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Abstract

In this paper we consider the important special case of the economic lot-sizing problem in which there are no
speculative motives to hold inventory. We analyze the e!ects of varying all setup costs by the same amount. This is
equivalent to studying the set of optimal production periods when the number of such periods changes. We show that this
optimal set changes in a very structured way. This fact is interesting in itself and can be used to develop faster algorithms
for such problems as the computation of the stability region and the determination of all e$cient solutions of a lot-sizing
problem. Furthermore, we generalize two related convexity results which have appeared in the literature. ( 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

In 1958 Wagner and Whitin published their
seminal paper on the `Dynamic Version of the
Economic Lot-Size Modela, in which they showed
how to solve the problem considered by a dynamic
programming algorithm. It is well known that the
same approach also solves a slightly more general
problem to which we will refer as the economic
lot-sizing problem (ELS). Recently, considerable
improvements have been made with respect to
the complexity of solving ELS and some of its
special cases (see [1}3]). Similar improvements

can also be made for many extensions of ELS
(see [4]).

In this paper we consider the important special
case of ELS in which there are no speculative mo-
tives to hold inventory, i.e., the marginal cost of
producing one unit in some period plus the cost of
holding it until some future period is at least the
marginal production cost in the latter period. For
this model we analyze the e!ects of varying all
setup costs by the same amount. This is equivalent
to studying the set of optimal production periods
when the number of such periods changes. We will
show that this optimal set changes in a very struc-
tured way. This fact is interesting in itself and can
be used to develop faster algorithms for such prob-
lems as the computation of the stability region and
the determination of all e$cient solutions of a lot-
sizing problem. Furthermore, we will generalize
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two related convexity results which have appeared
in the literature.

The paper is organized as follows. In Section 2
we state several useful results about the economic
lot-sizing problem without speculative motives. In
Section 3 we perform a parametric analysis of the
problem. We will characterize how the optimal
solution changes when all setup costs are reduced
by the same amount and we will present a linear
time algorithm to calculate the minimal reduction
for which the change actually occurs. In Section 4
we discuss applications of the results of Section 3.
Finally, Section 5 contains some concluding remarks.

2. The economic lot-sizing problem without specu-
lative motives

In the economic lot-sizing problem (ELS) one is
asked to satisfy at minimum cost the known de-
mands for a speci"c commodity in a number of
consecutive periods (the planning horizon). It is pos-
sible to store units of the commodity to satisfy
future demands, but backlogging is not allowed.
For every period the production costs consist of
two components: a cost per unit produced
and a "xed setup cost that is incurred whenever
production occurs in the period. In addition to the
production costs there are holding costs which are
linear in the inventory level at the end of the period.
Both the inventory at the beginning and at the end
of the planning horizon are assumed to be zero.

We will use the following notation:
¹: the length of the planning horizon,
d
i
: the demand in period i3M1,2,¹N,

p
i
: the unit production cost in period

i3M1,2,¹N,
f
i
: the setup cost in period i3M1,2,¹N,

h
i
: the unit holding cost in period i3M1,2,¹N.

Furthermore, we de"ne d
ij
,+j

t/i
d
t
for all i, j with

1)i)j)¹.
As shown in [3] an equivalent problem results

when all unit holding costs are taken 0, and for all
i3M1,2,¹N the unit production cost p

i
is replaced

by c
i
, de"ned as

c
i
,p

i
#

T
+
t/i

h
t
.

This reformulation can be carried out in linear time
and it changes the objective function value of all
feasible solutions by the same amount. From now
on we will focus on the reformulated problem.

In this paper, we assume that c
i
*c

i`1
for all

i3M1,2,¹!1N. Note that if c
i

were less than
c
j
for some j'i, then this could be perceived as an

incentive to hold inventory at the end of period i (in
order to avoid that the higher unit production cost
in period j will have to be paid). Under our assump-
tion on the unit production costs this incentive is
not present. Therefore, this special case is known as
the economic lot-sizing problem without speculative
motives. Note that in the model originally con-
sidered by Wagner and Whitin [5] it is assumed
that h

i
*0 and p

i
"0 for all i3M1,2,¹N. Because

c
i
"p

i
#+T

t/i
h
t
, it is easily seen that this model is

an example of a lot-sizing problem without specu-
lative motives.

It is well known that economic lot-sizing prob-
lems can be solved using dynamic programming.
For problems without speculative motives, the dy-
namic programming algorithm can be implemented
such that it requires only O(¹) time (see [1}3]). We
will now brie#y review such an implementation.

The key observation to obtain a dynamic pro-
gramming formulation is that it su$ces to consider
only feasible solutions that have the zero-inventory
property, i.e., solutions in which the inventory at the
beginning of production periods is zero. The latter
implies that if i and j are consecutive production
periods with i(j, then the amount produced in
period i equals d

ij~1
. From now on, we will only

consider solutions with this property. Also, note
that we may assume that setups only take place in
production periods, even if some of the setup costs
are zero. Hence, solutions can completely be de-
scribed by their production periods which coincide
with the periods in which the setups occur.

Let the variable F(i), i3M1,2,¹N, denote the
value of the optimal production plan for the in-
stance of ELS with the planning horizon truncated
after period i, and de"ne F(0),0. For i"1,2,¹
the value of F(i) can be calculated using the follow-
ing forward recursion:

F(i):" min
0:txi

MF(t!1)#f
t
#c

t
d
ti
N.
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Fig. 1. Determination of F(i).

To determine F(i) when F(t!1) is already known
for all t)i, we can proceed as follows (see Fig. 1):
for each t)i we plot the point (d

1,t~1
, F(t!1)#

f
t
) and draw the line with slope c

t
that passes

through this point. It is easy to verify that F(i) is
equal to the value of the concave lower envelope of
these lines in coordinate d

1i
on the horizontal axis.

After constructing the line with slope c
i
that passes

through (d
1i

, F(i)#f
i`1

), we update the lower en-
velope and continue with the determination of
F(i#1).

The running time of this algorithm depends on
the complexity of evaluating the lower envelope in
certain points on the horizontal axis and the com-
plexity of updating the concave lower envelope.
Because lines are added in order of non-increasing
slope, the total computational e!ort for updating
the lower envelope (i.e., over all ¹ iterations) can be
done in linear time. (We use a stack to store the
breakpoints and corresponding line segments of
the lower envelope.) The fact that the points in
which the envelope is evaluated have a non-de-
creasing horizontal coordinate can be used to es-
tablish an O(¹) bound on the total number of
operations required for those evaluations. Hence,
the algorithm runs in linear time.

For convenience we will assume from this point
on that d

1
'0. Hence, period 1 is the "rst produc-

tion period in every feasible solution. Let
i3M2,2,¹N, then h3M1,2, i!1N is called an
optimal predecessor of i if period h is the last pro-
duction period before i in some optimal solution in
which i is a production period. This means that h is
such that F(i!1)"MF(h!1)#f

h
#c

h
d
h,i~1

N.
Period h is referred to as an optimal predecessor of

¹#1 if it is the last production period in some
optimal solution.

The following result is a slight generalization
of the well-known planning horizon theorem due
to Wagner and Whitin. It will be used frequently
later on.

Lemma 1. Let 1)h(i(j(k)¹#1 be such
that h is an optimal predecessor of k and i is an
optimal predecessor of j, then both h and i are optimal
predecessors of both j and k.

Proof. We know that

F( j!1)"F(i!1)#f
i
#c

i
d
i,j~1

)F(h!1)#f
h
#c

h
d
h,j~1

(1)

and

F(k!1)"F(h!1)#f
h
#c

h
d
h,k~1

)F(i!1)#f
i
#c

i
d
i,k~1

. (2)

Combining these inequalities leads to

c
h
d
j,k~1

)c
i
d
j,k~1

.

It is easily seen that the lemma holds if d
j,k~1

"0.
Assuming d

j,k~1
'0, we obtain c

h
)c

i
. Because

h(i we already know that c
h
*c

i
. Therefore, it

must hold that c
h
"c

i
. Substituting this into (1)

and (2) leads to

F(i!1)#f
i
)F(h!1)#f

h
#c

h
d
h,i~1

,

respectively,

F(h!1)#f
h
#c

h
d
h,i~1

)F(i!1)#f
i
.

Hence, equality must hold in both (1) and (2), which
implies the desired result. h

In the next section we perform a parametric
analysis of the setup costs of the economic lot-
sizing problem without speculative motives.

3. Parametric analysis

In this section we study the parametric problem
with setup costs of the form f

i
!j, i"1,2,¹.

Here all f
i
*0 are assumed to be non-negative and
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Fig. 2. Structure of optimal solution in Theorem 1.

the domain of the parameter j is the interval [0, K],
where K)min

i/1,2,T
M f

i
N. The main issue we will

deal with is the following. Suppose we are given an
optimal solution for the lot-sizing problem for
j"0. Assume that the set of production periods
is Mi

1
,2, i

q
N, where 1"i

1
(i

2
(2(i

q
and

q(¹; also de"ne i
q`1

,¹#1. When j is in-
creased, solutions with more than q setups become
relatively more attractive (and solutions with less
than q setups become less attractive). We would
like to determine the smallest value of j3[0, K], if
any, such that there exists an optimal solution with
at least q#1 setups. Furthermore, we are also
interested in that optimal solution itself.

Let j@ denote the parameter value we are looking
for. We will use an approach to "nd this value
which is based on a natural decomposition
of the problem. To this end we de"ne ELS(t),
t3M2,2, q#1N, as the parametric lot-sizing prob-
lem with planning horizon consisting of the
"rst i

t
!1 periods. Furthermore, we let j

t
,

t3M2,2, q#1N, denote the smallest value in
[0, K] for which there exist an optimal solution for
ELS(t) with at least t setups; j

t
is de"ned to be R if

there does not exist such a solution for any
j3[0, K]. Clearly, j@ exists and is equal to j

q`1
if

and only if the latter value is "nite.
In the sequel, the values F(t), t"1,2,¹, have

the same interpretation as in Section 1, i.e., they
correspond to j"0. We make the following obser-
vations.

Lemma 2. For all t3M2,2, q#1N the set
Mi

1
,2, i

t~1
N is an optimal set of production periods

for ELS(t) as long as 0)j)minMj
t
, KN. Moreover,

the value of this solution is F(i
t
!1)!(t!1)j.

Proof. Trivial.

Lemma 3. The values j
t
, 2)t)q#1, are non-

increasing in t.

Proof. Suppose 2)p(r)q#1 and let j
p

be
"nite. For j"j

p
there exists an optimal solution of

ELS(p) with at least p setups. Denote the set of
production periods in this solution by S; hence,
DSD*p. If j

r
'j

p
, then ELS(r) does not have an

optimal solution with at least r setups if j"j
p
.

Lemma 2 states that Mi
1
,2, i

p
,2, i

r~1
N is an opti-

mal set of production periods for ELS(r) as long as
0)j)j

r
. However, SXMi

p
,2, i

r~1
N must also

be an optimal solution and DSXMi
p
,2, i

r~1
ND*

p#(r!p)"r. This is a contradiction. Therefore,
it must hold that j

r
)j

p
. h

Lemma 3 will be used in the proof Theorem
1 below. This theorem will enable us to calculate
the values j

t
, 2)t)q#1, e$ciently in order of

increasing index. For notational convenience we
de"ne j

1
,R and we let St

1
, t

2
T denote the (pos-

sibly empty) set Mt3NDt
1
(t(t

2
N for every pair of

indices t
1

and t
2

with t
1
(t

2
.

Theorem 1. Let r3M2,2, q#1N and suppose
j
r
(j

r~1
, then ELS(r) has an optimal solution

(Fig. 2) for j"j
r

with the following properties:

f there are exactly r production periods
h
1
(2(h

r
f there exists an m3M1,2, r!1N such that

i
t
"h

t
for all t"1,2,m,

h
t
3Si

t~1
, i
t
T for all t"m#1,2, r.

Proof. Consider ELS(r) when j"j
r
. By de"nition

there exists an optimal solution with at least r pro-
duction periods. Let k

1
(2(k

s
be the produc-

tion periods in such a solution; hence, s*r. Let
n be the largest index such that k

n
3Mi

1
,2, i

r~1
N.

Suppose k
n
"i

l
, then both Mi

1
,2, i

l~1
N and

Mk
1
,2, k

n~1
N are optimal sets of production

periods for ELS(l) when j"j
r
. Because

j
r
(j

r~1
)j

l
, ELS(l) does not have an optimal
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Fig. 3. Solution of the desired form.

Fig. 4. Si
u
, i
u`1

T contains several elements of Mk
n`1

,2, k
s
N.

Fig. 5. Solution of the desired form.

Fig. 6. Si
u
, i
u`1

T does not contain any element of Mk
n`1

,2, k
s
N.

solution with more than l!1 production periods.
Hence, DMk

1
,2, k

n~1
ND is at most equal to

l!1"DMi
1
,2, i

l~1
ND. Now it follows that

Mi
1
,2, i

l~1
NXMk

n
,2, k

s
N is an optimal set of pro-

duction periods for ELS(r) with at least r elements.
If k

n`1
to k

s
are such that every set Si

l`t~1
, i
l`t

T
with t3M1,2, r!lN contains exactly one of them,
then the just constructed optimal solution has the
desired properties (with m"l) (Fig. 3).

Otherwise, let u be the largest index in
Ml,2, r!1N such that Si

u
, i
u`1

T does not contain
exactly one element of Mk

n`1
,2, k

s
N. First, suppose

that Si
u
, i
u`1

T contains several of these indices
and let k

v
and k

v`1
be the two largest of those

(Fig. 4).
Because i

u
is an optimal predecessor of i

u`1
and

k
v
is an optimal predecessor of k

v`1
, it follows from

Lemma 1 that i
u

is an optimal predecessor of k
v`1

.
Hence Mi

1
,2, i

u
NXMk

v`1
,2, k

s
N is also an optimal

set of production periods. Moreover, this solution
has the form stated in the theorem (with m"u)
(Fig. 5).

Now, we are only left with the case that Si
u
, i
u`1

T
does not contain any element of Mk

n`1
,2, k

s
N.

By deducing a contradiction, it will be shown
that this case cannot occur. From the fact
that DMi

1
,2, i

l
NXMk

n`1
,2, k

s
ND*r we obtain

DMk
n`1

,2, k
s
ND*r!l. Therefore, there must be at

least one t3Ml,2, r!1NCMuN such that Si
t
, i
t`1

T
contains several elements of Mk

n`1
,2, k

s
N. From

the de"nition of u it follows that indices with this
property must be smaller than u. Let
w3Ml,2, u!1N be the largest index with the prop-
erty and let k

z
and k

z`1
be the two largest indexed

elements in Si
w
, i
w`1

T (Fig. 6).
It follows from the de"nition of u and w that for

all t3Mw#1,2, r!1N the set Si
t
, i
t`1

T contains at
most one element of Mk

z`2
,2, k

s
N. Because
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Si
u
, i
u`1

T does not contain any element of the latter
set, it is now easy to show that

DMi
1
,2, i

l
NXMk

n`1
,2, k

z
ND

"DMi
1
,2, i

l
NXMk

n`1
,2, k

s
ND!DMk

z`1
,2, k

s
ND

*r!(r!w!1)"w#1.

Furthermore, it follows from Lemma 1 that k
z

is an optimal predecessor of i
w`1

. Hence,
Mi

1
,2, i

l
NXMk

n`1
,2, k

z
N is an optimal set of pro-

duction periods for ELS(w#1) when j"j
r
. How-

ever, because j
r
(j

r~1
)j

w`1
, ELS(w#1) does

not have an optimal solution with more than
w setups for j

r
. Hence, we have obtained a contra-

diction. This completes the proof. h

Theorem 1 is basically a characterization of how
the set of optimal production periods changes* or
to be more precise, may be assumed to change
* when j becomes equal to j@. Let r be the smallest
index such that j

r
"j@, then there exists an optimal

solution with exactly q#1 setups of which the
production periods before i

r
are as described in the

theorem and the other production periods are i
r
to

i
q
. This characterization resembles a result given by

Murphy and Soyster [6], who consider the lot-
sizing problem in which the setup and unit produc-
tion costs are non-increasing over time, and the
holding costs in each period are concave and non-
decreasing functions of the inventory level at the
end of that period. They show that when all setup
costs are decreased proportionally (instead of by the
same amount), then the number of production
periods is non-decreasing and the kth production
period in the perturbed problem instance occurs
not later than the kth production period in the
original instance.

We now turn to the issue of determining j@ and
a corresponding optimal solution with q#1 setups
e$ciently. As noted before, we will determine the
values j

t
, 2)t)q#1, in order of increasing

index. To explain our method we need some addi-
tional notation. For every pair of indices t

1
and

t
2

with t
1
(t

2
de"ne St

1
, t

2
],Mt3N D t

1
(t)t

2
N,

i.e., St
1
, t

2
]"St

1
, t

2
TXMt

2
N. Furthermore, G( j) is

de"ned for j3M2,2,¹N as follows:

f if j"i
r
: G( j),F(i

r
!1)#f

ir
,

f if j3Si
r~1

, i
r
T: G( j),the optimal value when

j"0 of the lot-sizing problem with planning
horizon consisting of the "rst i

r
!1 periods un-

der the restriction that exactly one setup occurs
in Si

t
, i
t`1

] for all t3M1,2, r!2N, and j is the
only production period in Si

r~1
, i
r
T.

The reason why these values are introduced is the
following. Let r3M2,2, q#1N and suppose
j
r
(j

r~1
. Consider a "xed j3Si

r~1
, i
r
T and note

that the restriction in the de"nition of G( j) makes
the corresponding optimal solution a candidate for
the solution described in Theorem 1. Because this
solution has r setups, its value equals G( j)!rj

r
when j"j

r
. Clearly, the optimal solution of The-

orem 1 is the best one among all candidates, i.e., its
value is min

j|Wir~1 ,irX
MG( j)N!rj

r
. Obviously, this

value equals F(i
r
!1)!(r!1)j

r
(cf. Lemma 2),

and therefore,

j
r
" min

j|Wir~1,irX

MG( j)N!F(i
r
!1). (3)

Note that (3) holds under the assumption that
j
r
(j

r~1
. Because j

r
)j

r~1
, j

r
equals minMj

r~1
,

min
j|Wir~1,irX

MG( j)N!F(i
r
!1)N, unless this value is

greater than K. In the latter case j
r

is set equal
to R.

We will now show how the values G( j) can be
calculated for all j3Si

r~1
, i
r
T, r3M2,2, q#1N,

given the values G(h) for all h3Si
r~2

, i
r~1

]; where
i
0
,0. Note that the latter values are de"ned with

respect to the planning horizon with total demand
equal to d

1,ir~1~1
. Therefore, the following recur-

sion holds:

G( j) :" min
h|Wir~2,ir~1+

MG(h)#c
h
d
ir~1,j~1

N#f
j

# c
j
d
j,ir~1

for j3Si
r~1

, i
r
T. (4)

The minimization in (4) determines an optimal pre-
decessor of j in the restricted problem correspond-
ing to G( j). Because the last two terms do not
depend on h, we are mainly concerned with calcu-
lating the values min

h|Wir~2 ,ir~1+
MG(h)#c

h
d
ir~1,j~1

N
for all j3Si

r~1
, i
r
T. To this end, we construct the

lower envelope of the lines with constant term G(h)
and slope c

h
for h3Si

r~2
, i
r~1

]. For a "xed
j3Si

r~1
, i
r
T the value of interest is found by
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evaluating the lower envelope in coordinate
d
ir~1,j~1

on the horizontal axis. Using similar argu-
ments as in Section 1, one can easily show that
determining min

h|Wir~2,ir~1+
MG(h)#c

h
d
ir~1,j~1

N in
this way for all j3Si

r~1
, i
r
T takes a computational

e!ort that is bounded by a constant times the sum
of the cardinalities of the sets Si

r~2
, i
r~1

] and
Si

r~1
, i
r
T. Subsequently, the values G( j) are easily

obtained for all j3Si
r~1

, i
r
]. One can now deter-

mine j
r
and proceed with the analogous calculation

of G(k) for all k3Si
r
, i
r`1

T. The complexity of this
algorithm to determine j

q`1
, and thus j@, is easily

seen to be O(¹). Note that a solution with q#1
setups that is optimal for j"j@ can be constructed
in linear time if we have stored an optimal prede-
cessor of j when calculating G( j). To summarize, we
have the following result.

Theorem 2. It takes linear time to calculate j@ (or to
xnd out that it does not exist) and to determine a solu-
tion with exactly q#1 production periods that is
optimal for this value.

We have only looked at the parametric problem
in which all setup costs are reduced when the para-
meter increases. It is left to the reader to verify that
similar results as presented in this section hold for
the parametric problem in which all setup costs
increase by the same amount when the parameter
increases. Therefore, we state the following theorem
without proof.

Theorem 3. Consider an economic lot-sizing problem
without speculative motives that has an optimal solu-
tion with q'1 production periods. Let jA be the
smallest amount such that there exists an optimal
solution with less than q production periods when all
setup costs are increased by jA. The value of jA and
a corresponding optimal solution with exactly q!1
setups can be determined in linear time.

4. Improved algorithms and theoretical results

In this section we show that the results obtained
in Section 3 are not only interesting by themselves,

but that they also lead to improved algorithms for
several problems which have been discussed before
in the literature. Furthermore, we are able to gener-
alize two known convexity results.

4.1. Computing stability regions

Richter [7,8] considers the economic lot-sizing
model with stationary cost coe$cients, i.e.,
f
i
"f*0, h

i
"h*0 and p

i
"p for all i3M1,2,¹N.

Without loss of generality, we may assume p"0
and therefore only the values of f and h are relevant.
It is easily seen that not the absolute value of these
coe$cients, but rather their ratio determines the
optimal solution. Hence, the non-negative quad-
rant of the ( f, h)-space can be partitioned into con-
vex cones, each of which corresponds to another
optimal solution. Moreover, there are at most ¹ of
these cones, each corresponding to another number
of setups in the optimal solution. For "xed f

0
and

h
0

and a given optimal solution Richter determines
the corresponding convex cone (`stability regiona)
using an algorithm that runs in at least O(¹2) time.
Van Hoesel and Wagelmans [9] point out that this
time bound can actually be achieved. However,
Theorems 2 and 3 imply an even stronger result. To
use those theorems we "x the unit holding cost to
h
0

and consider the two parametric problems that
result when j is subtracted from f

0
, respectively,

added to f
0
. Both j@ and jA, de"ned as before, can

be calculated in linear time. It is easily seen that the
given solution is optimal for all pairs ( f, h) that
satisfy ( f

0
!j@)/h

0
)f/h)( f

0
#jA)/h

0
, and not

for any other pair. Hence, computing the stability
region can be done in linear time, which is as fast as
solving the problem.

We also note that if the setup cost is stationary,
whereas the marginal production costs and holding
costs are non-stationary, then the setup cost stabil-
ity region (interval) can still be computed in linear
time, provided that there are no speculative mo-
tives. This constitutes a considerable improvement
over the O(¹3) algorithm of Chand and VoK roK s
[10], who only allow the holding costs to be
non-stationary. However, these authors also
study the model in which backlogging is allowed.
Clearly, our results are not applicable to that
model.
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4.2. Computing the value function and ezcient
solutions

Zangwill [11] studies the implications of setup
cost reduction in the economic lot-sizing model by
performing a parametric analysis (see also [12,13]).
His main motivation is to analyze the concepts of
the Zero Inventory philosophy, which states that
the inventory levels should be as small as possible
and that this can be accomplished by reducing the
setup costs. Zangwill shows that reducing all setup
costs by the same amount may sometimes increase
total holding costs. However, if the setup costs and
unit production costs are stationary ( f

i
"f and

p
i
"p for all i3M1,2,¹N), then setup cost reduction

leads to reduction of both the total holding costs and
the number of periods with positive inventory.

Zangwill's results are partly based on the analy-
sis of the value function, i.e., the function that gives
the optimal value of the lot-sizing problem for
every j3[0, K]. It is easily seen that the value
function is piecewise linear, decreasing and con-
cave. Moreover, the function has at most ¹ linear
segments. To construct this function Zangwill pro-
poses an algorithm that runs in O(¹3). Instead of
this specialized algorithm one may use a well-
known general method that is often attributed to
Eisner and Severance [14]. This method constructs
the value function by solving at most 2¹#1
non-parametric lot-sizing problems. If the Wag-
ner}Whitin algorithm is used to solve the latter
problems again an O(¹3) time bound results. How-
ever, we may also use the linear time algorithm,
because only lot-sizing problems without speculat-
ive motives are considered. Hence, the value func-
tion can be constructed in O(¹2) time.

Theorem 2 implies yet another approach to con-
struct the value function. We may apply the pro-
cedure given in Section 2 repeatedly. Starting with
an optimal solution for j0,0, we "rst "nd j@, the
largest value of j for which the given solution is
optimal. At the same time we "nd a solution that is
optimal for j@ and that has one setup less than the
original optimal solution. We now proceed by
letting j@ play the role of j0. Clearly, we will "nd
the complete value function after at most ¹!1
applications of our procedure. Hence, this ap-
proach also takes O(¹2) time, and from a complex-

ity point of view it does not perform better than the
Eisner}Severance method. However, in the follow-
ing application this approach is particularly useful.

Richter [15] analyzes the stationary cost model
with respect to the criteria total costs and total
inventory. The goal is to "nd all ezcient solutions,
i.e., all solutions for which there does not exist
another solution that is better on one criterion and
not worse on the other. Assume that the there exists
an optimal solution (w.r.t. total costs) that has
q(¹ production periods. One can show that the
total inventory is non-increasing in the number of
setups; for instance, this follows from the result by
Zangwill [11] mentioned earlier and also from
Theorem 4 in the next subsection. Hence, to "nd all
e$cient solutions it su$ces to determine for all
k3Mq,2,¹N the optimal value of the problem in
which the number of setups is restricted to be
exactly k. The latter can be done by calculating the
value function of the parametric problem in the
way indicated above (where K equals the setup
cost). This approach has a lower running time than
the one used by Richter, which is based on the
Wagner}Whitin algorithm and runs in O(¹3) time
or worse (no complexity analysis is given). We
should also mention that the Eisner}Severance
method can not be used, because it does not neces-
sarily determine optimal solutions for all
k3Mq,2,¹N. In particular the latter may happen if
for some k3Mq,2,¹N the corresponding solution
is only optimal for one value of j3[0,K].

4.3. A convexity result

Consider a lot-sizing problem without speculat-
ive motives and suppose that there exists an opti-
mal solution with q'1 setups. For k3M1,2,¹N
we let TC(k) denote the optimal value of the prob-
lem in which the number of setups is restricted to be
exactly k.

Theorem 4. The function TC is non-increasing on
M1,2, qN and non-decreasing on Mq#1,2,¹N.
Furthermore, TC is convex on M1,2,¹N.

Proof. We will provide the proof only for the range
M1,2, qN. A similar proof holds for the other range
and is left to the reader.
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Consider the parametric problem in which the
setup cost in period i is equal to f

i
#K!j, where

j3[0,K] and K"c
1
d
1T

. Hence, for j"K there
exists an optimal solution with q setups and for
j"0 it is optimal to produce only in period 1. It
follows that there exist values 0"j0)j1)2)jq
"K such that for every k3M1,2, qN there are
k setups in an optimal solution if and only
if j3[jk~1, jk]. The value of an optimal solution
with k setups is equal to TC(k)#kK!kj. For
j"jk, 1)k(q, optimal solutions with k and
k#1 setups exist. Therefore,

TC(k)#kK!kjk"TC(k#1)#(k#1)K

! (k#1)jk

or equivalently

TC(k)!TC(k#1)"K!jk. (5)

Because the right-hand side of this equality is non-
negative, it follows that TC is non-increasing on
M1,2, qN. Clearly, for 1(k(q it also holds that

TC(k!1)!TC(k)"K!jk~1.

Combining this with (5) and jk~1)jk, we obtain

TC(k)!TC(k!1))TC(k#1)!TC(k)

and this means that TC is convex on M1,2, qN. h

Remark. Note that the problem reformulation that
we have carried out (eliminating the holding costs
and replacing p

i
by c

i
) does not a!ect this result,

because it has caused the value of all feasible solu-
tions to change by the same amount. For conveni-
ence, we assume that TC(k) equals the solution
value w.r.t. the original objective function.

An obvious application of Theorem 4 concerns
the problem in which the number of setups is
restricted to be at most n. The theorem states that if
the unrestricted problem has an optimal solution
with q'n production periods, then there exists an
optimal solution of the restricted problem with
exactly n setups and it follows from the proof of
Theorem 4 that this solution can be determined in
O(n¹) time.

Theorem 4 generalizes a result by Tunc7 el and
Jackson [16], who use a completely di!erent ap-

proach to show this result for the special case in
which p

i
"p for all i3M1,2,¹N. It also generalizes

a result by Chand and Sethi [17], who also
consider the special case of stationary marginal
production costs. They de"ne HC(k) to be the
minimum holding cost if the number of setups is
restricted to k3M1,2,¹N and show that this func-
tion is non-increasing and convex. To see that this
is a special case of Theorem 4, it su$ces to assume
f
i
"p

i
"0 for all i3M1,2,¹N and to note that in

that case q"¹ and TC(k)"HC(k) for all
k3M1,2,¹N.

5. Concluding remarks

By carrying out a parametric analysis of the
setup costs in the economic lot-sizing problem, we
have obtained new results about the structure of
optimal solution for given number of setups, we
have been able to design fast algorithms for several
related problems and we have obtained additional
theoretical results which may be useful. Our analy-
sis and the algorithms which we have proposed
di!er signi"cantly from existing approaches. We
think that the characterization given in Theorem
1 and the algorithm it suggests are particularly
interesting. An interesting topic for future research
is the question whether similar results hold if we
allow backlogging.

Acknowledgements

Part of this research was carried out while the
second author was visiting the Operations Re-
search Center at the Massachusetts Institute of
Technology with "nancial support of the Nether-
lands Organization for Scienti"c Research (NWO).
He would like to thank the students, sta! and
faculty a$liated with the ORC for their kind
hospitality.

References

[1] A. Aggarwal, J.K. Park, Improved algorithms for eco-
nomic lot-size problems, Operations Research 41 (1993)
549}571.

C.P.M. Van Hoesel, A.P.M. Wagelmans / Int. J. Production Economics 66 (2000) 13}22 21



[2] A. Federgruen, M. Tzur, A simple forward algorithm to
solve general dynamic lot sizing models with n periods in
O(n log n) or O(n) time, Management Science 37 (1991)
909}925.

[3] A. Wagelmans, S. Van Hoesel, A. Kolen, Economic lot-
sizing: An O(n log n) algorithm that runs in linear time in
the Wagner}Whitin case, Operations Research 40 (1992)
S145}S156.

[4] S. Van Hoesel, A. Wagelmans, B. Moerman, Using geo-
metric techniques to improve dynamic programming algo-
rithms for the economic lot-sizing problem and extensions,
European Journal of Operational Research 75 (1994)
312}331.

[5] H.M. Wagner, T.M. Whitin, Dynamic version of the eco-
nomic lot size model, Management Science 5 (1958) 89}96.

[6] F.H. Murphy, A.L. Soyster, Sensitivity analysis of the costs
in the dynamic lot size model, AIIE Transactions 11 (1979)
245}249.

[7] K. Richter, Stability of the constant cost dynamic lot size
model, European Journal of Operational Research 31
(1987) 61}65.

[8] K. Richter, Sequential stability of the constant cost
dynamic lot size model, International Journal of Produc-
tion Economics 34 (1994) 359}363.

[9] S. Van Hoesel, A. Wagelmans, A Note on &&Stability of the
Constant Cost Dynamic Lot Size Modela by K. Richter,

European Journal of Operational Research 55 (1991)
112}114.

[10] S. Chand, J. VoK roK s, Setup cost stability region for the
dynamic lot sizing problem with backlogging, European
Journal of Operational Research 58 (1992) 68}77.

[11] W.I. Zangwill, From EOQ towards ZI, Management
Science 33 (1987) 1209}1223.

[12] W.I. Zangwill, Set up cost reduction in series facility pro-
duction, Working paper, Graduate School of Business,
University of Chicago, Chicago, IL, 1985.

[13] W.I. Zangwill, Eliminating inventory in a series facility
production system, Management Science 33 (1987)
1150}1164.

[14] M.J. Eisner, D.G. Severance, Mathematical techniques for
e$cient record segmentation in large shared databases,
Journal of the Association for Computing Machinery 23
(1976) 619}635.

[15] K. Richter, The two-criterial dynamic lot size problem,
System Analysis, Modelling, Simulation 1 (1986)
99}105.

[16] L. Tunc7 el, P.L. Jackson, On the convexity of a function
related to the Wagner}Whitin model, Operations
Research Letters 11 (1992) 255}259.

[17] S. Chand, S.P. Sethi, A dynamic lot sizing model
with learning in setups, Operations Research 38 (1990)
644}655.

22 C.P.M. Van Hoesel, A.P.M. Wagelmans / Int. J. Production Economics 66 (2000) 13}22


