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CHAPTER I

INTRODUCTION

1.1 Motivation

Microwave remote sensing (MRS), specifically radar, has adapted over the last 80 years to

be a widely used tool in many fields of research including archaeological excavation, structural

engineering, agricultural sciences, weather tracking, global imaging, and target detection. However,

while MRS technology becomes more advanced and grows in technical robustness, its ability to

compete with the harsh environment has not grown as rapidly. Many radars, like ground penetrating

radar (GPR), have been predominately implemented from the ground with automotive vehicles,

light-weight carts, or handheld equipment as the means of usability. This means of housing and

operating radar technology, while functional and robust, harbors a moderate level of concern and

a suite of obstacles for both speed and safety of data collection. Harsh environments including

rugged terrain, steep mountain sides, and marshy fields make radar a difficult tool to implement

without endangering both the equipment and the researcher(s) surveying the location. Additionally,

traversing a non-ideal environment from the ground presents problems with the speed at which data

can be collected. Ground-based radar tools that can quickly survey a large area are often expensive,

and are still not capable of being used in a wide variety of environments, usually designed to be

functional in highly specific situations.

1
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There have also been many radar systems, such as scatterometers, implemented from high

altitudes such as space-born satellites and air crafts. This allows the radar to image large swaths of

area from tens of kilometers wide to hundreds of kilometers wide for applications like soil moisture

characterization, vegetative health analysis, and surface current tracking over the ocean. While this

means of implementation is beneficial for characterizing large areas of interest, it is not ideal for

imaging areas less than a few hundred meters in size, such as an agricultural field.

The emergence of unmanned aircraft systems (UAS) has grown in the last few decades to

be a low cost and easily accessible tool for uses in radar applications. As UAS-based radar is

implemented from the air, it is not limited to the topographical issues that ground-based radar is

and can be used over any type of terrain and environment. As they are not bound by the physical

characteristics of the ground, UAS can quickly traverse over a large area. This technology offers a

new avenue of feasibility for radar research which will be investigated in the document.

1.2 Literature Review

As discussed in Section 1.1, UAS-based radar is advantageous over more traditional ground-

based approaches for its ability to traverse over any terrain regardless of topography which can

increase travel speed while imaging as well as its capabilities for imaging small-scale areas of

interest that traditional aerial-based radars can not image due to resolution issues at extreme

altitudes. A UAS-based implementation is seen in Ludeno et. al’s approach [22] where the team

focused on the design of a microwave radar for micro-UAV for tomographic imaging as a means of

characterizing an inaccessible area quickly. This work was done with a low-cost ultra-wide band

pulse radar system between 3.1GHz and 4.8GHz which was designed to be viable for use on the

2
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UAV for its small form factor. The data processing was able to mitigate the altitude variations

from the UAS instability by capturing and removing the first echo from the radar’s time domain

response which made the targets more visible in post-processing.

The application of radar for UAS-based approaches has been investigated for use in synthetic

aperture radar (SAR) imaging by Lort et.al [21] where the team investigated SAR capabilities

for UAV applications to determine its potential for future implementations. The team designed

a polarimetric X-band radar equipped to UAV. The radar is capable of 30dBm transmit power

and resolves its returns with 1.5m resolution. Testing was performed in agricultural areas with

suburban scenes such as houses and cars. The team used various calibration targets including

trihedral reflectors and was able to generate sufficient polarimetric responses that lined up with

the theoretical responses of the calibration with the UAV payload. Further, Yan et. al designed

a UAV-based SAR system [33] with the purpose of validating the design and implementation

of a low-cost sensing for UAV-based applications. The team was able to collect real-time data

and characterize target features of a construction site. This testing shows both the reliability and

viability of UAV-based radar use for sensing systems.

Applications of UAS-based radar include extensive work for soil moisture measurements.

Simpson et. al developed a UAS-based radar [27] for soil moisture characterization between 2-6

GHz using an ultra-linear chirp waveform. The team also developed a SAR processing algorithm

for imaging the surface by dividing the data into multiple apertures across the azimuth plane.

The testing showed a near-perfect impulse response with moderate SNR. Kaundinya et. al also

created an ultra-wideband radar system (2-18GHz) [18] designed for soil moisture measurements

equipped for an unmanned aerial system (UAS). A radar test bed was developed with a chirp
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waveform generator to transmit through a four micro-strip antenna array. The test setup monitored

the response between wet and dry soil with varying polarizations at different incidence angles. The

consensus of the experiments is the system can discern approximately 5% water content variance

in the soil. This shows that soil moisture content was adequately characterized by the UAS-based

radar. Wu et. al developed a UAV-based GPR [32] for soil moisture measurements. The GPR was

tested in agricultural fields in Belgium to characterize the soil moisture content with testing lasting

less than 15 minutes. The soil moisture response showed to be similar to the elevation maps of the

fields considering flight instabilities and antenna reflections.

With the advancement of UAS-based radar, there are interests in its applications using GPR.

Badjou et. al developed a drone-based GPR design [13] for humanitarian applications such as

search and rescue after floods or earthquakes. This design includes a waveform generator and

Vivaldi antennas. The testing shows consideration for the drone’s flight speed to limit speeds to

1m/s as potentially moving targets, like people, could introduce Doppler aliasing at faster flight

speeds. UAS-based GPR also has potential for landmine detection shown by the research of Šipoš

et.al [28] where a drone-based GPR for landmine detection is developed. The team investigated

methods to overcome the intricacies of a frequency domain waveform like frequency-modulated

continuous wave (FMCW), using a time domain pulse radar to obtain the frequency span and

to best yield moderate spatial resolution. This is done with a pulse generation circuit and an

avalanche transistor along with Vivaldi/horn hybrid antennas used for transmission. The testing

setup involved moving the GPR over the ground 1.5m above the surface across a rail and moving

at 1m/s with a metal object placed above the surface at 0.6m. This testing shows the GPR being

capable of obtaining a moderate response from the target. Further, Fernandez et developed a UAV-
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based GPR [15] that utilizes SAR algorithms for landmine detection. The team leveraged the SAR

algorithms for the imaging of the subsurface along with clutter removal techniques for mitigating

the impedance mismatching of the air and soil. To mitigate altitude instability the team leverages

real-time kinematic (RTK) sensors and LIDAR altitude sensors for altimeter ranging. The team

buried an 8cm circular metal sheet and a 5cm diameter cylinder 12cm below sand for testing and

was able to resolve 2-2.5cm range resolution. The project shows good results in applications of

detecting structural defects in walls, roofs, and roads and can be deployed quickly with use on a

UAV.

The methods for transmission and processing of GPR have also been explored for use with a

UAS. Carey in his thesis [14] develops a stepped-frequency continuous wave (SFCW) GPR using

a software defined radio (SDR). This approach uses two daughter boards to create the transmit and

receive chains. The FPGAs on board require precise scheduling between the two daughter boards

which coupled with two LNAs on the receive chainmakes it difficult and requires system calibration

to align the data acquisition of the GPR. The GPR is tested with metal spheres placed above and

below the surface. The data shows the GPR can adequately characterize the spheres at 28.5cm

below the surface. Carey also tests other targets such as brick and surrogate landmines which are

also detected in the GPR response. Additionally, Uduwawala [29] investigates the advantages and

disadvantages of a Gaussian pulse compared to a differentiated Gaussian pulse for pulse radar based

GPR. The testing done shows that a Gaussian pulse has a lower clutter level than the differentiated

Gaussian pulse. The differentiated Gaussian pulse has a better signal strength than the Gaussian

pulse. Uduwawala concludes that the differentiated Gaussian pulse is more suitable for detecting
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targets that are buried deep and uniformly placed in a surface whereas the Gaussian pulse is more

suited for shallow depth targets with high spatial resolution.

UAS-based radar also has applications in scatterometry for characterization of soil moisture

content. Soil moisture characterization using SAR can be difficult as the surface roughness of

the scene causes errors and ground-based scatterometers have shown the ability to mitigate these

issues. Kwon et. al investigated the inversion of the scattering parameters [20] obtained from a

VNA-based scatterometer and SAR imagery was used to characterize soil moisture and surface

roughness of a soybean field. Wu et. al developed a ground-based scatterometer [31] for soil

moisture characterization. Two tests were conducted with a FMCW scatterometer with various

soil moisture contents from 20% to 37% moisture content. The results showed the 37% moisture

content matched best with the theoretical backscatter models. Qiu et. al [24] studied the inversion

of a ground based scatterometer backscatter response for soil moisture characterization. The team

used the Integral Equation Model (IEM) to map the soil moisture content. The data shows that

the IEM and true data line up well with error between 4.6%-13.7% validating the ground based

scatterometer is viable with the surface roughness removed.

There has been research done to determine the accuracy of low-altitude scatterometers for

soil moisture mapping. Jia et. al [17] investigated the sensing of rice fields in China circa 2009

using a ground-based scatterometer. The intent of the system was to monitor the growth of the

rice plant compared to known information regarding the biomass and the leaf area index (LAI).

Testing was done in the L, C, X and S frequency bands, at 10, 30, 53, 72, and 95 days of growth

and with full polarization at varying incident angles between 0 and 90 degrees. Another set of

tests was conducted at a static incident angle of 35 degrees over the growth period of the rice
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to measure the backscatter of all polarizations in all frequency bands as compared to the rice

biomass response. Finally, a similar test was done to compare the backscatter response to the lead

area index of the rice plant. Goswami et. all discusses the analysis of scatterometer backscatter

responses. The team’s system operates at 9.48GHz and operated at varying incident angles between

25-70 degrees. The data collected was compared to the gravimetric soil moisture readings and the

backscatter coefficients were found to best align at an incident angle of 35 degrees [16].

1.3 Novelty and Contributions

This thesis will focus on the development of three radar systems: a UAS-based GPR, a UAS-

based scatterometer, and a ground-based scatterometer.

The novelty of the UAS-based GPR is that it is implemented from a drone which mitigates the

issues intrinsic in traversing harsh terrain with a ground-based GPR. The contributions of the work

outlined in the thesis are meant to make the GPR lightweight and easily usable from the drone

platform such that there is little intervention on behalf of the researcher as well as has peripherals

in place to help mitigate intrinsic issues of UAS-based radar such as altitude instability.

The novelty of the UAS-based scatterometer is that it is also implemented from a drone, but for

ease of mobility of the radar to better image a large area of land compared to traditional ground-

based scatterometers that can take a considerable amount of time and effort to image large areas.

With the drone implementation, the scatterometer can image a large field quickly. The contribution

of the UAS-based scatterometer outlined in this thesis, similar to the UAS-based GPR, is to be

light weight and easily usable such that data collection is not difficult for the researcher. Another
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contribution for this system is its ability to switch the radar polarization during flight without

intervention of the researcher.

The novelty of the ground-based scatterometer is to be a truth-basis for the UAS-based scat-

terometer. There is a need for a traditional ground-based scatterometer that operates with good

accuracy to compare to the experimental data of the UAS-based approach to determine what, if

any, intrinsic issues and noise are in the UAS-based scatterometer data caused simply by its im-

plementation from a drone. The contributions outlined in this thesis are to make a ground-based

scatterometer that is highly mobile and maneuverable in the field. This approach intends to make

the payload both light weight but also durable and robust to ensure it can be used to image a large

area quickly in multiple places compared to the other ground-based scatterometers using utility

trucks, large boom-lifts, and large static structures and towers.

1.4 Outline of Thesis

This thesis is divided into five subsequent chapters. Chapter 2 presents the necessary tech-

nological background and theory for the development of the research discussed in this thesis.

Chapter 3 introduces the approach and implementation of the UAS-based GPR. The approach and

implementation of both the ground-based and UAS-based scatterometers is introduced in Chapter

4. Chapter 5 outlines the results of data collection for both the GPR and scatterometer systems.

Chapter 6 outlines the conclusion of the thesis and offers means of improvement to the GPR and

scatterometer systems for future efforts.
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CHAPTER II

BACKGROUND

This chapter serves to provide the underlying theory and intuition necessary for the prescribed

results within this thesis. The traditional methods of application and terminology for microwave

remote sensing is given in Section 2.1. Scatterers including point, discrete, and distributed targets

are explained in Section 2.2. Background on ground penetrating radar and scatterometers are

discussed in Section 2.3 and Section 2.4 respectively. Section 2.5 outlines the necessary microwave

analysis theory and techniques used to measure and characterize the GPR and scatteroemeters

systems. Section 2.6 illustrates the microwave components used in the development of the GPR

and scatterometer systems.

2.1 Microwave Remote Sensing

Microwave remote sensing (MRS) is a class of tools that came to prominence in the 1960s for

imaging and characterizing the environment using electromagnetic (EM) energy in the microwave

region between 300MHz-300GHz [30]. Before this time, environmental optical sensing, such as

aerial photography, was the major method for characterizing our environment in lieu of in situ

measurements in the field. This greatly increased the present sensing capabilities by introducing

active sensing techniques as opposed to traditional passive techniques. Where environmental

optical sensing relies on passive radiation from the sun, MRS can also utilize other means of
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radiation such as targeted transducers or natural phenomenon like the earth. This also means

that MRS can be conducted during day or night as sunlight is not the dominant radiation source.

As MRS utilizes microwave radiation, it is able to image the environment through atmospheric

conditions such as clouds, rain, fog, as well as clutter like trees and dense vegetation. This is not

feasible with optical sensing because visible light is not able to penetrate these hazards and is easily

scattered. At its core, there are two classes of MRS: active and passive sensors. Active sensors,

known as radars, transmit microwave energy into the environment and collect the reflections of

the energy off of a target. Passive sensors, known as radiometers, do not transmit their own

microwave energy into the atmosphere but instead collect energy that which is already present in

the environment [30].

2.2 Scatterers

In MRS theory, objects of interest that scatter incident EM energy in the environment are often

referred to as scatterers or targets. Every physical material can be considered a scatterer, but the

properties governing its ability to reflect, or scatter, EM energy depend on a number of factors

including density, chemical makeup, size, and shape.

The adopted method of characterizing the performance of a radar is given by the radar range

equation, shown in equation 2.1. This equation encompasses the fundamental phenomenon gov-

erning the propagation of EM energy through space and the resulting energy reflected off of a target

to yield the returned energy back at the radar. The parameters that influence the equation are the

transmit power %C , the antenna gain � for a monostatic system, the wavelength of the EM wave

_ which is the speed of light 2 divided the frequency 5 of the EM wave, the radar cross section
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(RCS) f of the target assuming a point like target, and the distance between the antenna and target

'.

%A =
%C�

2_2f

(4c)3'4 (2.1)

2.2.1 Point and Discrete Targets

The simplest scatterer is a point target. This is a theoretical target whose RCS is uniform across

all aspect angles. The RCS of an object describes its effective area and size for which incident EM

energy can reflect off of the object back to a radar receiver. In non-ideal targets, also known as

discrete targets, this is not a uniform attribute of a target and varies with the radar’s perspective of

the object. This attribute is also a function of frequency and polarization. Idealized point targets

with known RCS values are presented below. These values are important as they represent the

observed targets used in characterizing the performance of both the GPR and the scatterometers.

Table 2.1

Radar Cross Section for idealized circular plate, square plate, and dihedral reflector

Circular plate, radius = 0 4c304

_2

Square plate, side length = 0 4c04

_2

Dihedral reflector, side length = 0 8c04

_2

2.2.2 Distributed Targets

Distributed targets, also known as volume targets, build upon the base theory of point and

discrete targets. In a real-world environment, there are multiple targets occupying the volume or

area that the antenna’s beam pattern is capable of illuminating. The targets in the volume or surface
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have differential RCS components and as such need to be averaged across the resolution cell of the

antenna. For this, the generalized radar range equation is used which has a differential RCS that

changes with azimuthΘ and elevationΦ and a differential power density that changes with azimuth

and elevation. The received power response and losses are then integrated over the volume of the

resolution cell shown in Equation 2.2 where !B and !0 account for system and atmospheric losses

respectively [8] [25].

%A =
%C_

2

(4c)3!B

∫
Δ+ ('0,Θ0,Φ0)

%2(Θ,Φ)
'4!0 (')

3f(',Θ,Φ) (2.2)

2.2.3 Polarization

EM energy as it propagates through a medium is built fundamentally by two fields known as

the electric field �̂ and magnetic field �̂. These fields, governed by Maxwell’s equations, are

prescribed to be orthogonal to one another. For example, given a �̂ field in the GH-plane, the �̂ field

will occupy the GI-plane while the energy propagation direction, in accordance with Poynting’s

vector, �̂× �̂ ( 1
`0
), will move in the Ĝ direction. This property of EM fields is known as polarization

and is generally described with respect to the orientation of the electric field. When the energy is

incident on a target, the resulting reflection will flip the electric field across its axis in the GH-plane

but maintain the field’s plane of oscillation.

Antennas hold a unique property as a transducer of EM energy in that most antennas have

reciprocity. This means that an antenna’s ability to transmit an EM field with a given electric field

orientation also makes it susceptible to receive EM radiation in the same electric field orientation.

Thus, an EM wave incident on an antenna with its electric field oriented orthogonal to that of the

antenna’s susceptibility of an electric field will not be transduced.
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Antenna polarization is then useful in observing target returns where the expected EM energy

incident back to the radar is no longer in the same polarization as the transmitted energy’s polar-

ization. Radars that have two antennas can hold different polarization configurations. The first

polarization is known as co-polarization where the two antennas are oriented with their electric

fields in the same plane, either Vertical-Vertical or Horizontal-Horizontal orientation. The second

polarization is known as cross-polarization where the two antennas are oriented 90◦ from one

another, either Vertical-Horizontal or Horizontal-Vertical orientation.

2.3 Ground Penetrating Radar

Ground penetrating radar (GPR) is an application of radar technology with a purpose, as its

name implies, to characterize targets of interest (ToI) below the ground or behind a surface. GPR is

applicable in many disciplines with many examples of targets such a pipes and conduit mapped for

civil and structural engineers, artifacts found in archaeological excavation sights, and landmines in

foreign areas imaged in defense of military efforts. This is done by measuring the EM energy that

reflects from them below a surface.

At its basis, GPR sends an EM wave from above the surface into the surface. When the wave is

incident on the surface, two phenomena occurs. It will reflect off of the surface in some proportion

and it will penetrate the surface and continue traveling through it in a complimentary proportion. If

there is a ToI below the surface, it will have a different electric permittivity, magnetic permeability,

and conductivity than that of the surrounding medium. The EM energy will reflect off of the ToI

and propagate a portion of the energy back to the radar according to its RCS. This sequence of
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events take a measurable amount of time and this time can be leveraged to characterize the depth

of the ToI.

The EM energy transmitted in the GPR developed in this thesis spans a wide bandwidth of

frequencies. As the frequency of operation increases, the spatial resolution for imaging the TOI

gets better but the depth of detection below the surface gets worse. Frequency bands in the low

Megahertz range can penetrate the subsurface of more than 30 meters [3]. At higher frequencies

between 300MHz to 3GHz, GPR can image below the subsurface at roughly 1 meter with higher

spatial resolution.

GPR can be built around either pulsed radar or continuous-wave (CW) radar. In pulsed radar,

a series of short high-energy EM pulses are emitted and their echos off the ToI is measured. In the

CW-based GPR, an EM wave of a specified frequency is transmitted and the receiver listens for

its reflection off of a target. If the frequency of operation for CW radar changes over a specified

amount of time, it is known as a frequency-modulated continuous wave (FMCW). If the frequency

changes linearly over time, this is known a linear frequencymodulation (LFM) waveform or "chirp"

signal. If the frequency of operation changes in finite increments and in stages over time, this is

known as a stepped-frequency continuous wave (SFCW) [11].

In a SFCW-based GPR, the radar sends out the signal with a specified bandwidth and number

of points, or frequencies, within the signal. The reflection of one scan from the GPR, that is

transformed from the frequency domain to the time domain, is known as an A-scan. The A-scan

is a one-dimensional signal that when plotted, has its x-axis as time and its y-axis as the voltage of

the reflection. When the GPR collects multiple spatial scans, they can be gathered together to form

a B-scan. A B-scan is a two-dimensional image where the x axis denotes the number of the scan,
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the y-axis denotes the time of the signal, and the voltage of the reflection is given as a gradient

heat-map on the image in lieu of a third dimension for the graph [3]. The resulting image appears

as a cross-sectional view of the ground surface over a the distance traversed by the GPR, illustrated

in Figure 2.1. The target response will appear as a hyperbolic response on the B-scan image. This

is due to the antenna radiation pattern interacting with the target incrementally as the GPR moves

across the ground surface. When the GPR is directly above the target, the greatest reflection will

be measured and can be illustrated in the B-scan in Figure 2.1.

Figure 2.1

GPR B-Scan Example [3]
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2.4 Scatterometers

Scatterometers are a radar-based technology used to characterize a surface by measuring EM

energy scattered from surface reflections. Traditional radar operates on point, or rather discrete,

targets while scatterometers are focused on distributed targets. Many scatterometers into the mid

1980s were magnitude-only scatterometers where no phase information is needed for processing.

Since then, scatterometer technologies have moved toward polarimetric radar. Polarimetric radar

for scatterometers is useful for collecting scattering coefficients for any number of targets [26].

Polarimetric radar is concerned with characterizing a target(s) using EM waves transmitted in

multiple polarizations, namely vertical and horizontal polarization, along with using antennas of

different polarization for receiving the return signal. Polarimetric scatterometers are limited by

three major factors for detection when measuring targets with small RCS. The first factor is the

minimum noise level of the radar system which is determined by the thermal noise level of the

system. This second factor is the dynamic range of the system which is important in radar systems

with one antenna or poor isolation between the transmit and receive chain of the radar. The third

factor and most prominent reason for poor target detection is internal reflections that cause noise

in the target range. The RF circuit and components of the radar, if not perfectly matched, create

reflections of varying time delays and cause standing waves within the circuit that distort the echo

response from the target. This factor is best resolved with radar calibration techniques which can

map the noise from internal reflections and they can be accounted for in processing of the target

returns [26].
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2.5 Microwave Analyzers

In this section we describes the theory of microwave analysis including networks and scattering

parameters.

2.5.1 Microwave Networks

A grouping of electrical components that are connected together in a closed loop to act on

the flow of electrical current is known as an electrical circuit. When these electrical components

operate at frequencies in the microwave region of the EM spectrum, namely 300MHz-300GHz, the

electrical circuit is known as microwave network. Given the currents and voltages in a network are

alternating, they are characterized by both their magnitudes and phases, represented as a vectors.

Built from these ideas, the analysis of microwave networks is known a vector network analysis.

The primary goal of vector network analysis is to characterize the flow of energy through various

components to best understand the power response and loss across a network.

2.5.2 Scattering Parameters

Vector network analysis is concerned with measuring the amount of energy that propagates

into and away from microwave components in the microwave network. A device that can perform

this analysis is known as a vector network analyzer (VNA). Traditional VNAs have both transmit

and receive ports that are used to send a microwave signals with well defined characteristics to a

device under test (DUT) that can be measured at the receive port to characterize the DUT. The

scattering of energy through a DUT can be defined by four parameters ((11, (21, (12, (22) known

as scattering parameters. These scattering parameters are illustrated in Figure 2.2.
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Figure 2.2

Example of a 2-port microwave network and scattering parameters [4]

In general, microwave energy that is incident on a DUT can do two things. It can propagate

through theDUTand continue forward in the network, or it can experiences impedancemismatching

between the transmission line and the DUT and reflect back toward the source. If the DUT is a

passive microwave component, it will allowmicrowave energy to flow through it in both directions,

called bi-directionality. VNAs use a convention to reference these scattering parameters, also

known as S-parameters. The VNA will transmit energy from its Port 1. The first S-parameter

is known as (11. This parameter denotes the ratio of the energy received at Port 1 of the VNA

to the energy transmitted from Port 1 of the VNA. This parameter is used to measure reflections

of microwave energy that does not propagate through a DUT and is used to understand how well

two microwave components are matched, or have similar impedance, in a network. The second

parameter to discuss is known (21. It denotes the ratio of energy received at Port 2 of the VNA to

the energy that is transmitted from Port 1 of the VNA. This parameter is used to measure howmuch

energy propagates through a DUT. As many passive microwave components are bi-directional, a

VNA can also test a DUT’s tendency to transmit and reflect incident energy that originates from

Port 2 instead of Port 1. Similar to (11, the third parameter known as (22 measures the reflected
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energy toward Port 2 that originated from Port 2. The final parameter, similar to (21, is (12 which

measures the energy that propagated through the DUT at Port 1 that originated at Port 2. Built from

available S-parameters, there are characteristics of a DUT that are useful. The first characteristic

is known as Insertion Loss. This term refers to the amount of energy that a passive microwave

components attenuates from acting on the energy and is given as |(21 |. In general, the lower this

value is, the better. The next characteristic is known as Return Loss. This term refers to the amount

of power that will reflect back from a DUT to the source. It is relative to the incident energy on

the DUT. In general, the higher this value is, the better performance a DUT has and is given as

−(11. Return loss is also known as a components directivity where the value denotes the howmuch

energy will propagate into a DUT compared to the amount of energy that will be reflected.

2.6 Microwave Components

There a many different types of microwave components that can be used in a network. In

general, all components can be categorized into one of two groups, active components or passive

components. Active components act on microwave energy in tandem with an outside power

source to alter the amount of power that transmits out of a microwave component. Examples

of these components are microwave amplifiers and microwave switches. Microwave switches

are used to change the propagation path of a network using logic controls from devices such as

micro-controllers and mechanical switches.

Microwave amplifiers are one of the most well known active microwave components used in

networks. The purpose of amplifiers is to increase the signal power of the energy that enters them

by a specified amount, known as gain. This is done with the intent of preserving the intricacies
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of the signal and only increasing its maximum amplitude. The are a number of factors regarding

amplifiers that characterize their performance. The first factor is known as the amplifiers Noise

Figure. For any signal, there is an underlying minimum level of noise associated with the signal’s

frequency spectrum. The difference in signal power and noise power is defined as the Signal-

to-Noise Ratio (SNR). The higher the SNR, the easier it is to detect a target. When using a

microwave amplifier, the Noise Figure denotes the decrease in the signals SNR after amplification.

The lower the Noise Figure an amplifier has, the better it will maintain the original signal’s SNR

after amplification.

The next factor of a microwave amplifier is its 1dB compression point (P1dB). In general,

amplifiers are designed to linearly increase a signal’s power by a static gain. For a given amplifier

gain, the amplifier is designed to be able to increase the original signal’s power by the gain

regardless of the original signal’s input power level. As amplifiers are not ideal devices, there is

an input power level where the amplifier is no longer able to increase input signal’s power level

by the rated gain. There is also a point in all amplifiers where no matter how much input power

is injected into the amplifier, the amplifier will no longer increase the output power. The point

where the difference between two output power’s from an amplifier is less than 1dB is known as the

amplifiers 1dB compression point, illustrated in Figure 2.3. This is considered to be an amplifier’s

maximum output level before potential damage to the amplifier from too much input power.

Passive components do not rely on an outside power source and only act on the incident

microwave energy to modify the signal. Examples of these devices are attenuators, antennas,

isolators, circulators, and directional couplers.
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Figure 2.3

Point of 1 dB compression (P1dB) graph [2]

Attenuators are components that are used to degrade the forward power from a source power by a

precise amount. This helpful when wanting to limit the power incident on microwave components

that have specific input power constraints. The next component is an antenna. Antennas are

transducers which are devices that can convert energy from one state to another. In this application,

antennas convert bounded EM energy to an unbounded form that can propagate through the air and

the environment.

The next component is known as an isolator. An isolator is a component that limits the energy

flow to one direction through a network. This device is useful when separating the transmit and

receive chains for a radar system where high power reflections caused from impedance mismatch

could damage the transmit and receive chains.

The next component is a circulator, shown in Figure 2.4. This is a multiple port device that

leverages uni-directionality to only allow energy transmitted into one port to exit a single, separate

21

DISTRIBUTION A. Approved for public release; distribution unlimited.



port. Circulators build upon on the idea of the isolator and can be used to isolate the transmit and

receive chains of a radar so that an antenna can transmit and receive microwave energy while not

directly passing the energy between the two chains.

Figure 2.4

Circulator

The last passive component is known as a directional coupler. A directional couplers, show

in Figure 2.5, is a device that samples a signal at a fraction of a incident power by leveraging

the direct coupling between two transmission lines that are close together. There are the three

accessible ports on a directional coupler with a four port connected to a 50-Ohm load. The IN port

(port 1) and OUT port (port 2) of the directional coupler is a transmission line. The coupled port,

CPL, (port 3) the load port (port 4) are also connected with a transmission line. With the fourth

port loaded, the CPL and IN port are connected via coupling to act as a transmission line with a

predefined coupling loss. Because of the loaded port, the coupling primarily occurs between the

IN and CPL ports with little interaction between the CPL and OUT ports. This amount of power is

denoted by the directional coupler’s directivity. The isolation of the CPL and OUT ports is found

by subtracting the coupling loss from the negative of the directivity.
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Figure 2.5

(a) Circuit diagram of a (b) directional coupler [1]
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CHAPTER III

GROUND PENETRATING RADAR

3.1 Approach

In this chapter we introduce the general approach and system for the developed UAS-based

GPR system. The objective of designing a UAS-based GPR is to mitigate some of the issues that

are present in ground-based GPR. This means the GPR must not introduce other systemic issues

that nullify the need for the UAS-based approach for lack of substantial benefit. The GPR needs to

be able to collect scans of data quickly given the traveling speed of the UAS in order to sample the

ground in small spatial increments. It should be a light weight system suitable to be carried with a

small or medium-sized drone that can fly at least 10-15 minutes. The GPR must have peripherals

to track the height of the system to account for variance in the UAS flight height. The system must

also be able track global positioning system (GPS) information for connecting the radar returns

and target detection with a point in space. Lastly as verification, the system must obtain visual

confirmation that the GPR is flying over an area suspected to have a target.

3.1.1 System Overview

The developed GPR system is controlled with an Intel Nuc mini-pc which runs a Windows

operating system and is the brain of the system. The GPR uses the UVNA-63 transceiver and

RFSPACE Vivaldi antennas for the basis of the radar.There are also other peripherals including a
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USB camera, Arduino Mega 2560, and TF-Mini Lidar. The computer, transceiver, and all other

peripherals are powered with a POWERADD variable battery bank. The mini-pc is powered with

19V and the other devices are powered with 5V from the mini-pc.

3.1.1.1 UAS

As the novelty of this GPR is its application for UAS, the first subsystem is the UAS, shown

in Figure 3.1. The UAS utilized for this GPR is custom-built by the IMPRESS Lab, using

commercially available carbon fiber frames, DC brushless motors, flight controllers, and real-time

kinematic (RTK) sensors. The brands and models of the components are inconsequential, rather

the operating parameters of the UAS and constraints are worth noting.

Figure 3.1

UAS-based GPR flying
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Table 3.1

UAS flight constraints for GPR payload
Flight Time Maximum Flight Speed Maximum Payload Weight Maximum UAS Weight
15 min 5 m/s 6 lb 22 lb

From Table 3.1, the main attribute of the UAS constraints for the GPR is the maximum payload

weight. At 6lbs, this allows for the weight of the UAS with the payload attached to be 5lb less than

the maximum rated load. The GPR, encompassing a transmitter, computer, antennas, the frame

holding the GPR, and other peripherals needs to be light weight.

3.1.1.2 UVNA-63

As described in the literature from Chapter 2 Section 3, there are a number of methods of

transmission for GPR applications ranging from impulsed radar to frequencymodulated continuous

wave (FMCW) radar as well as stepped frequency continuous wave (SFCW) radar. For its ability

to scan a large bandwidth, a Vector Network Analyzer (VNA) is used as the GPR’s transmitter.

The UVNA-63, shown in Figure 3.2, is an experimental, programmable VNA developed by Mini-

Circuits in partnership with Vayyar [5]. While it is capable of operating as a high-fidelity VNA, it

functions well as a SFCW transceiver weighing less than 1lb and is leveraged for the GPR in this

application. It has an operating band of 100MHz-6000MHz. The use of the SFCW signal will

ensure adequate range resolution given its ability to transmit in a large bandwidth.
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Figure 3.2

Mini-Circuits UVNA-63

3.1.1.3 Vivaldi Antennas

The next aspect of the GPR to consider are the antennas. The UVNA-63 used in the GPR is

equipped with multiple transmit and receive ports. This is allows the system to be leveraged with

two antennas, one for transmit (TX) and for receive (RX), which mitigates the need for oscillators

and other RF components while still being a mono-static radar with the close proximity of the two

antennas. The antennas for this GPR need to have a wide bandwidth and be light weight given

the weigh constraints of the UAS. For these reasons, RFSPACE Ultra Wide Band (UWB) Vivaldi

antennas were selected for the GPR, shown in Figure 3.3. The antennas are placed 20.7cm apart

when equipped to the drone and are capable of transmitting between 800MHz-6000MHz with an

(11 response of less than -10 dB across the band.
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Figure 3.3

RFSpace UWB Vivaldi antenna

The manufacturer calculated the peak gain of the antennas at various points across the band,

shown in Table 3.2. Additional to the antenna gain measurements, the manufacture also generated

antenna beam patterns across the band for 800, 1000, 2000, 3000, 4000, and 5000 MHz, shown in

Figure 3.4.
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Table 3.2

Antenna gain values in dB for RFSPACE UWB Vivaldi antenna between 800-6000GHz
Frequency (MHz) Gain (dB) Frequency (MHz) Gain (dB)
800 3.15 3400 9.34
1000 4.94 3600 9.04
1200 4.89 3800 9.37
1400 6.35 4000 8.60
1600 7.50 4200 8.31
1800 7.99 4400 8.19
2000 8.31 4600 8.12
2200 8.79 4800 7.97
2400 8.55 5000 7.27
2600 8.76 5200 6.82
2800 8.97 5400 7.02
3000 8.80 5800 6.08
3200 9.19 6000 7.78

3.1.1.4 GPR peripherals

It is important to know where the UAS is flying over for each scan of the GPR. To solve this,

the GPR has an added camera peripheral that images the ground surface during testing. The GPR

system is also equipped with an Arduino Mega 2560 to communicate with various sensors. In this

application, the Arduino controls a TF-Mini Light detection and ranging (Lidar) unit. Below in

Figure 3.5 is a picture of the peripherals used in the GPR system.
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Figure 3.4

RFSpace UWB Vivaldi antenna 3D beam patterns [10]

3.1.2 Integration and Operation

The UVNA-63 can be controlled using various programming languages such as Python and

MATLAB. For this application, Python 3.8 is used as it is computationally light weight and it is

capable of interfacing with the peripherals in the GPR system. The camera can be controlled with

the "OpenCV" package within Python to image the ground during the VNA testing. Figure 3.6

illustrates the full system and the accompanying connections between all components of the UAS

based GPR.
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Figure 3.5

GPR peripherals

Figure 3.7 below shows the operating parameters of the GPR. The VNA, while capable of

increasing the upper limit of the band to 6000 MHz, is set to not scan above 5000 MHz. This is to

mitigate the loss in beam efficiency as the beam patterns from Figure 3.4 show the side lobes power

growing incrementally as the frequency increases. Through parametric testing with the number of

points and the resolution bandwidth (RBW), 401 points a RBW of 21 kHz yields the fastest scan

time for the GPR at approximately 33 scans per second. The GPR’s operating parameters are listed

Table 3.3.

With the use of the VNA’s proprietary communication protocols, the Arduino and LIDAR

unit’s serial communication, camera’s USB communication, it is important to be able to make

the GPR system easily usable. The first step to achieve this is to make simple graphical interface

(GUI) from the base code for the system. Using the "Tkinter" package in Python, the GUI shown

in Figure 3.7 is created. The GUI allows for changes to the VNA parameters. Once the desired

values are selected, the VNA begins to run. For every 5 scans of the VNA, the program uses the
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Figure 3.6

GPR systems schematic

camera to take an image of the ground below the UAS. Additional to the camera, for every 5 scans

of the VNA, the program communicates with the Arduino to collect a single data point from the

Lidar unit.

The python programming running the GPR’s software is highly dependent on specific packages

and files to work. The program can not be put on another machine without significant work being

done to ensure the computer handles the commands in a correct manner. To avoid this, the

python code and its GUI are packaged into a distributable executable file (.exe) that encompasses

everything needed to run the GPR.With this approach the software can be opened on any computer
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Table 3.3

GPR system operating parameters preallocated in GUI for field testing

Start Frequency Stop Frequency Points Resolution Bandwidth Power Level

800 MHz 5000 MHz 401 21 kHz 0 dBm

system with virtually no setup and with the correct devices connected to the computer, the GPR

will work as intended.

Figure 3.7

GPR Python-based GUI
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3.1.3 3D Printed Carriage

To house the GPR, a number of 3D printed boxes were developed. 3D printing enabled the GPR

to be housed in a highly customized structure that securely holds the individual components. This

mitigates the issues of vibration caused by the drone which can make cables and other connections

come loose. This also has the added advantage of keeping all of the components water-tight during

flight. The approach of modeling a housing and printing it from commercially available printing

filaments allows the system to be made quickly, lightly, and cheaply. The GPR housing went

through many iterations of creation to ensure the best fit and the final housing securely holds all of

the components and weighs less than 900g. The iterations of housings and final the housing can

be seen in Figure 3.8.

Figure 3.8

(a) all iterations of the GPR 3D printed housing and (b) final iteration of GPR housing with
components inside and (c) 3D printed housing mounted to the bottom of the drone
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3.1.4 Ground Height Normalization

A major systemic issue to correct in the UAS-based GPR is the variance in the relative ground

height. Traditional GPR systems are ground based and as such are always the same distance away

from the ground. Traditional GPR sets the zero point in time to the top of the ground surface. In an

idealized setting for the UAS where the ground is flat and level and the UAS does not shift in height

during its testing, this can be achieved by subtracting out the data from the time domain that exists

in the space between the antenna and the ground surface. The difference in the returns between the

ground-based GPR and the idealized UAS-GPR response are illustrated below in Figure 3.9.

In a real world environment, the methods to simply the response from the time domain return of

the radar are not as simple. In practice, the ground surface is non-homogeneousmeaning the ground

does not have the same dielectric properties or moisture content or physical density everywhere

and the power density of the ground return is not consistent between any two points. Additionally

the UAS system does not maintain a static altitude well due to wind and pilot errors. Lastly, the

ground surface is not level everywhere and in most cases varies from point to point. These effects

shift the relative ground height dramatically and this creates inconsistencies in interpreting the

data. From this, there is a need to correct for this inconsistency and to normalize the ground height

of the radar data. While radar technology is well equipped to monitor this change, the radar system

used in the GPR is not best suited for this application.

The drone platform may move in the altitude dimension a considerable amount and the assis-

tance of another sensing system is useful and needed to account for the altitude variance. The

solution to the ground height normalization is the use of a Lidar unit. The TF-Mini Lidar unit [12]

is capable of ranging targets as close as 0.3 m and as far away as 12 m and has a spatial resolution
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Figure 3.9

(a) Ground-based GPR response versus (b)UAS-based GPR response

of 5mm. As the transmitted energy is light, there is no concern of the energy penetrating the

ground and the unit returns an integer number of the distance with accuracy within 1% of the target

distance. The system is also able to sample fast at 100Hz. The Lidar unit is placed in parallel with

the GPR system and does not significantly impede the collection speed of the GPR. The Lidar unit,

shown in Figure 3.10, samples the distance from the GPR to the ground and the vector of data
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created can be used to subtract the radar data the exists in the free space between the antennas and

the ground.

Figure 3.10

(a) GPR altitude variance and (b) LIDAR-based height normalization for GPR altitude
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CHAPTER IV

SCATTEROMETER

This chapter serves to explain the development and implementation of the scatterometer system.

The following illustrates the necessity of both ground and aerial based implementations and the

requisite rationale for both. The development process is discussed, going over the effective design

choices as well as issues found in the process.

4.1 Ground Based Approach

Before creating a UAS based scatterometer, a ground based system is needed. As a UAS based

scatterometer is a new approach in the available literature, the ground based system must serve

as a truth basis for data on two fronts. The ground system must demonstrate what the literature

currently represents in order to characterize the ground surface with moderate fidelity and it must

yield a high degree of confidence that the received data is meaningful. On a second front, the

ground based system is crucial for acting as a reference system for the UAS to analyze the received

data in order to adequately understand distortions in the returns caused by vibration or other forces.

The ground based system, in order to approach the point where a UAS system is justifiable, must

satisfy constraints that push the system to the current capabilities of a ground system. This means

the ground based system must be as portable as possible which will allow the scatterometer to be

used in various areas with non-ideal terrain, such as crop fields, marshy terrains, or rough and
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rocky environments. The ground based system must also be capable of yielding substantial returns

by scanning large swaths of area. All constraints must also push toward being done as fast and

efficiently as possible. Once the best possible ground based system is created, within the bounds of

both current skill and equipment availability, the overall system can be qualified for its efficiency

and a UAS system can be made to address all issues stemming from the limitations of the ground

based system.

4.1.1 Subsystem Overview

To address the mobility of the ground based system, the scatterometer is mounted to a HD2

Treaded ATR Tank Rover, shown in Figure 4.1. This rover is driven by two high capacity 24 volt

batteries, has a free load RPM of 285, and is rated for a 100 lb load which is exceeded in this

project. The extra load decreases the linear speed of the rover but does not significantly degrade

the rovers torque. This makes the rover a viable option for transportation of the scatterometer.

As it is equipped with all-terrain tracks, the rover can transport the scatterometer in a variety of

environments including grass fields, asphalt lots, farm brush, and wet and muddy soil.

Figure 4.1

HD2 treaded ATR tank rover
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To achieve a large swath area for scanning, the scatterometer must be raised to a height of at

least 15 feet. Given an incident angle of 45 ◦, this height allows for the antenna beam pattern to

have a large foot print on the area of interest. This will be achieved by mounting the system to a

telescopic mast that can be electronically controlled remotely, shown in Figure 4.2. The mast is

capable of raising the scatterometer 18 feet into the air which and coupled with an appropriate scan

angle, will yield a sufficient field of view (FoV).

Figure 4.2

Telescopic mast

With themobility and possible swathwidth of the system solidified, themeans of data collection

for the scatterometer must be considered. While there are a number of viable methods for creating

a scatterometer, a Vector Network Analyzer (VNA) will be the transmitter for this system. This

means of transmission will allow us to generate a Stepped-Frequency Continuous Wave (SFCW)

signal with high precision of the desired bandwidth. As the system is meant to be truth basis for
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other systems, a high fidelity VNA must be used to ensure the best possible returns. The selected

system is the Keysight Agilent N9917A Microwave Analyzer, shown in Figure 4.3. This system

is capable of operating as a multitude of tools including a spectrum analyzer(SA), a cable-and-

antenna tester (CAT), as well as a VNA. In preparation for using a lighter weight VNA on the

UAS-based scatterometer, the UVNA-63, described in Chapter 3 GPR, will again be leveraged

for the ground-based system as a second means of data collection. Converse to the motivation of

using the UVNA-63 with the GPR for its adequate large bandwidth response, the device also has

an adequate narrow bandwidth response that is suitable for the scatterometer.

Figure 4.3

Keysight Agilent N9917A microwave analyzer

The Keysight VNA is a two port device that will transmit the SFCW signal from its Port

1. From Port 1, the energy will travel through a coaxial cable and will propagate into the air

through the horn antenna rated for 1-18GHZ operation, shown in Figure 4.4. The incident energy
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is reflected from the ground surface caused by any rough or non-flat target, known as backscatter,

and is returned into a second and identical horn antenna and into Port 2.

The basis of the ground-based scatterometer can be seen below in Figure 4.5. These are the

main components to make the scatterometer functional. From this point, the system is equipped

with additional components to bring it closer to the current state of the art for a ground-based

scatterometer. The final scatterometer is equipped with various attachments and subsystems in

order to increase its flexibility in both data collection capabilities and robustness to face any

adversities it may experience in the field.

Figure 4.4

1-18GHz horn antenna

42

DISTRIBUTION A. Approved for public release; distribution unlimited.



Figure 4.5

Initial ground-based scatterometer design [19]

The first subsystem to address is the variable scan angle of the antennas. As prescribed by

the physics discussed in Chapter 2 Background, the antennas must be able to adapt the angle of

incidence of the transmitted energy to adequately characterize the reflectively of the targets of

interest (ToI) for this system (brush, crops, water, and soil) to understand properties such as crop

density and moisture content. Shown in Figure 4.6, the horn antennas are mounted to two arms

made of PVC pipe that are affixed to metal pipe hinges on the mast platform. This allows the

antennas to propagate the incident energy with 180 ◦ of freedom from pointing nadir to the ground

surface to point directly to the sky. The PVC pipe end has a 1/4-20 steel bolt protruding from it

which is the same mounting system used by the horn antennas. The antennas are simply screwed

on to the bolt until tight. This has the added benefit of allowing the antennas to be mounted in

varying polarization. Since the mounting hole on the antennas is centered with the wave guide

of the antenna, the rotation of the antenna matches the rotation of the antenna center point of
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transmission. This mitigates coupling variance between different polarizations due to time delays

cause by varying distances between the antennas.

Figure 4.6

Antenna mounting structure

The next improvement made was to increase the available reach of the antenna swath width.

As a stationary system suspended at the mast’s maximum height, the scatterometer’s available scan

area is static according to position of the rover. The scannable area could be increased by rotating

the antennas, shown in Figure 4.7. This increases the data’s scan size in the environment being

observed and yields a more averaged characterization of the geo-physical properties such as the

average soil moisture and vegetation density of the area. The initial thought of simply rotating the

rover to address the static swath area raised a number of problems. At its maximum heights, it

would be dangerous to rotate the mast while extended. Additionally, the time to re-level the rover

and re-setup the scatterometer system would be too great for a reasonable testing timeline. The

solution to this problem is to not rotate the rover, but instead rotate the platform on top of the mast.

Shown in the Figure 4.8 below, a rotation platform is created to rotate the antennas while

keeping the mast stationary. The main component of the rotation system is the lazy-susan base.
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Figure 4.7

Ground-based scatterometer static FOV versus rotating FOV

This includes two rings that spin freely from one another using ball bearings. By mounting the

inner ring to the mast top plate, the outer ring can freely spin and the top platform can be attached

above the lazy-susan using rods placed around the outer ring. There is a center brass rod that it

affixed to the top platform but free spins on the base plate. A gear is attached to the rod and is

paired with a drive gear attached to a drive motor which turns the top platform. Depending on the

polarity into the motor/encoder pair, the platform will rotate clockwise or counter-clockwise.

4.1.2 Integration and Operation

With the mast rotation hardware created, the next step in creating a high fidelity ground based

scatterometer is to incorporate automation into the system. With the integration of automation,

the scatterometer can be used with minimal user intervention and can more flexibly operate in
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Figure 4.8

Ground-based scatterometer rotating platform

the testing environment. Figure 4.9, shown below, illustrates all of the additional subsystems

incorporated into the system.

The first aspect of the system to automate is themast control. Themast is traditionally controlled

by a remote control with three switch-buttons to make the mast either move Up, move Down, or

Stop movement. The solution to its automation was to solder wires to the input and output pins of

the three remote buttons, totaling 6 wires, and inputting them into a control board. In this case the

control board is an Arduino Mega 2560 and it is used to give remote input to control the mast’s

functionality.

With the mast system automated, the next point of automation is the mast rotation. The rotation

motor is paired with a rotary encoder that tracks the rotational position of the platform. Connected
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Figure 4.9

Ground-based scatterometer full system design
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to the motor is a Cytron RB-Cyt-133 motor controller that it capable of both generating a Pulse

Width Modulation (PWM) signal which can vary the speed of the platform rotation, and switching

the polarity of the motor power which change the direction of rotation of the platform. The motor

controller and the rotary encoder are both controlled with the Arduino Mega 2560 to intelligently

rotate the platform with a high level of precision.

In order to control the Arduino as well as the VNAs, a Mini-PC is placed in the "Mast Control

Box" that runs Windows 10. The next step is to communicate with the VNAs autonomously. Both

VNAs have protocols to be controlled remotely from a computer using computer programming

languages and techniques. The Keysight Agilent system utilizes a number of protocols, but for

this system, the Scientific Computer Programming Interface (SCPI) commands are used. The

Mini-Circuits VNA leverages it own proprietary protocols developed by the manufacturer that can

also be used in programming languages.

The MATLAB software is designed for mathematical modeling and simulation and is used as

the means of programming all of the subsystems in the ground based scatterometer. It has pre-built

frameworks for handling both SCPI and Arduino commands. Both the Keysight Agilent VNA and

Mini-circuits VNA can be controlled using MATLAB. It also has a tool called "AppDesigner"

which allows users to seamlessly create Graphical User Interfaces (GUI) to better communicate

with custom designed programs. Shown below in Figure 4.10 is the GUI used to control the ground

based scatterometer.
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Figure 4.10

Ground-based scatterometer MATLAB GUI

The GUI is capable of controlling multiple of parameters within the system. At its core, it is

capable of communicating with both VNAs and initiating testing for both with parameters such

as the bandwidth, number of points, power level, resolution bandwidth (RBW) and intermediate

frequency (IF).

The system can also determine how many instances of the VNA need to be scanned (known

as triggers). The GUI allows the user to choose a finite number of triggers or choose to trigger

indefinitely until stopped by using the "Stop" button. Additionally, leveraging the the rotation

capabilities, the user can choose to trigger and rotate at the same time and scan a large swath

width depending on a selected azimuth angle. In this mode, the VNA will begin triggering and

the platform will begin to rotate slowly. Once the system has reached it selected scan angle, the

platform will stop rotating and the VNA will stop calling triggers.
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There are additional features in the GUI past the necessities of the system. When using the

Keysight Agilent system, the GPS coordinates of the system can be found for noting in a report.

There is also a "Test Notes" section that will document any information the users deems pertinent

to the test and will save a notes file every time a test is performed. Lastly, there is a "Mast Rotation"

section that allows the user to rotate the platform in order to line up the antennas while already up

in the air.

System Parameters

The scatterometer is designed to have a wide range of variability for input parameters for the

bandwidth, power level, and RBW. For this system, there are standard values put in place for

operation of the system, listed below.

Table 4.1

Testing Parameters

Start Frequency Stop Frequency Points RBW IF Power Level

1.2 GHz 1.3 GHz 401 1kHz 1kHz 0dBm

4.2 UAS Based Approach

This section describes the design and development of the UAS-based scatterometer including

the subsystem overview and system integration.

50

DISTRIBUTION A. Approved for public release; distribution unlimited.



4.2.1 Subsystem Overview

The UAS-based scatterometer is effectively the same system as the ground based scatterometer.

The radar will also use the Mini-Circuits UVNA-63 as its transceiver and the post-processing

algorithms for interpreting the received data will be the same. It is from this point, however, that

the system deviates in its implementation on the ground-based system. This is due to the lack of in

situ configuration of the antennas during testing.

The ground-based system has two 1-18GHz horn antennas as its transducers. These antennas

are heavy and robust which is acceptable for the ground-based system but would be inefficient to

attach to the UAS as the UAS battery would deplete much faster under the extra weight. This

leads to an issue with configuring the polarization of the radar during flight testing. The UVNA-63

transceiver can only transmit out of one port at a time and currently only receives returns in one

port, different from the transmit port.

The development and implementation of patch antennas for this system is the optimal solution

for the UAS-based approach. This works to mitigate the weight issues of the antennas as well as

meet the radar’s need of high antenna gain and a large beam width for characterizing the ground

from the heights of the UAS. The antennas, shown in Figure 4.11, are designed using the ANSYS

HFSS antenna design software.

The antennas were designed as a joint effort with Md Mehedi Farhad for use on the UAS

payload. The antennas have an average gain of 12.13dB in the main-lobe. The antennas far-field

beam-pattern and (11 response are shown in Figure 4.12. By using two of the antennas, rotated

90◦ apart, both vertical and horizontal polarization is achieved.
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Figure 4.11

Radar patch antenna computer model

The patch antennas are fabricated by a third party and take a considerable amount of time

to be delivered. As the system needs to be viable and usable before the patch antennas arrive,

alternative antennas are used in the UAS-based approach. The antennas used for the initial testing

of the scatterometer are ultra wide-band Vivaldi antennas from RF space. The antennas for the

UAS-based scatterometer are side-looking antennas at 45◦ from nadir to the ground surface. To

achieve this need, a structure was modeled and created in the lab’s 3D printer. The model for the

structure along with the fabricated structure with the antennas attached is shown in Figure 4.13.

The use of dedicated horizontal and vertical antennas leads to the biggest difference in the

development of the two scatterometers. In the ground-based approach, the two horn antennas

could be rotated manually during testing by raising and lowering the mast to create the four

polarizations for the radar. This was possible because the ground-based scatterometer’s and aspect
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Figure 4.12

(a) Radar patch antenna (11 plot and (b) 3D beam pattern
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Figure 4.13

(a) Vivaldi antenna mount schematic and (b) printed design
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angle of the targets was not disturbed when adjusting the orientation of the horn antennas and

lowering and raising the mast. This approach of adjusting the antennas during testing for the

UAS-based scatterometer is not feasible. This would require four different flights of the system

while ensuring each flight path is geo-spatially identical and the antennas’ orientation to the target

is also identical during the four flights. This is difficult and it is not a viable solution.

The solution is to dedicate one antenna as a vertical antenna and to dedicate a second antenna

as the horizontal antenna to create the four polarizations. This solution lends it self to being ideal

for cross polarization measurements but not for co-polarization measurements. In order to create a

viable co-polarization testing setup, a microwave circuit is needed to redirect the microwave energy

between the antennas such that the antennas can create four polarizations.

The VNA currently transmits out of one port and receives in another port. In order to

accommodate the capabilities of the VNA, the microwave circuit in the UAS-based scatterometer

utilizes 4 RF coxial switches, a 20dB gain RF amplifier, and 2 directional couplers. The circuit is

shown below Figure 4.14.

This circuit uses two coaxial RF switches to determine which polarization is selected for the

device. One switch determines which antenna is connected to the transmit chain and the second

switch determines which antenna is connected to the receive chain. Two additional switches are

used to send the transmitted signal directly through a 20dB attenuator and back into the receiver.

This is used as a means of internal calibration of the scatterometer. The transmit chain is connected

to the coupling ports of the directional couplers. The antennas are connected to the input ports

of the directional couplers. The receive chain is connected to the output ports of the directional

couplers.
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Figure 4.14

UAS-based scatterometer RF circuit
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When using the same antenna for a co-polarization measurements, there is a need to ensure

a moderate to high isolation of the transmit and receive chains. There is a 10dB coupling loss

between the input port and the coupling port of the directional coupler. In order to mitigate this, a

20dB gain amplifier is added to the transmit chain. The directional couplers have a directivity of

36dB in the scatterometer’s frequency range meaning the difference of forward power through the

input port from the coupling port is 36dB higher than the forward power through the output port

from the coupling port. The isolation between these two chains, specifically the isolation between

the coupling port and the output port of the directional coupler is defined as the directivity and

coupling loss added together. This results in a isolation of approximately 46dB.

The RF switches are controlled by 24V logic which can be achieved with an Arduino Mega

2560 and 8 5VDC relays. The logic circuit is shown in Figure 4.15. When either the A or B pin of

the RF switch is sent to the GND of the 24V power source and the other pin is left open, the switch

will allow the microwave energy through the grounded port. The Arduino can be used to excite

the 5VDC relay to close the connection between the RF coaxial switch pins and the 24V battery’s

ground.

4.2.2 Integration and Operation

With the UAS-based scatterometer developed, the next step is to ensure the system is robust

and easily controlled in testing. The UAS payload is equipped with an Intel Nuc computer which

controls the VNA software and the Arduino switch control logic. In order to mitigate system

intervention once the UAS has been deployed, a router is equipped to the payload and a remote

desktop connection is created between the on-board computer and a computer on the ground that
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Figure 4.15

UAS-based scatterometer RF circuit control logic

is used by the researcher. The overall UAS-based scatterometer schematic is shown in Figure 4.17

with the RF switching circuits displayed a lumped device.

As the UAS-based scatterometer control software is derivative of the ground-based scatterom-

eter and the GPR which also uses the VNA from the air, the Python-based GUI is adapted for

the GPR’s GUI, shown in Figure 4.18. This GUI allows the user to select which polarization is
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Figure 4.16

UAS-based scatterometer system schematic

used for testing while in the air. There is an "All" option in the GUI that will switch the path of

the microwave energy for every scan of the scatteormeter rotating between the four polarization

options. There is a "Calibration" option in the GUI that redirects the transmitted signal through a

20dB attenuator and sends it back to the receiver. This is used as a means of internal calibration

for the VNA. The difference between the energy transmitted after being amplified by 20dB and

then attenuated 20dB should result in 0dB. Any deviation in this across the operating band of the

scatterometer can be documented and used to bias the returned tests data to further calibrate the

response.
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Figure 4.17

UAS-based scatterometer Python GUI

4.2.3 Calibration Procedures

In practice, the scatterometer will perform testing with the four polarizations (VV, VH, HV,

HH) using a 1ft diameter circular plate and dihedral reflector made of two 1ft by 1ft squares. The

targets are milled from 1/8-in aluminum and mounted to a 4ft stand made of PVC. The calibration

testing follows the procedure shown in Table 4.1 to obtain the needed data in the most time efficient

order.

The collected data is then brought to MATLAB for processing. The calibration scripts, shown

below Figure 4.12, bring in the data that is stored in the "data" folder and isolate the collected (21

returns and maps it into a chirp Z-transform that fits a Kaiser window across the data and brings it

into the time-domain. The preceding calibration algorithms are implemented and the background

response is calculated and recorded as "Background" and calibration coefficients are stored as
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Table 4.2

Testing procedures to collect calibration target data for circular plate and dihedral reflector
Calibration Order (1) VV-Polarization (2) VH-Polarization (3) HH-Polarization (4) HV-Polarization
1st Ground Dihedral Horizontal Ground Dihedral Horizontal
2nd PVC Stand Dihedral 45◦ Counter-

Clockwise
PVC Stand Dihedral 45◦ Counter-

Clockwise
3rd Circular Plate Dihedral 45◦ Clockwise Circular Plate Dihedral 45◦ Clockwise
4th Dihedral Vertical Dihedral Vertical Dihedral Vertical Dihedral Vertical
5th Dihedral 45◦ Clockwise Circular Plate Dihedral 45◦ Clockwise Circular Plate
6th Dihedral 45◦ Counter-

Clockwise
PVC Stand Dihedral 45◦ Counter-

Clockwise
PVC Stand

7th Dihedral Horizontal Ground Dihedral Horizontal Ground

"avgRawDataCAL". This value is used in subsequent testing to characterize the target and ensure

meaningful data from the system.

Figure 4.18

Scatterometer post-processing code
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CHAPTER V

RESULTS

This chapter serves to present the results of both the GPR and scatterometer systems as well as

their efficacy.

5.1 Power Amplification

The scatterometer is designed to gather energy that is reflected back from a distributed target.

Typically, the energy reflected back to the scatterometer is significantly less than the energy

propagated initially from the scatterometer. In order to have a substantial received power that exists

well above the noise floor, a few things can be done. The most direct solution is to increase the

incident energy on the target by having a higher output power from the transmitter. This is achieved

by adding an RF amplifier stage in the transmit chain of the VNA before sending the signal into

the horn antenna, illustrated in Figure 5.1.
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Figure 5.1

Initial ground-based scatterometer test setup for (a) Keysight FieldFox and (b) UVNA-63

The current maximum output power for both VNAs is 0dBm or 1mW. In order to mitigate part

of the loss through propagation over the distance from the top of the mast to the target and back, the

signal power needs to be increased. Shown below in Figure 5.2 is the first amplifier that was tested

for increasing the signal power. This RFLambda RAMP00G18GA is a DC-18GHz RF amplifier

with a typical gain of 31dB and a typical 1db compression (P1dB) of 26dbm [9]. This means that

with an output power of -6dBm from the VNAs, the signal strength should be increased to 26dBm.

An experiment was conducted with the scatterometer to determine the efficacy of the amplifier.

Using the standard testing parameters, all of the calibration targets were imaged twice, once without

the amplifiers connected, and once with them connected. Below, the responses for both tests are

shown for the circular plate co-polarization returns in Figure 5.3.

This test revealed significant problems. Looking at the target responses, it appears that the

power level for both direct coupling between the antennas and the target are approximately 20dB

higher for the non amplified response that the amplified response. As this is potentially a substantial
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Figure 5.2

RFLambda RAMP00G18GA amplifier

Figure 5.3

Field test of circular plate with (a) HH polarization with no amplifier (b) HH polarization with
amplifier (c) VV polarization with no amplifier (d) VV polarization with amplifier
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issue moving issue forward, the amplifier needed to undergo further testing to determine if it is

operating incorrectly or there was simply problems in the testing procedures during the experiment.

The Agilent Microwave Analyzer’s spectrum analyzer and vector network analyzer functions are

capable of testing the amplifier to determine if there are any issues. The testing setup is shown

below in Figure 5.4.

Figure 5.4

RFLambda amplifier troubleshooting setup
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An Agilent MXG analog signal generator is used to create a sine wave at 1.5GHz. As a

baseline to ensure the signal generator is operating correctly, a -20dBm signal is sent from the

signal generator into the spectrum analyzer for analysis and the result is shown below in Figure 5.5.

Figure 5.5

Signal generator at -20dBm

The spectrum analyzer shows a clean response at 1.5GHz with a power level of -20dBm. With

this the amplifier can be tested. The signal generator is connected to the amplifier and its output

to the spectrum analyzer. The typical gain of the amplifier is 31dB, so the expected power level at

the spectrum should be 11dBm, which is within the bounds of the microwave analyzer which can

receive signals of up to 27dBm. The response is shown below in Figure 5.6.
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Figure 5.6

RFLambda amplifier test 1

This response shows the returned signal at -32.8dBm. This means the amplifier is attenuating

the signal by 10dB. With this information, a second test is performed where the signal generator is

set to -10dBm output and the response through the amplifier is observed below in Figure 5.7.

This test shows the response at the spectrum analyzer is -20dBm which is a 10dB attenuation

from the input signal to the amplifier. From this test there is further verification there is something

wrong with the amplifier. A final test is ran using the VNA of the microwave analyzer. Port 1 of

the VNA is connected to the RF amplifier and the output is sent to Port 2 of the VNA. The (21

response is shown between 1-10GHz at an input level of -15dBm. This test shows the difference in

power between the two ports. If the amplifier is operating correctly, the expected response should

be a line across 30dB meaning the power at Port 2 is 30dB higher than the power sent from Port 1.

The response is shown below in Figure 5.8.

This test shows that across the bandwidth, the amplifier is degrading the signal by an average of

10dB contrary to increasing it by 30dB, with the exception of the band between 1.5-2GHz which

is degrading the signal by roughly 14dB.From these experiments, it is concluded the amplifier is
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Figure 5.7

RFLambda amplifier test 2

Figure 5.8

RFLambda amplifier response across the band
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corrupt and needs to be replaced. The search for a new amplifier began and ones were recom-

mended to replace the previous amplifier. There were, however, amplifiers available in the lab

that were considered for replacement. Two ZX60-H242+ RF amplifiers, shown below in Figure

5.9, were found to be viable for the experiment. While there bandwidth is not as wide as the

inoperable amplifier bandwidth, it does exist within the standard parameters of the scatterometer

(700-2400MHz).

Figure 5.9

ZX60-H242+ RF amplifier
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The amplifiers have a standard gain of 14dB in the scatterometer’s bandwidth, a P1dB of

approximately 22.8dBm, and maximum RF power input ratings of 24dBm [6]. The solution for our

system is to cascade them together so achieve an output power above 20dBm. A test was created

to test the amplifiers using the Agilent microwave analyzer. The VNA is used to send a 0dBm

signal from port 1 into the cascaded amplifiers. In order to ensure safety of the analyzer, a 30dB

attenuator is placed on the output of the amplifiers before sending the signal into the VNA. The

response is shown below in Figure 5.10.

Figure 5.10

ZX60-H242+ cascade test

This show the average power difference between the two ports is -7dBm. Accounting for the

30dB attenuator, the resulting power amplification is approximately 23dBm. This is acceptable for

our testing setup and is added to the transmit line of the scatterometer.
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In order to improve both the maximum power output of the transmitted signal as well decrease

the need for cascaded amplifiers which can cause issues in the overall fidelity of the scatterometer,

a new amplifier was purchased for use in the final design of the scatterometer. The Pasternack

PE15A3008 RF amplifier, shown in Figure 5.11, has a standard gain of 27dB with a P1dB of

25dBm [7]. This unit operates with a 12 volt feed power which is already available on the platform

and allows for approximately 30 milliwatts of transmit power.

Figure 5.11

PE15A3008 amplifier

The results of the new amplifier are shown in figure 5.12 where the (21 response of the amplifier

sits around 27dB over the operating bandwidth.

5.2 GPR Results

Once the GPR payload was created, there was a need to characterize its performance. First

the GPR is tested in an anechoic chamber. Once the GPR is placed in the anechoic chamber, it is

initiated, shown in Figure 5.13 and allowed to run for 5 minutes. After approximately 5 minutes,

the data is saved, transformed to the time-domain, and stored and the response is shown in Figure

5.13. There is a consistent return at 5 nanoseconds. This is due to the direct coupling between the
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Figure 5.12

PE15A3008 amplifier (21 response

antennas as the receiving antenna is within the reactive near field of the transmit antenna together

with the phase delays from the coaxial cables. This response is saved and can be removed in future

tests of the GPR.

Figure 5.13

(a) GPR in anechoic chamber and (b) b-scan response

After the inital GPR measurements,more tests are done in the lab for further characterization

of the GPR unit. The GPR was placed on a rolling cart and rolled past a wall where a 1 square-foot
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aluminum plate was placed approximately 8 inches away from the wall, shown in Figure 5.14. The

response, shown below, yields a hyperbolic response that matches the expected GPR target return.

Figure 5.14

(a) GPR on rolling cart scanning a metal plate and (b) B-scan response

With the GPR performance characterized, it was ready for field testing. The payload was

attached to the UAS and is shown in Figure 5.15.

Figure 5.15

(a) GPR payload and (b) GPR performing data collection
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In order to test the efficacy of the unit, the GPR was brought to a field site for experimentation,

illustrated in Figure 5.16. The field has a variety of targets buried at approximately known location.

The procedure for testing is to initiate the GPR and then to ascend the UAS to flight altitude. Once

at flight altitude, the GPR can begin its test path. The GPR flew in 6 lines across the field of roughly

100 meters in length, spaced roughly 3 meters apart. With a scan frequency of 33Hz and a flight

speed of 5 m/s, this results in one scan for every 15cm of linear travel.

Figure 5.16

GPR testing field layout and flight path

After field testing, the return data was saved and processed in MATLAB. To create a high

resolution response in the data for object detection, the frequency domain data was multiplied with

a frequency domain representation of a differentiated Gaussian pulse, shown in Figure 5.17. This

is a method of raising the resolution of A-scans and B-scans. This resulting data was then changed

from the frequency-domain data to the time-domain.
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Figure 5.17

Differentiated Gaussian pulse time domain response

The B-scan of the data is shown in Figure 5.18. There are a few attributes in the data that

need to be resolved to clearly observe objects in the ground. The first attribute to consider are the

intital and ending A-scans in the data. They appear blurry and do not look to have meaningful

characteristics for the object detection. After analyzing the process of testing, it was found that

they are just consequence of the steps to test the GPR. The GPR is started and stopped while the

UAS is on the ground. This creates large reflections that are due to the coupled responses between

the two antennas as well as the ground return as the ground surface is within the reactive near-field

of the antennas. This information can simply be removed by gating the data in time to remove

beginnings and ends of the data. The next attribute to consider is the high return from the ground

surface which can be seen near the top of the B-scan. This is expected in the data and is simply the
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direct coupling response from the two antennas. Using the data recorded in the anechoic chamber,

this coupling can be calibrated out.

Figure 5.18

Initial GPR field test B-scan
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After removing these attributes, the ground reflections are more clearly visible. Ideally, the

ground response would be consistent and appear as a horizontal line across the B-scan. In this data,

the ground reflections are noisy and sporadic. This makes sense as on the day of testing, the UAS

had significant issues maintaining altitude stability. Additionally, the ground is not level and flat

across the field, adding to the noisy ground reflections. In order to detect the targets effectively, the

ground returns need to idealized. This is achievable by mapping the ground reflections for all of

the scans and then removing all of the data column-wise before the ground reflections peak values.

This levels out the ground field and is show in Figure 5.19.

Once the ground height is normalized, subsurface target reflections can more clearly be seen

on the B-scan image. However, the B-scan is a result of all scan lines from the field test. The

scan lines need to be isolated in order to adequately discern targets in the field. By segmenting the

B-scan, shown in Figure 5.20, targets begin to appear.
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Figure 5.19

(a) B-scan denoised and (b) b-scan ground height mapped and (c) b-scan ground height
normalized

In order to test the capabilities of the lidar unit, a test was conducted in the field with the lidar

unit attached to the drone. The drone started on the ground and then oscillated up and down in

altitude four times. The intent was that in time, the altitude-range data would appear as a sinusoidal

78

DISTRIBUTION A. Approved for public release; distribution unlimited.



Figure 5.20

(a) B-scan targets From beginning of flight path and (b) B-scan from later in the flight path
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signal when plotted. This concept is illustrated in Figure 5.21. After looking at the data, also

in Figure 5.21, the sinusoidal response could be found but it appeared very rough and the signal

was not a smooth sinusoidal response. The drone was until very recently, February 2022, not

functioning well and had significant flight issues during this test. These flight issues seems to

account for the non-ideal response in the lidar data, but the lidar range data collection needs to be

tested further.

Figure 5.21

(a) Lidar unit field test and (b) range data from test
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5.3 Scatterometer

This section outlines the results from both the ground-based scatterometer and the UAS-based

scatterometer.

5.3.1 Ground-Based

The completed ground-based scatterometer is shown in Figure 5.22.

Figure 5.22

Ground based scatterometer imaging a dihedral reflector
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In order to characterize the ground-based system, calibration target testing was performed. For

the calibration targets, a circular plate and a dihedral reflector were used. The dihedral reflector

has four orientations that can be imaged. The first step in calibration is to image the ground and

PVC stand that holds the calibration targets. This results in 7 different target images for 4 different

polarizations, totaling 28 different scans of the scatterometer. The testing setup is shown in Figure

5.23.

Figure 5.23

Ground-based scatterometer geometric test setup

The antennas are at a height, -�� , of 22.3ft, validated by a laser range finder. With the

antennas positioned at an angle of 45 degrees, a triangle is made from the antennas, the ground,

82

DISTRIBUTION A. Approved for public release; distribution unlimited.



and the center of the antenna’s beam pattern when it hits the ground. Given a 45-45-90 triangle and

Pythagoras’ Theorem, the distance from the antenna to the point where the beam hits the ground,

-�) + -)� , is 31.5ft. Accounting for the height of the target, -)� , the beam hits the target 5ft

before it hits the ground, validated with a laser range finder. This puts the target at a distance

of 26.5ft from the antenna. The round-trip time of the incident energy propagating to the target

and the reflected echo propagating back to the scatterometer is 53 nanoseconds. The measured

coupling between the two antennas is approximately 19 nanoseconds round-trip from the transmit

port of the VNA to the end of the antenna. This means the reflections for the calibration targets

should appear at the combined round trip time of 72 nanoseconds.

As a basis, the reflections for the PVC target and stand and the ground reflections are shown in

Figure 5.24. These responses can be removed from the calibration target reflection to better isolate

the calibration target responses.
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Figure 5.24

Ground and PVC Stand Response

The first calibration target responses is the circular plate shown in Figure 5.25. After subtraction

of the PVC and ground response, there is a clear return at 72 nanoseconds for the co-polarization
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configurations. There is little reflection for the cross polarization responses which is expected for

the circular plate.

Figure 5.25

Circular Plate Response

The next target is the dihedral reflector. To characterize all four polarizations, the reflector

is oriented in four different configurations (Vertical, Horizontal, Clockwise, Counter-Clockwise).

The responses are shown in Figure 5.26.

There is a clear response after background subtraction at 72 nanoseconds for the co-polarizations

which is expected for the vertical orientation.
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Figure 5.26

Dihedral Vertical Response

Similar to the vertical dihedral, there is a clear response after background subtraction at 72

nanoseconds for the co-polarizations which is expected for the horizontal orientation.
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Figure 5.27

Dihedral Horizontal Response

There is a clear response after background subtraction at 72 nanoseconds for the cross-

polarizations which is expected for the clockwise orientation.
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Figure 5.28

Dihedral Clockwise Response

Similar to the clockwise dihedral, there is a clear response after background subtraction at 72

nanoseconds for the co-polarizations which is expected for the counter-clockwise orientation.
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Figure 5.29

Dihedral Counter-Clockwise Response

5.3.2 UAS-Based

The UAS-based scatterometer was assembled in a sealed box for ease of both transportation

and mounting on the UAS. The payload is shown in Figure 5.30.

The first test to ensure the RF circuits are operating correctly is to measure their (21 response

using the Keysight FieldFox in all configurations of the circuit. The first configurations of the

circuit will be the cross-polarization measurements. Figure 5.31 illustrates the path of energy flow

for the measurement. The expectation of the circuit is the transmit power will increase by 20dB

from the RF amplifier and then lose power through insertion losses and coupling losses. All loses

illustrated are pulled from the available data sheets on the RF switches and directional couplers.
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Figure 5.30

UAS scatterometer payload (a) outside view and (b) RF circuit and (c) relay logic circuit

After setting the circuit, the response is shown in Figure 5.32. The responses for both tests

show the resulting power is around 4dB higher than the transmit power. There are slight differences

in the predicted response and the actual response as well as the differences in the responses of the

two circuit of less than 1dB. This can be accounted for in in cable/connector losses. Additionally,

the cable lengths and connectors are not identical between the two circuits which validates the

slight differences in the responses of the two circuits.

The next test was to verify the isolation between the coupling ports and output ports of the

directivity in the co-polarization configurations of the RF circuit. The test circuit is shown in

Figure 5.33.
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Figure 5.31

Cross-polarization response predictions for UAS (a) VH circuit and (b) HV circuit

After testing the circuit, the response is shown in Figure 5.34. In this test, the signal is again

amplified by the 20dB and encounters both insertion losses and coupling losses. The expected loss

for the co-polarization responses is -25.24dB and the response from the actual tests has a difference

of less than 1dB, again accounted for in the cable/connector losses. This test indirectly validates to

the performance of the co-polarization configuration. The directivity states that there is a -36dB

difference between the forward power of the output port and the input port from the coupling port.

The -26dB (21 response validates the directivity and indirectly validates the power transmitted

through the input port.
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Figure 5.32

Cross-polarization response results for UAS (a) VH circuit and (b) HV circuit

The last test is to verify the response of the calibration circuit. The test circuit is shown in

Figure 5.35.

After testing the configuration, the response is shown in Figure 5.36. This response meets

expectations as the amplifier is not perfectly stable at 20dB and fluctuates over the band between

20dB-21.5dB over the scatterometer’s operating band.
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Figure 5.33

Co-polarization response predictions for UAS (a) VV circuit and (b) HH circuit
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Figure 5.34

Co-polarization response results for UAS (a) VV circuit and (b) HH circuit

Figure 5.35

Calibration predictions for UAS scatterometer circuit
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Figure 5.36

Calibration results for UAS scatterometer circuit
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CHAPTER VI

CONCLUSION AND FUTURE WORK

This chapter discusses the project results, gives final thoughts, and offers improvements for

future work of the created radar systems.

6.1 GPR Improvements

While the GPR system is operable, the system experiences systemic issues due to the flight and

control of the UAS. These issues need to be resolved and accounted for in the processing of the

GPR data otherwise they will introduce distortions into the data and make the UAS-based GPR

data unusable.

Ground Height Normalization

The TF-Mini lidar unit is equipped to the GPR payload and is integrated into the GPR GUI.

The testing done in the field with the lidar unit showed that the altitude data collection is possible

but needs to be tested further in the field. A post-processing algorithm needs to be developed using

the lidar range data to extract the ground reflections from the multiple A-scans autonomously in

the already used processing scripts used to create the B-scans.

Ground Surface Localization

The second necessity of the GPR is spatial localization of the UAS. In order to map where

the sub-surface are located, the Global Positioning System (GPS) coordinates are needed. These
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are already gathered by the UAS for its use in the flight controller. The present issue with using

the GPS coordinates from the UAS is that the clock-cycles of its computer system and the GPR

computer and separate and not synced to one another. This means the GPS data does not line up

in time with GPR data. If the two sets of data can be lined up in time, the fusion of the radar and

GPS data becomes trivial.

Traditional GPS works such that the GPS receiver is on the UAS and it communicates directly

with global satellites for its position. This is not functional for the UAS as it there is a major

trade-off between the time to determine the GPS location and the spatial resolution of the result.

While the receiver could return the updated position fast, there would significance spatial variance

in the return that would not be useful in mapping the radar data. The GPS unit on the UAS system is

a GNSS-RTK receiver that uses a base-station to communicate with satellites to obtain an accurate

GPS location. The base-station will spend nearly 30 min to ensure a precise GPS location within

1 meter. With an accurate GPS location, the base-station RTK technology connects with the RTK

receiver on the UAS to map the 3-dimensional spatial location of the UAS within spatial accuracy

on the order of centimeters.

With accurate GPS data, the next step is to line up the GPS data and the radar data. The GNSS

RTK unit, additional to the GPS information, also collects altitude data of the UAS. This altitude

data is relative to the base-station, which does not make it fit for replacing the lidar unit as the

altitude data would be shifted in space compared to the lidar’s altitude data. However, although the

data is shifted in time, the relative shape and structure of the altitude data looks similar between

the two vectors.
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With this basis, the solution to this problem is the development of a calibration procedure to

happen before and after every flight. The calibration procedure is shown Figure 6.1. By running

this calibration procedure before and after experiments, the altitude data from the lidar unit can be

compared to the RTK altitude data and the vectors can be linearly scaled to match each other. The

linear scaling factor used to reshape the altitude vectors can then be used to scale the time vector

that governs both the GPR and GPS data, solving the radar localization problem.

Figure 6.1

LIDAR calibration procedure
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6.2 Scatterometer Improvements

The scatterometer circuit for both the ground-based setup and the UAS-setup needs to be tested

further in the field to best characterize its performance. Testing of the ground based scatterometer,

up until this point, has only been implemented on point/discrete targets. The scatterometer however

is meant to image distributed targets and as such needs to be tested further in the field to image

distributed targets such as crops, brush, trees, and water.

6.2.1 Calibration

This section describes themathematical intuition and techniques for calibration of a polarimetric

radar with Section 6.3.1 for overview, Section 6.3.2 for first order approximations, and 6.3.3 for

cross-polarization calibration of distributed targets.

After data is collected from distributed targets, there is a need to implement an external

calibration procedure to interpret the scatterometer data. Unlike point/discrete targets where the

echo from the target is meant to be a relatively strong response localized in time, the response

from the distributed targets is small as it is a result of backscatter. Additionally, the analysis of

the backscatter response to determine characteristics such as soil moisture and surface roughness

is predicated on small changes in the data caused by changes in the environment. These changes

can be over looked by the radar if the intrinsic noise from the radar is not accounted for in the

processing.

6.2.1.1 Overview

As the ground based system is functional for field testing, there is a need to ensure the scat-

terometer system is returning meaningful data. As a polarimetric radar system, the scatterometer
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is concerned with measuring the backscatter in the form of scattering matrices. The scattering

matrices are prone to distortions that deviate from the true and expected data [26]. These dis-

tortions are caused by factors such as improper frequency response and hardware mismatch, the

main contributor of distortion in this system. The use of different cables, antennas, and other RF

components skew the data returns and need to be accounted for in the analysis of targets.

The means of calibration for this system will incorporate calibration targets with known

backscatter responses, known as external radar calibration. The targets include a metal circu-

lar plate and a dihedral reflector. The circular plate will be the main contributor to the calibration

correction, but the dihedral reflector is crucial in calibrating the cross-polarization channels.

The following theory explains the mathematical intuition for calibration procedures to correct

signal distortions [23] [26]. Given an incident electric field �̂ 8 composed of both vertical and

horizontal components and propagating in the :̂8 direction, the equation is given as:

� 8 = (� 8E Ê8 + � 8ℎ ℎ̂8)4
−8: :̂8A (6.1)

Propagating in the :̂B direction, the idealized scattered energy with isotropic radiation is given

as:

� B = (� BE ÊB + � Bℎ ℎ̂B) =
4−8:A

A
(� 8 (6.2)

and as a matrix is expressed as:
� BE

� B
ℎ

 =
4−8:A

A


(EE (Eℎ

(ℎE (ℎℎ



� 8E

� 8
ℎ

 (6.3)

In real-world testing, there are distortions and errors within the scattering matrix to account

for due to non-ideal conditions. The first error to account for is those on the transmission side of
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the system. There are inherent signal errors in both amplitude and phase, )EE , as well as direct

coupling returns between the cross-polarization stages in the transmitter, )ℎE . Derived from the

radar range equation, the scattered energy ( from a point target back to the scatterometer from the

incident electric field �̂ 8 is given as:

�B = (
2[0%C� C

4c
) 1

2
4−82:A

A2


(EE (Eℎ

(ℎE (ℎℎ



)EE

)ℎE

 (6.4)

The second point of distortion and error within the scattering matrix stems from the receiver side

of the circuit. The receiver also introduces errors into the signal in its phase and amplitude, 'EE

and 'Eℎ . Additionally the receive chain also introduces coupling errors with the cross-polarization

returns, 'ℎE and 'ℎℎ. This yields the received electric field �A as:

�A = (�A_
2

4c
) 1

2


'EE 'Eℎ

'ℎE 'ℎℎ

 �
B (6.5)

Assuming the additional circumstance that the polarization of the transmitter is set to horizontal

polarization instead of vertical, the resulting �A incorporating the transmitter and receiver errors

is given as:

�A =  
4−82:A

A2


'EE 'Eℎ

'ℎE 'ℎℎ



(EE (Eℎ

(ℎE (ℎℎ



)EE

)ℎE

 ,  =
[

2[0%C�C�A_
2

(4c)2

] 1
2

(6.6)

Considering the measured scattering matrix " as the idealized scattering matrix multiplied by

the transmit and receive distortions, the resulting measured scattering matrix is:
"EE "Eℎ

"ℎE "ℎℎ

 =

'EE 'Eℎ

'ℎE 'ℎℎ



(EE (Eℎ

(ℎE (ℎℎ



)EE

)ℎE

 (6.7)
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The matrices can be converted to a vectorized form, " = �( , which gives:

"EE

"Eℎ

"ℎE

"ℎℎ


= �



(EE

(Eℎ

(ℎE

(ℎℎ


, � =



'EE)EE 'Eℎ)ℎE 'EE)ℎE 'Eℎ)EE

'ℎE)Eℎ 'ℎℎ)ℎℎ 'ℎE)ℎℎ 'ℎℎ)Eℎ

'EE)Eℎ 'Eℎ)ℎℎ 'EE)ℎℎ 'Eℎ)Eℎ

'ℎE)EE 'ℎℎ)ℎE 'ℎE)ℎE 'ℎℎ)EE


(6.8)

The density of this expansion can be reduced given a few assumptions. First, there is reciprocity

among the cross-pol terms, making them equal. Secondly, the cross-pol coupling is usually 20dB

lower than the other terms in a first order approximation, setting 'ℎE)Eℎ, 'Eℎ)Eℎ, 'Eℎ)ℎE, and

'ℎE)ℎE to approximately 0. This reduces � from a 4x4 matrix to a 3x3 matrix. These assumptions

and approximations give the new " as:

"EE

"ℎℎ

"ℎE


=



(EE

(ℎℎ

(ℎE





'EE)EE 0 'Eℎ)EE + 'EE)Eℎ

0 'ℎℎ)ℎℎ 'ℎE)ℎℎ + 'ℎℎ)ℎE

'ℎE)EE 'ℎℎ)ℎE 'ℎℎ)EE


, � =



211 212 213

221 222 223

231 232 233


(6.9)

6.2.1.2 First Order Approximation

In this first order approximation, the cross terms in � can be ignored, resulting in a reduced

distortion matrix:

� =



211 0 0

0 222 0

0 0 233


(6.10)

Such that:

"EE = 211(EE, "ℎℎ = 222(ℎℎ, "ℎE = 233(ℎE (6.11)
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Circular Plate

Given the co-polarization returns for the circular plate are equal to one another, they are labeled

as (0 . This reduces the 211 and 222 as simply:

211 =
"
2?
EE

(0
, 222 =

"
2?

ℎℎ

(0
(6.12)

Dihedral Vertical

The scattering returns from vertical dihedral may be written terms of the 211 and 222 values

found in the circular plate.

(3EEE =
"3E
EE

211
→ (3EEE =

"3E
EE

"
2?
EE

(
2?
EE → (3EEE =

"3E
EE

"
2?
EE

(0 (6.13)

(3Eℎℎ =
"3E
ℎℎ

211
→ (3Eℎℎ =

"3E
ℎ

"
2?

ℎℎ

(
2?

ℎℎ
→ (3Eℎℎ =

"3E
ℎℎ

"
2?

ℎℎ

(0 (6.14)

Dihedral Tilted

The 233 can found using the following relations:

233 =
"3G
3E

(3G
ℎE

, (3GℎE =
(3E
ℎℎ
− (3EEE
2

(6.15)

Compiling the preceding equations from the circular plate and vertical dihedral tests, the, 233

becomes:

233 =
"3G
ℎE

(0

1
1
2 (

"3E
ℎℎ

"
2?

ℎℎ

− "3E
EE

"
2?
EE
)

(6.16)

6.2.1.3 Cross Pol Calibration for Distributed Targets

The preceding calibration theorywas built around the basis of a point target where the traditional

radar cross section (RCS) to be:

f<= = 4c |(<= |2 (6.17)
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The target for the scatterometer, however, is a distributed target and as such, the scattering

matrix is inversely proportional to the area of the target of interest. The differential scattering

matrix, (0 is found to be:

(0 =
(
√
�

(6.18)

This adapts the cross-polarization incident electric field, � 8
ℎE

, to include the rooted area as:

�ℎE = (
A2

A
)24−82: (A−A2)  

A2
2

4−82:A2"3G
ℎE (

1
1
2 (

�3E
ℎℎ

�
2?

ℎℎ

− �3EEE
�
2?
E
)(0

) 1
√
�
(ℎE (6.19)

The scattering matrix for the distributed target becomes:

(ℎE = �ℎE
1
�3G
ℎE

1
2
(
�3E
ℎℎ

�
2?

ℎℎ

−
�3EEE

�
2?
EE

)(0
√
�( A
A2
)2482: (A−A2) (6.20)

resulting in an RCS of:

fℎE (3�) = 10;>610(fℎE) = 10;>610(4c
�����ℎE 1

�3G
ℎE

1
2 (

�3E
ℎℎ

�
2?

ℎℎ

− �3EEE
�
2?
EE
)(0
√
�( A

A2
)2482: (A−A2)

����2) (6.21)

fℎE (3�) = %ℎE (3�) −%3GℎE (3+) +10;>6(�) +40;>6( A
A2
) +10;>610(4c

����12 ( �3Eℎℎ�
2?

ℎℎ

− �3EEE
�
2?
EE
)(0

����2) (6.22)

The first term %ℎE (3�) in the RCS represents the uncalibrated return power and the following

terms are referred to as the "Calibration Factor" which are recorded and used after calibration

experiments to calibrate all future data.

Similar procedures may be done to characterize the RCS for the co-polarization. Where the

scattering matrix (EE is:

(EE = �EE
1
�
2?
EE

(0
√
�( A
A2
482: (A−A2) (6.23)

Then the RCS of the scattering is given as:

fEE (3�) = 10;>610( |�EE |2) − 10;>610( |�2?EE |2)

+10;>610(4c |(0 |2) + 10;>610(�) + 40;>6( A
A2
)

(6.24)

104

DISTRIBUTION A. Approved for public release; distribution unlimited.



fEE (3�) = %EE (3�) − %2?EE (3�) + 10;>610(4c |(0 |2) + 10;>610(�) + 40;>6( A
A2
) (6.25)

Similarly for to fEE :

fℎℎ (3�) = 10;>610( |�ℎ |2)−10;>610( |�2?ℎℎ |
2)+10;>610(4c |(0 |2)+10;>610(�)+40;>6( A

A2
) (6.26)

fℎℎ (3�) = %ℎℎ (3�) − %2?ℎℎ (3�) + 10;>610(4c |(0 |2) + 10;>610(�) + 40;>6( A
A2
) (6.27)

where %EE (3�) and %ℎℎ (3�) are the uncalibrated responses and the subsequent terms in the

equation are those used to calibrate the system.

With these bias values for the measured scattering matrices, the collected responses from the

distributed targets can be adequately processed with the radar’s intrinsic noise removed.

6.2.2 Improvements to Efficiency

The current configurations for both scatterometer setups utilize awindows PC. These computers

while small relative to traditional desktops and laptops, are still heavy and can be replaced with

Raspberry Pi 4 computers running Linux. There is support for the UVNA-63 in Linux. This

would allow the payload to be made lighter and the UAS flight controller can then be used to

enable the scatterometer to begin scanning utilizing the GPIO pins of the Raspberry Pi. This will

enable integration with the UAS time clock with the clock of the scatterometer for resolving the

GPS location of the scatterometer with the collected radar data. The next thing to resolve are the

antennas. The ground-based system utilizes the horn antennas and the UAS-based system utilizes

the Vivaldi antennas. These are not the most ideal antennas for this application and they need to

be replaced by the patch antennas currently in fabrication.

The UVNA-63 can also be explored further to understand how to utilizes multiple receive

ports. An alternative solution to creating a polarimetric radar in lieu of using directional couplers
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involves a simple microwave circuit involving one coaxial switch and two RF circulators in addition

to the UVNA-63 and the antennas, shown in Figure 6.2. This allows the radar to transmit out of

one antenna and then to receive energy into both antennas so that each transmission will yield

one col-polarization measurement and one cross-polarization measurement. This will mitigate

the coupling losses in the circuit and yield a higher transmit power for the radar. This circuit is

predicated on the idea that the UVNA-63 can transmit out of one port and receive into multiple

ports. This is possible but idea has not been validated for its efficacy and must be done prior to

altering the current RF circuit.

Figure 6.2

RF circuit for polarimetric scatterometer with multiple receive ports

Alternatively, the scatterometer can be implemented with a one-port VNA. In this implemen-

tation, the four-polarization circuit can utilize only circulators in lieu of directional couplers. This

is beneficial as there will no longer be a substantial loss of power from coupling loss. The circuit

can be seen in Figure 6.3 where circulators are used instead of the directional couplers.
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Figure 6.3

RF circuit for polarimetric scatterometer with a one-port VNA using circulators instead of
directional couplers

6.3 Final Thoughts

UAS-based radar is a viable means of characterizing the environment. With furthering efforts

geared toward refining the fidelity of the technology and mitigating the intrinsic that UAS can

introduce, UAS-based radar trends to be one of the predominant means of remote sensing for

environmental research in the future. The research discussed in this document lends its self to

aiding future work in the development of newUAS-based radar systems that are light weight, robust

in operation, and easily accessible to researchers everywhere.
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