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Abstract: Sensing and processing information from dynamically changing environments is essential
for the survival of animal collectives and the functioning of human society. In this context, previous
work has shown that communication between networked agents with some preference towards
adopting the majority opinion can enhance the quality of error-prone individual sensing from
dynamic environments. In this paper, we compare the potential of different types of complex networks
for such sensing enhancement. Numerical simulations on complex networks are complemented by
a mean-field approach for limited connectivity that captures essential trends in dependencies. Our
results show that, whilst bestowing advantages on a small group of agents, degree heterogeneity
tends to impede overall sensing enhancement. In contrast, clustering and spatial structure play a
more nuanced role depending on overall connectivity. We find that ring graphs exhibit superior
enhancement for large connectivity and that random graphs outperform for small connectivity.
Further exploring the role of clustering and path lengths in small-world models, we find that sensing
enhancement tends to be boosted in the small-world regime.

Keywords: complex networks; opinion dynamics; sensing enhancement; collective decision making;
social learning; collective intelligence

1. Introduction

Aggregation into groups is a trait that is common in the animal world and can bestow
evolutionary advantages. In swarms, flocks, herds, and packs, animals coordinate their
behaviour and achieve an enhanced performance in varied survival activities such as
defence [1,2], foraging [1,3,4], or migration [4,5]. However, successful group behaviours re-
quire specific coordination mechanisms, such as collective decision making [6], flocking [7],
or task allocation [8]. Interestingly, coordination in most cases is not orchestrated by
central planners with specific goals, but rather emerges from simple behavioural rules of
individuals that can be easily evolved and lead to behaviour typical of complex systems [9].

Sensing the environment is one of the most important tasks in animal survival [10,11],
as it is paramount for detecting risks [1] and finding resources [3,4] or shelter such as good
locations for nests [12]. However, individuals are often limited in their cognitive capabilities,
which may result in incorrect or incomplete information. By sharing information about the
perceived quality of an attribute, groups can improve the accuracy of their sensing in a way
akin to the distributed processing of information [7]. Such group sensing is also typical for
humans, the difference being in the complexity and flow of information compared to most
animal species. This is particularly true in contexts where information is hard to obtain or
very complex, or where combining second-hand information from peers may be an efficient
strategy to access environmental information [13]. A well-known mechanism that shows
this type of group sensing in humans is the so-called wisdom of the crowds, where the mean
values of individuals’ perceptions of a quality variable tend to be surprisingly close to the
real value [14].
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Researchers from the swarm robotics field have taken inspiration from group sensing
in animal groups to incorporate similar mechanisms into swarms of robots [15–17]. For
instance, some works have reproduced nest searching mechanisms of bees or foraging
mechanisms of ants in swarms of robots, and have mathematically studied the positive
feedback dynamics that form in so-called best-of-n problems [18,19]. They study the effect
that different communication rules have on collective decision outcomes, leading to accurate
yet slow arrival to a collective consensus using voter-model-like rules [20] or a faster
convergence but error-prone collective decisions with majority dynamics, e.g., in updating
rules [19]. Overall, there is strong interest in optimal designs of sensing enhancement in
applications of “swarm engineering” [15].

Other recent works in this field have focused on the swarm sensing of a single binary
state in dynamic environments, exploring under which conditions communication rules
enable a collective to follow changes in the environment [21–24]. In these models, indi-
viduals can either individually determine the state of the environment on their own or
make up their minds by aggregating group opinions. In this context, the work of [21,22]
has shown that adopting a tuned trade-off between both ways of information gathering
is important, as the best performance is achieved near the bifurcation point of a bi-stable
system [21,22,25].

Most of the above studies either have assumed well-mixed populations where any two
individuals are expected to meet with equal likelihood [18,19,22] or have modelled spatially
embedded communication channels in the context of robot simulations [23]. However,
unlike in animal environments, social structures in human systems tend to have well-
defined structures that are not necessarily spatially correlated and that may affect collective
sensing capabilities [26]. The issue of how social network structure can influence decision
making abilities of a population gains additional relevance through our increasing use
of social media to source news and political information [27] and the “news-finds-me”
perception, i.e., the tendency of social media users to rely on being informed about current
events through peer communication rather than by actively following the news [28].

Studying the effects of a groups’ social network topology on its sensing abilities is the
main aim of this paper, which is based on a paper presented at the Conference on Complex
Networks and their Applications in 2021 [29]. Based on the conference paper, we developed
a simplified version of the modelling framework proposed by [22] and use analytical and
numerical methods to analyse the sensing abilities of collectives in dynamic environments.
We then extended the analysis to different types of complex social networks, exploring
the effects of degree heterogeneity and spatial structure on collective sensing. Additional
to findings already presented at the conference, the present paper has been reworked in
terms of the positioning of results relative to the literature and backs up findings from the
conference paper with some scaling analysis on system size. Furthermore, we introduce
extensions in two other important ways. First, in Section 4.2, we add to previous analyses by
investigating the role of small-world networks and find that optimal sensing enhancement
is typically achieved for small densities of shortcuts in the small-world regime. Second,
results are generalised to a setting of environments with n > 2 possible states. The effects
of a larger number of states are discussed in Section 4.3.

2. Model Description

Let us consider a group of agents that aim to perceive a specific discrete feature
St ∈ {1, 2, . . . , n} from a dynamic environment which can be in one of n possible states.
At each time step, each agent holds a belief si(t) ∈ {1, . . . , n} about the current state of
the environment. As a basic mechanism, agents can directly measure the environment
to update their beliefs. Individual updating is done via imperfect sensors with accuracy
1/n < q < 1, meaning that, at each measurement, an agent will retrieve the correct state
of the environment S(t) with probability q and an incorrect state with probability 1− q.
When sensing incorrectly, we assume that an agent’s sensors retrieve each of the incorrect
states with equal likelihood, i.e., P(si(t + 1) 6= S(t + 1)) = (1− q)/(n− 1). Note that one
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could easily also consider other models of incorrect sensors that may favour a particular
incorrect signal, but for the purposes of this paper, we will restrict analysis to the case
of equal likelihood of error states. As an alternative to individual sensing, agents can
also pool and aggregate the beliefs of their neighbours to update their own beliefs, thus
incorporating knowledge accumulated by their peers. The neighbourhood of an agent
is determined by the communication structure of the population, which is represented
by an adjacency matrix A whose values aij ∈ {0, 1} encode whether a communication
channel exists between agents i and j—e.g., a range of vision in a school of fish, or following
patterns in social media. We assume the aggregation of neighbours’ beliefs to follow
complex-contagion-like voter dynamics [30], i.e., adoption of the belief si = b by agent i
due to peer communication happens with a probability equal to

P(si(t + 1) = b) =

(
1
ki

∑j aijδsj(t),b

)α

(
∑n

b=1
1
ki

∑j aijδsj(t),b

)α , (1)

where ki = ∑j aij represents the in-degree of node i, α ≥ 1 is an exponent measuring the
strength of complex contagion as in [30], and δ is the Kronecker delta, with δi,j = 1 if i = j
and δi,j = 0 otherwise. A value of α = 1 retrieves the linear voter model dynamics, where
the probability of adopting a state is proportional to the number of neighbours holding that
state. As the value of α increases, preferences towards the majority emerge, retrieving the
deterministic majority rule when α→ ∞.

We consider the state-updating dynamics to unfold in discrete time steps, at each of
which every agent of the population synchronously decides between sensing the environ-
ment (with probability p) or aggregating information from neighbours (with probability
1− p). The parameter p thus describes the agent’s trade-off between individual sensing
and group sensing. Additionally, at each time step, the environment may swap its state,
S(t + 1), with probability u, where u characterizes the speed of environmental change.
Below, settings of u = 0 correspond to a static environment and for u = 1 the environment
changes state at every updating step. Environmental change is thus described by

S(t + 1) =
{

S(t) with probability 1− u
any element of S̄(t) with probability (1− u)/(n− 1)

, (2)

where S̄(t) = {1, . . . , n} − S(t). Here we have again assumed that all states in the environ-
ment occur with the same likelihood.

According to the dynamics described above, the expected probability of agent i to
hold a belief si(t + 1) = S(t + 1) about the environment at time t + 1 is determined by

P(si(t + 1) = S(t + 1)) = pq + (1− p)

(
∑j aijδsj(t),Si(t+1)

)α

∑n
b=1

(
∑j aijδsj(t),b

)α , (3)

whereas the probability to hold an incorrect belief b ∈ S̄(t + 1) is given by

P(si(t + 1) = b) = p(1− q)/(n− 1) + (1− p)

(
∑j aijδsj(t),b

)α

∑n
b=1

(
∑j aijδsj(t),b

)α . (4)

The first term in Equation (3) indicates correct individual sensing and the second term gives
the probability of acquiring the correct information through peer communication. Similarly,
in Equation (4), the first term corresponds to incorrect sensing that ends up in state b and
the second term describes acquiring state b through peer aggregation. Also note that the
system of N equations given by (3) and (4) is a mean-field description of the dynamics,
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which ignores the effect of fluctuations as well as details of possible configurations of beliefs
in an agent’s neighbourhood.

The system described above is determined by five parameters: (i) the sensor accuracy
q, (ii) the complex contagion exponent α for aggregating peer information, (iii) the mix of
sensing-aggregating behaviours p (or sensing intensity), (iv) the volatility of the environment
u, and (v) the communication structure encoded in the adjacency matrix A of a social
network between the agents. Note that, while we assume here that all sensors’ accuracy
and sensing intensities are equal for all agents, these could also be heterogeneous across
the population.

3. Results on All-to-All Connected Networks

In this section, we focus only on all-to-all connected networks (or complete graphs) to
build an understanding of the basic properties of the above-defined model dynamics via
analytical and numerical results. Starting with the simple scenario of a static environment
(with u = 0), we consider the approximation where all nodes are coupled to the mean-fields
Pb(t) = 1/N ∑i P(si(t) = b). Subject to this, Equation (3) transforms into

PS(t + 1) = pq + (1− p)
PS(t)α

∑b Pb(t)α
,

Pb 6=S(t + 1) = p(1− q)/(n− 1) + (1− p)
Pb 6=S(t)α

∑b Pb(t)α
,

(5)

describing the dynamics of the fractions of correctly and incorrectly sensing agents in a
static environment. If we consider the evolution of probabilities at the steady state—and
exploiting the symmetry of the problem—the system can be described by a stationary
fraction of correctly sensing agents P given by

P = pq + (1− p)
Pα

Pα + (n− 1)[(1− P)/(n− 1)]α
. (6)

Solutions of Equation (6) transition from a multi-stable phase to a phase with a single
attractor. The multi-stable phase is found for sensing intensities p smaller than some critical
point p∗ and corresponds to a situation in which most agents lock into a state given by the
initial majority state of the collective. In the phase with a single attractor for p > p∗, agents
sense enough on their own such that a majority of the collective will become aware of the
correct state of the environment. This situation is illustrated in Figure 1a (in dotted lines)
for a system with n = 2, α = 2, and q = 0.51, where the critical point is found at around
p∗ ≈ 0.458 (which was determined numerically).

Operating in either the multi-stable or mono-stable regime has important implications
for collective sensing. In the bi-stable phase, if initial conditions are unfavourable, the
system may evolve to a state where global sensing is much less accurate than individual
sensing (P < q). Moreover, in this phase, the system remains locked in its overall configu-
ration when changes in the environment occur and thus the population is unable to adapt
to a dynamical environment.

However, we also note that, when the system is in the p > p∗ phase, the higher the
frequency of direct sensing p, the lower the probability P of agents to be in the correct state.
This occurs since P(p) is monotonically declining with p for p > p∗, and P(p = 1) = q. As
a consequence, sensing intensities just above the critical point p∗ result in optimal sensing
enhancement from group sensing.
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Figure 1. (Left) Dependence of the average fraction of correctly sensing agents P on the sensing
intensity p. The figure compares numerical data obtained for an all-to-all connected system with
1000 nodes (black squares) to the mean-field orbit diagram for the bi-stable system and a mean-field
estimate for P(p) from Equation (6) (dotted lines) along with an estimate of the stationary outcome
of the switching dynamics based on Equation (8) (magenta line). Parameters are as follows: n = 2;
switching rate u = 0.001; α = 2; sensing accuracy q = 0.51. Numerical data are from simulations
with over 10,000 iterations of the dynamical process averaged over 10 independent runs. In the orbit
diagram, we find a critical point p∗ ≈ 0.458 such that below p∗, the system is bi-stable and above p∗,
it follows the sensing of all agents and manages to adapt to changing signals. For a switching rate of
the external signal of u = 0.001, the maximum fraction of agents aware of the correct signal is found
at p ≈ 0.466, slightly above the bifurcation point. (Right) Comparison of the mean-field estimate
(based on Equation (8), black lines) vs. numerical data for different switching rates u.

To better explore the behaviour of the system in dynamical environments, we mod-
ify the mean-field description to incorporate environmental change. For the sake of
tractability, we will approximate the environmental dynamics by a deterministic signal
that swaps its state every T = 1/u time steps. Subject to these assumptions and us-
ing Equations (3) and (4), the average evolution of the system can be approximated by
the iteration of Equation (5) and a deterministic version of the change dynamics of the
environment (2) in which we deterministically cycle through states in succession

S(t + 1) =
{

S(t) for 0 < t < T
(S(t) mod n) + 1 if t = 0

, (7)

and the average probability P of correctly sensing the environment can be found by averag-
ing over the attractor of the recursion relation given above to obtain

P(t) = 1/((n− 1)T)
T0+(n−1)T

∑
t=T0

P(s(t + 1) = 1), (8)

where T0 stands for a transient time and averages are taken over a full cycle through
all environments. Mean-field solutions for complete graphs can now be obtained by
numerically iterating Equation (5) and then averaging after discarding a transient according
to (8).

Results obtained from this mean-field description are shown in Figure 1b, where
solid lines give estimates based on Equation (8) for various environmental switching
rates u and symbols give numerical results obtained from direct simulations of the belief
updating dynamics.

As one might have expected, the lower the rate of change u of the environment is, the
better able the collective is to adapt to the change, and better sensing can thus be achieved
for the optimal trade-off points p. We also note that this optimal trade-off point shifts to the
right with a larger u. The above relates to the speed of collectively transitioning to a new
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state after environmental change, which increases as the intensity of individual sensing
increases. Hence, groups with a higher frequency of direct sensing are more robust to
changes in the environment at the expense of achieving a weaker enhancement of group
sensing, which is a commonly discussed speed–accuracy trade-off in the field of swarm
robotics [31].

4. Results for Complex Networks

In this section, we explore the dependence of sensing enhancement on the structure
of complex networks. As we are particularly interested in exploring the role of degree
heterogeneity, clustering, and path lengths, our analysis presented below is focused on
four network models. In more detail, we consider (i) random regular graphs (RRG), (ii)
Erdös–Rényi random graphs (ER) [32], (iii) Barabási–Albert scale–free networks (BA) [33],
and (iv) ring graphs (RG). These choices are motivated as follows. Comparison between
results for RRG, ER, and BA will allow us to explore the role of degree heterogeneity.
Further, comparing results for RRG and RG—which are both types of regular graphs—will
shed light on the implications of spatial embedding.

In the following, we aim to characterize these networks by the amount of sensing
enhancement that can be achieved on them. For this purpose, we typically run numerical
experiments that directly simulate the stochastic process of sensing and belief change,
as detailed in Section 2, and obtain averaged results from between 104 and 105 updates
(depending on u). In many of the experiments described below, we are interested in the
maximum sensing enhancement achievable on a class of networks. In these, we assume that
agents have optimally “tuned” their sensing intensities. Accordingly, we run simulations
for a range of sensing intensities to determine P(p) and approximate Pmax(popt), where
Pmax denotes the maximum fraction of the population that can sense correctly, and popt
denotes the sensing intensity at which this value of Pmax can be realised. We then determine
Pmax and popt for individual networks and then report the averages of these values over
samples from the respective class of network.

As the numerics are relatively costly, experiments presented below are typically
evaluated for networks of size N = 1000 and—unless otherwise mentioned—averages
are calculated over 20 network realisations. When exploring parameter dependencies, we
typically focus on a low sensing accuracy close to q = 1/(n− 1) to investigate sensing
enhancement that can be achieved in very adverse settings, when correct sensing only has
a small advantage over random selection.

Results presented below also indicate that, depending on the network’s connectivity,
optimal sensing can typically be found either on ring graphs or random regular networks.
As these topologies can be seen as limiting cases of a Strogatz–Watts-type small world, we
also conducted further experiments exploring sensing enhancement as a function of the
small-world parameter. To extrapolate between ring graphs and regular random graphs
(and thus rule out any effect of degree heterogeneity), we consider a small modification
of the small-world model introduced by Watts and Strogatz [34] that allows for the con-
struction of regular small worlds. This is achieved by starting with a ring graph and then
picking each link with probability f for rewiring. If a link between nodes x1 and x2 is
chosen for rewiring, we also pick another randomly selected link and between nodes y1
and y2 and swap end nodes, i.e., reconnect x1 to y1 and x2 to y2. The procedure introduces
random shortcut links exactly as in the traditional small-world model but also ensures that
the networks remain regular during the rewiring.

Below, in Section 4.1, we start by exploring sensing enhancement on networks for
a binary environment with n = 2, ensure the robustness of our findings to different
parameter settings, and then proceed by investigating the small-world effect in Section 4.2.
The last subsection of the results section generalises findings for n > 2 and discusses the
dependence on the number of possible states in the environment.
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4.1. Sensing Enhancement in Binary Environments

As an initial experiment, we are interested in comparisons of the dependence of
sensing enhancement on sensing accuracy between different networks. For this purpose,
maximum sensing enhancements Pmax(q) have been determined for different sensing
accuracies for the four classes of networks discussed above. Results are summarised in
Figure 2, where we report maximum sensing enhancements relative to sensing accuracies,
i.e., P/q as a function of q. More specifically, the left-hand panel of Figure 2 shows the
dependence of P/q for networks with 〈k〉 = 10 for u = 0.001 and α = 2. We note that
the possible sensing enhancement as a function of q typically has a maximum for low q,
allowing for an up to 35% improvement in sensing accuracy depending on the network
topology. Additionally, depending on the network structure, sensing enhancement is only
possible for a limited range of sensing accuracies, and there typically is a sensing accuracy
qc above which sensing enhancement is no longer possible (note the points where P/q = 1
in the right-hand panel of Figure 2). Comparing the four different network topologies,
we find the largest sensing enhancement for RRGs at around Pmax/q ≈ 1.35 ± 0.01, a
somewhat lower enhancement for ER with Pmax/q ≈ 1.33± 0.01 and SF networks with
Pmax/q ≈ 1.3± 0.01, and the lowest enhancement for RGs with Pmax/q ≈ 1.17± 0.01. The
corresponding enhancement cut-offs are qc ≈ 0.83± 0.01 for RRGs, ERs, and RGs and
qc ≈ 0.8± 0.01 for SF networks.
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Figure 2. Maximum sensing enhancement P/q as a function of the sensing accuracy q. (Left):
Comparison between numerical data for different types of complex networks for u = 0.001, α = 2,
and 〈k〉 = 10. (Right): Comparison for random regular graphs with connectivity 〈k〉 = 10 and
〈k〉 = 40 with the mean-field estimates for limited connectivity (dotted lines) and all-to-all coupling
(solid line).

Whilst the mean-field description above does not account for sparse connectivities,
numerical results (discussed later) show a clear dependence of optimal sensing points on
the average degree. To include this effect, we develop a mean-field approximation for
finite connectivities that essentially factor in through the exact configurations of states in an
agent’s neighbourhood. This effect can be accommodated by modifying Equation (5) via

PS(t + 1) = pq + (1− p) ∑
x1,...,xn

k!
∏n

i=1 xi!

n

∏
i=1

Pi(t)xi
(xS/k)α

∑b(xb/k)α
,

Pb 6=S(t + 1) =
p(1− q)
(n− 1)

+ (1− p) ∑
x1,...,xn

k!
∏n

i=1 xi!

n

∏
i=1

Pi(t)xi
(xb/k)α

∑b(xb/k)α
,

(9)

where sums extend over all x1, . . . , xn, where xi, i = 1, . . . , n represents the number of
neighbours holding state i at time t such that ∑i xi = k, and k is the connectivity of the
network. Evaluating the combinatorics in Expression (9) proves to be computationally too
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expensive for large n and k, but can be reasonably accommodated for n = 2, where the first
expression in (9) transforms to

PS(t + 1) = pq + (1− p)
k

∑
j=0

(
k
j

)
PS(t)j(1− PS(t))k−j (j/k)α

(j/k)α + (1− j/k)α
. (10)

Note that the formulations in Equations (9) and (10) assume that all nodes of the graph
have roughly equal degrees, and j in (10) represents the number of neighbours in state
s(t) = S(t). Equation (10) can then be used to adapt Equation (5) for limited degrees
and can be inserted into Equation (8) to yield estimates for the fraction of agents in the
possession of correct information. Estimates based on Equation (10) are compared to
numerical data in the right-hand panel of Figure 2, where we see that, whereas there
are considerable differences between mean-field estimates and numerical data for small
connectivity, reasonable agreement is found for connectivities above around 〈k〉 = 40, and
the main trends of the dependencies in the numerical data are captured by the limited
connectivity mean-field approach (dotted lines). This contrasts with the all-to-all-coupling-
based mean-field approach (solid line), which fails to account for the observed limited
range of sensing accuracies up to qc for which consensus enhancement is possible.

We thus see that the structure of the social network connecting a population can have
a strong impact on achievable sensing enhancement. Results presented in Figure 2 (left)
suggest that, in otherwise random networks, heterogeneity plays a major role, seemingly
impeding sensing enhancement. However, comparison between results for RRGs and RGs
also shows strong differences, which suggests that degree regularity on its own also does
not ensure the best performance.

To further explore the role of degree heterogeneity, it proves instructive to investigate
the dependence of the probability to accurately sense the environment on node degree. We
have evaluated this relationship for SF networks, and results are plotted in Figure 3. As
one would expect, we see that hub nodes tend to have better awareness of the environment
than low-degree nodes. However, after an initial steep increase, increases tend to quickly
saturate with degree from k ≈ 20 on. We thus see a reason for the poorer performance of
the SF networks compared to RRGs: connectivity spent on hub nodes only yields a small
improvement in sensing, which comes at the cost of a relatively larger deterioration of the
availability of correct information at low-degree nodes.
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Figure 3. Average probability to sense the correct state of the environment P as a function of node
degree k averaged over 10 Barabasi–Albert-type SF networks with N = 104 for u = 0.001, α = 2,
q = 0.51, p = 0.31, and 〈k〉 = 10. Error bars give standard errors.
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The observation of the degree dependence of sensing in Figure 3 motivates a more
detailed investigation of sensing enhancement on network connectivity. Figure 4 compares
the dependence of optimal sensing on the connectivity of networks and mean-field esti-
mates based on Equation (10), both in terms of the optimal sensing enhancement in Figure 4
(left) and for the sensing intensity p required at the optimal point in the panel of Figure 4
(right). These results lead to a number of observations. First, close inspection shows that
larger connectivity does not always lead to improved sensing. In contrast, there exists a
connectivity at which sensing is maximally enhanced at around 〈k〉 = 20 for RRGs, ERs,
and SF networks and at roughly 〈k〉 = 30 for RGs. The existence of such a connectivity
maximum is also reproduced in the mean-field estimate, which fits reasonably well with
results for RRGs, ERs, and SF networks, for which differences become very small for large
connectivities. Nevertheless, for low connectivity 〈k〉 < 20, we note that generally RRGs
perform better than ERs, which are in turn superior to SF networks and RGs, which perform
significantly poorer in terms of sensing enhancement. Differences between these networks
tend to become larger as the connectivity of the graph decreases. For 〈k〉 > 20, the order
of performance is maintained for RRGs, ERs, and SF networks, but it is apparent that, for
large connectivities, RGs have a clear advantage. This advantage manifests itself in terms
of a clearly superior performance, but also in terms of much reduced sensing intensities
required at the optimal point—see Figure 4 (left). For the setting investigated in Figure 4,
we also note that sensing enhancement is only possible for 〈k〉 ≥ 6; otherwise, no sensing
enhancement is found.

In particular, noticing the connectivity dependence of the performance of ring graphs,
one might be inclined to speculate that improvements in sensing for larger connectivity
could result from the corresponding reduction in the average shortest path length. In
this case, if sensing enhancement was strongly influenced by the average shortest path
length, one would also expect drastic changes when the system size of ring graphs is varied.
However, analysis of the P(p) dependence for RGs of varying sizes in Figure 4 (bottom)
shows no significant dependence on system size over a range of system sizes in which the
average shortest path lengths of ring graphs vary by a factor of at least 10. This analysis is
further backed up by a more detailed analysis of the dependence of optimal enhancement
on the system size in Appendix A.1. There, we clearly see that the point and amount of
optimal enhancement become largely independent of system size for N ≥ 103, showing
that average shortest path lengths are not a strong determinant of a network’s sensing
enhancement. Results for the other network types show a similar independence of system
size for a large N (see Appendix A.1 for details).

As a last parameter dependency of interest, Figure 5 shows numerical results for the
effect of the selection strength α for networks with 〈k〉 = 40 (where 〈k〉 = 40 has been
chosen, as, for this connectivity, the sensing enhancement for all network types has been
roughly saturated with degree). As for the dependence on connectivity—see Figure 5 (left)—
we again note the existence of an optimal α at which the largest sensing enhancement is
possible. For RRGs, ERs, and SF networks, optimal α is found at around α ≈ 1.5, which
roughly coincides with the mean-field prediction; for RGs, the optimal α is located at a
slightly larger α ≈ 1.7. From the α dependencies, we also see that the order of network
performance is consistently maintained, i.e., for 〈k〉 = 40, RGs allow for more enhancement
than RRGs, ERs, and SF networks, differences between which become small. As a last
observation from Figure 5 (left), we also see that sensing enhancement is only possible for
α > 1, i.e., only in the presence of complex contagion and not in linear voter-like dynamics
with α = 1 [35].

Figure 5 (right) continues the analysis by showing the dependence of the required
sensing intensity at the optimal point on α. We again note that differences between RRGs,
ERs, and SF networks are rather small and close to the mean-field expectation. In contrast,
and in particular for larger α, sensing intensities required at RGs are noticeably smaller.

Further, results from an analysis of the finite-connectivity mean-field orbit diagram are
presented in the bottom panel of Figure 5. In more detail, we plot the sensing enhancement
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at the bifurcation point as a function of α. One notes that the closer α is to α = 1 from above,
the larger the possible sensing enhancement, which would suggest an optimum at the
smallest possible α approaching α = 1. However, the smaller the α, the slower the response
dynamics after a switch in the environmental signal. Hence, as argued earlier, points of
optimal sensing will generally be found at slightly larger values than the sensing intensity
at the bifurcation point. Values will be larger with a shorter time scale of environmental
change. Figure 5 (bottom) also shows that the size of the parameter region of sensing
intensities for which meaningful sensing enhancement is possible quickly converges to
zero as α approaches one. This in effect limits the possible sensing enhancement for small α
and explains the existence of an optimal value of α distinctly larger than α = 1—again an
effect related to speed–accuracy trade-offs [31].
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Figure 4. Dependence of the point of optimal sensing enhancement on connectivity for different
networks. (Left): Optimal sensing Pmax vs. connectivity 〈k〉. (Right): Required sensing intensity
at the optimum vs. connectivity. (Bottom): Analysis of the P(p) dependence for RGs for different
system sizes ranging from N = 500 to N = 8000, where the inset magnifies the region 0.4 ≤ p ≤ 0.5.
Numerical data obtained from simulations of 104 iterations of the updating process and averaged
over 20 networks of size N = 1000 (for the first two panels) for q = 0.51, α = 2, and u = 0.001. The
black lines give mean-field estimates.
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Figure 5. Dependence of the point of maximum sensing enhancement on α. (Left): Dependence of
optimal sensing Pmax on α for various networks with 〈k〉 = 40, u = 0.001, and q = 0.51. There is
a max value of α, such that sensing is maximally enhanced. (Right): Dependence of the required
sensing intensity p at the maximum point on α for various complex networks. The solid line gives
the mean-field estimate. (Bottom): Results from the mean-field analysis for the dependence of Pmax

and the width of the enhancement region pP>0.52 on α. More consensus enhancement is possible for
a smaller α > 1, but the width of the peak converges to zero and transients become longer as one
approaches α = 1 from above.

4.2. Small-World Effects

Results in Section 4.1 have shown that maximum sensing enhancement can be achieved
on either random regular graphs for low connectivity or ring graphs for large connectivity.
Both types of networks can be seen as limiting cases of regular small-world networks,
which we investigate in more detail in this subsection. For this purpose, regular small
worlds with varying shortcut density f have been constructed.

Figure 6 illustrates typical results for the dependence of the fraction of the populations
that senses correctly P on the sensing intensity p for different settings of the small-world
parameter f . These numerical results highlight that optimal sensing is not achieved in
either of the limiting cases of f = 0 (an RG) or f = 1 (an RRG), but instead at some
intermediate value of f . The settings for f chosen in Figure 6 indicate the existence of an
optimal small world for sensing enhancement.

This idea is further explored in the experiments showcased in the panels of Figure 7.
Here, we constructed small-world networks for different settings of the small-world param-
eter f and then determined the optimal sensing intensity popt and the maximum fraction of
correctly sensing agents Pmax = P(popt) for each network. We plot the dependence of Pmax
(left-hand panel) and popt (right-hand panel) on f , again for different choices of the network
connectivity 〈k〉 to ensure robustness of our findings. We make several observations from
these results.
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Figure 7. Dependence of the maximum achievable share of correctly sensing agents Pmax (left) and
the sensing intensity at which this maximum is achieved (right) on the small-world parameter f used
to construct the social network for networks of different average connectivity 〈k〉 = 8 to 〈k〉 = 20.
The (bottom) left panel yields the dependence of the optimal small-world parameter f for which
sensing enhancement is maximised on the average degree. Data obtained from simulations on regular
small-world networks of size N = 1000 for n = 2, α = 2, u = 0.001 and q = 0.51. For each data
point, 50 small-world networks were constructed, and for each, the optimal sensing intensity and
maximum of P(p) were determined and then averaged. We see that optimal sensing enhancement
can be achieved for networks in the small-world region (for small f ).
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First, as expected, small worlds are found to interpolate between the settings of an RG
and an RRG. As RGs provide hardly any sensing enhancement for low connectivity in the
regime where RRGs performed best (as observed in Section 4.1), we see a corresponding
transition between both networks for low connectivity. As, e.g., seen for 〈k〉 = 8 or 〈k〉 = 10,
we find that a relatively small density of shortcuts is typically sufficient to transform an RG
to achieve RRG-like performance. In this transition region towards RRG-like performance,
a minimum of required sensing intensities is assumed (see Figure 7, top right).

Second, the interpolation between the RG and the RRG regimes is not just achieved
through a monotonic increase or decrease. Instead, we see a clear maximum in sensing
enhancement for small f , indicating that there is a low shortcut density in the small-world
region is optimal for sensing enhancement. The latter point is further supported by the
bottom left panel of Figure 7, which shows the dependence of the small-world parameter
that maximises sensing enhancement on the average degree. The results show that this
typically happens for small densities of shortcuts f , which decrease as the network’s
connectivity increases.

We have also carried out experiments to investigate the influence of system size on the
location of the optimal small-world region. To not disrupt the flow of the narrative, more
detailed results are presented in Appendix A.2. Results presented in Figure A2 indicate that
the optimal small-world parameter f is roughly independent of system size for sufficiently
large small worlds of size N ≥ 103.

As a last point in this subsection, Figure 8 compares the achievable sensing enhance-
ment on optimal small worlds to ring graphs and regular random graphs. On the one hand,
in the left-hand panel of Figure 8, we see that optimal small worlds (OSWs) only have a
small advantage over the limiting cases of RRGs and RGs for small connectivity, but can
lead to substantial improvements for larger connectivity. On the other hand, the right-hand
panel of Figure 8 underlines that this improved performance can generally be achieved by
a sensing intensity, which is at worst only marginally larger than the minimum required
for either RRGs or RGs.

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 6  8  10  12  14  16  18  20

o
p
ti
m

a
l 
fr

a
c
ti
o
n
 c

o
rr

e
c
t 
P

o
p

t

connectivity <k>

RG
OSW
RRG

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 6  8  10  12  14  16  18  20o
p
ti
m

a
l 
s
e
n
s
in

g
 i
n
te

n
s
it
y
 p

o
p

t

connectivity <k>

RG
OSW
RRG

Figure 8. Comparison between the dependencies of maximum achievable sensing enhancement (left)
and the required sensing intensity at the optimum (right) on network connectivity between ring
graphs (RGs), regular random graphs (RRGs), and optimal small worlds (OSWs). Data obtained from
averages over 50 simulations on networks of size N = 1000 for n = 2, α = 2, u = 0.001, and q = 0.51.

4.3. Effects of Non-Binary Environments

In the above, we have investigated the role of networks for sensing enhancement
in binary settings. Here, we generalize from the scenario of two possible states of the
environment to the general case of an arbitrary number of states n ≥ 2.

First results are presented in Figure 9, in which we compare simulation results obtained
for different n to mean-field estimates based on Equation (5). In principle, numerical results
are found to be similar in behaviour to our observations in Figure 1a, again typically
showing a low sensing region in which correct sensing is roughly given by P ≈ 1/n,
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separated by a bifurcation of the multi-stable system from an enhancement region in which
P > q. However, we also note a clear dependence of the region of maximum enhancement
on the number of environmental states, where increasing n typically results in a decline
in enhancement until no enhancement is possible for an n larger than a certain maximum
number of states nmax. In Figure 9 for q = 0.51 on an RRG, we find nmax = 11, i.e., for this
particular value of q, no enhancement is possible in an environment allowing for more than
10 states. We also observe that, with a growing number of states, the region of maximum
enhancement tends to move towards lower sensing intensities (which is abruptly reversed
for n ≥ nmax, for which the system no longer exhibits a bifurcation). One further notes that,
for n > 2, although capturing qualitative behaviours, the mean-field description fails to
capture the shift in bifurcation points.
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Figure 9. Dependence of the fraction of correct agents P on the sensing intensity p in environments
with different numbers of states n. Results are from numerical simulations for RRG networks of size
N = 1000 averaged over 20 networks (symbols) and from mean-field estimates (solid lines). Other
parameters are q = 0.51, u = 0.001, α = 2, and 〈k〉 = 60.

To proceed, we aim to quantify differences in the network structure in multi-state
environments. For this purpose, we have run numerical experiments in which we have
determined the P(p) dependence and extracted points of maximum sensing enhancement
P/q for each setting of q for the four different types of networks discussed in Section 4.1
and different settings of n. Results of these experiments are summarised in Figure 10, where
the dependence of the points of maximum sensing enhancement on q is shown for the
four different networks. The corresponding information about sensing intensities at which
maximum enhancement is achieved is given in Figure 11. A number of observations are
in order.

First, we note that sensing enhancement typically depends on q and tends to reach
a maximum as a function of q and then decline to P/q = 1 in a region in which sensing
enhancement becomes impossible. Determining the largest value of qmax at which P/q > 1
allows us to characterize the extent of the region of sensing accuracies for which sensing
enhancement can take place.

As a second point, we note that the point of maximum enhancement also is a function
of the number of states. Maximum enhancement is observed to first increase with n,
reaches a maximum as a function of n, and then declines. In agreement to what we noted
in Figure 9, we see that enhancement becomes impossible beyond a certain number of
environmental states. The experiments presented in Figure 10 allow us to determine an
overall nmax for each of the four networks; we find nmax = 12 for ER networks and RRGs
and find nmax = 11 for SF networks and RGs.



Entropy 2022, 24, 738 15 of 21

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1

a
c
c
. 
e
n
h
. 
P

/q

sensing accuracy q

n=2
n=3
n=5
n=7
n=9

n=10
n=11

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1

a
c
c
. 
e
n
h
. 
P

/q

accuracy q

n=2
n=3
n=5
n=7
n=9

n=10
n=11

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  0.2  0.4  0.6  0.8  1

a
c
c
. 
e
n
h
. 
P

/q

accuracy q

n=2
n=3
n=5
n=7
n=9

n=10
n=11

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1

a
c
c
. 
e
n
h
. 
P

/q

accuracy q

n=2
n=3
n=5
n=7
n=9

n=10

Figure 10. Comparison of the dependence of the largest accuracy enhancement P/q on the sensing
accuracy q for different numbers of environmental states n. From left to right and top to bottom,
panels give data for RRGs, RGs, ER-type random networks, and scale-free networks (note that n = 11
was not plotted for SF networks, because no enhancement is possible in that case). Data averaged
from 20 realisations of networks of size N = 1000. Other parameters are u = 0.001, α = 2, and
〈k〉 = 40.
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Figure 11. Comparison of the dependence of the sensing intensity for which the largest accuracy
enhancement can be achieved (see Figure 10) on the sensing accuracy q for different numbers of
environmental states n. From left to right and top to bottom, panels give data for RRGs, RGs, ER-type
random networks, and scale-free networks. Parameter settings as in Figure 10.

Third, comparison between the panels in Figure 10 shows clear differences among
network types. Whereas, as one might expect, dependencies for ER and RRGs are very
similar, SF networks and RGs show distinctly different behaviour. Two points stand out.
First, SF networks are found to always show slightly poorer enhancement compared to
ERs and RRGs. Second, whereas maximum enhancement for RRGs, ERs, and SF networks
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is found for values of n just below nmax, the best enhancement for RGs tends to occur for
substantially smaller n.

To emphasise the above points, we have characterised each network type by its
dependence on (i) the maximum achievable accuracy enhancement as a function of n,
the sensing intensity required to achieve this enhancement as a function of n, and the
maximum extent qmax of the region of sensing accuracies for which enhancement is possible
as a function of n. Results are given in Figure 12. We again see different propensities of
networks to enhance sensing. Note that RGs tend to allow for better enhancement for a
low number of states, whereas RRGs and ER-type networks give better results for larger
numbers of states (see Figure 12 right). This is also reflected in much lower sensing
intensities required to achieve optimal results for the latter networks (see Figure 12 right).
SF networks, on the other hand, always exhibit poorer performance and also tend to
allow for a smaller range of sensing accuracies q for which enhancement is possible (see
Figure 12 bottom).
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Figure 12. Comparison of the dependence of maximum achievable accuracy enhancement (top left),
the sensing intensity at which the optimal accuracy enhancement can be achieved (top right), and
maximum sensing accuracy for which sensing enhancement can be achieved (bottom) on the number
of environmental states for RRGs, RGs, ER-type networks, and scale-free networks. Dependence of
Parameter settings as in Figures 10 and 11.

5. Summary and Conclusions

In this paper, we have investigated the role of the structure of social network topolo-
gies on a collective’s capacity for amplifying the accuracy of individual sensing through
aggregating peer information. Previous work has explored the problem in unstructured or
spatially embedded populations and has shed light on the nature of the underlying mech-
anisms and the required trade-offs between noise in communication, individual sensing,
and information aggregation from peers [21,22]. Differently, our main focus here has been
on the dependence of enhancement and optimal parameters on network structure. Our
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results clearly show that different structures of social communication networks influence a
collective’s potential for sensing enhancement.

As a first point, we have shown that network heterogeneity in the form of degree
heterogeneity generally impedes a collective’s average sensing enhancement. Whereas
the presence of very strongly connected individuals in the form of hub nodes provides an
information advantage to these individuals, their advantage tends to come at the cost of
poorer information availability to agents at the periphery of the network. As a consequence,
when comparing networks of the same average degree, the marginal benefit of adding
connections to hub nodes does not outweigh the losses incurred on lower connectivity
nodes. This effect strongly resembles similar observations in other consensus-finding
problems, as, e.g., studies on optimal synchronisation [36,37].

Second, our findings have also highlighted the role of connectivity. Whereas we find
that—again, similar to results established in the context of optimal synchronisation [37]—
regular random networks provide very strong potential for sensing enhancement for low
connectivity, we also find that—unlike in synchronisation problems, where spatial structure
tends to impede synchronisation [34]—ring graphs tend to have much better enhancement
potential than random networks for large connectivity. Interestingly, since this observed
behaviour on ring graphs seems independent of system size, this effect does not seem to be
a function of a reducing average shortest path length with increasing connectivity.

Third, we have investigated sensing enhancement on Watts–Strogatz-type small-world
networks and have shown that optimal sensing enhancement can typically be found in
the so-called small-world region, i.e., for a relatively small density of shortcut links. Our
finding in this regard is closely connected to the trade-off between the requirements for
separation and integration discussed relating to the organisation of brain networks [38,39].
Similar to the neuroscience context, one could speculate that also small-world networks in
our context realize an optimal trade-off between the separation and independent processing
of information in local communities and the integration of independent views from the
local level to benefit the collective as a whole.

As a fourth point, we have also investigated the effects of multi-state environments
on sensing enhancement on complex networks. Results here have again pointed out the
detriments of degree heterogeneity but have also shown that, up to a threshold number
of states, random graphs tend to perform relatively well when there are more states
in the environment, whereas ring graphs tend to perform poorly in environments with
many states.

Beyond exploring network characteristics, our findings have also pointed towards the
important role of the selection strength exponent α, indicating that optimal enhancement
can typically be achieved in the region of 1 < α < 2. This finding might indicate that the
majority rule that is typically applied in the robotics context [19] might not necessarily be
the best choice.

Our paper is also subject to a number of limitations. First, even though we have
presented a framework that is strongly simplified in comparison to the work of [21,22], the
resulting model is still characterised by a number of parameters. Even though we have
systematically explored the influence of the main parameters, computational complexities
have prohibited a full factorial design. As a second point, our study has been restricted
to undirected unweighted networks. It seems an interesting avenue for future research to
explore more general settings in this regard, where one might be particularly interested in
the effects of hierarchical organisation on sensing enhancement [39].

Last but not least, we also note that the model developed in the context of sensing and
opinion sharing in the present paper has similarities to models developed in the context
of influence maximisation for voter dynamics [40,41], where individual sensing could be
perceived as a connection to an external zealot [42], whose state represents the environment.
One might wonder if continuous optimisation techniques as used in [43] could then be
used to explore optimised individual sensing on complex networks.
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Appendix A. Dependence on System Size

As supplemental information, we provide a more detailed analysis of the scaling
with system size. In Appendix A.1, analysis of the dependence of optimal enhancement
and optimal sensing intensities for different network types is presented. Appendix A.2
presents more results analysing the dependence of the optimal small-world parameter on
system size.

Appendix A.1. System-Size Dependence of Optimal Enhancement and Intensity

In this subsection, we provide a more detailed analysis of the scaling of the optimal
enhancement Pmax and the optimal sensing intensity popt with system size. Data have
again been obtained from numerical simulations in which the stochastic dynamics has
been simulated for a range of sensing intensities p to determine optimal values, which
have then been averaged over 50 independent network realisations. Results of this analysis
are presented in Figure A1, where the dependence of the maximum enhancement on
system size is given in the left-hand panels and the dependence of optimal intensities in
the right-hand side panels.

Careful analysis of the data in Figure A1 shows some dependence of optimal points on
the system size, in particular for very small system sizes of N ≤ 500. Shifts in the location
of optimal intensities are found to be more pronounced than shifts in optimal enhancement.
However, for all network types investigated, we note clear indications of saturation of
quantities with system size and no strong further shifts of quantities for system sizes of
N ≥ 1000. In particular, for the case of ring graphs (second row in Figure A1, we note no
statistically significant dependence on a system size beyond N = 1000).

As a consequence, for computational reasons, all experiments presented in the main
text have been run for N = 1000, beyond which strong finite size effects can be ruled out.
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Figure A1. Dependence of the optimal achievable sensing enhancement Pmax (left) and the sensing
intensities at which it can be realised (right) on the system size for different types of networks (RRG,
RG, ER, and SF from top to bottom). Data points are for q = 0.51, u = 0.001, α = 2, and 〈k〉 = 20, and
points in the figures represent averages over 50 network configurations.

Appendix A.2. System-Size Dependence of the Optimal Small-World Parameter

In this subsection, we provide additional results showing the dependence of the
optimal small-world parameter on the system size with results shown in Figure A2. Inves-
tigating the dependence of optimal sensing enhancement (Figure A2 (left)) and optimal
intensities (Figure A2 (right)) for different system sizes, we note the presence of some
finite-size effect for small system sizes, but also note that dependencies become largely
independent of system size for sizes of N ≥ 1000. This observation is supported by numer-
ical results showing the dependence of the optimal small-world parameter on the system
size in the middle panel of Figure A2. Moreover, the optimal enhancement at the optimal
small-world parameter (Figure A2 (bottom, left)) becomes largely independent of system
size beyond N = 1000. In contrast, optimal intensities in the optimal small-world regime
show a marginal dependence on system size (cf. Figure A2 (bottom, right)).
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Figure A2. (Top) Dependence of the optimal sensing enhancement Pmax (left) and optimal sensing
intensity (right) on the small-world parameter f for different system sizes N = 250, N = 1000,
and N = 8000. (Middle) Dependence of the optimal small-world parameter on system size (error
bars given by discretisation of f ). (Bottom) Dependence of the optimal enhancement at the optimal
small-world parameter (left) and sensing intensity at which this can be realised (right) on system
size. Data points are for q = 0.51, u = 0.001, α = 2, and 〈k〉 = 10, and points in the figures represent
averages over 50 network configurations.

References
1. Pitcher, T.J. Functions of Shoaling Behaviour in Teleosts. In The Behaviour of Teleost Fishes; Pitcher, T.J., Ed.; Springer: Boston, MA,

USA, 1986.
2. Ward, A.J.; Herbert-Read, J.E.; Sumpter, D.J.; Krause, J. Fast and accurate decisions through collective vigilance in fish shoals.

Proc. Natl. Acad. Sci. USA 2011, 2001, 007102. [CrossRef] [PubMed]
3. Seeley, T.D. Honeybee Democracy; Princeton University Press: Princeton, NJ, USA, 2010.
4. Grünbaum, D. Schooling as a strategy for taxis in a noisy environment. Evol. Ecol. 1998, 12, 503–522. [CrossRef]
5. Bauer, S.; Nolet, B.; Giske, J.; Chapman, J.; Åkesson, S.; Hedenström, A.; Fryxell, J. Cues and decision rules in animal migration.

In Animal Migration: A Synthesis; Oxford University Press: Oxford, UK, 2011.
6. Conradt, L.; Roper, T.J. Consensus decision making in animals. Trends Ecol. Evol. 2005, 20, 449–456. [CrossRef] [PubMed]
7. Berdahl, A.; Torney, C.J.; Ioannou, C.C.; Faria, J.J.; Couzin, I.D. Emergent Sensing of Complex Environments by Mobile Animal

Groups. Science 2013, 339, 574–576. [CrossRef]
8. Robinson, E.J.H.; Feinerman, O.; Franks, N.R. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B Biol.

Sci. 2009, 276, 4373–4380. [CrossRef]
9. Olson, R.S.; Knoester, D.B.; Adami, C. Evolution of Swarming Behavior Is Shaped by How Predators Attack. Artif. Life 2016, 22,

299–318. [CrossRef]
10. Dall, S.R.; Giraldeau, L.A.; Olsson, O.; McNamara, J.M.; Stephens, D.W. Information and its use by animals in evolutionary

ecology. Trends Ecol. Evol. 2005, 20, 187–193. [CrossRef]
11. Sumpter, D.J. Collective Animal Behavior; Princeton University Press: Princeton, NJ, USA, 2010.

http://doi.org/10.1073/pnas.1007102108
http://www.ncbi.nlm.nih.gov/pubmed/21262802
http://dx.doi.org/10.1023/A:1006574607845
http://dx.doi.org/10.1016/j.tree.2005.05.008
http://www.ncbi.nlm.nih.gov/pubmed/16701416
http://dx.doi.org/10.1126/science.1225883
http://dx.doi.org/10.1098/rspb.2009.1244
http://dx.doi.org/10.1162/ARTL_a_00206
http://dx.doi.org/10.1016/j.tree.2005.01.010


Entropy 2022, 24, 738 21 of 21

12. Franks, N.R.; Pratt, S.C.; Mallon, E.B.; Britton, N.F.; Sumpter, D.J.T. Information flow, opinion polling and collective intelligence in
house-hunting social insects. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2002, 357, 1567–1583. [CrossRef]

13. Berekméri, E.; Zafeiris, A. Optimal collective decision making: consensus, accuracy and the effects of limited access to information.
Sci. Rep. 2020, 10, 16997. [CrossRef]

14. Surowiecki, J. The Wisdom of Crowds: Why the Many Are Smarter than the Few and How Collective Wisdom Shapes Business, Economies,
Societies, and Nations; Doubleday Books: New York, NY, USA, 2004.

15. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective. Swarm
Intell. 2013, 7, 1–41. [CrossRef]

16. Ogren, P.; Fiorelli, E.; Leonard, N.E. Cooperative control of mobile sensor networks: Adaptive gradient climbing in a distributed
environment. IEEE Trans. Autom. Control 2004, 49, 1292–1302. [CrossRef]

17. Bose, T.; Reina, A.; Marshall, J.A. Collective decision-making. Curr. Opin. Behav. Sci. 2017, 16, 30–34. [CrossRef]
18. Prasetyo, J.; De Masi, G.; Ferrante, E. Collective decisionmaking in dynamic environments. Swarm Intell. 2019, 13, 217–243.

[CrossRef]
19. Valentini, G.; Ferrante, E.; Hamann, H.; Dorigo, M. Collective decision with 100 Kilobots: Speed versus accuracy in binary

discrimination problems. Auton. Agents Multi-Agent Syst. 2016, 30, 553–580. [CrossRef]
20. Valentini, G.; Hamann, H.; Dorigo, M. Self-organized collective decision making: The weighted voter model. In Proceedings of

the 2014 International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS ’14), International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, USA, 5–9 May 2014; pp. 45–52.

21. Salahshour, M.; Rouhani, S.; Roudi, Y. Phase transitions and asymmetry between signal comprehension and production in
biological communication. Sci. Rep. 2019, 9, 3428. [CrossRef]

22. Salahshour, M. Phase Diagram and Optimal Information Use in a Collective Sensing System. Phys. Rev. Lett. 2019, 123, 068101.
[CrossRef]

23. Soorati, M.D.; Krome, M.; Mora-Mendoza, M.; Ghofrani, J.; Hamann, H. Plasticity in Collective Decision-Making for Robots:
Creating Global Reference Frames, Detecting Dynamic Environments, and Preventing Lock-ins. In Proceedings of the 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4100–4105.

24. Talamali, M.S.; Saha, A.; Marshall, J.A.R.; Reina, A. When less is more: Robot swarms adapt better to changes with constrained
communication. Sci. Robot. 2021, 6, eabf1416. [CrossRef]

25. Yang, V.C.; Galesic, M.; McGuinness, H.; Harutyunyan, A. Dynamical system model predicts when social learners impair
collective performance. Proc. Natl. Acad. Sci. USA 2021, 118, e2106292118. [CrossRef]

26. Becker, J.; Brackbill, D.; Centola, D. Network dynamics of social influence in the wisdom of crowds. Proc. Natl. Acad. Sci. USA
2017, 114, E5070–E5076. [CrossRef]

27. Gottfried, J.; Shearer, E. News Use across Social Media Platforms 2016. Pew Research Centre. 2016. Available online: http:
//www.journalism.org (accessed on 5 September 2019).

28. Gil de Z’uniga, H.; Weeks, B.; Ard’evol-Abreu, A. Effects of the news-finds-me perception in communication: Social media use
implications for news seeking and learning about politics. J. Comput. Mediat. Commun. 2017, 22, 105–123. [CrossRef]

29. Brede, M.; Romero-Moreno, G. Sensing enhancement on complex networks. In Conference on Complex Networks and their
Applications; Springer: Cham, Switzerland, 2021.

30. Alshamsi, A.; Pinheiro, F.L.; Hidalgo, C.A. Optimal diversification strategies in the networks of related products and of related
research areas. Nat. Commun. 2018, 9, 1328. [CrossRef] [PubMed]

31. Franks, N.R.; Dornhaus, A.; Fitzsimmons, J.P.; Stevens, M. Speed versus accuracy in collective decision making. Proc. R. Soc. Lond.
Ser. B Biol. Sci. 2003, 270, 2457–2463. [CrossRef] [PubMed]

32. Erdös, P.; Rényi, A. On random graphs. I. Publ. Math. 1959, 6, 290–297.
33. Barabási, A.-L.; Réka, A. Emergence of scaling in random networks. Science 1999, 286, 509–512. [CrossRef] [PubMed]
34. Watts, D.J.; Strogatz, S.H. Collective dynamics of ’small-world’ networks. Nature 1998, 393, 440–442. [CrossRef] [PubMed]
35. Holley, R.; Liggett, T. Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 1975, 3, 643–663.

[CrossRef]
36. Brede, M. Synchrony-optimized networks of non-identical Kuramoto oscillators. Phys. Lett. A 2008, 372, 2618–2622. [CrossRef]
37. Donetti, L.; Hurtado, P.I.; Muñoz, M.A. Entangled Networks, Synchronization, and Optimal Network Topology. Phys. Rev. Lett.

2005, 95, 188701. [CrossRef]
38. Tononi, G.; Sporns, O.; Edelman, G.M. A measure for brain complexity: Relating functional segregation and integration in the

nervous system. Proc. Natl. Acad. Sci. USA 1994, 91, 5033–5037. [CrossRef]
39. Meunier, D.; Lambiotte, R.; Bullmore, E.T. Modular and hierarchically modular organization of brain networks. Front. Neurosci.

2010, 4, 200. [CrossRef]
40. Masuda, N. Opinion control in complex networks. New J. Phys. 2015, 17, 033031. [CrossRef]
41. Brede, M.; Restocchi, V.; Stein, S. How the strength of predispositions to resist control can change strategies for optimal opinion

control in the voter model. Front. Robot. AI 2018, 5, 34. [CrossRef] [PubMed]
42. Mobilia, M. Does a single zealot affect an infnite group of voters? Phys. Rev. Lett. 2003, 91, 028701. [CrossRef] [PubMed]
43. Romero, M.G.; Chakraborty, S.; Brede, M. Shadowing and shielding: Effective heuristics for continuous influence maximisation in

the voting dynamics. PLoS ONE 2021, 16, e0252515. [CrossRef]

http://dx.doi.org/10.1098/rstb.2002.1066
http://dx.doi.org/10.1038/s41598-020-73853-z
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1109/TAC.2004.832203
http://dx.doi.org/10.1016/j.cobeha.2017.03.004
http://dx.doi.org/10.1007/s11721-019-00169-8
http://dx.doi.org/10.1007/s10458-015-9323-3
http://dx.doi.org/10.1038/s41598-019-40141-4
http://dx.doi.org/10.1103/PhysRevLett.123.068101
http://dx.doi.org/10.1126/scirobotics.abf1416
http://dx.doi.org/10.1073/pnas.2106292118
http://dx.doi.org/10.1073/pnas.1615978114
http://www.journalism.org
http://www.journalism.org
http://dx.doi.org/10.1111/jcc4.12185
http://dx.doi.org/10.1038/s41467-018-03740-9
http://www.ncbi.nlm.nih.gov/pubmed/29626192
http://dx.doi.org/10.1098/rspb.2003.2527
http://www.ncbi.nlm.nih.gov/pubmed/14667335
http://dx.doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1214/aop/1176996306
http://dx.doi.org/10.1016/j.physleta.2007.11.069
http://dx.doi.org/10.1103/PhysRevLett.95.188701
http://dx.doi.org/10.1073/pnas.91.11.5033
http://dx.doi.org/10.3389/fnins.2010.00200
http://dx.doi.org/10.1088/1367-2630/17/3/033031
http://dx.doi.org/10.3389/frobt.2018.00034
http://www.ncbi.nlm.nih.gov/pubmed/33500920
http://dx.doi.org/10.1103/PhysRevLett.91.028701
http://www.ncbi.nlm.nih.gov/pubmed/12906515
http://dx.doi.org/10.1371/journal.pone.0252515

	Introduction
	Model Description
	Results on All-to-All Connected Networks
	Results for Complex Networks
	Sensing Enhancement in Binary Environments
	Small-World Effects
	Effects of Non-Binary Environments

	Summary and Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2

	References

