 

electricity through the reaction of hydrogen and oxygen in the presence of an
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electrolyte. The fuel cell generation system consists of a reformer, a stack and 

power converter as shown in figure 2.9, for the purpose of this research only the 

stack and the power converter are designed and implemented. The reformer 

produces hydrogen gas from fuel and then supplies it to the stack. The stack is a 

collection of unit cells, and the unit cells consist of electrolyte, separators, and 

plates. The output of the fuel cell is a result of a chemical reaction and possesses 

nonlinear characteristics [31].

REFORMER STACK
BOOST

LOAD'Jl CONVERTER

Figure 2.9: Fuel Cell System

On the other hand the power converter converts low voltage dc to ac or high 

voltage dc. The power converter must have functions to protect the system from 

output fluctuations reverse currents, and sudden load variations to assure their 

full lifetime, therefore for the purpose of this project a PID controller is designed 

for the dc/dc power converter. Also the performance of the fuel cell generation 

system is very sensitive to the load variations, since it has low voltage and high 

current output characteristics [32].

Fuel cell has two electrodes, a positive electrode and a negative electrode, 

which are separated by an electrolyte. A hydrogen-rich fuel passes through an 

electrochemical fuel processor (reformer), where hydrogen is produced and fed 

to the anode, and an oxidant is fed continuously to the cathode. Since, the Fuel 

Cell power generation system that modeled in Simulink for this project is only the 

fuel cell stack, direct hydrogen is used as the input for the stack [32].
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The existence of excess charge at the electrodes brings about a potential 

difference between them. When an electric load is connected between the two 

electrodes, positive or negative ions flow through the electrolyte, hence 

producing an electric current. Heat, clean water, and oxidant(s) are the 

byproducts of this electrochemical process [32].

A single Fuel Cell element generates high current, low voltage DC 

electricity. Therefore, fuel cells are grouped in series, called a “stack”, in order to 

obtain a sufficient voltage and power output. In addition to that, fuel cells do not 

store energy in the cells and run down when the stored energy is released, like 

batteries. They produce electricity as long as hydrogen-rich fuel (Ex. Natural 

gas, Methanol, landfill gas and coal-derived gas) is available to them. Since the 

aim of this research is the drive control for the SRM, the following sections will be 

briefly describing the System interactions for the Fuel Cell and each system 

corresponding control objective. Moreover, Emmeskay’s Fuel Cell Stack 

simulink model that is used in this research as the power source will be briefly 

explained.

2.2.1 System Interactions

For the viability, efficiency, and robustness of fuel cell propulsion systems, 

precise control of the reactant flow and pressure, stack temperature, and 

membrane humidity will be critical. The over all fuel cell stack system could be 

partitioned into four subsystems. Each system has a corresponding control 

objective and also interactions with other subsystems. The subsystems are the
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reactant flow, the heat and temperature, the water management, and the power 

management subsystems [33].

A. Reactant Flow Subsystem

The reactant flow subsystem consists of hydrogen supply and air supply 

loops. When the vehicle traction motor draws current, hydrogen and oxygen 

become depleted in the fuel cell stack. The valve and compressor motor are 

used to adjust the hydrogen flow in the anode and the air flow in the cathode 

respectively. The control objective is to provide sufficient reactant flows (to keep 

the desired excess ratio) to ensure fast transient response and to minimize 

auxiliary power consumption [33].

B. Heat and Temperature Subsystem

The heat and temperature subsystem includes the fuel cell stack cooling 

system and the reactant temperature system. Heat is generated in the fuel cell 

as the traction motor draws current. First, de-ionized water is used as coolant in 

the stack instead of an effective coolant fluid. Second, the PEM fuel cell is 

designed to operate at the temperature around 80°C. Hence, the exhaust air 

exiting the stack, which has temperature around 80°C, has less ability to carry 

out heat than the ICE exhaust gas, which is over 500°C. The cooling system is 

responsible for the heat rejection for the fuel cell stack. The low temperature 

difference between the stack and the water coolant limits the effectiveness of the 

heat transfer from the stack to the coolant. Therefore, active cooling is required

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



through the reactant flow rate and the cooling system. Furthermore, the 

temperature of inlet reactant air also affects the temperature of the stack. The 

heat management system can vary the speed of the cooling fan and the 

recirculation pump in coordination with adjusting a by-pass valve. Fast warm-up 

with no stack temperature overshoot and low auxiliary fan and pump power is the 

goal of thermal management [33], [34].

C. Water Management Subsystem

The use of the water management system is to maintain hydration of the 

polymer membrane and to balance water usage/consumption in the system. The 

humidity of the membrane is affected by the amount of reactant flow and the 

water injected into the anode and cathode flow streams. Water molecules are 

both produced in the cathode and dragged from the anode to the cathode by the 

hydrogen protons, as the current is drawn from the fuel cell. The concentration 

gradient causes water to diffuse from the cathode to the anode, as the 

concentration of water in the cathode increases. Different mechanisms such as 

water generated while load increases, changes in the absolute and relative 

reactant pressure across the membrane, changes in air flow rate, and changes in 

stack temperature can cause perturbation in fuel cell humidity. These 

mechanisms indicate strong and nonlinear interactions among the humidity 

control. If there is no proper humidificaiton control a 20-40% drop in fuel cell 

voltage could occur [33], [34].
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D. Power Management Subsystem

The power drawn from the fuel cell stack is controlled by the power 

management subsystem. Without considering power management, the load 

current can be viewed as a disturbance to the fuel cell system. However, if a 

battery is used as another power source in the system, the power management 

between two power sources could be applied with the objective of giving a 

satisfactory vehicle transient response and assisting the fuel cell system [33],

[34],

E. Fuel Processor Subsystem

Fuel processor technology is an important part of the fuel cell system due 

to the inadequate infrastructure for hydrogen refueling, distribution, and storage. 

Methanol, gasoline, and natural gas are examples of fuels being considered as 

fuel cell energy sources. Different processes involved in converting carbon- 

based fuel to hydrogen are shown in figure 2.10. The fuel processor variables 

that require precise control include the temperature of the reactors and the 

concentration of hydrogen and carbon monoxide in the gas stream [33], [34]. For 

the purpose of this research, direct hydrogen process is used for the Fuel Cell 

stack simulink model that was developed by Emmeskay Inc.
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Figure 2.10: Fuel Sources for Fuel Cell Systems 

2.2.2 Fuel Cell Stack Model

The above sections gave a brief introduction for the Fuel Cell process and 

it’s different subsystems and their relative control parameters. This section will 

explain briefly the Fuel Cell stack simulink model used in this research.

The model consists of seven blocks, fuel cell stack, coolant controller, fuel 

cell controller, anode pressure, anode valve, cathode pressure, and cathode 

valve. The fuel cell stack block has 13 inputs and 5 outputs. The temperature 

values for each of the cathode, anode, coolant and ambient are set to a constant 

value for each one of them. Also constant values were set for each of the 

amounts of N2, H2, 0 2, H20, C02 at the cathode and the anode. On the other
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hand, the coolant controller used the cathode output temperature from the fuel 

cell stack and the cathode set point temperature as its inputs to output the 

coolant amount to be used as input for the fuel cell stack.

The anode and cathode pressure blocks and valve blocks act as a 

pressure controller for each of the anode and the cathode. They use the output 

for the anode and cathode pressures from the fuel cell stack, and they input the 

anode and cathode pressures that are used as inputs back to the fuel cell stack. 

While the Fuel Cell controller uses the fuel cell voltage and current to output the 

fuel cell power.

The main output for the fuel cell is the fuel cell voltage and power, which 

are used as the inputs for the load. In this research only the fuel cell voltage was 

used as input for the load (SRM). A dc/dc boost converter is used to boost up 

the fuel cell voltage to the required voltage (from 150v to 270v) to drive the SRM.

Moreover, the load current is used as input for the fuel cell stack to help 

controlling the fuel cell stack current. Since the SRM has four phases, therefore 

it produces four currents, and the Fuel cell stack can only accept one load 

current. Therefore, current converter is used to convert the SRM four currents to 

one load current that will be fed back to the fuel cell stack. This was a brief 

description for Emmeskay Inc. Fuel Cell Stack Model that is used in this research 

as the power supply for SRM. The fuel cell stack simulink model is shown in 

appendix A.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3 

SRM DRIVE CONTROLLER

The last two chapters gave a brief introduction for the Switched 

Reluctance Motor and the Fuel Cell. This chapter will be describing the first main 

goal for this research, which is designing a drive controller for switched 

reluctance motor to have a constant speed and a smooth torque for the motor. 

The drive controller consists of a hysteresis current controller, commutation angle 

controller and a PI Speed controller. The design method that is used to design 

the commutation angle controller is the sensorless control method, because it 

requires minimum amount of hardware while giving position information 

continuously with good accuracy. It also utilizes only the active phase voltage 

and current measurements thereby eliminating the external rotor position sensor 

and also additional electronics.

The sensorless control method was applied for designing the commutation 

angle controller which outputs the commutation angle that is fed to the hysteresis 

current controller to energize the active phase of the SRM drive, to stabilize the 

SRM phase currents and to smooth the motor torque knowing the rotor position 

information. While the PI Speed controller is designed to obtain a constant 

speed for the SRM at different loads.

Several sensorless control techniques have been developed over the past 

few years, which use d-q transform equations [35] in the case of vector controlled 

induction motor drives. It is possible to encode the rotor angle through real-time
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computation, by measuring the terminal voltages and currents. In the case of 

Switched Reluctance Motors, there is a definite advantage. For achieving 

sensorless control, the stator phase inductances, which vary periodically with 

rotor position, can be utilized. Therefore it is possible to sense the rotor position 

electronically and eliminate external position sensors.

Increased reliability, reduced cost and drive dimension, and no need for 

additional cabling are some of the advantages of sensorless control in electrical 

machines. Ideally the sensorless control algorithm should be simple and easily 

implementable. It should also be capable of providing rotor position information 

continuously with high resolution and accuracy over the desired operating speed 

range.

Several patents and research papers have been published in the last 

decade on sensorless control of SRM drives [36] -  [59]. Almost all the methods 

utilize the fact that the stator phase inductance in an SRM varies periodically with 

rotor position. The expanded voltage equation of an active phase in an SRM in a 

generalized form, which was presented in chapter 2, is given as follows:

■ dLw(e ,i)d ik , * SLk(6 ,i)

V) ' * §  d f  M " d f + l ‘  »

The first term in the right hand side of the above equation is the resistive 

drop and doesn’t offer position information. The remaining three terms in the 

right hand side have inductance terms in them and therefore they have rotor 

position information. Thus it is possible to obtain rotor position information 

indirectly from one of these terms of the active phase voltage equation.
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3.1 Formulation of The Sensorless Algorithm

Chapter 2 described the derivation of the inductance model and also 

presented the voltage equations of the active phase in the Switched Reluctance 

Motor. This chapter will explain the formulation of the sensorless control 

algorithm from these equations. As described in Chapter 2, the voltage equation 

of the active phase is given by,

i (3.1)dt

where, v is the voltage applied across the winding in V, ‘R’ is the phase 

resistance in Q, y  = L(0,i)*i, is the flux linkage in wb-turns, L(0,i) is the self

inductance of the phase in H, i, is the phase current in A. Equation (3.1) can be 

expanded as follows,

.. n i . . ; dL(6J)d«
v »  K i +• M t u i —- +  w — —  *  I   ----------

dt #8 i t  dt

In equation (3.2) the last term in the right hand side is negligibly small 

compared to the other terms. By substituting the analytical expression used to 

describe the phase inductance, which is described in chapter 4 into (3.2), the 

rotor position information can be obtained. The formulation of the sensorless 

control algorithm depends on the operating speed range of the motor. The 

formulation of the sensorless control algorithm for low and high speed operating 

points will be described separately in the following subsections.
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3.1.1 Low Speed Operation

The angular speed is zero at standstill and therefore the third term in (3.2) 

vanishes. The angular speed will be very small and hence the third term in the 

right hand side of (3.2) as compared to the other two terms can be neglected, 

when the rotor speed is very low, say a few tens of revolutions per minute. 

Therefore, (3.2) simplifies to the following:

In the above equation, the active phase voltage and current are 

measurables and the resistance can be assumed to be a constant. Thus (3.3) 

can be rearranged to the following:

v — 3|
t ( © J )  =  — ( 3 4 )

(di/dt) 1 '

The rotor position can now be estimated using the inverse function of the 

inductance term in (3.4) and is given by,

v * R i  + L (0 ,i)ît (3.3)

(3.5)
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3.1.2 High Speed Operation

The third term in (3.2), which represents the speed-induced emf, will no 

longer be small compared to the other two terms, when the rotor speed increases 

beyond a certain value. Thus, (3.1) can be directly used for position estimation. 

Integrating (3.1) with respect to time and rearranging the terms we get,

Like the low speed case, the rotor position can now be estimated using 

the inverse function to the inductance term in (3.4) and is given by,

Equations (3.5) and (3.7) suggest that it is possible to estimate the rotor 

angle once the active phase voltage and current are available. Therefore, by 

using the inductance model presented in chapter 2, the rotor position can be 

estimated in real-time through active phase voltage and current measurements.

3.2 Commutation Angle Controller

The current waveform should be shaped properly, to maintain the desired 

torque at different loads. Usually, there are two major factors that influence the 

current waveform. One is firing angle; another is switching method. The firing 

angle will be controlled with the commutation angle controller, while the switching 

method will be done with the hysteresis current controller.

(3.6)
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For the SRM, each phase current is always built up from zero. Each phase is 

excited between the unaligned and aligned position. The dwell angle is defined 

as 0C - 0o, where 0o is the starting angle and 0C is the commutation angle. Usually, 

the firing angles 0o, 0C are selected to avoid the phase current to be overlapped. 

Adjusting the firing angles 0o, 0C according to the rotor speed can also shape the 

current waveform. Because the Electro Magnetic Force increases with the speed, 

the turn-on angle should be advanced to unaligned position, even into the 

previous zone of falling inductance when the rotor speed is high. As a result, the 

current can grow to the adequate level at a desired rate. So, the whole motor 

operation process can be divided into four modes in terms of the firing angles 

[60],

These four modes are:

1) normal mode at low speed;

2) boost mode at high speed;

3) an advanced mode at very high speed;

4) braking mode at the speed exceeding the reference speed. The following 

figure shows the firing angle varying with the rotor speed.

* Firing llngl*

Rotor Speed

Figure 3.1: Firing angles vary with rotor speed
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In the next chapter, the implementation of the Commutation angle 

controller and the simulation results will be presented.

3.3 Hysteresis Current Controller

A hysteresis current controller has been implemented in this research to 

generate the SRM chopper switching signals using the reference current 

produced from the Pl-speed controller. Hysteresis current control is a method of 

controlling a voltage source chopper so that an output current is generated which 

follows a reference current waveform. This method controls the switches in the 

power chopper asynchronously to ramp the SRM current up and down so that it 

tracks a reference current signal.

A hysteresis current controller is implemented with a closed loop control 

system as shown in the following figure.

Oil!

i j t )
Hyst®r«si$ current Controller

SRM Drive

Figure 3.2: Hysteresis Current Controller block diagram

An error signal is used to control the switches in the power chopper. This 

error is the difference between the reference current, iref(t), and the current being
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produced from the SRM, ia(t). When the error reaches an upper limit, the 

MOSFETs are switched to force the current down. When the error reaches a 

lower limit the current is forced to increase.

The minimum and maximum values of the error signal are emin and emaX 

respectively. The range of the error signal, emax-emjn, directly controls the amount 

of ripple in the output current from the chopper and this is called the Hysteresis 

Band. The hysteresis limits, emin and emax, relate directly to an offset from the 

reference signal and are referred to as the Lower Hysteresis Limit and the Upper 

Hysteresis Limit. Even while the reference current is changing, the current is 

forced to stay within these limits. The following figure illustrates the ramping of 

the current between the two limits.

Hysteresis Band=A/

Vri.

SRM Current 'acta!

Reference Current = I,mf

Upper Hysteresis Limit -  (.#+ ©,mm:
Lower Hysteresis Limit= $trn

SRM Drive input Voltage

Figure 3.3: Operational Waveform
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3.3.1 Hysteresis Current Controller Theory

Hysteresis current controller is a high frequency chopping current control, 

in which the main switches on each phase are switched on or off simultaneously 

with varying switching frequency to maintain constant current band. The 

hysteresis controller maintains the current waveform between an upper and a 

lower limit in the hysteresis band. The actual current is fed back to be compared 

with the reference current. Whenever the actual current exceeds the upper 

band, the output voltage changes from V to 0 and the current starts to decay. As 

soon as the current crosses the lower band limit the voltage changes back again 

and the actual current starts to increase.

Using the inductance based modeling equations for the SRM model 

developed in section (2.1.4), a vector of trigonometric elements and a vector 

consisting inductance profiles versus current at aligned, midway and unaligned 

positions [61] is given in the following,

L(i,0) = QT(0)A(i) (3.8)

where,

(3 .9 )

and A(i) = [La(i) Lm(i) Lu(i)]T, such that La(i), Lm(i) and Lu(i) are inductance profiles 

versus current at aligned, midway and unaligned positions, respectively. Using 

the phase voltage equation (3.2) and inductance in (3.8), the new voltage 

equation is obtained as
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where, k=1,2,3,4 since it is a four phase motor. The coefficient of di/dt in the 

second term is incremental inductance, i.e.

=———:■■ - o? t —— * m ft
' '  '  : a t

m m

t$rm

Figure 3.4: Ideal current waveform for deriving the hysteresis current controller
equation

The above figure shows the chopping current waveform, where Al is the 

hysteresis band. Two specified consecutive time points in the rising and falling 

parts in that waveform and with the same level of current will be considered, isrm 

as shown. Integrating the phase voltage equation in (3.3) between these two 

points will result in the following equation,

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Since the flux linkage is a function of phase current and position, we can write

V t  ft — A/-?— AO {313}
t)i .Hi x 1

The first term in the above equation will be eliminated, because of the fact that 

the currents at those two points are the same. Consequently,

d)I <>! u 0\
A M i J h  — AB- — A 0  (3,14}

,MJ <nt x 1

Comparing the above equation with (3.13) and using (3.8) yields to

V . 'ff.u.O dQr((n _I* - H h i t - i  \ ( t  i — —— ,\I; l A O , (3*15)* ) t)0
*1

Dividing both sides of the above equation by At = t2 -  ti, the following equation i: 

obtained.

H,

f [V - r i k i n

He I = 1.............. ,= A H ), P.1«)t2 - / |  <-'0
Now, we expand the integral in the left-hand side of the above equation and 

assuming the phase voltage equal to +Vbus and -V bus for the rising and falling 

periods, respectively. So we get

I  ̂ 1H e  {v*Wi.(r0 ~/| ) - r te (r2 - h ) -  * u t I  (3.17)
*2 ~ * l  2  J
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Defining a new parameter as y, which is the ratio of the rising time to the falling 

time during a current chopping cycle, we get

h ~h
Finally, from (3.17) and (3.18), the hysteresis current controller estimation 

equation is obtained as

( 3 ,1 9 )

Now substituting hysteresis current controller from (3.17) and (3.18) in the 

phase voltage equation and solving that equation for incremental inductance, the 

position estimation equation, which is used in the commutation procedure, is 

obtained as

He r-i
y+ l to r(l + — )

-I}+K/+,) , ,, M , I
( 3 .2 0 )

where

I  1 fj < t < t Q 

I t g < t < t 2

3.3.2 Commutation Procedure

The commutation strategy can be set by the designer or can be 

determined through a control system. In each case, this strategy determines Qki0ff
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and Qk+i,on, i.e., the angle at which the active phase is turned off and the angle at 

which the next phase is turned on. Then the corresponding incremental 

‘inductances’ thresholds will be determined as following

Comparing the right hand side of position estimation equation with these 

two thresholds does phase commutation. The following figure demonstrates a 

block diagram of the proposed method.

C o ia a iM te w n

Evaluation of Position 
Estimation Equation

Hysteresis Current 

Estimation

Chopper

f

Torque

Figure 3.5: Block Diagram For The Current Controller Method
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3.4 Pl-Speed Controller

In this section, the design of a speed controller for the switched 

reluctance motor using Proportional-Integral control strategy is presented. While 

Proportional-Integral control represents one of the simplest strategies, its 

implementation for driving an SRM has not been extensively investigated before, 

and its good performance is apparent. In the competition with more advanced 

controllers, the P-l controller has generally been regarded as the one most likely 

to succeed in industrial applications. Simplicity, lower cost, zero steady-state 

error, ease of implementation, robustness, good speed of response, good 

stability, and other desirable features that made P-l speed controller to succeed 

in industrial applications [62].

Our control objective is to track a reference speed trajectory. Each phase 

is provided with current during the torque productive period of rotation and the 

amplitude of the current is adjusted such that the desired level of torque is 

obtained. This desired level is dictated by an external feedback loop for 

controlling the speed. The P-l controller compares the actual speed of the drive 

and the required speed signal set by the user. The controller output is the torque 

desired.

We define the motor speed tracking error to be the difference between the 

reference speed and the plant actual speed. Thus the error is given by:

e = u>d-uj (3.22)
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Where oĵ is a scalar representing the desired motor speed, and w is the 

actual motor speed. The primary concern of the controller is to adjust the input 

signal such that the plant actual speed follows the reference speed. In other 

words, e is required to be kept as close as possible to the point e = 0.

3.4.1 Performance and specifications

Accuracy is measured in terms of the steady state error between the step 

command input and output variable. The response time of a drive system is 

defined as the time taken by the system output to reach about 90% of the input 

speed reference command signal. In other word, it shows how fast a system can 

respond to changes in the input conditions. Robustness requires that the overall 

control system be relatively insensitive to external and/or internal disturbances.

The speed regulation (speed tracking capabilities) of a drive system is the 

ability of the drive to maintain the preset speed under varying load conditions. In 

many industrial applications it is imperative that the system respond quickly to a 

load disturbance and maintain a steady constant speed.

For certain processes and certain given inputs, the proportional-integral 

controller can lead to zero steady state error, good speed of response and 

stability if the controller parameters are well tuned. However, in some situations, 

it may be sensitive to changes in the system parameters and/or external 

disturbances as they are strongly based on the dynamics of the system being 

controlled. Dynamic system parameters can change due to operating conditions 

and also due to component aging over the lifetime of the system. The load can
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also vary, and sometimes one controller must be able to handle a variety of 

different loads [62]. The transient performance can be adjusted to satisfy the 

systems specifications by adjusting the proportional and integral gain constants 

of the controller, i.e. Kp and K|.

3.4.2 Speed Controller

The parameters of the proportional-integral controller need to be adjusted 

to effectively control the process whose dynamics are described by a set of 

differential equations. As was shown in the beginning of this chapter, the drive 

control incorporates four hysteresis control loops for the phase currents. By 

properly designing the P-l controller, it is possible to make the transient response 

to a step input exhibit relatively small or no overshoot. In the design of the speed 

controller, the time response of the current loop will be assumed to be so fast 

that the current reference will be considered to coincide with the actual currents.

The response of a system can be easily analyzed if the system could be 

approximated by a second order system. Therefore, for simplicity in the analysis, 

the electrical time constant of the motor is neglected, as the mechanical time 

constant of that motor is usually much larger than its electrical time constant.

In designing the speed controller we aim to have no more than 5% 

overshoot and that the rise time should be less than 5 milliseconds. A damping 

ratio C, = 0.7 of the model will meet the overshoot requirement and for this 

damping ratio, a rise time of about 5 milliseconds suggests an undamped natural 

frequency of about wn = 400 rad/sec. Most systems being analyzed for control
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system design are much more complicated than the basic second-order system. 

Approximating the system by a second order model would be used only for 

guidance.

Since the mechanical time constant of the motor is much higher than the 

electrical time constant, the governing electromechanical equation of the 

switched reluctance motor (the dynamic equation of the mechanical subsystem) 

can be simplified as [63]:

Since Td is the output of the controller, for any speed error signal e it is calculated 

by the speed controller using the following equation:

T4 •  K^e *  Kt J  edt ( 3 .2 4 )

Using e as it is defined in equation (3.22) and substituting the above expression 

for Td in equation (3.23), we get the following closed-loop system:

j & l * - m) * iy<% - «)# - r,

where

go = the actual speed of the motor 

u)d = the desired speed of the motor 

J = the moment of inertia 

B = the coefficient of friction 

Kp = the proportional gain of the speed controller
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K| = the integral gain of the speed controller 

Ti = the load torque 

Td = the desired torque

It is assumed that the load torque Ti and the desired speed Wd are 

constant and thus their derivatives are zero. After differentiating equation (3.25) 

with respect to time, we obtain:

!  *  ( #  *  (3 .2 0 )dfl *

A state-space representation of the whole closed-loop drive system using 

the phase variables is adopted. This can be written as:

1 0 1 0i j xil
W- Kt J ♦ Kp 1 * gr

i
' “ y  “ j  ^ , T

where 

jr ,=  u

dktJx  =■ _ _
dt

The output variable is the mechanical angular velocity

The transfer function between the input and the output of the closed-loop 

system is given by:
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« < i * i  -  A>~*b

where

A K, 8 + K*

Kt
T

[1 0]

I and s are the identity matrix and the complex variable of the Laplace transform, 

respectively. Therefore, for the whole system (closed-loop system) we get:

C(m)
s *  ( -

* K,

Using B and J as in Appendix I, then the characteristic equation is given by:

j*  * C«5f# ♦ 33 + Q 5K , - 0

Thus

mtCi« *1 (3 31)
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For C, = 0.7 and oon = 400 rad/sec, we get KP = 0.892 and K| = 256. The above 

parameters would correspondingly be changed, if a different design criterion is 

selected.
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CHAPTER 4

SIMULINK MODEL IMPLEMENTATION AND OFF-LINE 

AND REAL-TIME SIMULATION

The dynamic equations representing the SRM drive based on which the 

simulation model is developed are presented in this chapter. The details of the 

computer model used to simulate the SRM drive system is described in the next 

section. Also the various steps involved in developing the software for the SRM 

drive control scheme are discussed and the simulation results are presented. 

Finally, the design and implementation of the real time model with the real time 

simulation results are presented in this chapter.

4.1 Dynamic Equations of The SRM Drive

The equations representing the dynamics of the system are formulated, in 

order to develop a simulation model of the drive system. A set of non-linear first 

order differential equations govern the operation of the switched reluctance 

motor, solving these equations the performance of the drive can be obtained. A 

voltage equation that accounts for the applied voltage, resistive and inductive 

drops and the rotational Electro Motive Force, represent each phase of the SRM. 

The various phases of a 4-phase motor are represented by four first order non

linear differential equation, which are decoupled [23].
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The voltage equation for the conducting phase is given by,

v = R i + i £ + * s M  ( 4 .1 )
dt dt

where, v is the voltage applied across the winding in V, R is the phase resistance 

in Q, T is the phase leakage inductance in H, \\i = L(0,i) * i, is the flux linkage in 

wb-turns, where, L(0,i) is the self-inductance of the phase in H, i is the phase 

current in A.

In equation (4.1), the first term in the right-hand side represents the 

resistive drop. The second term in the right-hand side, which basically 

represents the leakage inductance drop is usually very small and can be 

neglected.

The third term is defined as ‘e’ and is given by,

 d y ( f l i )  ^  < M & i )  d fl t d iy ( 8 4 )  d i  (4 2 )
dt d© dt dt dt

where, 0 and i are independent variables.

Hence,

,  mm m m )  mmnm mmn <n ( 4 .3 )

dt *  dt ”  d© dt di dt

c - i <‘L ( e . i ) [ i l , i d L ( 9 . i )  9  i y d l  ( 4 .4 )

d© di it  dt
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In (4.4), the second term can be neglected, since it is negligibly small for 

low voltage, and high current machines. From equation (2.8), the expression for 

L(0,i) is used in (4.4) to derive a closed form solution for term ‘e’, which is given 

by the following equation.

t  m Ly )sinNr6+(Lft(i) * L# - 2Lm (i))sifi2M:P§)

»\m J m 4m m m J

Where,

, n«k
M ')  = I ( n  + l)ani ’ 

n«0

t i f O - I t n  + Db.i'
tt=0

(4.6)

(4.7)

Similarly, a closed form solution for the electromagnetic torque is derived 

from the coenergy relations and is given by:

T  =  J ~ r r i i (4.8)

N,i,  * p^Ci)-Lû N r0^(lJci)^lu -2LZ(i))iiii2NreJ (4.9)

where,
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(4,10)

The mechanical equations of the drive system are given by,

+ B &  14.12}

{4.13}

where, Tl is the load torque, which can be any function of the angular 

speed or position, and J is the angular moment of inertia of all the rotating

The same set of equations with respective currents and phase shifts, 

represent the other phases. The sum of the instantaneous torques of the 

individual phases gives the total electromagnetic torque developed by the motor. 

By solving equations (4.1), (4.12) and (4.13) simultaneously, the performance of 

the motor can be obtained. This completes the development of the dynamic 

equations for the SRM.

4.2 Description of The Dynamic Model of The SRM Control Drive

Once the static characteristics of the motor are modeled accurately, the 

performance of the SRM drive can be predicted through computer simulations. 

The static characteristics of the motor are represented using the inductance

masses, kg m2.
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model of the motor described in chapter 2. In order to simulate the drive 

performance, Matlab/Simulink package is used in this research. The SRM 

dynamic equations presented in the previous section are modeled in Simulink 

and solved to obtain the drive performance.

Torque Phase AHysteneesis Current Controller A

SRM Phase Torque PhaseHystereesis Current Controller

Commutator

SRM Phase C Torque Phase CHystereesis Current Controller C

SRM Phase 0 Torque Phase DHystereesis Current Controller P

Mechanical Load

PI Speed Controller

Figure 4.1: Block schematic of the SRM drive control system used for
simulation

The above figure shows the block schematic of the drive control system 

used for simulation. The simulation model comprises of several blocks, and each 

block is used to carry out a specific task. Each phase of the motor comprises of 

a hysteresis control block, which simulates the current controller and generates 

the switching function for the respective phase; a SRM phase block, which
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computes the rotational emf and the phase current; a torque block, which 

computes the torque developed by the respective phase. There is a common 

mechanical block, which adds up all the individual phase torques to compute the 

overall electromagnetic torque.

In the mechanical block, any type of load can be modeled and also the 

other mechanical properties of the drive system like the rotational moment of 

inertia, friction, etc. can be modeled. Angular acceleration, speed and position 

are the outputs of the mechanical block, which can be used for feedback 

purposes.

The Simulink model used in this research basically simulates the speed 

and current controller for the SRM drive system. Various control quantities like 

the dc bus voltage, current reference, speed reference, turn-on and turn-off 

angles and the load conditions can all be defined and simulation can be carried 

out. Through simulation for any specified operating point, the various phase 

currents, flux-linkages, torques, rotor speed and position can be obtained. A 

closed loop speed control operation is performed using a PI controller.

Moreover, one of the simulink model blocks is the fuel cell system, which 

is used for the power supply for the SRM. Two more blocks were added to 

connect the fuel cell system to the SRM drive. The two blocks are a Current 

Converter Block and a boost-up DC/DC converter, they are used to convert the 

four phases currents for the motor to one load current that is used as a feedback 

for the Fuel cell, and to boost up the Fuel Cell voltage to the required dc voltage 

that will be used to drive the SRM, respectively.
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For simulation purposes, the SR motor model which is used has the 

following specifications: 90KW, 25,000 RPM, 8/6, four-phase motor. The 

simulation results will be divided into two sections, offline simulation and real time 

simulation. Each will be done before and after adding the speed Controller.

4.3 Hysteresis Controller

The hysteresis controller maintains the current waveform between an 

upper and a lower limit in the hysteresis band. The actual current is fed back to 

be compared with the reference current. Whenever the actual current exceeds 

the upper band, the output voltage changes from V to 0 and the current starts to 

decay. As soon as the current crosses the lower band limit the voltage changes 

back again and the actual current starts to increase.

By simulating a hysteresis controller, the actual current is forced to follow 

the reference current. In hysteresis control, the following control law is applied:

If ka  > I r  + ih , then vk= 0  

If ika <  I r  - ih , then vk = +VDC 

where

lka = phase actual current

lR = reference current

Ih = allowed hysteresis band

Vqc = the power converter dc bus voltage
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4.4 PI Speed Controller

The speed control system introduced in the previous chapter is simulated 

using the equations described in this chapter. The feedback control system 

employed for speed control of the switched reluctance motor drive, consists of a 

Proportional-Integral controller which compares the actual speed of the drive, 

and the desired speed signal provided by the user. Upon speed demand, the 

speed controller computes the value of the control signal which is the output of 

the speed controller using equation (3.24), which yields the desired torque Td. 

This command is used to generate the reference current using the following 

equation.

(4.14)

where

L - L

p,

ir = reference Current 

La = aligned phase inductance 

Lu = unaligned phase inductance 

px = stator pole arc

The following figure shows the speed control simulated system.
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Figure 4.2: Speed controller block diagram

4.5 Offline Simulation Results

The fuel cell voltage is 270V and the current reference is set equal to 

600A. Each phase is turned on at its unaligned position and turned off 5° prior to 

the aligned position. The mechanical load is chosen such that the motor 

operates in the current controlled mode of operation. Since the motor operates 

below the base speed, the amplitude of the rotational Electro Motive Force (emf) 

is small and hence only the current controller regulates the phase current.

While performing simulation, a fixed time step of 40ps was used in order 

to simulate fixed frequency sampling of 25KHZ. The phase voltages, currents 

and the switching functions are written into various output files.

In order to simulate the sensorless scheme that was used to design the 

commutation angle controller, the rotor position estimation algorithm was 

developed in Matlab. The estimation algorithm reads the active phase voltages,
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currents and the switching functions from the files output by simulink. This data 

was used to solve equations (3.5) and (3.7) in order to obtain the rotor angle.

The simulation was done using a conduction angle of 15° for each phase 

so that there will be no overlap between the adjacent phase conduction. Each 

phase is turned on at 7.5° and turned off at 22.5° from the unaligned position 

respectively. Rotor position is estimated using active phase currents and 

voltages. The estimated rotor angle is reset to zero whenever any phase starts 

conducting and each active phase is used for position estimation for 15°. The 

following figures show the offline simulation results before and after adding the 

speed controller and it will also show the SRM current results after the Hysteresis 

controller.

Figure 4.3: four phase SRM current offline simulation
I nr i |i le Offline Simulation (zoomed in area) f  ........   I

Figure 4.4: Torque Offline Simulation before adding the Speed Controller
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Speed Offline Simulation [Zoomed in area]

Figure 4.5: Speed Offline Simulation before adding the Speed Controller

Figure 4.6: Torque Offline Simulation after adding the Speed Controller

Figure 4.7: Speed Offline Simulation after adding the Speed Controller
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From the above figures we can see that before the speed controller the 

speed and the torque were varying between two values 40 & 20, and 2.195X104 

& 2.165X104 respectively. While, after adding the speed controller they both 

became stable at one value. The torque became stable at 37.5 and the speed 

became stable at 2.5X104.

4.6 Real-Time Simulation

In a competitive world, using real-time simulation rather than numerical 

simulation (offline simulation) provides a significant advantage. Real-Time 

simulation can minimize risks, improve reliability, and bring a system into 

operation more quickly, while numerical simulation results may not be reliable, 

sometimes only qualitative. Opal-RT platform was used to develop the real time 

simulation for the SRM drive control model developed in this research.

Opal-RT has developed the technology that enables model separation to 

allow distributed execution, while automatically generating, downloading, and 

running real-time, high performance, deadlock-free distributed simulation 

software code. Opal-RT software, which is called RT-LAB software, integrates 

the most advanced computer, communication, and simulation technologies 

commercially available in today’s industry, to reduce design and implementation 

time and cost, while increasing scalability and flexibility with no sacrifice in 

performance.

RT-LAB software runs on a hardware configuration consisting of 

Command Station, Compilation node, Target nodes, Communication links (real-
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time and Ethernet), and the I/O boards. It is configured on Windows platform for 

the Command Station. Simulations can be run entirely on the Command Station 

computer, but they are typically run on one or more target nodes. For real-time 

simulation, the preferred operating system for the target nodes is QNX. When 

there are multiple QNX nodes, one of them is designated as the compilation 

node. The Command Station and target node(s) communicate with each other 

using communication links, and for hardware-in-the-loop simulations target nodes 

may also communicate with other devices through I/O boards.

4.6.1 Command Station

The command Station is a PC workstation that operates under Windows 

operating system, and serves as the user interface. The Command Station 

allows users to:

• Edit and modify models

• See model data

• Run the original model under its simulation software (Simulink)

• Generate code

• Separate code

• Control the simulator’s GO/STOP sequences

4.6.2 Target Nodes

The target nodes are real-time processing and communication computers 

that use commercial processors interconnected by an Ethernet adapter. These 

computers can also include a real-time communication interface like FireWire or
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cLAN (depending on the selected OS), as well as I/O boards for accessing 

external equipments. The real-time target nodes perform:

• Real-time execution of the model’s simulation

• Real-time communication between the nodes and l/Os

• Initialization of the I/O systems

• Acquisition of the model’s internal variables and external outputs through I/O 

modules

• Implementation of user-performed online parameters modifications

• Recording data on local hard drive, if desired

• Supervision of execution of the model’s simulation, and communication with 

other nodes.

4.6.3 Compilation Node

The compliation node is used to:

• Compile C code

• Load the code onto each target node

• Debug the user’s source code (S-function, user code block, etc.)

4.6.4 Communication

4.6.4.1 FireWire Real-Time Link

The real-time communication link works using FireWire (IEEE P-1394) or 

cLAN interfaces. Both ensure:
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• Real-time communication between slaves, and between the target nodes and 

the I/O

• Synchronization between the I/O boards and target nodes.

4.6.4.2 Ethernet Link

An Ethernet link is used to transfer simulation models and run-time data between 

the Command station and the target nodes

4.6.4.3 i/O boards

Both analog and digital I/O boards are supported by RT-LAB. These allow 

connection to external equipment for applications such as Hardware-ln-Loop.

4.7 Real-Time Simulation for SRM Drive Control

In order to run the SRM drive control Simulink model in RT-LAB software 

the model must be separated into subsystems and appropriate communication 

blocks are inserted to connect the model subsystems. Each of the subsystems 

represents one node in the real-time network. For RT-LAB software there are 

three types of subsystems that are used to divide any simulink model, which are 

Console, Master, and Slaves.

The Console subsystem is the station operating under the Windows 

operating system platform, where we can interact with the system. It contains all 

the Simulink blocks related to acquiring and viewing data (scope, manual switch,
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To workspace-type blocks, etc.). Any Simulink model that will run in RT-LAB 

platform should have only one Console block.

The Master computation subsystem is responsible for the model’s real

time calculation and for the overall synchronization of the network. In a system 

containing Hardware-in-the-Loop (HIL) this subsystem is also responsible for I/O 

communication. The Master includes Simulink blocks that represent operations 

to be performed on signals and/or on Input/Output icons. The Master subsystem 

for the SRM drive control model contains the Fuel Cell stack model and the Drive 

Controller block for the SRM. Any Simulink model that will run in RT-LAB 

platform should have only one Master block.

The Slave computation subsystems are also responsible for performing 

calculations in the model, and are driven by the Master subsystem, which 

synchronizes the whole network. Slave computation subsystems contain 

Simulink blocks that represent operations to be performed on signals. For real

time applications, there can be more than one slave. The number of slaves 

depends on the simulated model complexity and the number of target nodes 

availability. For the purpose of this model, only one slave block is used that has 

the SRM block, SRM drive block, and the Mechanical block. For any Simulink 

model to run in RT-LAB software it has to run in fixed time step simulation. The 

following section gives the steps of running the SRM drive control model in RT- 

LAB software and it shows the real-time simulation results.
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4.7.1 Running SRM Drive Control in RT-LAB Software

In order to run the SRM drive control that was developed in this research 

in RT-LAB software, the following steps were done:

• Offline Simulation model was remodeled to change it from running in variable 

time step to fixed time step, which was done by changing all the power 

electronics blocks (Current Converter & SRM chopper) to Simulink IF & ELSE 

blocks.

• The model was divided into three blocks, Console, Master and Slave and an 

Opal-RT Lab communication blocks were used to connect the inputs and outputs 

between these blocks.

• Once the original model has been separated into subsystems, we open the 

model with RT-LAB software, and we make sure to add the files and values 

needed to initialize any of the model parameters to RT-LAB Window using the 

Parameters Configuration Tab.

• Then using the Compilation Tab, the model is automatically coded in C and 

compiled for execution by the target nodes. Target nodes are commercial PCs, 

equipped with PC-compatible processors that operate under Windows or QNX 

environment. In the QNX environment, the real-time sending and reception of 

data between QNX nodes is performed through FireWire-type communication 

boards, typically at 200Mb/s or 400Mb/s (depending on the card chosen). In 

Windows environment, real-time communication takes places using a Giganet 

Communication device (1200 Mb/s), or shared memory for distributed computing
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on a single multiprocessor machine. Less time-critical data can be sent and 

received through Ethernet communication.

• When the C coding and compilation are complete, RT-LAB automatically 

distributes its calculations among the target nodes, and provides an interface 

through the Execution Tab so the model can be executed for the real-time 

simulation.

• The real-time simulation results were monitored through the Console Block. 

Communication between the Console and the target nodes is performed through 

a TCP/IP connection. This allows us to save any signal from the model, for 

viewing or for offline analysis. It is also possible to use the Console to modify the 

model’s parameters while the simulation is running. The following figures show 

the real time simulation results for the model before and after adding the speed 

controller, they also show the SRM current results after the Hysteresis controller.

Figure 4.8: Real-time four phase SRM current
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Figure 4.9: Torque Real Time Simulation (Zoomed in area) before adding Speed

Controller

Torque resit time simulation [Zoomed out)

Figure 4.10: Torque Real Time Simulation (Zoomed out area) before adding
Speed Controller
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Figure 4.11: Speed Real Time Simulation (Zoomed in area) before adding Speed
Controller

Figure 4.12: Speed Real Time Simulation (Zoomed out area) before adding
Speed Controller
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Figure 4.13: Torque Real Time Simulation after adding speed controller
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Figure 4.14: Speed Real Time Simulation after adding speed controller

From the above figures we can see that the RT-LAB real-time simulation 

results are close to the Matlab/Simulink offline simulation results, which 

concludes that the RT-LAB real-time simulation didn’t affect the Simulink drive 

control model. This proves that the real-time simulation will be a good candidate 

for the future automotive, industry or research applications using hardware-in- 

the-loop Simulation.
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CHAPTER 5 

SUMMARY AND CONCLUSIONS

5.1 INTRODUCTION

Switched reluctance motors have gained increasing popularity in variable- 

speed drives and have been found competitive with traditional ac and dc drives 

because of their simple structure, ruggedness, low cost, and the simplicity of the 

associated power chopper. There is a growing demand for SRM drive systems 

for such diverse applications as aerospace, robotics, traction and automotive, 

mining, oil and gas industries, and products such as pumps, fans, and 

appliances. Moreover, the switched reluctance motor can be designed for low 

speed and high torque capability. These characteristics make the switched 

reluctance motor attractive for direct-drive applications. However, its nonlinear 

electromechanical characteristics and its periodic variation of inductance in each 

phase result in torque ripple and hence speed ripple. The design of controller for 

the SRM is quite a challenging problem. P-l controllers are robust and they give 

good performance at low cost, which made them widely used for motor control.

In this concluding chapter, the research work is summarized, advantages and 

disadvantages of P-l controller are explained, and some suggestions for further 

research are presented.
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5.2 Summary of The Thesis

An introduction and a literature review of the switched reluctance motor 

were presented in chapter 1. Most of the SRM design models and their drive 

controllers presented in literature are always depending on using the Finite- 

Element method in designing the SRM which in turn causes the drive controller 

model to be complicated in design and hard to simulate in real time. The work 

presented in this Thesis solves that problem by developing a drive controller for 

SRM using the inductance model for the motor, which was easily able to simulate 

in real time platform. In addition to that, this Thesis also presents a Fuel Cell 

Stack Simulink model that was able to simulate in real time platform, which will 

be helpful in using it in hardware in the loop for other projects dealing with fuel 

cell. This will solve the problem of having to use an actual Fuel Cell stack, which 

is always a concern from the design complexity and cost point of view. The 

mathematical model of the switched reluctance motor, which gives a better 

appreciation of the operating characteristics and the control purposes for the 

motor, was presented in chapter 2.

A speed controller system based on a proportional-integral control 

strategy was designed in chapter 3. Our control objective is to track a reference 

speed trajectory. A P-l control law is chosen only because of its very good and 

desirable features and is not intended to infer that this is the best control law. A 

feedback control system was employed for speed control of the switched 

reluctance motor drive to provide the desirable performance. This consists of a 

P-l controller which compares the actual speed of the drive and the required
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speed signal provided by the user. The transient performance can be adjusted to 

satisfy the system specifications by adjusting the controller constants Kp and K|.

Performance is based on the ability of the control system to provide each 

phase with pulses of current during the torque productive periods by selecting 

predetermined switching angles. The performance and results for the offline and 

real time simulation were presented in chapter 4. In order to minimize the torque 

ripple a Hysteresis Current Controller and a commutation system were designed. 

Where the hysteresis current controller used the reference current value from the 

P-l Controller to limit the actual current for the SRM to this desired value, while 

the function of the commutation system is to designate the appropriate phases 

for torque development and commutation. In this control scheme employed in 

this study, a single phase is energized at a time, the “on’ and “off’ angles are 

fixed at 0on and 0Off. The actual phase to be energized is determined by the rotor 

position.

5.3 Advantages and Disadvantages of P-l Controller

Proportional-Integral controllers have been widely used in industry. In 

competition with more advanced controller, P-l controllers have generally been 

regarded as more successful in industrial applications. The main reasons for this 

have been simplicity, lower cost, zero steady-state error, ease of implementation, 

robustness, accuracy, good speed of response, and ability to achieve stability.

The integral component of this controller will ensure that the steady-state 

error is zero for a step change, which is a very useful feature for many
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applications. The transient response may not be acceptable, although a P-l 

controller makes the steady-state error zero. For example, it could increase the 

settling time. This might not be tolerated in some high-performance applications 

such as robotics. Nevertheless, a P-l controller can be designed to respond very 

quickly, but in this case an undesirable speed overshoot may occur. Hence, one 

has to choose a design suitable to a particular application.

Since P-l controllers are essentially low-pass filters, they can filter out 

high-frequency noise. P-l controllers are examples of good classical control 

design techniques. One drawback is that they are strongly based on the 

dynamics of the system being controlled and in some situations they may be 

sensitive to changes in the plant parameters and/or external disturbances.

At the present time, many applications use P-l control strategies for speed 

control, despite some of its disadvantages. However, more advanced control 

laws could be employed where superior dynamic performance is desired under 

all motor operating conditions, due to the high nonlinearity of the switched 

reluctance motor.

5.4 Suggestions For Future Work

The potential for future research work in this area is vast. In this thesis, a 

simplified SRM dynamic model, which neglects magnetic saturation, was 

presented and a drive control for the motor was developed and simulated in real 

time using Fuel Cell as a power source for the motor. For future work, a physical 

SRM motor can be used in hardware-in-the-loop to be tested with the Fuel cell
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model and the Controller model using Opal-RT lab platform. This can improve 

the accuracy, particularly for high performance applications with low cost.

Some high-performance industrial applications such as robotics and 

machine tools require variable speed drive systems, which need to be relatively 

insensitive to parameter variations and/or external disturbances. They also 

require drive systems that are highly accurate, robust, and fast. To provide such 

a high degree of performance, more advanced and complex control strategies 

may be needed to make the system highly robust and accurate.

In this study, the research involved modeling, system design, and 

simulation. The next step would be to experimentally test these theoretical 

results. This experimental approach could also be an area for future research.
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APPENDIX A

SRM Inductance Model

The following will show the equations and values that were developed 
Dr. Ehsani’s work to design the SRM Inductance model.
The phase inductance equation is given by,

L(i,0)  ̂L9(i)+ L,(i)casfNt0) + Lj(i)cosC2N:f0) (A. I)

where,

Lo(0= j
I

L j (i) *  L # (!) — L „) 

L2( i ) - l [ iC L a(i} + La>-Lro(i)]

CA.2)

(A.3)

(A.4)

where,

(i) = L(0 » ( f ) *  " f  t ain (A.5)

a«o
(A.?)

The polynomial coefficients obtained are shown below: 

aO = 0.00095885 

a1 = -0.4369057e-5

(A.6)

a2 = 0.6471747e-7
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a3 = -0.2731239e-7 

a4 = 0.3648079e-9 

a5 = -0.1589331 e-11

bO = 0.000442262 

b1 = -0.1368487e-5 

b2 = 0.1632494e-6 

b3 = -0.5953759e-8 

b4 = 0.7181161e-10 

b5 = -0.2897464391e-12

The following figure shows the structure of a four-phase SRM:
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SRM Geometry table used bv Dr. Ehsani’s work

PsfXXXMHMft* Vdp

Stator Diameter 1 4 0  mm

Rotor Diameter 60,6 m a t
Stack Length © f t ____ —» u  h u h

Stator a r c 22.5® ( r n e c b )
R o t o r  a r c 2 2  5° (mcch)

Air gap length 0 , 3  mm

Shaft d i a m e t e r 18.$ mm

S t a t o r  back i r o n f  mm

R o t o r  back iron 12 mm

Number of w i n d i n g s  per p h a s e  j  2 0

List of Symbols

B Coefficient of friction

e Speed error

i Current

id, ir Desired Current and Reference Current

Al, lh Hysteresis band

Idc dc link current
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J Moment of inertia

k Suffix denoting phases

K Slope of the inductance profile

K, Integral gain of the speed controller

Kp Proportional gain of the speed controller

L,L(0) Phase inductance

La aligned phase inductance

Lu unaligned phase inductance

N r number of rotor poles

N s number of stator poles

q number of phases

R,r phase resistance

s complex variable of the Laplace transform

t time

T electromagnetic torque

Td.Tr Desired torque and Reference torque

T l Load torque

V voltage

Vdc dc link voltage

a r rotor pole pitch

Pr rotor pole arc

Px stator pole arc

? damping ratio
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0 rotor position

0on, ©off “on”, “off” angle 

v|/ flux linkage

CO actual speed of the motor

cor reference speed of the motor

wn undamped natural frequency

P-l Proportional-integral

SRM switched reluctance motor

Values used for simulation

q 4

Ns 8

N r 6

Lu 10mH

La 110mH

Ps 0.35 rad

r 0.95Q

J 0.0016 kg.m2

B 0.004 Nm/rad/sec
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APPENDIX B
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11

mm *

SRM inductance model developed in Dr. Ehsani’s work

SRM Power chopper Simulink Model
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