189 research outputs found

    Semi-supervised Dependency Parsing using Lexical Affinities

    No full text
    International audienceTreebanks are not large enough to reliably model precise lexical phenomena. This deficiency provokes attachment errors in the parsers trained on such data. We propose in this paper to compute lexical affinities, on large corpora, for specific lexico-syntactic configurations that are hard to disambiguate and introduce the new information in a parser. Experiments on the French Treebank showed a relative decrease of the error rate of 7.1% Labeled Accuracy Score yielding the best pars- ing results on this treebank

    Using distributional similarity to organise biomedical terminology

    Get PDF
    We investigate an application of distributional similarity techniques to the problem of structural organisation of biomedical terminology. Our application domain is the relatively small GENIA corpus. Using terms that have been accurately marked-up by hand within the corpus, we consider the problem of automatically determining semantic proximity. Terminological units are dened for our purposes as normalised classes of individual terms. Syntactic analysis of the corpus data is carried out using the Pro3Gres parser and provides the data required to calculate distributional similarity using a variety of dierent measures. Evaluation is performed against a hand-crafted gold standard for this domain in the form of the GENIA ontology. We show that distributional similarity can be used to predict semantic type with a good degree of accuracy

    Multiword expression processing: A survey

    Get PDF
    Multiword expressions (MWEs) are a class of linguistic forms spanning conventional word boundaries that are both idiosyncratic and pervasive across different languages. The structure of linguistic processing that depends on the clear distinction between words and phrases has to be re-thought to accommodate MWEs. The issue of MWE handling is crucial for NLP applications, where it raises a number of challenges. The emergence of solutions in the absence of guiding principles motivates this survey, whose aim is not only to provide a focused review of MWE processing, but also to clarify the nature of interactions between MWE processing and downstream applications. We propose a conceptual framework within which challenges and research contributions can be positioned. It offers a shared understanding of what is meant by "MWE processing," distinguishing the subtasks of MWE discovery and identification. It also elucidates the interactions between MWE processing and two use cases: Parsing and machine translation. Many of the approaches in the literature can be differentiated according to how MWE processing is timed with respect to underlying use cases. We discuss how such orchestration choices affect the scope of MWE-aware systems. For each of the two MWE processing subtasks and for each of the two use cases, we conclude on open issues and research perspectives

    Unsupervised Classification of Biomedical Abstracts using Lexical Association

    Get PDF

    D6.1: Technologies and Tools for Lexical Acquisition

    Get PDF
    This report describes the technologies and tools to be used for Lexical Acquisition in PANACEA. It includes descriptions of existing technologies and tools which can be built on and improved within PANACEA, as well as of new technologies and tools to be developed and integrated in PANACEA platform. The report also specifies the Lexical Resources to be produced. Four main areas of lexical acquisition are included: Subcategorization frames (SCFs), Selectional Preferences (SPs), Lexical-semantic Classes (LCs), for both nouns and verbs, and Multi-Word Expressions (MWEs)

    Representation and parsing of multiword expressions

    Get PDF
    This book consists of contributions related to the definition, representation and parsing of MWEs. These reflect current trends in the representation and processing of MWEs. They cover various categories of MWEs such as verbal, adverbial and nominal MWEs, various linguistic frameworks (e.g. tree-based and unification-based grammars), various languages including English, French, Modern Greek, Hebrew, Norwegian), and various applications (namely MWE detection, parsing, automatic translation) using both symbolic and statistical approaches

    Current trends

    Get PDF
    Deep parsing is the fundamental process aiming at the representation of the syntactic structure of phrases and sentences. In the traditional methodology this process is based on lexicons and grammars representing roughly properties of words and interactions of words and structures in sentences. Several linguistic frameworks, such as Headdriven Phrase Structure Grammar (HPSG), Lexical Functional Grammar (LFG), Tree Adjoining Grammar (TAG), Combinatory Categorial Grammar (CCG), etc., offer different structures and combining operations for building grammar rules. These already contain mechanisms for expressing properties of Multiword Expressions (MWE), which, however, need improvement in how they account for idiosyncrasies of MWEs on the one hand and their similarities to regular structures on the other hand. This collaborative book constitutes a survey on various attempts at representing and parsing MWEs in the context of linguistic theories and applications

    Designing Statistical Language Learners: Experiments on Noun Compounds

    Full text link
    The goal of this thesis is to advance the exploration of the statistical language learning design space. In pursuit of that goal, the thesis makes two main theoretical contributions: (i) it identifies a new class of designs by specifying an architecture for natural language analysis in which probabilities are given to semantic forms rather than to more superficial linguistic elements; and (ii) it explores the development of a mathematical theory to predict the expected accuracy of statistical language learning systems in terms of the volume of data used to train them. The theoretical work is illustrated by applying statistical language learning designs to the analysis of noun compounds. Both syntactic and semantic analysis of noun compounds are attempted using the proposed architecture. Empirical comparisons demonstrate that the proposed syntactic model is significantly better than those previously suggested, approaching the performance of human judges on the same task, and that the proposed semantic model, the first statistical approach to this problem, exhibits significantly better accuracy than the baseline strategy. These results suggest that the new class of designs identified is a promising one. The experiments also serve to highlight the need for a widely applicable theory of data requirements.Comment: PhD thesis (Macquarie University, Sydney; December 1995), LaTeX source, xii+214 page
    corecore