16,730 research outputs found

    Sensitivity Analysis of the Economic Lot-Sizing Problem

    Get PDF
    In this paper we study sensitivity analysis of the uncapacitated single level economic lot-sizing problem, which was introduced by Wagner and Whitin about thirty years ago. In particular we are concerned with the computation of the maximal ranges in which the numerical problem parameters may vary individually, such that a solution already obtained remains optimal. Only recently it was discovered that faster algorithms than the Wagner-Whitin algorithm exist to solve the economic lot-sizing problem. Moreover, these algorithms reveal that the problem has more structure than was recognized so far. When performing the sensitivity analysis we exploit these newly obtained insights

    Sensitivity Analysis of the Economic Lot-Sizing Problem

    Get PDF
    In this paper we study sensitivity analysis of the uncapacitated single level economic lot-sizing problem, which was introduced by Wagner and Whitin about thirty years ago. In particular we are concerned with the computation of the maximal ranges in which the numerical problem parameters may vary individually, such that a solution already obtained remains optimal. Only recently it was discovered that faster algorithms than the Wagner-Whitin algorithm exist to solve the economic lot-sizing problem. Moreover, these algorithms reveal that the problem has more structure than was recognized so far. When performing the sensitivity analysis we exploit these newly obtained insights

    A Dual Algorithm for the Economic Lot-Sizing Problem

    Get PDF
    A linear description for the economic lot-sizing problem consisting of exponentially many linear inequalities was given by Barany, Van Roy and Wolsey in 1984. Using this formulation we present a dual algorithm for the economic lot-sizing problem, which is of the same complexity as the Wagner and Whitin dynamic programming algorithm. Besides its use in sensitivity analysis the dual algorithm also provides an alternative proof of the fact that the linear description is complete

    Demand uncertainty and lot sizing in manufacturing systems: the effects of forecasting errors and mis-specification

    Get PDF
    This paper proposes a methodology for examining the effect of demand uncertainty and forecast error on lot sizing methods, unit costs and customer service levels in MRP type manufacturing systems. A number of cost structures were considered which depend on the expected time between orders. A simple two-level MRP system where the product is manufactured for stock was then simulated. Stochastic demand for the final product was generated by two commonly occurring processes and with different variances. Various lot sizing rules were then used to determine the amount of product made and the amount of materials bought in. The results confirm earlier research that the behaviour of lot sizing rules is quite different when there is uncertainty in demand compared to the situation of perfect foresight of demand. The best lot sizing rules for the deterministic situation are the worst whenever there is uncertainty in demand. In addition the choice of lot sizing rule between ‘good’ rules such as the EOQ turns out to be relatively less important in reducing unit cost compared to improving forecasting accuracy whatever the cost structure. The effect of demand uncertainty on unit cost for a given service level increases exponentially as the uncertainty in the demand data increases. The paper also shows how the value of improved forecasting can be analysed by examining the effects of different sizes of forecast error in addition to demand uncertainty. In those manufacturing problems with high forecast error variance, improved forecast accuracy should lead to substantial percentage improvements in unit costs

    Responsible Inventory Models for Operation and Logistics Management

    Get PDF
    The industrialization and the subsequent economic development occurred in the last century have led industrialized societies to pursue increasingly higher economic and financial goals, laying temporarily aside the safeguard of the environment and the defense of human health. However, over the last decade, modern societies have begun to reconsider the importance of social and environmental issues nearby the economic and financial goals. In the real industrial environment as well as in today research activities, new concepts have been introduced, such as sustainable development (SD), green supply chain and ergonomics of the workplace. The notion of “triple bottom line” (3BL) accounting has become increasingly important in industrial management over the last few years (Norman and MacDonald, 2004). The main idea behind the 3BL paradigm is that companies’ ultimate success should not be measured only by the traditional financial results, but also by their ethical and environmental performances. Social and environmental responsibility is essential because a healthy society cannot be achieved and maintained if the population is in poor health. The increasing interest in sustainable development spurs companies and researchers to treat operations management and logistics decisions as a whole by integrating economic, environmental, and social goals (Bouchery et al., 2012). Because of the wideness of the field under consideration, this Ph.D. thesis focuses on a restricted selection of topics, that is Inventory Management and in particular the Lot Sizing problem. The lot sizing problem is undoubtedly one of the most traditional operations management interests, so much so that the first research about lot sizing has been faced more than one century ago (Harris, 1913). The main objectives of this thesis are listed below: 1) The study and the detailed analysis of the existing literature concerning Inventory Management and Lot Sizing, supporting the management of production and logistics activities. In particular, this thesis aims to highlight the different factors and decision-making approaches behind the existing models in the literature. Moreover, it develops a conceptual framework identifying the associated sub-problems, the decision variables and the sources of sustainable achievement in the logistics decisions. The last part of the literature analysis outlines the requirements for future researches. 2) The development of new computational models supporting the Inventory Management and Sustainable Lot Sizing. As a result, an integrated methodological procedure has been developed by making a complete mathematical modeling of the Sustainable Lot Sizing problem. Such a method has been properly validated with data derived from real cases. 3) Understanding and applying the multi-objective optimization techniques, in order to analyze the economic, environmental and social impacts derived from choices concerning the supply, transport and management of incoming materials to a production system. 4) The analysis of the feasibility and convenience of governmental systems of incentives to promote the reduction of emissions owing to the procurement and storage of purchasing materials. A new method based on the multi-objective theory is presented by applying the models developed and by conducting a sensitivity analysis. This method is able to quantify the effectiveness of carbon reduction incentives on varying the input parameters of the problem. 5) Extending the method developed in the first part of the research for the “Single-buyer” case in a "multi-buyer" optics, by introducing the possibility of Horizontal Cooperation. A kind of cooperation among companies in different stages of the purchasing and transportation of raw materials and components on a global scale is the Haulage Sharing approach which is here taken into consideration in depth. This research was supported by a fruitful collaboration with Prof. Robert W. Grubbström (University of Linkoping, Sweden) and its aim has been from the beginning to make a breakthrough both in the theoretical basis concerning sustainable Lot Sizing, and in the subsequent practical application in today industrial contexts

    Lot-sizing for inventory systems with product recovery

    Get PDF
    We study inventory systems with product recovery. Recovered itemsare as-good-as-new and satisfy the same demands as new items. Thedemand rate and return fraction are deterministic. The relevantcosts are those for ordering recovery lots, for orderingproduction lots, for holding recoverable items in stock, and forholding new/recovered items in stock. We derive simple formulaethat determine the optimal lot-sizes for theproduction/procurement of new items and for the recovery ofreturned items. These formulae are valid for finite and infiniteproduction rates as well as finite and infinite recovery rates,and therefore more general than those in the literature.Moreover, the method of derivation is easy and insightful.product returns;recovery;lot sizing;EOQ/EPQ

    Sensitivity of multi-product two-stage economic lotsizing models and their dependency on change-over and product cost ratio's

    Get PDF
    This study considers the production and inventory management problem of a two-stage semi-process production system. In case both production stages are physically connected it is obvious that materials are forced to flow. The economic lotsize depends on the holding cost of the end-product and the combined change-over cost of both production stages. On the other hand this 'flow shop' is forced to produce at the speed of the slowest stage. The benefit of this approach is the low amount of Work In Process inventory. When on the other hand, the involved stages are physically disconnected, a stock of intermediates acts as a decoupling point. Typically for the semi-process industry are high change-over costs for the process oriented first stage, which results in large lotsize differences for the different production stages. Using the stock of intermediates as a decoupling point avoids the complexity of synchronising operations but is an additional reason to augment the intermediate stock position. The disadvantage of this model is the high amount of Work-In-Process inventory. This paper proposes the 'synchronised planning model' realising a global optimum instead of the combination of two locally optimised settings. The mathematical model proves (for a two-stage single-product setting) that the optimal two-stage production frequency corresponds with the single EOQ solution for the first stage. A sensitivity study reveals, within these two-stage lotsizing models, the economical cost dependency on product and change-over cost ratio‟s. The purpose of this paper is to understand under which conditions the „joined setup‟ or the „two-stage individual eoq model‟ remain close to the optimal model. Numerical examples prove that the conclusions about the optimal settings remain valid when extending the model to a two-stage multi-product setting. The research reveals that two-stage individually optimized EOQ lotsizing should only be used when the end-product stage has a high added value and small change-over costs, compared to the first stage. Physically connected operations should be used when the end-product stage has a small added value and low change-over costs, or high added value and large change-over costs compared to the first production stage. The paper concludes with suggesting a practical common cycle approach to tackle a two-stage multi-product production and inventory management problem. The common cycle approach brings the benefit of a repetitive and predictable production schedule
    • 

    corecore