10 research outputs found

    Novel applications of pulse pre-pump Brillouin Optical Time Domain Analysis for behavior evaluation of structures under thermal and mechanical loading

    Get PDF
    This study aims to: (1) develop an analytical model for the strain transfer effect of distributed fiber optic sensors in a uniform or non-uniform stress field; (2) develop a measurement approach to monitor strains in concrete and detect damage (e.g. crack and delamination) in bonded and unbonded concrete overlays; (3) characterize the strain and temperature sensitivities of distributed fiber optic sensors at elevated temperatures; (4) develop a thermal annealing approach to enhance the thermal stability and temperature sensitivity of the distributed sensors; and (5) apply the distributed sensors to assess structural behaviors of concrete and steel structures exposed to fire. The pulse pre-pump Brillouin Optical Time Domain Analysis (PPP-BOTDA) was employed to measure strain and temperature distributions along a fused silica single-mode optical fiber. Strain distributions in concrete were measured from the distributed fiber optic sensors embedded in bonded and unbonded concrete overlays. Peaks of the strain distributions represent the effect of concrete cracks and delamination. The strain sensitivity coefficient of distributed sensors was reduced from 0.054 MHz/µε to 0.042 MHz/µε when temperature increased from 22 ⁰C to 750 ⁰C. The temperature sensitivity coefficient of distributed sensors was reduced from 1.349x10-3 GHz/⁰C to 0.419x10-3 GHz/⁰C when temperature increased from 22 ⁰C to 1000 ⁰C. The distributed sensors embedded in concrete beams measured non-uniform temperature distributions with local peaks representing a sudden increase of temperature through concrete cracks. Temperature distributions measured from the distributed sensors attached on steel beams enabled an enhanced thermo-mechanical analysis to understand the structural behaviors of steel beams subjected to fire --Abstract, page iii

    Micro-/Nano-Fiber Sensors and Optical Integration Devices

    Get PDF
    The development of micro/nanofiber sensors and associated integrated systems is a major project spanning photonics, engineering, and materials science, and has become a key academic research trend. During the development of miniature optical sensors, different materials and micro/nanostructures have been reasonably designed and functionalized on the ordinary single-mode optical fibers. The combination of various special optical fibers and new micro/nanomaterials has greatly improved the performance of the sensors. In terms of optical integration, micro/nanofibers play roles in independent and movable optical waveguide devices, and can be conveniently integrated into two-dimensional chips to realize the efficient transmission and information exchange of optical signals based on optical evanescent field coupling technology. In terms of systematic integration, the unique optical transmission mode of optical fiber has shown great potential in the array and networking of multiple sensor units.In this book, more than ten research papers were collected and studied, presenting research on optical micro/nanofiber devices and related integrated systems, covering high-performance optical micro/nanofiber sensors, fine characterization technologies for optical micro/nanostructures, weak signal detection technologies in photonic structures, as well as fiber-assisted highly integrated optical detection systems

    Spiral Deployment of Optical Fiber Sensors for Distributed Strain Measurement in Seven-Wire Twisted Steel Cables, Post-Tensioned Against Precast Concrete Bars

    Get PDF
    On-time monitoring and condition assessments of steel cables provide mission-critical data for informed decision making, ensuring the structural safety of post-tensioned concrete structures. This study aimed to develop a spiral deployment scheme of distributed fiber optic sensors (DFOS) and to monitor/assess the post-tensioned force in seven-wire twisted steel cables, based on the pulse-pre-pump Brillouin optical time domain analysis. Each DFOS was placed in a spiral shape between two surface wires of a steel cable and glued to the steel cable by epoxy. Image observations were conducted to investigate the entireness and bonding condition between the optical fiber and the steel wires. Eight concrete bar specimens were cast, each with a pre-embedded plastic or metal duct at its center and each was post-tensioned by a steel strand through the duct once they were instrumented with two strain and two temperature sensors. The strand was loaded/unloaded and monitored by measuring the Brillouin frequency shifts and correlating them with the applied strains and the resulting cable force after temperature compensation. The maximum, minimum, and average cable forces integrated from the measured stain data were compared and validated with those from a load cell. The maximum (or average) cable force was linearly related to the ground truth data with a less than 10% error between them, after any initial slack had been removed from the test setup. The post-tensioned force loss was bounded by approximately 30%, using the test setup designed in this study

    Contributions to the development of distributed sensors based on stimulated Brillouin scattering

    Get PDF
    RESUMEN: El objetivo principal de esta tesis es contribuir al desarrollo y la mejora del rendimiento de los sensores distribuidos basados en la dispersión Brillouin. Durante el desarrollo de este trabajo se han considerado diferentes áreas de mejora. En primer lugar, se han propuesto diversas configuraciones experimentales para superar algunas de las limitaciones típicas que tienen estos sensores, como son los efectos no locales en los sensores BOTDA o la aparición de sub-picos en el espectro de ganancia de Brillouin en sistemas basados en el dominio de frecuencia. Otro objetivo principal de este trabajo es aplicar diferentes enfoques de procesado para resolver problemáticas aún no resueltas, como la discriminación entre las medidas de temperatura y las de deformación obtenidas con los sensores Brillouin. Además, también se han estudiado algunos métodos alternativos al método tradicional basado en la aplicación de ajustes Lorentzianos para estimar el cambio de la frecuencia Brillouin. Finalmente, este trabajo también ha tratado de contribuir a la validación de los conocimientos adquiridos mediante la validación en escenarios reales, como aplicaciones de alta temperatura o detección de fugas en tuberías.ABSTRACT: The main objective of this thesis dissertation is to contribute to the development and improvement in the performance of distributed sensors based on Brillouin scattering. Different areas of improvement have been considered during the development of this work. First of all, various different experimental configurations have been proposed to overcome some traditional limitations of these sensors, such as non-local effects on Brillouin optical time domain analysis (BOTDA) sensors or appearance of sub-peaks on the Brillouin gain measured with systems based on the frequency domain. Another main objective of this work is applying different processing approaches in an attempt to solve open problems such as the discrimination between temperature and strain measurements obtained with Brillouin sensors. Additionally, it would be interesting to provide some faster and alternative methods to estimate the Brillouin shift in comparison to traditional method based on applying Lorentzian fittings. Finally, this work has also tried to contribute to the validation of the acquired knowledge by performing validations in real scenarios, such as high-temperature applications or leakage detection in pipelines.This work has been supported by the funding of the following entities and actions: • Universidad de Cantabria through the research grant Programa de Personal Investigador en Formación Predoctoral and research stays grants in Pamplona, Spain and in Aversa, Italy. • Agencia Estatal de Investigación through research project Sensores fotónicos para seguirdad y protección (TEC2016-76021-C2-2-R). • Ministerio de Economía y Competitividad through research project Sensores de fibra óptica para seguirdad y protección (TEC2013-47264-C2-1-R). • Gobierno de Cantabria through research project Detección de fugas en autovías del agua mediante sensores ópticos (FASO). • Fundación TTI through a research grant Patrocinio de actividades formativas en investigación científica y técnica. • Cost action td1001: Novel and reliable optical fibre sensor systems for future security and safety applications (OFSESA) through a research grant for a short term scientific mission to Aversa, Italy and through two grants for summer schools

    Brillouin Echoes for Advanced Distributed Sensing in Optical Fibres

    Get PDF
    Brillouin scattering is particularly efficient and attractive for the implementation of strain and temperature distributed sensing in optical fibres. Recently a trend has been observed that modern advanced applications require a substantial step towards better spatial resolution, while preserving temperature/strain precision over a long range. For this purpose the state of the art does not satisfy all these requirements. In this thesis we present a radically new approach named Brillouin Echoes distributed sensing (BEDS) that allows covering these requirements. In the first part, we propose an updated configuration of the classical existing Brillouin sensor for time domain analysis allowing drastic noise reduction. Then we investigate the limitations (due to non-linear effects) of the classical Brillouin sensor in terms of long distance range measurements. The identified nonlinear effects are pump depletion due to SBS itself, self-phase modulation (SPM), modulation instability (MI), which occurs only in fibres presenting an anomalous dispersion at the pump wavelength and Raman scattering (RS). We propose the modeling of the pump depletion effect to obtain analytical expressions that are useful for the proper design of a BOTDA sensor and for the determination of a very small depletion. The model confirmed by experimental measurements is informative on the conditions maximizing the depletion effect; therefore a standard configuration can be defined to test the value of the depletion in the set-up. Furthermore, we demonstrate that SPM-induced spectral broadening can have a significant effect on the measured effective gain linewidth. Modeling and experiments have undoubtedly demonstrated that the effective gain linewidth can easily experience a two-fold increase in standard conditions when the pulse intensity profile is Gaussian. We showed that the problem can be practically circumvented by using a clean rectangular pulse with very sharp rising and falling edges. The theoretical and experimental analysis of the undesirable effects of MI and forward RS in distributed BOTDA sensors systems gives a simplified expression to predict the critical power for a given distance range. MI turns out to be the dominant nonlinear limitation since it shows the lowest critical power, but it is less critical since it can be avoided to a wide extent by using the fibre in the normal dispersion spectral region such as a DSF in the C-band. On the other hand Raman scattering can be avoided only by limiting the optical pump power and therefore is the ultimate nonlinear limitation in a distributed sensing system. Under similar conditions RS shows a critical power ∼5 times larger than MI. In the second part, we present the new approach Brillouin echo distributed sensing (BEDS) which has proved to be a powerful solution to realize sub-metric spatial resolutions in Brillouin distributed measurements. We have demonstrated both theoretically and experimentally that an optimized configuration is reached when the optical wave is π-phase shifted. The experimental tests have shown a spatial resolution down to 5 cm, with a clear margin for further improvement down to a real centimetric spatial resolution. This optimized configuration produce the best contrast independently of the pulse intensity, with a factor 2 of improvement compared to other techniques based on the same approach (dark pulse, bright pulse). This extends the dynamic range by 3 dB, which corresponds in standard loss conditions to a 5 km extension of the sensing range. An analytical developed model has proved to be an excellent tool not only for optimizing the pumping scheme but also in post-processing the measured data. Finally the potentialities of BEDS technology provide solutions in real contexts. Using the BEDS technology in landslide monitoring at laboratory scale, for the first time it became possible to observe the failure propagation in laboratory scale with an accurate precision. Furthermore, using BEDS we have proposed and demonstrated the possibility of mapping geometrical structure fluctuations along a photonic crystal fibre (PCF). Both long- and short-scale longitudinal fluctuations in the Brillouin frequency shift have been identify and quantify. Observation of Brillouin linewidth broadening in PCF fibre through distributed measurement of the Brillouin gain spectrum using BEDS has allowed fundamental understanding of SBS in PCF fibre and in their design in view of applications to optical-strain/temperature sensing

    Distributed On-chip Brillouin Sensing: Toward Sub-mm Spatial Resolution

    Get PDF
    Stimulated Brillouin scattering (SBS) involves nonlinear interaction of an optical wave with material, which under the phase-matching condition results in generation of an acoustic wave. In turns, part of the optical wave is scattered by the acoustic wave through an inelastic scattering process. SBS enables unique applications in optical fibers and more recently in on-chip photonic waveguides, ranging from RF-signal processing to lasing, frequency combs, RF sources, and light storage. Harnessing on-chip SBS paves the way to photonic integration by enabling powerful functionalities in an integrated, scalable, energy-efficient and potentially CMOS-compatible platform. In this thesis, we explore the possibility of enabling SBS in a silicon-based platform by designing, fabricating and characterizing a hybrid silicon-chalcogenide waveguide, which shows significant improvement in terms of nonlinear losses and SBS gain compared to a standard silicon waveguide. The SBS response in photonic waveguides including the silicon-chalcogenide platform is subject to spectral broadening which influences the quality of the devices whose performance are relying on the narrow linewidth of SBS. The spectral broadening is mainly due to structural non-uniformities along the waveguides which affect the local SBS response and consequently deteriorates the strength of the integrated SBS response. Therefore, characterizing those waveguides is of great importance. To address this issue, we employed the principle of distributed SBS sensing to monitor the on-chip waveguides. However, since the waveguides length is on the order of cm and mm, the spatial resolution of the distributed technique needs to be very high, preferably in the sub-mm regime, which is the main goal of this thesis

    Design and performance of cost-effective ultra high performance concrete for bridge deck overlays

    Get PDF
    The main objective of this research is to develop a cost-effective ultra-high performance concrete (UHPC) for bonded bridge deck overlays. The high durability and mechanical properties of such repair material can offer shorter traffic closures and prolong the service life of the pavement. The UHPC was optimized using supplementary cementitious materials (SCMs), proper combinations of sands, and adequate selection of fiber types and contents. Packing density studies included paste, sand, and fiber combinations. The robustness of optimized UHPC mixtures to variations of mixing and curing temperatures was examined. The efficiency of various shrinkage mitigation approaches in reducing autogenous and drying shrinkage of optimized UHPC mixtures was evaluated. This included the use of CaO-based and MgO-based expansive agents, shrinkage-reducing admixture, and pre-saturated lightweight sand. Optimized UHPC mixtures were cast as thin bonded overlays of 25, 38, and 50 mm in thickness over pavement sections measuring 1 × 2.5 m². Early-age and long-term deformation caused by concrete, humidity and temperature gradients, as well as cracking and delamination were monitored over time. Test results indicate that the designed UHPC mixtures exhibited relatively low autogenous shrinkage and drying shrinkage. The G50 mixture had the lowest autogenous and drying shrinkage of 255 µm/m at 28 days and 55 µm/m at 98 days, respectively. All tested UHPC mixtures exhibited a high mechanical properties and excellent frost durability. The use of 60% lightweight sand led to significantly reduction in autogenous shrinkage from 530 to 35 µm/m. Test results indicate that there was no surface cracking or delamination in UHPC overlays after 100 days of casting --Abstract, page iii

    Measuring Three-Dimensional Temperature Distributions in Steel-Concrete Composite Slabs Subjected to Fire using Distributed Fiber Optic Sensors

    Get PDF
    Detailed information about temperature distribution can be important to understand structural behavior in fire. This study develops a method to image three-dimensional temperature distributions in steel–concrete composite slabs using distributed fiber optic sensors. The feasibility of the method is explored using six 1.2 m × 0.9 m steel–concrete composite slabs instrumented with distributed sensors and thermocouples subjected to fire for over 3 h. Dense point clouds of temperature in the slabs were measured using the distributed sensors. The results show that the distributed sensors operated at material temperatures up to 960◦C with acceptable accuracy for many structural fire applications. The measured non-uniform temperature distributions indicate a spatially distributed thermal response in steel–concrete composite slabs, which can only be adequately captured using approaches that provide a high density of through-depth data points

    Sensing Properties of Fused Silica Single-Mode Optical Fibers Based on PPP-BOTDA in High-Temperature Fields

    No full text
    The strain of fiber-reinforced polymer (FRP) bars at high temperatures is currently difficult to measure. To overcome this difficulty, a method of smart FRP bars embedded with optical fibers was proposed and studied, in which an ordinary single-mode optical fiber was applied as a distributed sensor. In this paper, both the distributed temperature and strain-sensing characteristics of optical fiber were studied based on pulse pre-pump Brillouin optical time-domain analysis (PPP-BOTDA) under high temperature. The temperature and strain coefficients were investigated under a thermomechanical coupling environment with consideration of large strain levels. The experimental results show that the temperature and strain coefficients decreased as the temperature increased, because the properties of silica and coating materials changed with temperature. Then, the formulas for determining the temperature and strain coefficients at high temperatures were introduced and discussed. The excellent sensing performance of the optical fiber indicated that smart FRP bars have the potential for use at high temperatures
    corecore