261,426 research outputs found

    Sensing a Changing World

    Get PDF
    workshop “Sensing a Changing World” was held in Wageningen, The Netherlands, from November 19–21, 2008. The main goal of the workshop was to explore and discuss recent developments in sensors and (wireless) sensor networks for monitoring environmental processes and human spatial behavior in a changing world. The challenge is then to develop concepts and applications that can provide timely and on-demand knowledge to end-users in different domains over a range of different spatial and temporal scales. During this workshop over 50 participants, representing 15 countries, presented and discussed their recent research. The workshop provided a broad overview of state-of-the-art research in a broad range of application fields: oceanography, air quality, biodiversity and vegetation, health, tourism, water management, and agriculture. In addition the workshop identified the future research challenges. One of the outcomes of the workshop was a special issue in the journal Sensors with contributions presented at the workshop. This editorial of the special issue aims to provide an overview of the discussions held during the workshop. It highlights the ideas of the authors and participants of the workshop about directions of future research for further development of sensor-webs for “sensing” spatial phenomena. The “big” question was are we already able to sense a changing world? And if the answer is positive, then what are we going to sense and for what

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Frame Coherence and Sparse Signal Processing

    Full text link
    The sparse signal processing literature often uses random sensing matrices to obtain performance guarantees. Unfortunately, in the real world, sensing matrices do not always come from random processes. It is therefore desirable to evaluate whether an arbitrary matrix, or frame, is suitable for sensing sparse signals. To this end, the present paper investigates two parameters that measure the coherence of a frame: worst-case and average coherence. We first provide several examples of frames that have small spectral norm, worst-case coherence, and average coherence. Next, we present a new lower bound on worst-case coherence and compare it to the Welch bound. Later, we propose an algorithm that decreases the average coherence of a frame without changing its spectral norm or worst-case coherence. Finally, we use worst-case and average coherence, as opposed to the Restricted Isometry Property, to garner near-optimal probabilistic guarantees on both sparse signal detection and reconstruction in the presence of noise. This contrasts with recent results that only guarantee noiseless signal recovery from arbitrary frames, and which further assume independence across the nonzero entries of the signal---in a sense, requiring small average coherence replaces the need for such an assumption

    Using Remote Sensing Techniques to Improve Hydrological Predictions in a Rapidly Changing World

    Get PDF
    Remotely sensed geophysical datasets are being produced at increasingly fast rates to monitor various aspects of the Earth system in a rapidly changing world. The efficient and innovative use of these datasets to understand hydrological processes in various climatic and vegetation regimes under anthropogenic impacts has become an important challenge, but with a wide range of research opportunities. The ten contributions in this Special Issue have addressed the following four research topics: (1) Evapotranspiration estimation; (2) rainfall monitoring and prediction; (3) flood simulations and predictions; and (4) monitoring of ecohydrological processes using remote sensing techniques. Moreover, the authors have provided broader discussions on how to capitalize on state-of-the-art remote sensing techniques to improve hydrological model simulations and predictions, to enhance their skills in reproducing processes for the fast-changing world

    Sensing Enhancement on Social Networks: The Role of Network Topology

    Get PDF
    Sensing and processing information from dynamically changing environments is essential for the survival of animal collectives and the functioning of human society. In this context, previous work has shown that communication between networked agents with some preference towards adopting the majority opinion can enhance the quality of error-prone individual sensing from dynamic environments. In this paper, we compare the potential of different types of complex networks for such sensing enhancement. Numerical simulations on complex networks are complemented by a mean-field approach for limited connectivity that captures essential trends in dependencies. Our results show that whilst bestowing advantages on a small group of agents, degree heterogeneity tends to impede overall sensing enhancement. In contrast, clustering and spatial structure play a more nuanced role depending on overall connectivity. We find that ring graphs exhibit superior enhancement for large connectivity and random graphs outperform for small connectivity. Further exploring the role of clustering and path lengths in small world models, we find that sensing enhancement tends to be boosted in the small-world regime

    Analysis and implementation of low fidelity radar-based remote sensing for unmanned aircraft systems

    Get PDF
    Radar-based remote sensing is consistently growing, and new technologies and subsequent techniques for characterization are changing the feasibility of understanding the environment. The emergence of easily accessible unmanned aircraft system (UAS) has broadened the scope of possibilities for efficiently surveying the world. The continued development of low-cost sensing systems has greatly increased the accessibility to characterize physical phenomena. In this thesis, we explore the viability and implementation of using UAS as a means of radar-based remote sensing for ground penetrating radar (GPR) and polarimetric scatterometry. Additionally, in this thesis, we investigate the capabilities and implementations of low-cost microwave technologies for applications in radar-based remote sensing compared to higher fidelity and more expensive technologies of similar scope

    A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    Get PDF
    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA’s Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology

    A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers

    Get PDF
    In evergreen conifers, where the foliage amount changes little with season, accurate detection of the underlying “photosynthetic phenology” from satellite remote sensing has been difficult, presenting challenges for global models of ecosystem carbon uptake. Here, we report a close correspondence between seasonally changing foliar pigment levels, expressed as chlorophyll/carotenoid ratios, and evergreen photosynthetic activity, leading to a “chlorophyll/carotenoid index” (CCI) that tracks evergreen photosynthesis at multiple spatial scales. When calculated from NASA’s Moderate Resolution Imaging Spectroradiometer satellite sensor, the CCI closely follows the seasonal patterns of daily gross primary productivity of evergreen conifer stands measured by eddy covariance. This discovery provides a way of monitoring evergreen photosynthetic activity from optical remote sensing, and indicates an important regulatory role for carotenoid pigments in evergreen photosynthesis. Improved methods of monitoring photosynthesis from space can improve our understanding of the global carbon budget in a warming world of changing vegetation phenology

    Jackson State University's Center for Spatial Data Research and Applications: New facilities and new paradigms

    Get PDF
    Jackson State University recently established the Center for Spatial Data Research and Applications, a Geographical Information System (GIS) and remote sensing laboratory. Taking advantage of new technologies and new directions in the spatial (geographic) sciences, JSU is building a Center of Excellence in Spatial Data Management. New opportunities for research, applications, and employment are emerging. GIS requires fundamental shifts and new demands in traditional computer science and geographic training. The Center is not merely another computer lab but is one setting the pace in a new applied frontier. GIS and its associated technologies are discussed. The Center's facilities are described. An ARC/INFO GIS runs on a Vax mainframe, with numerous workstations. Image processing packages include ELAS, LIPS, VICAR, and ERDAS. A host of hardware and software peripheral are used in support. Numerous projects are underway, such as the construction of a Gulf of Mexico environmental data base, development of AI in image processing, a land use dynamics study of metropolitan Jackson, and others. A new academic interdisciplinary program in Spatial Data Management is under development, combining courses in Geography and Computer Science. The broad range of JSU's GIS and remote sensing activities is addressed. The impacts on changing paradigms in the university and in the professional world conclude the discussion

    Tiling solutions for optimal biological sensing

    Get PDF
    Biological systems, from cells to organisms, must respond to the ever changing environment in order to survive and function. This is not a simple task given the often random nature of the signals they receive, as well as the intrinsically stochastic, many body and often self-organized nature of the processes that control their sensing and response and limited resources. Despite a wide range of scales and functions that can be observed in the living world, some common principles that govern the behavior of biological systems emerge. Here I review two examples of very different biological problems: information transmission in gene regulatory networks and diversity of adaptive immune receptor repertoires that protect us from pathogens. I discuss the trade-offs that physical laws impose on these systems and show that the optimal designs of both immune repertoires and gene regulatory networks display similar discrete tiling structures. These solutions rely on locally non-overlapping placements of the responding elements (genes and receptors) that, overall, cover space nearly uniformly.Comment: 11 page
    • 

    corecore