896 research outputs found

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    A Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach in an evolving environment

    Get PDF
    Fault diagnostic methods are challenged by their applications to industrial components operating in evolving environments of their working conditions. To overcome this problem, we propose a Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach (4SFD), which allows dynamically selecting the features to be used for performing the diagnosis, detecting the necessity of updating the diagnostic model and automatically updating it. Within the proposed approach, the main novelty is the semi-supervised feature selection method developed to dynamically select the set of features in response to the evolving environment. An artificial Gaussian and a real world bearing dataset are considered for the verification of the proposed approach

    Fault diagnosis for electromechanical drivetrains using a joint distribution optimal deep domain adaptation approach

    Get PDF
    Robust and reliable drivetrain is important for preventing electromechanical (e.g., wind turbine) downtime. In recent years, advanced machine learning (ML) techniques including deep learning have been introduced to improve fault diagnosis performance for electromechanical systems. However, electromechanical systems (e.g., wind turbine) operate in varying working conditions, meaning that the distribution of the test data (in the target domain) is different from the training data used for model training, and the diagnosis performance of an ML method may become downgraded for practical applications. This paper proposes a joint distribution optimal deep domain adaptation approach (called JDDA) based auto-encoder deep classifier for fault diagnosis of electromechanical drivetrains under the varying working conditions. First, the representative features are extracted by the deep auto-encoder. Then, the joint distribution adaptation is used to implement the domain adaptation, so the classifier trained with the source domain features can be used to classify the target domain data. Lastly, the classification performance of the proposed JDDA is tested using two test-rig datasets, compared with three traditional machine learning methods and two domain adaptation approaches. Experimental results show that the JDDA can achieve better performance compared with the reference machine learning, deep learning and domain adaptation approaches

    Fault diagnosis by multisensor data: A data-driven approach based on spectral clustering and pairwise constraints

    Get PDF
    This paper deals with clustering based on feature selection of multisensor data in high-dimensional space. Spectral clustering algorithms are efficient tools in signal processing for grouping datasets sampled by multisensor systems for fault diagnosis. The effectiveness of spectral clustering stems from constructing an embedding space based on an affinity matrix. This matrix shows the pairwise similarity of the data points. Clustering is then obtained by determining the spectral decomposition of the Laplacian graph. In the manufacturing field, clustering is an essential strategy for fault diagnosis. In this study, an enhanced spectral clustering approach is presented, which is augmented with pairwise constraints, and that results in efficient identification of fault scenarios. The effectiveness of the proposed approach is described using a real case study about a diesel injection control system for fault detection

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing
    • …
    corecore