94 research outputs found

    Semifragile Speech Watermarking Based on Least Significant Bit Replacement of Line Spectral Frequencies

    Get PDF
    There are various techniques for speech watermarking based on modifying the linear prediction coefficients (LPCs); however, the estimated and modified LPCs vary from each other even without attacks. Because line spectral frequency (LSF) has less sensitivity to watermarking than LPC, watermark bits are embedded into the maximum number of LSFs by applying the least significant bit replacement (LSBR) method. To reduce the differences between estimated and modified LPCs, a checking loop is added to minimize the watermark extraction error. Experimental results show that the proposed semifragile speech watermarking method can provide high imperceptibility and that any manipulation of the watermark signal destroys the watermark bits since manipulation changes it to a random stream of bits

    Localization of Copy-Move Forgery in speech signals through watermarking using DCT-QIM

    Get PDF
    Digital speech copyright protection and forgery identification are the prevalent issues in our advancing digital world. In speech forgery, voiced part of the speech signal is copied and pasted to a specific location which alters the meaning of the speech signal. Watermarking can be used to safe guard the copyrights of the owner. To detect copy-move forgeries a transform domain watermarking method is proposed. In the proposed method, watermarking is achieved through Discrete Cosine Transform (DCT) and Quantization Index Modulation (QIM) rule. Hash bits are also inserted in watermarked voice segments to detect Copy-Move Forgery (CMF) in speech signals. Proposed method is evaluated on two databases and achieved good imperceptibility. It exhibits robustness in detecting the watermark and forgeries against signal processing attacks such as resample, low-pass filtering, jittering, compression and cropping. The proposed work contributes for forensics analysis in speech signals. This proposed work also compared with the some of the state-of-art methods

    Multi-factor authentication model based on multipurpose speech watermarking and online speaker recognition

    Get PDF
    In this paper, a Multi-Factor Authentication (MFA) method is developed by a combination of Personal Identification Number (PIN), One Time Password (OTP), and speaker biometric through the speech watermarks. For this reason, a multipurpose digital speech watermarking applied to embed semi-fragile and robust watermarks simultaneously in the speech signal, respectively to provide tamper detection and proof of ownership. Similarly, the blind semi-fragile speech watermarking technique, Discrete Wavelet Packet Transform (DWPT) and Quantization Index Modulation (QIM) are used to embed the watermark in an angle of the wavelet’s sub-bands where more speaker specific information is available. For copyright protection of the speech, a blind and robust speech watermarking are used by applying DWPT and multiplication. Where less speaker specific information is available the robust watermark is embedded through manipulating the amplitude of the wavelet’s sub-bands. Experimental results on TIMIT, MIT, and MOBIO demonstrate that there is a trade-off among recognition performance of speaker recognition systems, robustness, and capacity which are presented by various triangles. Furthermore, threat model and attack analysis are used to evaluate the feasibility of the developed MFA model. Accordingly, the developed MFA model is able to enhance the security of the systems against spoofing and communication attacks while improving the recognition performance via solving problems and overcoming limitations

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Optimization of a Blind Speech Watermarking Technique against Amplitude Scaling

    Get PDF
    This paper presents a gain invariant speech watermarking technique based on quantization of the Lp-norm. In this scheme, first, the original speech signal is divided into different frames. Second, each frame is divided into two vectors based on odd and even indices. Third, quantization index modulation (QIM) is used to embed the watermark bits into the ratio of the Lp-norm between the odd and even indices. Finally, the Lagrange optimization technique is applied to minimize the embedding distortion. By applying a statistical analytical approach, the embedding distortion and error probability are estimated. Experimental results not only confirm the accuracy of the driven statistical analytical approach but also prove the robustness of the proposed technique against common signal processing attacks

    Digital Watermarking for Verification of Perception-based Integrity of Audio Data

    Get PDF
    In certain application fields digital audio recordings contain sensitive content. Examples are historical archival material in public archives that preserve our cultural heritage, or digital evidence in the context of law enforcement and civil proceedings. Because of the powerful capabilities of modern editing tools for multimedia such material is vulnerable to doctoring of the content and forgery of its origin with malicious intent. Also inadvertent data modification and mistaken origin can be caused by human error. Hence, the credibility and provenience in terms of an unadulterated and genuine state of such audio content and the confidence about its origin are critical factors. To address this issue, this PhD thesis proposes a mechanism for verifying the integrity and authenticity of digital sound recordings. It is designed and implemented to be insensitive to common post-processing operations of the audio data that influence the subjective acoustic perception only marginally (if at all). Examples of such operations include lossy compression that maintains a high sound quality of the audio media, or lossless format conversions. It is the objective to avoid de facto false alarms that would be expectedly observable in standard crypto-based authentication protocols in the presence of these legitimate post-processing. For achieving this, a feasible combination of the techniques of digital watermarking and audio-specific hashing is investigated. At first, a suitable secret-key dependent audio hashing algorithm is developed. It incorporates and enhances so-called audio fingerprinting technology from the state of the art in contentbased audio identification. The presented algorithm (denoted as ”rMAC” message authentication code) allows ”perception-based” verification of integrity. This means classifying integrity breaches as such not before they become audible. As another objective, this rMAC is embedded and stored silently inside the audio media by means of audio watermarking technology. This approach allows maintaining the authentication code across the above-mentioned admissible post-processing operations and making it available for integrity verification at a later date. For this, an existent secret-key ependent audio watermarking algorithm is used and enhanced in this thesis work. To some extent, the dependency of the rMAC and of the watermarking processing from a secret key also allows authenticating the origin of a protected audio. To elaborate on this security aspect, this work also estimates the brute-force efforts of an adversary attacking this combined rMAC-watermarking approach. The experimental results show that the proposed method provides a good distinction and classification performance of authentic versus doctored audio content. It also allows the temporal localization of audible data modification within a protected audio file. The experimental evaluation finally provides recommendations about technical configuration settings of the combined watermarking-hashing approach. Beyond the main topic of perception-based data integrity and data authenticity for audio, this PhD work provides new general findings in the fields of audio fingerprinting and digital watermarking. The main contributions of this PhD were published and presented mainly at conferences about multimedia security. These publications were cited by a number of other authors and hence had some impact on their works

    Communication Platform for Evaluation of Transmitted Speech Quality, Journal of Telecommunications and Information Technology, 2011, nr 3

    Get PDF
    A voice communication system designed and implemented is described. The purpose of the presented platform was to enable a series of experiments related to the quality assessment of algorithms used in the coding and transmitting of speech. The system is equipped with tools for recordingsignals at each stage of processing, making it possible to subject them to subjective assessments by listening tests or, objective evaluation employing PESQ or PSQM algorithms. The functionality for the simulation of distortions typical for voice communication over the Internet was implemented, making itpossible to obtain reproducible, quantifiable results. An application of the presented platform for evaluation of acoustic echo canceler algorithm based on watermarking techniques, which was developed earlier is presented as an example of an effective deployment of the described technology

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore