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Abstract: A linear description for the economic lot-sizing problem consisting of exponentially many linear 
inequalities was given by Barany, Van Roy and Wolsey in 1984. Using this formulation we present a dual 
algorithm for the economic lot-sizing problem, which is of the same complexity as the Wagner and Whitin 
dynamic programming algorithm. Besides its use in sensitivity analysis the dual algorithm also provides an 
alternative proof of the fact that the linear description is complete. 
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1. Introduction 

We consider a manufacturer who needs to meet the known demands for a given product over a finite 
discrete planning horizon. In lot-sizing problems we have to decide when, i.e., in which time periods, and 
how much to produce so as to minimize total costs consisting of production and inventory costs. The 
inventory costs are linear in the number of items in stock at the end of each time period. The production 
costs decompose into two parts: a fixed set-up cost is incurred whenever a non-zero production occurs in a 
period in addition to a cost linear in the number of items produced. Producing in large (small) lots will 
decrease (increase) the set-up costs but will increase (decrease) the inventory costs. The lot-sizing problem 
is to find the right balance between these costs so as to minimize the total costs. We can introduce 
complicating factors in the lot-sizing problem by allowing backlogging (i.e., we can satisfy the demand of a 
period in a later period), by introducing capacities (i.e., the production level in each period is limited) or 
product structures (i.e., the production process includes several components that are assembled according 
to a specified bill of material). 

We briefly discuss some results obtained for lot-sizing problems. The first and simplest model is the 
economic lot-sizing model. In this model we produce one single item, the production is uncapacitated and 
backlogging is not allowed. This is the lot-sizing problem we are considering in this paper. A dynamic 
programming algorithm was given by Wagner and Whitin (1959). Barany et al. (1984) gave a linear 
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description of the convex hull of the set feasible solution. This linear programming formulation, described 
in more detail in Section 2, will be used in this paper. 

Zangwill (1969) solves the backlogging extension of the economic lot-sizing model and Pochet (1987) 
gives a partial linear description of the convex hull of the set of feasible solutions in this case. Zangwill 
(1966) and Love (1972) solve the multi-echelon extension (i.e., a number of facilities arranged in series 
where demand occurs only at the last facility and it is possible to stock items at any stage of the 
production structure). Florian and Klein (1971) solve the constant capacitated production extension both 
in the case of with and without backlogging. Extensions to concave costs have been considered by 
Erickson et al. (1985). The problem of computing optimal lot-sizes in complex production structures is 
NP-complete even for relatively simple production structures Florian et al., 1980). Algorithms have been 
developed by Crowston et al. (1973), Crowston and Wagner (1973), Afentakis et al. (1984), Afentakis and 
Gavish (1986), and Maxwell and Muckstadt (1985). 

In Section 2 we will describe the linear programming formulation of the economic lot-sizing problem 
given by Barany et al. (1984). 

In Sections 3 and 4 we present a dual algorithm for the economic lot-sizing problem based on this linear 
description. Section 3 deals with the construction of a feasible solution to the dual of the linear 
description, and in Section 4 we show how to construct a feasible solution to the economic lot-sizing 
problem having the same objective value as the dual solution. This not only implies the optimality of both 
solutions, but also provides an algorithmic proof of the fact that the constraints of the linear programming 
formulation describe the convex hull of the set of feasible solutions of the economic lot-sizing problem. 

We believe that this type of constructive proof for the completeness of a linear description can be 
applied to other problems as well. The application to the linear description of the economic lot-sizing 
problem with start-up costs given by Wolsey (1988) resulted in an example which showed that the 
description was not complete. In Van Hoesel et al. (1990) a complete linear description is given as well as a 
dual algorithm along the lines described here. 

The dual algorithm for the economic lot-sizing problem was developed in the context of a research 
program devoted to sensitivity analysis for combinatorial optimization problems. However it turned out 
that sensitivity analysis is more efficient using the simple plant location formulation of the economic 
lot-sizing problem. The sensitivity analysis results are described in Van Hoesel et al. (1990). 

While obtaining the sensitivity results for the economic lot-sizing problem we also develop a new 
O(n log n) algorithm which runs in O(n) in the Wagner-Whitin case, i.e., whenever p~ = p ,  i = 1 . . . . .  n 
Wagelmans et al., 1989). 

2. Linear description economic lot-sizing problem 

(1) 

The economic lot-sizing problem can be formulated as 

n 

minimize ~ PiXi + fiYi + hisi 
i ~ l  

subject to  x,+s~_~=d,+s~, i = l , . . . , n ,  
S 0 ~ S n ~ 0 

x~>O = > y , = l ,  i = 1  . . . . .  n, 

x i ~ O  , s i l O  , y i ~  {0, 1}, i = 1  . . . . .  n, 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

where n is the number of time periods in the planning horizon, f~ the set-up cost in period i, p, the 
production cost per item in period i, h~ the inventory cost per item in stock at the end of period i and d~ 
the positive demand for the item in period i, i = 1 , . . . ,  n. The variable y~ indicates whether we set up 
production in period i (Yi = 1) or not (Yi = 0), the variable x i is the amount produced in period i and s, is 
the amount in inventory at the end of period i, i = 1 , . . . ,  n. Constraint (2.3) garantuees that a set-up cost 



S. van Hoesel et al. / A dual algorithm for the economic lot-sizing problem 

x ,  

317 

[ 
Si-I ~) ? ~ Si 

I 
di 

Figure  1. Balanc ing  s i tua t ion  for per iod i 

is incurred whenever production is started in a period. Note that we may decide to set up production 
without starting production. This occurs for example when f, < 0. Constraint (2.1) is a balancing 
constraint which tells us that the total amount of items coming into period i (production in period i and 
inventory from period i -  1) equals the amount of items leaving period i (demand in period i and 

inventory at the end of period i). This is indicated in Figure 1. 
Barany et al. (1984) derived a class of valid inequalities for the economic lot-sizing problem, the so 

called (S, rn)-inequalities. Let rn ~ (1 . . . . .  n } and S G {1 . . . . .  m }. Then the (S, m)-inequality is given by 

~_, x i <~ ~_, d i m y ,  + sin, 
i ~ { 1  . . . . .  m } \ S  i ~ { 1  . . . . .  m } \ S  

where d i j  is defined to be the sum of demands in period i, i + 1 . . . . .  j ,  i.e. d i j  = E~=id k. To see that this is 
indeed a valid inequality consider the balancing constraint E~=ixi = E,mtdi +sm for the first m periods 

(see Figure 2.) 
This balancing equation can be obtained by adding the first m equation of (2.1) taking into account 

that s o = 0. Since backlogging is not allowed the production x~ can only contribute to the demand in 
periods i, i + 1 . . . . .  rn (i.e., dim) and to sin. Let c% be the fraction of the demand dim and fli the fraction of 

sm supplied by x~. Then we have 

X i = d ima i  + Srafli , i = 1 . . . . .  m ,  

with0~<ct i~<l ,0~<fl i<~l ,  i = l . . . . .  m and~,i m l f l i  = l .  

Hence 

E = E + E s j i .  
i E { I  . . . . .  m } \ S  i ~ ( 1  . . . . .  m } \ S  i E { 1  . . . . .  m } \ S  

X 

¢ 

,3 
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Figure  2. Balanc ing  s i tua t ion  for per iods  1 to m 
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Since E,"=lfli = 1, 0 ~< fl, ~< 1, i = 1 . . . .  , m, 

Z X, ~ E dim°ti q'- Sin" 
i ~ { 1  . . . . .  m}NS i ~ { 1  . . . . .  m } \ S  

If xi = 0, then a~ = 0 ~< Yi- If x, > 0, then y~ = 1 according to (2.3) and hence a, ~< y,. We conclude that for 
every feasible solution x, y of problem formulation (1) x~ > 0, then a~<~y,. Therefore the (S, m) 
inequality 

is valid. 
Note 

Y~ xi  <~ ~ di, ,Yi Jr Sin, 
i ~ { 1  . . . . .  m } \ S  i ~ ( 1  . . . . .  m } \ S  

that when m = n  and S = { 1  . . . . .  n } \ { i }  the (S, m)-inequality becomes x i < ~ d i ,  y r This 
constraint garantuees that yi = 1 whenever x~ > 0. Therefore, when the (S, m)-inequalities are added to 
formulation (1), constraints (2.3) are redundant. We can eliminate the inventory variables s~, i = 1 . . . . .  n, 

i i from the model using the balancing constraints (2.1) by substituting s i = Zk= I X k -  ~'~= I dk" The (S, re)- 
inequality is transformed into 

~.~ xi  + y" di . ,y  i > dl. , .  
i~S  i ~ { 1  . . . . .  m } \ S  

The equality s ,  = 0 is transformed into 

n 

Z X i = din, 
i = 1  

(2.5) 

The inequality s, >1 0 is transformed into 

• x i >t dlt .  (2.6) 
i = 1  

Adding all the (S, m)-inequalities to formulation (1) and eliminating the inventory variables we get the 
following mixed integer programming formulations of the economic lot-sizing problem; 

(2) minimize 

subject to 

n 

F_, c~x, + f,y, 
i = 1  

~ x i ~ din,  
i = 1  

x i + ~_, di,.,,y i >-- d~,,, 
iES i • { 1  . . . . .  m } \ S  

x~>~0, i = 1  . . . . .  n, 

yi~- { 0 ,  1}, i = 1  . . . . .  n, 

m - 1  . . . . .  n, S _ c ( 1  . . . .  , m } ,  

(2.7) 

(2.8) 

where c i = P i  + Y"k=ihk, i = 1 . . . . .  n. 
Constraint (2.5) is satisfied by combining (2.7) with the ({1 . . . . .  n }, n)-inequality. Constraint (2.6) is 

equivalent to the ((1 . . . . .  t }, t)-inequality. 
In the following section we will construct a feasible solution to the dual of the LP-relaxation (P) of 

formulation (2). In Section 4 we will construct an integer feasible solution of (P) which together with the 
dual feasible solution satisfies the complementary slackness relations for (P), thereby proving optimality of 
both solutions. The combination of both construction methods provides a dual algorithm for solving the 
economic lot-sizing problem. 
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3. Construction of the dual solution 

In this section we describe a construct ion method  for a feasible solution to te dual p rob lem of the 
LP-relaxat ion of the economic  lot-sizing formulat ion (2). The  pr imal  linear p r o g r a m m i n g  p rob l em is given 
by 

n 

(P) minimize ~ c,x, + f,y, 
i = 1  

n 

subject to ~ x, ~< din, (3.1) 
i 1 

y ,~< l ,  i = 1  . . . . .  n,  (3.2) 

E x ,  + E dimY,>~db,,, m = l  . . . . .  n, S c { 1  . . . . .  r n ) ,  (3.3) 
t ~ S  i • { 1  . . . . .  m ) \ S  

xi, yi>~O, i= l , . . . , n .  

If  we let the dual variable/~ corresponds  to (3.1), X, to (3.2) and w(m, S) to (3.3), then the dual p rob lem 
(D) of (P) is given y 

n t/ 

(D)  maximize dl,d -t + E X, + • E dl,,w(m, S) 
i = 1  m = l  S c { I  . . . . .  m }  

n 

subject to b t +  E E w(m, S)<~6, i = l  . . . . .  n, (3.4) 
rrt=i S c { 1  . . . . .  m } ,  i ~ S  

n 

X, + Y'. E d.,,w(m, S) <~f,, i= 1 . . . . .  n, (3.5) 
m = i  S c { 1  . . . . .  m} .  t ~ S  

~,~<0,  i = 1  . . . . .  n,  

/z~<0, 

w(m,S)>~O, m = l  . . . . .  n, S c { 1  . . . . .  m } .  

The  algori thm we will describe for (D) is of  the greedy type. We start  with w(m, S)  = 0 for all m and 
S. Dur ing  the algori thm, c* and fi* will denote  the slack in inequality i of  (3.4) and (3.5) respectively. 

In the first step/~ and X,, i = 1 . . . . .  n, take on the largest value such that  all slacks are nonnegat ive,  i.e. 

~ = min{O, min c,~, 
i = 1  . . . . .  n J 

X, = min{0,  ~ }, i = l  . . . . .  n, 

and the slacks are defined by c,* = c i - ~, ~*  = f ,  - )~i, i = 1 . . . . .  n. 
A greedy algori thm with respect to the w(m, S)-var iables  will calculate them in decreasing order  of  

objective coefficient. No te  that  dim > dlk if and only if m > k. 
To  mot ivate  the greedy algori thm suppose that  for a given m we want  to know if there exists a subset  

S _c {1 . . . . .  m} for which w(m, S) can take on a positive value. According to (3.4) and (3.5) w(m, S) has 
to satisfy the constraints  

w(m, S)~<c/* ,  i ~ S ,  (3.6) 

and 

d,,,,w(m, S)~<f~*,  i ~  {1 . . . . .  m}  \ S .  (3.7) 

Note  that  for a given i, i <~ m, w(m, S) occurs in exactly one of the constraints  (3.6) and (3.7) depending  
on whether  i ~ S o r  i ~ ( 1  . . . . .  m } \ S .  
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It  follows from (3.6) that w(m, S)  = 0 if c 7 = 0 and i ~ S. Therefore, there exists a subset S for which 
w(m, S) can be made positive only if S ___ S* ,  where S*  = {ilc* > O, i = 1 . . . . .  m}. 

If  we restrict S to subsets of  S* ,  then it follows f rom (3.7) that w(m, S) can be made  positive if and 
only if w(m, S*) can be made positive. The reason is that  w(m, S) with S c S*  has to satisfy all the 
constraints of  the form (3.7) w(m, S*) has to satisfy. 

The value w(m, S*) can be made positive if and only if there is no  i ~  {1 . . . . .  m} \ S*  for which 
f~* = 0, i.e. there is no i, i ~< m, for which c* = f,* = 0. 

If  w(m, S * )  can be made positive, then the greedy algorithm will give it the largest possible value. So 
the subset S for which w(m, S) will be made  positive is always equal to the subset of  {1 . . . . .  m} 
corresponding to positive slacks in (3.4). This motivates the definition of  S in Step 2 of  the algorithm. The 
largest possible value according to (3.6) is given by 

min c* .  
i ~ S *  

The largest possible value according to (3.7) is given by  

nfln fi*/dim. 
i~{1 . . . . .  m ) \ S *  

The greedy algorithm gives w(m, S*) the value 

w(m, S * )  = min(  minci*, min fi*/dim ). 
~ i E S *  i ~ { i  . . . . .  m}X.S  * 

After  the calculation of  w(m, S * )  the slacks ci* and f~* and the set S *  are updated  and the procedure  i s  

repeated until there no longer exists a subset S for which w(m, S) can be made  positive. Let us consider 
this case more  carefully. Assume there exists an i, i ~< m, for which c* = fg* = 0. We have shown that in 
this case for m there does not exist a subset S for which w(m, S) can be made positive. Since slacks are 
nonincreasing the same holds for all values rn' ,  i ~< m '  ~< m, i.e. there does not  exist a subset S for which 
w(m', S) can be made positive. As a consequence we can immediately decrease the value of  m to the 
largest value m '  for which a subset exists for which w(m', S) can be made positive, i.e. 

m' = rain ( i - 1). 
i; i<~m, f~* =c~* =0 

This motivates the update  of  m in Step 2 of  Algor i thm 1. The complete construct ion is summarized in 
Algori thm 1. 

Algorithm 1. Construction dual solution 
Step 1. /~:= min{0, mini= : ...... c~}; 

h i := min{0, f, }, i = 1 . . . . .  n; 
c*:=ci-I~, i = 1  . . . . .  n; 
f,* :=f i  - X~, i = 1 . . . . .  n; 
w(m, S ) : = 0 ,  m = l  . . . . .  n, S _ { 1  . . . . .  m};  
m := n; 

m := min{ m, mini: i<~m, c:=O, fi*=O( i -- 1)}. 
Step 2. WHILE m > 0 DO 

S:={ili<~m, c* > 0);  
* d " w(m, S)=min(mini~sC*, m i n i ~ ( 1  . . . . . .  } \ s f i  / i ra) ,  

c* := c* - w(m,  S) for a l l i e S ;  
~*  :=f ,*  - d,.,w(m, S) for all i ~ (1 . . . . .  m } \ S; 
m := min{ m, mini: i ~< m. c? =o, f,* =0( i - 1)}. 

Note  that each time Step 2 is executed at least one of  the slacks becomes zero. Therefore the number  of  
iterations is bounded  by 2n since we stop whenever c~* = f : *  = 0, i.e. m = 0. The total complexi ty of  the 
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construction method is O(n 2) which is the same complexity as the dynamic programming algorithm to 
solve the economic lot-sizing problem. 

By construction the dual solution is a feasible solution of (D). The following lemmas state some 
properties of the dual solution that we shall use in the next section. 

Lemma 3.1. Let  0 = i 1 < i 2 < " ' "  < ik = n be the different m-values occuring during the execution o f  

Algor i thm 1 and define 1 = { i s + 11 s = 1 . . . . .  k - 1 }. Then for  every p ~ I algorithm 1 has terminated  with 

Cp = fp* = O. 

Proof. Take p = i s + 1, 1 ~< s ~< k - 1. Consider the iteration in which the m-value was decreased from i~+ 1 
to i,.. We know that 

i~ = min ( i -  1). 
i :  i ~< i ,+  n,c,* =f~* = 0  

So by this definition and since i s + 1 = p we have c ;  = fp* = O. Since the slack variables are nonnegative 
and nonincreasing during the execution of the algorithm the result follows. [] 

Let us define for every i for which c* = 0 at the end of the execution of Algorithm 1 the value m (i)  as 
follows. If c,* was zero after Step 1, then re ( i )  = n. If c* has become zero in Step 2, then re ( i )  is the value 
of m at the beginning of the iteration in which c* became zero. 

Lemma 3.2. I f  w ( m * ,  S )  > 0 as a result o f  Algor i thm 1, then m ( i )  < m *  implies that i ~ S, and  re ( i )  > m *  

implies that i ~ S. 

Proof. From the definition of m ( i )  it follows that during the iterations of Step 2 of Algorithm 1 in which 
m = m* we have c* > 0 whenever m ( i )  > m *  and c* = 0 whenever re ( i )  > m * .  In the iteration in which 
w(m*,  S) is determined S equals the set of indices for which the slack variables have a positive value. 
Combining these results proves the lemma. [] 

The optimality of the dual solution is shown in the next section where we turn our attention to the 
construction of an optimal solution of the economic lot-sizing problem. 

4. Construction of an optimal primal solution to the economic lot-sizing problem 

In this section we show that it is always easy to construct a feasible solution to the economic lot-sizing 
problem which has the same value as the opt imum value of (P). This provides an algorithmic proof  of the 
fact that the feasible region of this LP-relaxation equals the convex hull of the set of feasible solutions of 
the economic lot-sizing problem; a result for which a rather elaborate proof was already given by Barany 
et al. (1984). To prove the optimality of a feasible solution to the economic lot-sizing problem, it is 
sufficient to show that this solution and the dual solution constructed in the previous section satisfy the 
complementary slackness relations of problems (P) and (D) which are given by 

m=i  Sc_{1 . . . . .  m } , i E S  

m=i  S c ( 1  . . . . .  rn}, i ~ S  

(" ) /~ ~ x  i - d , .  = 0 ,  (4.3) 
i = 1  
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X , ( y i - 1 )  = O, i = 1  . . . . .  n, (4.4) 

w ( m,  s ) (  Y ~ x i +  E d i m Y i - d l m ) = O ,  m = l  . . . . .  n, S G ( 1  . . . . .  m} .  (4.5) 
\ i E S  i ~ { 1  . . . . .  m } \ S  / 

We will show the existence of such a feasible solution to the economic lot-sizing problem with the so 
called zero-inventory property, i.e. a solution such that for all production periods the inventory at the end 
of the preceding time period is equal to zero. In other words, the production in a given production period 
equals exactly the sum of the demands from this period until the next production period. In the sequel we 
shall restrict ourselves to feasible solutions with the zero-inventory property. Furthermore for the moment  
we shall also confine ourselves to the case that all set-up costs are nonnegative. In this case we can assume 
without loss of generally that (4.6) holds: 

Y i = l  if and only if x i > 0 ,  i = l  . . . . .  n. (4.6) 

Given Lemma 3.1 we see that the complementary slackness relations (4.1) and (4.2) are satisfied if we 
can find a solution for which the production periods form a subset of I defined in Lemma 3.1. To make a 
choice for the production periods such that the relations (4.5) are not violated we shall use the following 
lemma. 

Lemma 4.1. A solution to the economic lot-sizing problem satisfying (4.6) and having the zero inventory 
property satisfies 

Z xi + E dimy i = dl, . (4.7) 
i E S  i ~ { 1  . . . . .  m } " . S  

for given m and S with w(m, S)  > O, if and only if the following conditions hold: 
(i) all production periods before the last production period in ( 1 . . . . .  m } are in S, 
(ii) if m < n and m + 1 is not a production period, then the last production period in { 1 . . . . .  m ) is not 

in S. 

Proof. Let (4.7) hold. Assume that condition (i) does not hold, and let p be the first production period in 
(1 . . . . .  m} which does not belong to S. If q is the last production period in (1 . . . . .  m) ,  then it follows 
from our assumption that p < q. By the zero-inventory property we know that the total contribution to the 
left-hand side of (4.7) of production periods previous to p equals dl.p_ 1. The contribution of period p 
equals d?my ? = dpm. Therefore the total contribution of the first p periods equals dim. Since period q also 
makes a positive contribution independent of whether q belongs to S or not, the left-hand side of (4.7) 
exceeds dl ,  ,, which leads to a contradiction. We conclude that condition (i) holds. Assume that condition 
(ii) does not hold, and let p be the last production period belonging to ( 1 . . . . .  m ) and q > m + 1 the first 
production period not belonging to (1 . . . . .  m ). If  p ~ S, then according to condition (i) all production 
periods in { 1 . . . . .  m ) belong to S and from the zero-inventory property it follows that the contribution of 
the left-hand side of (4.7) equals dnq_ ~ > d~m, which leads to contradiction. We conclude that condition 
(ii) holds. 

Let us assume that conditions (i) and (ii) hold. Let p be the last production period in (1 . . . . .  m } and q 
the first production period not belonging to (1 . . . . .  m ). By condition (i) the contribution of production 
periods previous to p equals dl.p_ 1. If q = m + 1, then the contribution of production period p equals 
xp = dp,q_ 1 = d?m wheneverpp ~ S or dpmy p = d?m whenever p ~ S. Hence (4.7) holds. If q > m + 1, then 
by condition (ii) p ~ S and the contribution of production period p equals demy: = dp,~. Hence (4.7) 
holds. 

The following lemma provides sufficient conditions to satisfy the conditions of Lemma 4.1. It  uses the 
m(i)-variables defined in relationship with Lemma 3.2. 
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l~mma 4.2. Consider a solution with the zero-inventory property to the economic lot-sizing problem in which 
x i = di,,,(i ) for every production period i, Then this solution satisfies conditions (i) and (ii) of Lemma 4.1 for 
every m and S with w(m,  S)  > O. 

Proof.  From Lemma 3.2 it follows that 

if re( i )  < m ,  then i ~ S  (4.8) 

and 

if r e ( i ) > m ,  then i ~ S .  (4.9) 

If i I and i 2 are two consecutive product ion periods belonging to {1 . . . . .  m }, then by the zero-inventory 
proper ty  and x i = d~,,,(i ) we have i 2 = m(i l )  + 1. It follows that if p, p ~< m, is the last product ion  period 
in {1 . . . . .  m}, then m(i )  <~p - 1 < m for all product ion periods i, i < p .  Combining  this with (4.8) proves 
that condit ion (i) holds. If  q, q > m + 1, is the first product ion period not belonging to {1 . . . . .  m }, then 
r e ( p )  = q -  1 > m. Combining this with (4.9) proves that condit ion (ii) holds. [] 

Lemma 4.2 suggests the following procedure to define the set I *  of product ion periods: 

Algorithm 2. Construction primal solution 
Step 1. I*  := {1}; i : =  1. 
Step 2. WHILE r e ( i ) <  n DO 

BEGIN 

i : = m ( i ) +  l; 
l * : = l * U { i }  

END. 

Note  that by definition of m(i )  if m ( i ) <  n then r e ( i )+  1 ~ I where 1 is defined in Lemma 3.1, 
i = 1 . . . . .  n. Therefore I *  ___ I and the solution obtained satisfies the complementary  slackness relations 
(4.1), (4.2) by Lemma 3.1; (4.3) by construction; and (4.5) according to Lemma 4.1 and Lemma 4.2. Under  
the assumption that f, > 0 for all i = 1 . . . . .  m, also (4.4) is satisfied, because then ki = 0, i = 1 . . . . .  m, in 
the dual solution. 

It remains to consider the case that there is an i with f, < 0 and thus ki < 0. For  such an i we take 
y, = 1, thereby satisfying (4.4) and also (4.2) because f,* = 0 after Step 1 of Algori thm 1. This choice of  y, 
will not  affect the relations (4.5), since w(m,  S)  can not  be positive whenever i ~ {1 . . . . .  m } \ S. To see 
this consider the iteration in which w(m,  S)  would have been assigned a positive value. We know that 
~* = 0 holds and i ~ {1 . . . . .  m} \ S means c,* = 0. Therefore m is assigned a value less than or equal to 
i -  1 at the end of  the previous iteration. 

We have now proven: 

Theorem 4.1. For every objective function of (P), there exists an optimal solution which is a feasible (and 
hence optimal ) solution that possesses the zero-inventory property to the corresponding economic lot-sizing 
problem. [] 

Corollary. The constraints of the linear program (P) describe the convex hull of the set of feasible solutions of 
the economic lot-sizing problem. [] 

We now summarize our  algorithm to solve the economic lot-sizing problem. The complexity of  the 
algorithm is dominated  by Step 2 and therefore the running time is O ( n 2 ) .  

Algorithm (Input :  n; c, f ,  d ~ R"; Output :  x ~ R", y ~ (0, 1}") 
Step 1. / , :=  min{0, min i 1 ...... ci}; 

k i : = m i n { 0 ,  f,}, i = l  . . . . .  n; 
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Ci* := C i -- ~; IF C* = 0 THEN re ( i )  = n,  i = 1, 2 . . . . .  n;  

f ,*  : = f  -- )~i, i = 1  . . . . .  n; 
w ( m ,  S ) : = 0 ,  m = l  . . . . .  n,  S _ c { 1  . . . . .  r n ) ;  

m := //; 

m := rain{ m,  min , :  i,< m, c*=0, /,*=0( i -- 1). 
Step  2. WHILE m > 0 DO 

S : = { i l i < ~ m ,  c* > 0};  

w ( m ,  S )  := m i n ( m i n i ~ s C *  m i n i ~ ( 1  . . . . . .  ~ , , s ( f /  / i , , )},  
c,* := c* - w ( m ,  S) ;  IF c* = 0 THEN re ( i )  = m ,  i E S; 

f * * : = f ~ * - d , , w ( m ,  S ) ,  i ~ ( 1  . . . . .  m } \ S ;  

m := rain{ m,  mini :  i_<,,, c?=0, L*=0(i  - 1)}. 
Step  3. IF )k i < 0 THEN Yi = 1, i = 1 . . . . .  n. 
Step  4. x 1 = dl,mo); yl = 1; i : =  1; 

WHILE m ( i )  < n DO 

i : =  re ( i )  + 1; Yi = 1; x i = d c ,,<i). 

5. Concluding remarks 

W e  have deve loped  a n e w  a lgo r i t hm to solve the e c o n o m i c  lo t -s iz ing  p r o b l e m .  T h e  c o m p l e x i t y  of  this 
dua l  a lgo r i t hm is equ iva l en t  to the w e l l - k n o w n  d y n a m i c  p r o g r a m m i n g  a lgor i thm.  T h e  dua l  a l g o r i t h m  also 

p rov ided  a new  p roo f  of the fact tha t  the  l inear  p r o g r a m m i n g  f o r m u l a t i o n  is a c o m p l e t e  l i nea r  de sc r i p t i on  

of the convex  hul l  of  feas ible  so lu t ions  for the e c o n o m i c  lo t -s iz ing  p r o b l e m .  W e  t r ied to deve lope  a s imi la r  

a lgo r i thm for the e c o n o m i c  lo t -s iz ing  p r o b l e m  wi th  s t a r t -up  costs  (Wolsey,  1988) for wh ich  a c o m p l e t e  
l inear  desc r ip t ion  of  the convex  hul l  of  feas ible  so lu t ions  is con jec tu red ,  t he reby  p r o v i n g  this  conjec ture .  

H oweve r  in  t ry ing  to app ly  this a p p r o a c h  we f o u n d  a c o u n t e r  e x a m p l e  to the con jec ture .  A n  e x t e n d e d  
f o r m u l a t i o n  has  b e e n  f o u n d  a n d  its comple t enes s  is p r o v e n  (van  Hoese l  et al., 1990). T h e  d u a l  a l g o r i t h m  

has  also b e e n  used in  the sens i t iv i ty  analys is  for the  e c o n o m i c  lo t -s iz ing  p r o b l e m ,  the  resul t s  c an  be  f o u n d  
in  W a g e l m a n s  a n d  v a n  Hoese l  (1990). 
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