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Abstract

In this paper we study sensitivity analysis of the uncapacitated single

level economic lot-sizing problem, which was introduced by Wagner and

Whitin about thirty years ago. In particular we are concerned with the

computation of the maximal ranges in which the numerical problem parameters

may vary individually, such that a solution already obtained remains

optimal. Only recently it was discovered that faster algorithms than the

Wagner-Whitin algorithm exist to solve the economic lot-sizing problem.

Moreover, these algorithms reveal that the problem has more structure than

was recognized so far. When performing the sensitivity analysis we exploit

these newly obtained insights.
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1 Introduction

In 1958 Wagner and Whitin published their seminal paper on the "Dynamic

Version of the Economic Lot Size Model", in which they proposed a dynamic

programming algorithm that solves the problem considered in O(n2 ) time, n

being the length of the planning horizon. It is well-known that the same

approach also solves a slightly more general problem to which we will refer

as the economic lot-sizing problem (ELS). In the last 30 years the research

on this problem has concentrated on efficient implementations of the

Wagner-Whitin algorithm, mainly through the use of so-called planning

horizon theorems (see for instance Zabel, 1964, Eppen, Gould and

Pashigian, 1969, Lundin and Morton, 1975, Evans, 1985, and Saydam and

McKnew, 1987). This did not result in an algorithm with a better complexity

than O(n2 ) and therefore another line of research focused on the design and

analysis of faster heuristics (see for instance Axsater, 1982, Bitran,

Magnanti and Yanasse, 1984 and Baker, 1989).

Recently however, it was discovered independently by Aggarwal and Park

(1990), Federgruen and Tzur (1989) and Wagelmans, Van Hoesel and Kolen

(1989) that the economic lot-sizing problem can be solved in O(nlogn) time

and in some non-trivial special cases even in linear time. This is

surprising, because ELS is usually modeled as a shortest path problem on a

network with lQ(n 2 ) arcs. Some of the new algorithms provide additional

insight in the structure of ELS. In particular, this holds for the

algorithm presented by Wagelmans, Van Hoesel and Kolen which has a

rather transparent geometrical interpretation.

Sensitivity analysis of simple lot-sizing problems is studied in Richter

(1987), Richter and Vr6s (1989a) and Van Hoesel and Wagelmans (1989).

These papers were mainly concerned with simultaneous changes of parameters,

i.e., one tries to characterize and determine the maximal region in the

space of changing parameters such that a given solution is optimal for all

parameter combinations in that region. (Related results are presented in

Richter, 1986, and Richter and V6r6s, 1989b.) In this paper we will exploit

the new insights in the structure of ELS to compute the maximal ranges in

which the numerical problem parameters may vary individually, such that an

optimal production plan, obtained by the Wagelmans-Van Hoesel-Kolen

algorithm, remains optimal. Lee (1986) presents a theoretical framework to
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perform similar analyses on general dynamic programming problems and he

gives an application to the lot-sizing problem considered here. However, he

does not focus on the computational aspects of his approach. The basic

concept of his framework is the construction of a so-called penalty

network. For the lot-sizing problem this construction requires already

Q(n2 ) time, while most of our algorithms have a lower running time.

This paper is organized as follows. In Section 2 we discuss ELS and present

two O(nlogn) algorithms, corresponding to a backward and a forward dynamic

programming formulation of the problem respectively. In Section 3 we prove

some preliminary results that are useful in Section 4 where the actual

sensitivity analysis is performed. Section 5 contains concluding remarks.

2 The economic lot-sizing problem

2.1 Definition and formulations

In the economic lot-sizing problem (ELS) one is asked to satisfy at minimum

cost the known non-negative demands for a specific commodity in a number of

consecutive periods, the planning horizon). It is possible to store units

of the commodity to satisfy future demands, but backlogging is not allowed.

For every period the production costs consist of two components: a cost per

unit produced and a fixed setup cost that is incurred whenever production

occurs in the period. In addition to the production costs there are holding

costs which are linear in the inventory level at the end of the period.

Both the inventory at the beginning and at the end of the planning horizon

are assumed to be zero.

It turns out to be useful to consider some mathematical formulations of

ELS. Let n be the length of the planning horizon and let di, Pi, fi and hi

denote respectively the demand, marginal production cost, setup cost and

unit holding cost in period i, i=l,...,n. Given the problem description

above the most natural way to formulate ELS as a mixed-integer program is

through the following variables:

2



xi: number of units produced in period i

s i: number of units in stock at the end of period i

1 if a setup occurs in period i
Yi= 0 O otherwise

Define dij= dt, 1i< j <n, then a correct formulation of ELS is

n
min E (pixi + fiYi + hisi)

i=1

s.t.

for i=l,..., n

for i=l,...,n

SO = Sn = 0

xi>0, si>O, yiE{O,1} for i=l,...,n

i i
Because s i = t=Xt - t=ldt, i = 1,..., n,

the formulation. This results in

we can eliminate these variables from

n n

min E (CiXi+ fiyi)- hidli
i=1 i=s

s.t.

n

E Xt= din
t=1

i

E Xt 2 dli
t=l

dinYi - i >2 0

xi>0, yie{0,l}

for i=l,...,n-1

for i=l,...,n

for i=l,...,n

Here ci-pi+ t=iht, i=l,...,n. Note that the last summation in the objective

function is a constant and can therefore be omitted. This reformulation is

useful because it shows that we can restrict our analysis to instances of

ELS where the holding costs are zero.

From now

Note that

The fact

constraint

marginal

on we will work with the marginal production costs ci, i= 1,...,n.

we have not made any assumption about the sign of these costs.

that such an assumption is unnecessary follows from the first

of (II), which implies that adding the same amount to all

production costs shifts the objective function of all feasible

3
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dinYi - x i 0 (I)
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solutions by the same amount. Hence, not the values but rather the

differences between marginal production costs play a role in determining

the optimal solution. The algorithms that we will present assume

non-negative setup costs. However, this does not mean that instances with

negative setup costs cannot be solved. If fi<O then it will always be

profitable to set up in period i (even if there is no production in that

period). By redefining the setup costs for those periods to be zero, we

obtain a problem instance with non-negative setup costs. Solving this

instance and adding all negative setup costs to the obtained solution value

yields the optimal value of the original instance. Therefore, we assume

from now on that all setup costs are non-negative.

2.2 O(nlogn) algorithms

Before presenting our algorithms we should point out that the goal of this

subsection is to explain the essential ideas of the algorithms and to

introduce basic techniques that will also be used when performing the

sensitivity analysis. Therefore our exposition will be mainly geometrical,

and for convenience we assume for the moment that di is strictly positive

for all i= 1,...,n. For a more detailed presentation we refer to Wagelmans,

Van Hoesel and Kolen (1989).

Traditionally, ELS is not solved by explicitly using any of the

mathematical formulations given in Subsection 2.1, but by means of dynamic

programming. The key observation to obtain a dynamic programming

formulation of the problem is that it suffices to consider only feasible

solutions that have the zero-inventory property, i.e., solutions in which

the inventory at the beginning of production periods is zero. The latter

implies that production in a period i equals 0 or dik for some k > i. The

zero-inventory property was stated first by Wagner and Whitin (1958) for

the special case they considered. Later Wagner (1960) showed that the

property even holds under the assumption of concave production costs (see

also Zangwill, 1968).

First we present an algorithm that is essentially a backward dynamic

programming algorithm. Define G(i) to be the cost of an optimal solution to

the instance of ELS with planning horizon consisting of periods i to n,
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i=1,...,n. Furthermore, G(n+l) is defined to be zero. If the planning

horizon starts in period i, then we will always produce in this period and

the set up cost fi will be incurred. Assume that the next production period

is t>i, then exactly di,t _ units will be produced (because of the

zero-inventory property). Therefore, the following recursion holds:

G(i):= fi+ min {cidi,t_l+G(t)} for all i=l,...,n (1)
i< t<n+l

Using (1) for calculating G(i) involves the comparison of n-i+l

expressions. A straightforward application of this recursion leads to an

O(n2 ) algorithm. However, we will show that given G(t) for t=i+l,...,n+l,

it is possible to determine mint>i{cidit_1+G(t)} in O(logn) time. Because

of (1) this implies that G(i) can be determined in O(logn) time.

To start the exposition we plot the points (dtn,G(t)) for t=i+l,...,n+l,

like in Figure 1 where cumulative demand is put on the horizontal axis and

the vertical axis corresponds to the minimal costs. Note that one of the

plotted points must be the origin because (dn+l,n,G(n+l))(O,O). The curve

LE is the lower convex envelope of the plotted points.

CG0s+

0

Figure 1
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Now consider Figure 2 where we have drawn the line with slope ci that

passes through an arbitrary point (djn,G(j)). The coordinate on the

vertical axis of the intersection point of this line with the vertical line

through (diO0) is exactly cidi,jl +G(j).

W Ci

-I ooiC · M
20

Figure 2

min G(t)+c dt,Lz
t>i

0

Cq

0 dr

Figure 3
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Hence, to determine mint>,icidi,tl+G(t)} we can proceed as follows (see

Figure 3): for every period t>i we determine the intersection point of the

vertical line through (din,O) and the line with slope ci that passes

through (dt, G(t)). The coordinate on the vertical axis of the lowest of

these intersection points is equal to mint>{,cidi,t +G(t)).

From Figure 3 it is clear that we are in fact looking for the line with

slope ci that is tangent to LE. This means that the period for which the

minimum is attained corresponds to an extreme point of LE. Moreover, this

point has the property that the slope of LE to the left of it is at most

ci, while the slope to the right is at least ci. Because LE is convex, the

slopes of its line segments are ordered and therefore an extreme point that

corresponds to the minimum can be identified in O(logn) time by binary

search. Hence, given LE, the value mint>i{cidi, t_+G(t)}, and thus G(i),

can be determined in O(logn) time.

After G(i) has been determined for a certain i>1, we want to proceed with

the analogous calculation of G(i-1). However, first we must update the

convex lower envelope. Geometrically we can apply the following procedure

(see Figure 4):

G(W

G(s)

0
-E 1·S

Figure 4
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add the point (dlin,G(i)) and find the rightmost extreme point (dn, G(s)) of

LE such that the slope of the line segment connecting ((di7,G(i)) to

(dsn,G(s)) is greater than the slope of the line segment to the left of

(dsn, G(s)). To find s we simply start with the rightmost extreme point of

LE and work towards the left until we conclude that the desired extreme

point has been found.

The complete algorithm should be clear by now: there are n iterations and

G(i) is calculated in iteration n-i+1. G(1) is equal to the value of an

optimal solution and the solution itself can be easily constructed if we

have stored for every i the period t>i for which cidi, tl+G(t) is minimal.

One can prove that all production periods of the optimal solution appear as

extreme points in the final convex lower envelope. Note that recursion

(1) is not valid if we allow demands to be zero, because then we do not

have automatically a setup in the first period of the planning horizon.

However, one can show that only a slight modification is needed to ensure

that the approach described also works in the presence of zero demand.

A few remarks may clarify that it can indeed be implemented to run in

O(nlogn) time. First note that the marginal production costs ci,

i=1, .... ,n, can be calculated from Pi and hi, i=l,...,n, in O(n) time.

Redefining the setup costs is of the same complexity. Furthermore, it is

not necessary to calculate dij for all pairs i,j with l<i< j<n. We only need

to calculate the coefficients din, i= 1,...,n, which again takes linear

time. This preprocessing enables us to calculate a coefficient di j in

constant time, whenever necessary, since dij = din-dj+l,n

To keep track of the convex lower envelope we can simply use a stack which

contains the periods corresponding to the extreme points. Note that every

period is added and deleted to the stack at most once and that both

operations take constant time. As noted before, it takes O(logn) time to

perform a binary search among the periods in the stack. Because there are n

iterations, the total time spent on searching is O(nlogn). In every

iteration we have to make a few comparisons to update the convex lower

envelope. After every comparison we either conclude that we have found the

new convex lower envelope or that we have to make at least one more

comparison. The first case occurs exactly once in every iteration, i.e., in

total n times. In the second case we delete a period from the stack. As
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every period is deleted from the stack at most once, this case can occur no

more than n times. Thus, the overall complexity of calculating G(1) is

O(nlogn).

We will now briefly discuss an O(nlogn) algorithm that uses a forward

recursion.t Let the variables F(i), i=l,...,n, denote the value of the

optimal production plan for the instance of ELS with planning horizon

consisting of the periods 1,...,i. Defining F(O)-O we have the following

recursion

F(i):= min {F(t-1)+ft+ctdti}
0 <t <i

To determine F(i) when F(t-1) is given for all t <i, we can proceed as

follows (see Figure 5): for each t<i we plot the point (d,ltl,F(t-1)+ft)

and draw the line with slope ct that passes through this point. Now it is

easy to verify that F(i) is equal to the value of the concave lower

envelope of these lines in coordinate di on the horizontal axis. After

constructing the line with slope ci that passes through (di, F(i)+fi+l), we

update the lower envelope and continue with the determination of F(i+l).

F(t-l)+f,

F)O

Figure 5

Actually one can view the backward and the forward algorithm as

applications of exactly the same technique, that can be presented in

different ways. For details see Van Hoesel (1991).
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Hence, the running time of this algorithm depends on the complexity of

evaluating the lower envelope for a given point on the horizontal axis and

the complexity of updating the concave lower envelope. If a balanced tree

(see Aho, Hopcroft and Ullman, 1974) is used to store the breakpoints and

the corresponding slopes of the linear parts of the lower envelope, then

one can show that the complexity can be bounded by O(nlogn).

To conclude this section we mention that the described algorithms can be

modified to run in linear time for some non-trivial special cases of ELS.

In particular this holds if ci>ci+1 for all i=1,...,n-1, which is for

instance the case if i=P and hi>O for all i= 1,...,n.

3 Preliminary results for the sensitivity analysis

This section contains some lemmas which are useful in Section 4, where the

sensitivity analysis is performed. The following dynamic programming

network facilitates the exposition (although it is never actually

constructed in the algorithms to be presented):

The vertex set is {1,2,...,n+1}; the set of arcs is {(i,j)Jl<i<j<n+1} and

the length of arc (i,j) is equal to lij--fi+cidi,j-l.

1 52 PI

b.-

f2 +c 2 d2,4

Figure 6: Dynamic programming network for n = 4

From our dynamic programming formulations in the preceding section, it

follows immediately that for all i=l,...,n the length of a shortest path

10
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from i to n+l in this network is equal to G(i) and the length of a shortest

path from 1 to i equals F(i-l1). t Moreover, the following holds:

Lemma 1 F(j-1)<F(i-l1)+lij and G(i)<lij +G(j) for all i,j, li<j<n+l.

Suppose that for every i, 1 < i < n+ 1, we have determined a shortest path from

1 to i and a shortest path from i to n+l1 in the DP-network. Let i and j be

two periods (1 i < j n +1). j is called the successor of i if j immediately

successes i on the shortest path from i to n + 1. It follows that

G(i)=lij+G(j). We denote the successor of i by sc(i). Analogously, i is

called the predecessor of j if i immediately precedes j on the shortest

path from 1 to j. Hence, F(j-1)=F(i-l1)+lij. The predecessor of j is denoted

by pr(j).

Lemma 2

a) If k=sc(j) and j=sc(i) then lij+ljk<lik

b) If i=pr(j) and j=pr(k) then lij+ljk<lik

Proof

a) From j=sc(i) it follows that G(i)=-lij+G(j), and k=sc(j) implies

G(j)=ljk+G(k). Combining these equalities results in G(i) =lij+ljk+G(k).

Now the desired inequality follows from G(i) lik+G(k) (Lemma 1).

b) Analogously to the proof of part a.

Lemma 3

a) If j=sc(i) then F(i-1)+G(i)2F(j-1)+G(j)

b) If i =pr(j) then F(i -1) +G(i) < F(j-1) +G(j)

Proof

a) F(i-1)+G(i) =F(i-1) + lij+G(j) >F(j-1)+G(j), where the inequality follows

from Lemma 1.

b) Analogously to the proof of part a.

t In the sequel we will use "path" and "production plan" as well as

"length" and "cost" as synonyms.
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Convention We assume that if k =sc(j) then fj>0 or dj,k1>0.

This convention excludes degenerate optimal solutions in which period j is

declared to be an intermediate production period, while actually nothing is

produced in that period. It is easy to adapt the algorithms given in the

preceding section such that degenerate solutions are never generated.

Otherwise, it takes linear time to transform a set of optimal solutions in

a set of non-degenerate optimal solutions by redefining some successors.

Moreover, we only need the convention to facilitate the proofs of some

results that also hold in general.

Lemma 4 If j<n and j=sc(i) then ci2cj.

Proof By Lemma 2 lij+lj,sc(j)k < li,sc(j) and therefore (after rewriting)

fj I (ci - cj)dj,sc(j)_l. Since by our convention f j>0 or dj,sc(j) > 0 it

follows that ci > cj.

Lemma 5 Let j<n and j=sc(i). Then F(i-l)+lit>F(j-l)+ljt for all t>sc(j).

Proof

F(i-1)+lit= (definitions of lit and li,sc(j))

F(i - 1) + li,sc(j) + cidsc(j),t_l > (Lemma 4)

F(i- 1) + li,sc(j)+ cjdsc(j),t-1 2 (Lemma 2)

F(i - 1) + lij + j,sc(j) + cjdsc(j),t-l 2 (Lemma 1)

F(j - 1) +j,c(j)+cjd8 c(j),tt-l = (definitions of ljt and j,sc(j))

F(j-1) +iljt

4 Sensitivity analysis

In this section we give algorithms to calculate for all the numerical

problem parameters the maximal ranges in which they can vary individually

such that an optimal solution already obtained remains optimal. In most of

the algorithms these (individual) ranges of the problem parameters are

calculated simultaneously for all periods. For instance, we will present an

algorithm that computes simultaneously the maximal allowable increases of

12
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all the coefficients fi, i=l,...,n, in O(nlogn) time. We assume that all

the relevant information from the forward and backward dynamic programming

algorithms is available, i.e., the values F(i-1), G(i) for i=1,...,n+l1, the

periods sc(i) and pr(i) for i=1,...,n, the final convex lower envelope

associated with the backward recursion and finally the optimal production

schedule.

The parameters are divided into three sets depending on the set of arcs

that change cost if the parameter is altered.

Set I: fiCi,Pi, i= 1,..., n.

If for a given i one of these parameters changes then exactly the arcs that

have i as a tail will change in cost. If fi changes by 6, then all these

arcs will also change by in cost. If ci or Pi changes by 6, then the arcs

will have a cost change depending on the cumulative demand: the cost of arc

(i,j) will change by di,jl.

Set II: hi, i=l,...,n.

If hi changes by 6 then all cj, j < i, are perturbed by 6 because

cj=pj+t>j h. Therefore, the costs of arcs with tail in {1,...,i} are

changed by an amount depending on the cumulative demand: dj,k-l for arc

(j,k), where j<i.

Set III: di, i=l,...,n.

If di is perturbed then all arc costs in which the demand of period i is

involved will change. These are the arcs (j,k) where j < i and k>i. The cost

change of such an arc is cj, where 6 is the change in di.

In the following subsections we treat each of these sets separately.

Furthermore, we distinguish between increases and decreases of parameters,

since it turns out that these two cases have to be treated differently.

4.1 Sensitivity analysis of the setup and marginal production costs

Suppose fi, ci or Pi is changed by 6. The shortest path from 1 to i in the

DP-network remains unchanged, and thus its cost is F(i-1). Moreover, the

paths not through i do not have a change in cost either. On the other hand,
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the costs of all paths from i to n+l change.

We first consider cost decreases.

Case 1: fi decreases to fi- 

The optimal path from 1 to i remains the same with cost F(i- 1) and the

optimal path from i to n+l remains the same with cost G(i) -6.

If i is a production period in the optimal schedule then this will

certainly also hold after the cost change. The cost of the optimal schedule

is F(n)-6=F(i-1)+G(i)-6. The only upper bound on 6 is imposed by the

non-negativity of fi. Thus, 6 is bounded by fi.

If i is not a production period in the optimal schedule then the shortest

path from 1 to n + does not pass through i. This path has value G(1) and

the shortest path through i has value F(i-1)+G(i)-6. The latter path is

shorter if F(i-1)+G(i)-6<G(1), so the optimal path does not change for

6<F(i-1)+G(i)-G(1). Because of the non-negativity of fi, 6 is bounded by

min{fi, F(i -1) + G( i) - G(1) }. We have shown our first complexity result.

Theorem I The maximal allowable decrease of fi can be calculated in

constant time for each i, i=l,...,n.

Case 2: c i decreases to ci - 6

If i is a production period in the optimal schedule this will remain so,

since only paths that contain i have a decrease in cost. However, the

shortest path from i to n + 1 may change. Let j = sc(i), then we have to

determine the maximal value of 6 such that j is still the successor of i.

To this end we consider the convex lower envelope in Figure 7.

14
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G)

GO
o

Figure 7: Final convex lower envelope

As we have already noted in Section 2, all the production periods of the

optimal schedule appear in the final lower convex envelope. In particular

this holds for the periods i and j. Clearly all the periods t j that appear

in the final convex lower envelope were already present when G(i) was

determined. Moreover, no period t>j that appeared in the convex lower

envelope at that time has been removed from the lower envelope in the

meantime, because that would imply that j has also been removed. Hence, the

convex lower envelope corresponding to the periods t j is immediately

available from the final lower envelope in Figure 7. Therefore, j remains

the successor of i as long as ci-62{G(j)-G(k)}/dj,kl, where k is the

smallest period which appears in the lower envelope and is greater than j.

It follows that the maximal allowable decrease of ci and the new successor

of i can be determined in constant time.

We now turn to the case that i is not a production period in the optimal

solution. Because the cost of an arc (i,t) is altered by 6di,t-l, the

optimal path from i to n+1 has value fi+mint,i{(ci-6)di,tl+G(t)}. Period i

will not be a production period in an optimal schedule as long as

F(i -1) +fi + mint>{(ci - 6)di, t- +G(t)} > F(n). Hence, the maximal allowable

decrease of ci is the value of for which mint>i{(ci-6)di,tl+G(t)}=

F(n) -F(i-1) -fi.
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Note that the period for which the minimum is attained when 6 equals the

maximal allowable decrease, is the possibly new successor of i in the

optimal path from 1 to n + 1 through i. It follows that if 6 is equal to the

maximal allowable decrease, both i and this period appear in the new final

lower convex envelope. The crucial observation to be made here is that

we only have to consider the periods t >i that appear in the already known

final convex lower envelope. This follows from the fact that if ci is

decreased, then the values G(t), ti, do not increase and the values G(t),

t>i, remain the same. Therefore, the points (dtn,G(t)), t>i, that do not

belong to the known lower envelope can certainly not be present in the new

lower envelope, since the latter does not lie above the former.

We now arrive at the actual computation of the maximal allowable decrease

of ci. Consider the final convex lower envelope restricted to the periods

t>i. In the backward algorithm described in Subsection 2.2 we determined

the line with given slope that is tangent to this lower envelope; the value

of this line in coordinate din was the minimum value we were looking for.

Now this last value is given, namely F(n)-F(i-1)-fi, and we have to

determine the slope of the line that is tangent to the lower envelope and

passes through the point (din, F(n)-F(i-1)-fi) (see Figure 8).

F(Xn)-P(a-)-

0

Figure 8: Determination of maximal allowable

decrease when i is not a production period
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This is easily seen to take O(logn) time by binary search. Moreover, the

slope of this tangent gives us the minimum value of ci-6 for which the

optimal schedule does not change and thus the maximum value of 6.

Note that a change of Pi by is a special case of changing ci by 6. That

the latter is indeed more general follows form the fact that, for instance,

changing hi by and hi_1 by - results in a change of ci by 6 while

leaving the coefficients ct, t i, unaltered. To summarize, we have the

following result.

Theorem 2 If i is a production period in the optimal schedule, then the

maximal allowable decrease of ci and Pi can be calculated in constant time;

otherwise, O(logn) time suffices.

We will now consider increasing cost coefficients. For a period i that is

not a production period in the optimal schedule, the coefficients fi, i

and Pi can be increased arbitrarily without causing the optimal solution to

change. This follows trivially from the fact that G(i) increases while G(1)

remains constant and therefore F(i-1)+G(i)2G(1) continues to hold. Hence we

only have to consider the production periods of the optimal schedule. Let

i s 1 be such a period, then the following value determines the optimal path

from 1 to n+l1 in the DP-network that does not pass through i:

Mi- min F(j-l)+ljt+G(t)}
j <i<t

Now Mi = min{Mji}, where for j < i

Mji-min {F(j-1)+ljt+G(t)}
t >i

Before giving algorithms to calculate the maximal allowable increases of fi

and ci, we will first show how to calculate Mi for all production periods

i 1 of the optimal schedule simultaneously in O(nlogn) time. To this end,

we partition the periods before i into two sets:

Ii-{j<ili is not on the shortest path from j to n+1}

I-{j<ili is on the shortest path from j to n+1}
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0 . 1We define M=minjeiQo{3ji} and AM-minjlj{3ji}; clearly, Mi =m min{M, M}.

First we focus on the computation of Mi.

Lemma 6 Suppose j I and let k<i such that sc(k)>i and k on the shortest

path from j to n+1, then 31ji>F(j-1)+G(j)>F(k -1)+G(k)=Mki.

Proof The first inequality follows from

31ji=min {F(j-l)+ljt+G(t)}>min F(j-1)+ljt+G(t))=
t>i t>j

=F(j-1)+min {jt+G(t)}=F(j-1)+G(j)
t>j

The second inequality follows by induction from Lemma 3.a since k is on the

optimal path from j to n+l 1. Finally, the equality follows from the fact

that sc(k)>i:

31oi = min{F(k -1) +Ikt + G(t)}
t >i

< F(k- 1) +lk,sc(k) +G(sc(k))

= F(k -1) +G(k)

= min{F(k - 1) + Ikt + G(t)}
t>k

< min{F(k- 1)±+lkt+G(t)} = Mki.
t >i

From Lemma 6 it follows that calculating M is equivalent to determining

the minimum of {F(j-1)+G(j)j <i and sc(j)>i}; note that we do not have to

require explicitly j I. Using this fact, we are able to compute values M i

for all production periods i 1 of the optimal schedule simultaneously in

O(nlogn) time by the algorithm given next.

The data structure that we will use is a binary heap which has the

following properties (see Aho, Hopcroft and Ullman, 1974): the minimum of

the values stored in the heap can be found in constant time; if at most n

values are stored then it takes O(logn) time to update the heap after the

18
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addition or deletion of an element. Let i2 be the smallest production

period greater than 1. In the initial heap we store the values F(j-1)+G(j)

for all j <i 2. To find M?/ we consider the period j corresponding to the

minimum of these values. If sc(j*) > i2, then M = F(j* - 1) +G(j); otherwise we
i2=

delete F(j*-1)+G(j*) from the heap. We repeat this step until the minimum

is attained for a period which has a successor greater than i 2. After 3/2

has been determined in this way we add to the heap the values F(j-1)+G(j)

for all j with i2 <j<i3, where i3 is the next production period and

determine M analogously. We proceed in this way until all desired values
3

have been calculated. The time bound follows from the fact that in total

only n additions and at most n deletions take place.

We now come to the determination of the values Mi for all production

periods i>1. The following lemma states a similar result as Lemma 6.

Lemma 7 Let jeIi and k=sc(j)<i, then Mji>Mki.

Proof From Lemma 5 it follows that

F(j-1)+ljt+G(t) F(k-1) +kt+G(t) for all t>sc(k)

Now j eli implies that sc(k) <i. Hence, the inequality certainly holds for

all t>i. Moreover, by definition we have

F(k - 1) +lkt+G(t)> Mki for all t > i

Combining the inequalities gives

F(j-1)+ljt+G(t) Mki for all t>i

Therefore, Mji =minF(j - 1) + t G( t ) } Mki
t >i

From Lemma 7 we deduce that to calculate M it is sufficient to determine

the minimum of {Mjilsc(j)=i}. Now consider a j with sc(j) =i. By definition

Mji=F(j-1)+mint>i {ljt+G(t)}, and to evaluate the minimum in this

19



expression it suffices to determine the line with slope cj that is tangent

to the convex lower envelope of the points (dtn, G(t)) for t>i. Hence, Mji

can be calculated in O(logn) time and M} can be determined in O(milogn)
,n time, where mi= l{jlsc(j)=i}l. Since i=1 mi<n, computing M for all

relevant periods takes O(nlogn) time.

In general we do not have the convex lower envelope of the points

(dtn,G(t)), t > i, immediately available for all production periods i.

However, we can just construct these lower envelopes for decreasing i by

the method given in Section 2. As we have seen, this takes overall O(nlogn)

time. Moreover, determining the set of periods j with sc(j)=i can be done

in O(n) time simultaneously, since sc(j) is given for all j= 1,...,n.

Note that calculating M is done in a forward fashion while calculating l

is done backwards. Finally we set A1i:=min{Mi°,1Mi}, which finishes the whole

process of calculating simultaneously for all production periods i> 1 of the

optimal schedule the value of the shortest path from 1 to n+1 not

containing i.

The calculations above do not concern i= 1. If di > 0 then period 1 is always

a production period and we define M1=-oo. If dl = 0 and period 1 is a

production period in the optimal schedule, then we define M1=G(2).

We now proceed with the calculations of the maximal allowable increases of

fi and ci for a production period i.

Case 3: fi increases to fi + 6

If i is production period in the optimal schedule, then the shortest path

through i from 1 to n + 1 has value F(n) + 6. Now the corresponding schedule

will remain optimal as long as there is no better schedule without i as

production period, i.e., as long as F(n)+6<Mi. So the maximal allowable

increase equals i -F(n).

20
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Case 4: ci increases to ci+ 

Arc (i,j), j>i, increases cost by dij_1. If i a production period in the
optimal schedule, then the value of this schedule is now F(n)+6di,,s(i)_r.
An upper bound on the maximal allowable increase is {Mi-F(n)}/di,sc(i)l,

which follows from F(n) + di,Sc(i)l < Mli.

However, the optimal schedule can also change if it gets more attractive to
take an earlier successor of i. To determine the smallest value of 6 for
which this happens we can use again the convex lower envelope of the points
(dt, G(t)), t>i (see Figure 9); the relevant information is given by the

slope {G(k)-G(sc(i))}/dk,sc(i)l of the linear part to the right of

(dsc(i),n G(sc(i)).

G(+ 1)

Go

G(Sc())

0
-Eva~ -- usAes

Figure 9: Convex lower envelope for periods after i

Note that {G(sc(i))-G(k)}/dsc(i),k-1 can be obtained at the same time that

Mi is determined. It follows that -ci+{G(sc(i))-G(k)}/dsc(i),k-1 is also an
upper bound on the maximal allowable increase. The latter value is equal to
the minimum of both bounds.

To summarize, we have shown the following.
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Theorem 3 The maximlal allowable increases of fi, ci and Pi can be

calculated for all i=l1,...,n simultaneously in O(nlogn) time.

4.2 Sensitivity analysis of the holding costs

Since cj=pj+t>jht, changing hi to hi+65 results in changing cj by 6 for all

j < i. Now let 1 = i < i2 < .... < i_ < i < i << .... < i < ik < ik+l = n + 1 denote the production

periods of an arbitrary production schedule, then for this schedule the

cost change equals 6d,ir_1. So the value of an optimal schedule is given

by

Vi(6)- min {F(t-1)+1tj+G(j)+6d1jt1t <i<j

Case 5: hi increases to h i + 6

For 1 <i< j < n we define Vij ( (6)- mint<i{F(t - 1) +ltj} + G(j) + dj 1 . By definition

Vi(6) =minj>i{Vij(6)}. Moreover, we can show the following relation.

Lemma 9 minj,i{Vij(6)} = minj,i{F(j - 1) +G(j)+ 6d,jl} for i = 1,..., n- 1

Proof Let j>i then clearly

(2)minF(t- 1) +tj I> min{F(t- 1) + tj} = F(j-1)
t < i t<j

and therefore

(3)

First suppose pr(j) <i then, using (2), we obtain

F(j-1) =F((pr(j)-1)+lpr(j),j> min{F(t-1)+ltj} >F(j-1)
t <i

It follows that mint<i{F(t- 1) +ltj} =F(j- 1) and therefore

Vij(6)=F(j-1)+CG(j)+S6dlj_ if pr(j)<i

22
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Now suppose pr(j) > i. Let k > i be the largest period on the shortest path

from 1 to j such that pr(k)<i. It follows immediately from (4) that

Vik(6) = F(k -1) + G(k) + dl,kl

Furthermore, by repeatedly applying Lemma 3.b we deduce that

F(k-1)+G(k)<F(j-1)+G(j), and from k<j it follows that dl,kl-<dljl. Since

6>0 we obtain

Vik() = F(k -1) + G(k) + dl,k 1l < F(j -1) +G(j) + 6dj_1

Combining this result with inequality (3) yields Vik(6) <Vij(6). It follows

that while determining Vi(6) =minj,>i{Vij(6) we can restrict ourselves to

the periods j with pr(j)<i. The desired result now follows from (4).

[

From Lemma 9 it follows that we can obtain the optimal solution value as a

function of 6>0, by constructing the lower envelope of the lines

F(j-1)+G(j)+Sdlj_1 for all j>i (so in fact we are performing a complete

parametric analysis). If the line corresponding to the current optimal

solution is not present in this lower envelope, then the maximal allowable

increase of hi is 0; otherwise, it is equal to the first positive

breakpoint of the lower envelope. To obtain the maximal allowable increases

for all hi, i=l,...,n, we construct the lower envelopes for decreasing i.

Given the convex lower envelope for a fixed i, the lower envelope for i-1

is obtained after also taking the line F(i - 1) + G(i) + d , i_-l into

consideration. This means that the lines are added in order of

non-increasing slope and it is not difficult to see that in this case O(n)

time is required to construct all lower envelopes (see for instance

Chapter 2 of Wagelmans, 1990). Moreover, it follows that the maximal

allowable increases of the parameters hi are non-decreasing for increasing

z.

We summarize our main result here.

Theorem 4 The maximal allowable increases of all hi, i=l1,...,n, can be

calculated simultaneously in O(n) time.
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Case 6: hi decreases to h i-6

For this case we do not have a dominance relation similar to Lemma 9.

Therefore we will describe a simple O(n2 ) algorithm that can also be used

to perform a complete parametric analysis for 6>0. The functions of

interest are

vi(6)_ min {F(t-1)+ltj+G(j)-6d,j 1l} , i=l,...,n
t <i<j

For j>i we define uij-mint<i{F(t-1)+ltj} and vij()-uij+G(j)-6dl,j. We

first determine the values uij for all i,j with l<i<j<n+l. For fixed j

(j=2,...n), we compute the values uij, l<i<j, using uj=llj and the simple

recursion

uij:=min{i_,j, F(i -1) + lij} for 2 <i <j

Hence, the determination of all values uij, l<i<j<n+1, takes 0(n 2 ) time.

Now consider a fixed i (i=l,...,n). Since now the lines vij(6), j>i, are

known and their slopes are already ordered, vi(6) can be determined as the

lower envelope of these lines in O(n) time. It follows that the

construction of vi(6) for all i=l,...,n can be done in 0(n 2 ) time and

therefore the following holds.

Theorem 5 The maximal allowable decreases of all hi, i= 1,...,n, can be

calculated simultaneously in O(n2 ) time.

4.3 Sensitivity analysis of the demands

It turns out that the analysis of changes in the demands resembles the

earlier sensitivity analysis of the holding costs. Therefore, we will

sometimes skip parts of proofs in this section.

If the demand di, i=1,...,n, changes by 6, then the cost of an arbitrary

schedule changes as follows: let 1 = i < i< .... < i < i < ir+1 < .... < ik < ik+l = n + 1

denote the production periods of the schedule, then for this schedule the

24
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cost change equals cir. So the value of an optimal schedule is given by

Wi(6)= min {F(j-1)+ljt+G(t)+6cj}
j <i<t

Case 7: d i increases to d i + 6

For j < i we define Wij( 6)mint,i{F(j -1) + ljt + G(t)+ 6cj }. By definition

Wi(6)=minj<i{Wij(6)}. Moreover, we can show the following relation.

Lemma 10 minj<i{Wij(6)} = minj<i{F(j -1) +G(j)+ Scj} for i =l,...,n

Proof The idea of the proof is analogous to the proof of Lemma 9. Let j<i

and k=sc(j). If k>i, then it is easy to show that Wij(6)=F(j-1)+G(j)+6cj .

If k < i, then the following implies that we do not have to consider j.

Wlij(6)= F(j-1) + Scj+mint>i{ljt + G(t)} > (definition of G(j))

> F(j- 1)+6cj+ G(j) >

> F(k-1) +Scj+G(k) 2

(Lemma 3.a)

(Lemma 4)

2 F(k - 1) + Ck + G(k)

From Lemma 10 it follows that to determine the maximal allowable increase

of the parameter di, it suffices to determine the first breakpoint of the

lower envelope of the lines F(j-1)+G(j)+cj for all j<i. Because there is

in general no natural order of these lines with respect to their slopes or

constant terms, our result here is the following.

Theorem 6 The maximal allowable increases of

calculated simultaneously in O(nlogn) time.

all di, i=l,...,n, can be

Case 8: d i decreases to d i- 6

Because no equivalent of Lemma 10 is known for this case, we will describe
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a simple 0(n2 ) algorithm to perform a complete parametric analysis for

O<6<di. The functions of interest are

wi(6)- - min {F(j-1)+ ljt+ G(t)-cscj} , i=l,...,n
j i<t

By definition wi(6) is the lower envelope of the lines wij(6), j<i, defined

by wij(6)F(j-) + f - 6c + minti{cjdj t + G( t ) }. Using a simple recursion we

can again calculate the values mint>,i{cjdj, t 1+G(t)} for all l<j<i< n+l in

O(n2 ) time. Furthermore, it takes O(nlogn) time to order the coefficients

Cj, j = 1, ... , n. Hence, we can compute all relevant lines wij(6) and order

them according to non-increasing slope in O(n 2 ) time. Subsequently it takes

O(n) time to construct wi(6) for a fixed period i.

The discussion above implies our last complexity result.

Theorem 7 The maximal allowable decreases of all di, i =l,...,n, can be

calculated simultaneously in 0(n 2 ) time.

5 Concluding remarks

In Table 1 we have summarized the complexity of our algorithms. The running

times refer to the computation of the allowable changes for all similar

parameters. We have indicated when a single parameter can be treated

separately, in which case the complexity should be divided by n.

Table 1: Summary of complexity results

(*): the computations can be carried

out for each period separately
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fi nlogn n ( *)

ci, Pi nlogn nlogn(*)

h i n n2

d i nlogn _ n2
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From the table we see that our algorithms to compute maximal allowable

increases and decreases have for most coefficients different complexities.

The difference for the holding costs is especially striking. However, such

asymmetrical phenomena are also encountered when performing sensitivity

analysis of shortest path and minimum spanning trees (see for instance

Spira and Pan, 1975). On the other hand, ELS has so much structure that

more symmetrical results could be hoped for.

We have been able to show that the techniques described in Section 2 can be

generalized to solve other lot-sizing problems. For instance the problem in

which backlogging is allowed as well as the problem with start-up costs can

be solved in O(nlogn) time (see Van Hoesel, 1991). It would be interesting

to study sensitivity analysis of these more general problems.
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