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This paper presents a gain invariant speech watermarking technique based on quantization of the Lp-norm. In this scheme, first,
the original speech signal is divided into different frames. Second, each frame is divided into two vectors based on odd and even
indices.Third, quantization indexmodulation (QIM) is used to embed thewatermark bits into the ratio of the Lp-normbetween the
odd and even indices. Finally, the Lagrange optimization technique is applied to minimize the embedding distortion. By applying a
statistical analytical approach, the embedding distortion and error probability are estimated. Experimental results not only confirm
the accuracy of the driven statistical analytical approach but also prove the robustness of the proposed technique against common
signal processing attacks.

1. Introduction

Hiding a secret message in an object has a long history,
possibly dating back thousands of years. The rapid growth of
computer and communication transmissions has inspired the
idea of digital data hiding. Digital watermarking, as a major
branch of data hiding, has attractedmany researchers [1].The
importance of speech watermarking is gradually increasing
because of significant speech transmission through insecure
communication channels. There are many approaches for
speech watermarking, including spread spectrum (SS), audi-
tory masking, patchwork, transformation, and parametric
modeling [2]. In the SS approach, a pseudorandom sequence
is used to spread the spectrum of the watermark data and add
it to the frequency spectrum of the host signal. However,
auditory masking uses unimportant perceptual components
of the signal to embed the watermark bits. By contrast,
the patchwork approach embeds the watermark data by
manipulating two sets of the signal to determine the differ-
ence between them. The transformation approach embeds
the watermark data into the transformation domains, for

example, discrete cosine transform, discrete wavelet trans-
form (DWT), and discrete Fourier transform (DFT). Finally,
in the parametric modeling approach, the watermark is
embedded bymodifying the coefficients of the autoregressive
(AR) model.

In addition to speech watermarking approaches, four
main embedding strategies are widely applied for watermark-
ing: least significant bit (LSB) replacement, quantization,
addition, and multiplication. Among these strategies, quan-
tization has attracted much attention because of blindness,
robustness, controlled distortion, and payload. For this pur-
pose, a set of quantizers that are associated with various
watermark data are used. However, the quantization strategy
suffers from amplitude scaling. To rectify this problem,
rational dither modulation (RDM) [3] was proposed to
enhance the robustness of quantization index modulation
(QIM) [4, 5]; however, it degraded the imperceptibility of the
watermarked signal. Hence, hyperbolic RDM [6] was pro-
posed to improve the robustness against power law and
gain attacks. Another attempt was made by embedding a
watermark into the angle of the signal, known as angle QIM
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(AQIM) [7]. However, this technique was very sensitive to
additive white Gaussian noise (AWGN). In [8], normalized
cross-correlation between the original signal and a random
sequence was quantized based on dither modulation (known
asNC-DM) to embed thewatermark data. However, applying
the random sequence degraded the security of this technique.
Lastly, other efforts, such as projection quantization [9],
logarithmic quantization indexmodulation (LQIM) [10], and
Lp-norm QIM [11], have been studied for a gain invariant
image watermarking technique.

This paper attempts tomitigate the limitations of previous
research by quantizing the ratio between the Lp-norms of
even and odd indices. After quantization, the Lagrange opti-
mization method is applied to compute the best water-
marked sample thatminimizes the embedding distortion and
improves imperceptibility. By assuming Laplacian and Gaus-
sian distributions for the speech and noise signals, respect-
ively, the embedding distortion and error probability are
driven analytically and validated by performing a simula-
tion. Moreover, experimental results show that the proposed
speech watermarking technique outperforms state-of-the-art
watermarking techniques.

Generally, speech watermarking should preserve the
identity of the speaker, which is important for certain security
applications [12, 13]. To preserve speaker-specific informa-
tion, some investigations have been conducted to embed the
watermark into special frequency subbands that have less
speaker-specific information [5, 14, 15]. Further discussion
can be found in [16].

The remainder of this paper is organized as follows. In
Section 2, the proposed model for the speech watermark-
ing technique is presented. Additionally, the watermark
embedding and extraction processes are described. The per-
formance of the developed watermarking technique is analy-
tically studied in Section 3 and validated by performing a
simulation in Section 4. The experimental results are ex-
plained in Section 5. Finally, the conclusion and future work
are discussed.

2. Proposed Speech Watermarking Technique

In this section, a blind speech watermarking technique is
developed based on quantization of the Lp-norm ratio
between two blocks of even and odd indices. Assume that
S represents an original speech signal that consists of N
samples. Two subsets X and Y are formed with respect to
even and odd indexed terms, respectively, so that both𝑋 and𝑌 have approximately the same energy that causes less
embedding distortion. Moreover, synchronization between
the transmitter and receiver is most efficient in this case. Fig-
ure 1 shows the formation of the subsequences of X and Y
from the odd and even indices of the original signal, res-
pectively.

Then, the Lp-norm of both subsequences X and Y are
computed, respectively, as follows:

𝐿𝑋 = 𝑃√ 2𝑁 × 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝑆2𝑖󵄨󵄨󵄨󵄨𝑃, (1)

𝐿𝑌 = 𝑃√ 2𝑁 × 𝑁∑
𝑖=1

󵄨󵄨󵄨󵄨𝑆2𝑖−1󵄨󵄨󵄨󵄨𝑃. (2)

The ratio (𝑍) between 𝐿𝑋 and LY, given as

𝑍 = 𝐿𝑋𝐿𝑌 , (3)

is quantized to embed the watermark bit. Although embed-
ding the watermark into the ratio of Lp-norms can provide
high robustness against various attacks, imperceptibility can
be seriously degraded.

To resolve this limitation, the variation between the orig-
inal ratio (𝑍) and quantized ratio (𝑍𝑄) should be minimized.
Therefore, the Lagrange optimizationmethod is used tomini-
mize this variation; that is, the Lagrange optimizationmethod
decreases the embedding distortion after quantization to
improve the imperceptibility of the watermarked speech
signal. As a result, the Lagrange optimization problems can
be formulated as follows:

Minimize: 𝐽 (𝑋) = 𝑁/2∑
𝑗=1

(𝑋𝑄𝑗 − 𝑋𝑗)𝑃 ,

Subject to: 𝐶 (𝑌) = 𝑃√ 2𝑁
𝑁/2∑
𝑗=1

(𝑋𝑄𝑗 )𝑃 − 𝑍𝑄 × 𝐿𝑌 = 0.
(4)

To solve this optimization problem, the Lagrange method
should estimate the optimized values of the equation system
as follows:

∇𝐽 (𝑋) − 𝜆∇𝐶 (𝑌) = 0. (5)

These optimized values are simply computed by solving the
following:

𝑋𝑄,opt𝑗 = 𝜆opt × 𝑋𝑗, (6)

𝜆opt = 𝑍𝑄 × 𝐿𝑌𝐿𝑋 . (7)

2.1. Speech Watermarking Algorithm. The details of the pro-
posed embedding and extraction processes are described in
the following algorithms:

Embedding Process
(a) Segment the input speech signal (S) into different

frames (𝑆𝑖) with size N.
(b) Form two subsequences X and Y, each of length𝑁/2,

based on the even and odd indices of 𝑆𝑖, respectively.
(c) Compute the Lp-norms LX and LY of both the X and

Y subsequences, respectively, based on (1) and (2),
respectively.

(d) Apply theQIM technique to embed the watermark bit
into the ratio between the Lp-norms of X and Y (𝑍 =𝐿𝑋/𝐿𝑌) as follows:

𝑍𝑄 = ⌊𝑍 +𝑊𝑖 × Δ2Δ ⌋ × 2Δ +𝑊𝑖 × Δ, 𝑊𝑖 ∈ {0, 1} , (8)
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Figure 1: Formation of two odd and even subsets from the original speech signal.

where Δ represents the quantization steps, 𝑊𝑖 is the
watermark bit, and𝑍𝑄 is the modified ratio of the Lp-
norms between X and Y. Choosing large quantization
steps increases the robustness but results in less
imperceptibility and vice versa.

(e) Apply the Lagrange method to optimize the values of𝑋𝑄2𝑖.
(f) Reposition the even and odd subsequences based on𝑋𝑄2𝑖 and Y, respectively.

(g) Rearrange the watermarked speech signal based on
the modified frames (𝑆𝑖).

Figure 2 shows the block diagram of the proposed
embedding process.

Extraction Process

(a) Segment the input watermarked speech signal (𝑆̂) into
different frames (𝑆𝑖) with size N.

(b) Form two subsequences 𝑋̂ and 𝑌̂, each of length𝑁/2,
based on the even and odd indices of Si, respectively.

(c) Compute the Lp-norms 𝐿𝑋 and 𝐿𝑌 of both 𝑋̂ and𝑌̂ subsequences, respectively, based on (1) and (2),
respectively.

(d) Extract the 𝑘th binary watermark data from the 𝑘th
frame of the watermarked speech signal by selecting
the minimum Euclidean distance (nearest quantiza-
tion step) from the ratio of 𝑍𝑘 = 𝐿𝑋/𝐿𝑌 as follows:

𝑤̂𝑘 = min(√𝑍𝑘2 + 𝑄0 (𝑍𝑘)2, √𝑍𝑘2 + 𝑄1 (𝑍𝑘)2) , (9)

where 𝑄𝑏𝑘 is the quantization function while meeting
the requirements of watermark bits 𝑏𝑘 = {0, 1}.

Figure 3 shows the block diagram of the proposed
extraction process.

3. Statistical Analysis of
the Proposed Technique

Generally, Laplacian distribution is the best distribution
approach for modeling speech signals within the frame range
of 5–50ms [17, 18]. Laplacian distribution is expressed as

𝑓 (𝑥) = 𝑏2𝑒(−𝑏|𝑥−𝜇|), 𝑏 = 𝐿∑𝐿𝑖=1 󵄨󵄨󵄨󵄨𝑥𝑖 − 𝜇󵄨󵄨󵄨󵄨 , (10)

where 𝐿 is the sample size and 𝜇 is the mean of the random
variables. If the subsequences of 𝑋 and 𝑌 are considered as
independent, identically distributed (i.i.d) variables, then the
distribution of each of them can be assumed to be Laplacian
distributions𝑋 = ∁L(𝜇𝑋, 2𝑏2𝑋) and𝑌 = ∁L(𝜇𝑌, 2𝑏2𝑌), respec-
tively. Based on (3), the ratio (𝑍) between X and Y should
be computed. However, the ratio between two Laplacian dis-
tributions cannot be computed exactly because the mean and
variance are not actually finite in either theGaussian or Lapla-
cian case. The problem arises because the denominator has
nonzero density in the neighborhood of zero. If the denomi-
nator is bounded away from zero (immediately it no longer
has the ratio of two Laplacian distributions or two normals),
then a Taylor expansion should converge to estimate the
ratio between two Laplacian distributions. According to
Appendix A, the parameters of the ratio can be derived as fol-
lows:

𝜇𝑍 = 𝜇𝑋𝜇𝑌 (1 + 2𝑏2𝑌𝜇2𝑌 ) , (11)

𝜎2𝑧 = 𝜇2𝑋𝜇2𝑌 (
2𝑏2𝑌𝜇2𝑌 − 4𝑏4𝑌𝜇4𝑌 ) + 2𝑏2𝑋𝜇2𝑌 . (12)

To estimate the embedding distortion, quantization noise (Δ)
should be considered between the original and watermarked
speech signals as follows:

𝑆𝑖 − 𝑆𝑖 = (𝑋̂2𝑖 − 𝑌̂2𝑖−1) − (𝑋2𝑖 − 𝑌2𝑖−1) . (13)

As in (4) to (6), 𝑌̂2𝑖−1 = 𝑌2𝑖−1; thus, (12) can be expressed as

𝑆𝑖 − 𝑆𝑖 = 𝜆opt × 𝑋2𝑖 − 𝑋2𝑖 = 𝑋2𝑖 × (𝜆opt − 1) . (14)

If 𝑍𝑄𝑖 = (𝐿𝑋 + 𝜀)/𝐿𝑌, then 𝜆opt can be expressed as

𝜆opt = (𝐿𝑋 + 𝜀𝐿𝑌 ) × 𝐿𝑌𝐿𝑋 = (1 + 𝜀𝐿𝑋) . (15)
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Thus, (13) can be approximately estimated by

𝑆𝑖 − 𝑆𝑖 ≈ (1 + 𝜀𝐿𝑋) × 𝑋2𝑖, (16)

Therefore, the expected values of (13) can be estimated as

𝐸 [󵄩󵄩󵄩󵄩󵄩𝑆̂ − 𝑆󵄩󵄩󵄩󵄩󵄩2] ≅ 𝐸((1 + 𝜀𝐿𝑋)
2)𝐸 (𝑋22𝑖)

= [𝐸( 1𝐿2𝑋)𝐸 ((𝜀)2) + 𝐸 (𝜀) 𝐸( 2𝐿𝑋) + 1]𝐸 (𝑋22𝑖) .
(17)

If quantization noise (𝜀) is considered as a uniform distri-
bution in [−Δ/2, Δ/2] then 𝐸(𝜀) = 0 and 𝐸((𝜀)2) = Δ2/48.
Additionally, as the mean value of the speech signal is con-
sidered to be zero, then the zero mean Laplacian distribution
is used to model the speech signal as 𝐸(𝑋2𝑖) = 0. As a result,(𝑋2𝑖 ) = 2𝑏2𝑋𝑖 . To model 𝐸(1/𝐿2𝑋), the absolute moment of the
Laplacian distribution should be estimated using Appendix B
as follows:

𝐸 (|𝑋|𝑃) = (𝑒𝜇/𝑏𝑏𝑛2 ) [(−1)𝑛 ⋅ 𝐼𝑛 + 𝑛!] , (18)

where 𝐼𝑛 = 𝑛𝐼𝑛−1 and 𝐼𝑛 = ∫0
−∞

𝑡𝑛𝑒−𝑡𝑑𝑡. Thus, we can derive
the mean and variance for the 𝑃th absolute moment of the
Laplacian distribution as

𝐿𝑃𝑋 = 𝑁/2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃 ∼ ∁L(𝜇𝑋𝑃, 2 (𝜇𝑋(2𝑃) − 𝜇2𝑋𝑃)𝑁 ) . (19)

Now, based on (1) and (19), we can compute 𝐸(1/𝐿2𝑋) =
𝐸(1/( 𝑃√𝐿𝑃𝑋)2) = 𝜇𝑋(2/𝑃). Therefore, the signal-to-watermark
ratio (SWR) can be estimated as

SWR = 𝐸 [‖𝑆‖2]
𝐸 [󵄩󵄩󵄩󵄩󵄩𝑆̂ − 𝑆󵄩󵄩󵄩󵄩󵄩2]

≅ 2𝑏2𝑋 + 2𝑏2𝑌((Δ2/48) × 𝜇𝑋(2/𝑃) + 1) × (2𝑏2𝑋) .
(20)

Because both𝑋 and𝑌 sets have been selected from the neigh-
boring samples, it can be assumed that 2𝑏2𝑋 ≅ 2𝑏2𝑌. As a result,
(20) can be expressed based on the quantization step as

Δ = √−2 (1 + 12 × SWR)
SWR × 𝜇𝑋(2/𝑃) . (21)

To model the error probability, it is assumed that the water-
marked speech signal passes through anAWGNchannel with
zero mean Gaussian noise N(0, 𝜎2𝑛). Therefore, (3) must be
rewritten as

𝑍̂ = ∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨󵄨𝑋𝑗 + 𝑁𝑋𝑗 󵄨󵄨󵄨󵄨󵄨󵄨𝑃∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨󵄨𝑌𝑗 + 𝑁𝑌𝑗 󵄨󵄨󵄨󵄨󵄨󵄨𝑃
, (22)

where 𝑁𝑌𝑗 and 𝑁𝑋𝑗 correspond to the odd and even com-
ponents of the AWGN, respectively. Because the term
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∑𝑁/2𝑗=1 |𝑋𝑗|𝑃 is a known parameter, it is not possible to estimate𝑍̂ using a chi-square with 𝑁 degrees of freedom, 𝜘2(𝑁). To compute the distribution of 𝑍̂, it should be decomposed and
estimated as

𝑍̂ = ∑𝑁/2𝑗=1 (󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃 + 𝑃 󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃−1𝑁𝑋𝑗 + (𝑃 (𝑃 − 1) /2) 󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃−2𝑁2𝑋𝑗 + ⋅ ⋅ ⋅ + 𝑁𝑃𝑋𝑗)∑𝑁/2𝑗=1 (󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃 + 𝑃 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃−1𝑁𝑌𝑗 + (𝑃 (𝑃 − 1) /2) 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃−2𝑁2𝑌𝑗 + ⋅ ⋅ ⋅ + 𝑁𝑃𝑌𝑗) . (23)

Equation (23) can be expressed as

𝑍̂ ≈ Original 𝑍+ Noise⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝛾1 + 𝛾2 + 𝛾3, (24)

where each part of 𝑍̂ is estimated as follows:

Original 𝑍 = ∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃 ,

𝛾1 = ∑𝑁/2𝑗=1 𝑃 󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃−1𝑁𝑋𝑗∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃 ,

𝛾2 = −∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃 × ∑𝑁/2𝑗=1 𝑃 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃−1𝑁𝑌𝑗∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃 ,

𝛾3 = ∑𝑁/2𝑗=1 𝑃 󵄨󵄨󵄨󵄨󵄨𝑋𝑗󵄨󵄨󵄨󵄨󵄨𝑃−1𝑁𝑋𝑗∑𝑁/2𝑗=1 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃
× ∑𝑁/2𝑗=1 𝑃 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃−1𝑁𝑌𝑗∑𝑁/2𝑗=1 𝑃 󵄨󵄨󵄨󵄨󵄨𝑌𝑗󵄨󵄨󵄨󵄨󵄨𝑃−1𝑁𝑌𝑗 .

(25)

To estimate the probability of error, the noise term can be
analyzed because it makes the original𝑍 into a wrong region.
Therefore, the distribution of each term of (24) can be esti-
mated by the central limit theorem (CLT) because of the
large number of samples in each block. Regardless of the
type of original speech signal distribution and because of
the independence between the signal and noise samples, the
mean and variance of the noise can be computed as

𝜇Noise = 𝜇𝛾1 + 𝜇𝛾2 + 𝜇𝛾3,
𝜎2Noise = 𝜎2𝛾1 + 𝜎2𝛾2 + 𝜎2𝛾3. (26)

By assuming equal probabilities for both zero and one bit
of the watermark data, the probability of error for a fixed
quantization step (Δ) can be estimated as

𝑃𝑒 = ∞∑
𝑖=1

12 Pr {𝑇(𝑖−1)/2 < 𝑍𝑃 < 𝑇(𝑖+1)/2}
× ∞∑
𝑗=−⌊𝑖/2⌋

Pr {𝑉2𝑗+𝑖 < 𝑍̂𝑃 < 𝑉2𝑗+𝑖+1} .
(27)

A close-form solution for (27) is computed as

𝑃𝑒 = ∞∑
𝑖=1

(𝑄(𝑇𝑃(𝑖−1)/2−𝜇𝑍𝜎𝑍 ) − 𝑄(𝑇𝑃(𝑖+1)/2−𝜇𝑍𝜎𝑍 ))
× ∞∑
𝑗=−⌊𝑖/2⌋

(𝑄(𝑉𝑃(𝑖+2𝑗)/2−𝜇
𝑍̂
𝑃𝜎

𝑍̂
𝑃

)
− 𝑄(𝑉𝑃(𝑖+2𝑗+1)/2−𝜇

𝑍̂
𝑃𝜎

𝑍̂
𝑃

)) ,
(28)

where 𝑄(⋅) is the complementary error function defined as𝑄(𝑥) = (1/√2𝜋) ∫∞
𝑥

𝑒−𝑢2/2𝑑𝑢, 𝑇𝑖 = 𝑖Δ, 𝑉𝑖 = (𝑇𝑖/2 + 𝑇(𝑖+1)/2)/2, and 𝜇𝑍 and 𝜎𝑍 can be computed as in (11) and (12),
respectively.

4. Discussion on the Experimental Results

To validate the performance of the developed watermark-
ing technique, a simulation was performed on the TIMIT
database to verify the robustness, imperceptibility, and capac-
ity of the technique. The TIMIT database included 630
speakers (438 males and 192 females) with sampling fre-
quency 16 KHz [19]. Each speaker pronounced 10 sentences,
which are contained in 6,300 sentences. For the experimental
results, the average results of 630 speech signals with duration
1 s to 3 s from 630 speakers were used.

Figure 4 shows the bit error rate (BER)with respect to dif-
ferent 𝑃 for various frame lengths underWatermark to Noise
Ratio (WNR) = 40 dB. In this figure, each curve is plotted
separately in order to appear the changes. As can be observed,
the frame size was positively correlated with the BER.When-
ever the frame size decreased, the BER increased. Addition-
ally, it seems that 𝑃 was not highly correlated with the BER
for 𝑃 values greater than two. Only a small fluctuation can be
observed for the BER when 𝑃 changed.

Figure 5 shows the BER with respect to different 𝑃 for
various quantization steps. As expected, whenever the quan-
tization step increased, the BER decreased. Furthermore, the
variation of 𝑃 did not seriously change the BER. It must
be mentioned that because of perfect watermark detection
under clean conditions, a small AWGN was induced on the
watermarked signals for the experiments shown in Figures 4
and 5.

Figure 6 shows the variation of the signal-to-noise ratio
(SNR) with respect to different 𝑃 values for different frame
lengths. There was not a significant difference in the SNR
when the frame size increased. As can be observed, whenever
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Figure 4: (a) BER versus Lp-norms for different frame lengths under WNR = 40 dB (b–f) each curve separately.

the frame size increased, the energy level between the two
sets of 𝐿𝑋 and 𝐿𝑌 increased. Consequently, the ratio between
them increased, which caused a lower SNR. Additionally, it
seems that changing𝑃was not highly correlatedwith the SNR
for different frame lengths.

Figure 7 illustrates different SNRswith respect to different𝑃 for various quantization steps. As observed, 𝑃 did not
highly affect the SNR. However, the quantization step highly
affected the SNR. As the quantization step increased, the SNR
decreased.
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Figure 5: BER versus Lp-norms for different quantization steps under WNR = 40 dB.
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Figure 6: SNR versus Lp-norms for different frame lengths.

To compute the payload of the proposed watermark, a
memoryless binary symmetric channel (BSC) (𝐶BSC) defined
as

𝐶BSC = 𝑅 × [1 + 𝐻 (𝑃𝑒)] , (29)

where

𝐻(𝑃𝑒) = 𝑃𝑒 × log(𝑃𝑒)2 + (1 − 𝑃𝑒) × log(1−𝑃𝑒)2 , (30)

was applied to estimate the capacity of the channel with
bitrate (𝑅) for error-free watermark transmission [20].

Because the sampling rate of the TIMIT was 16KHz, 𝑅
was assumed to be 64Kbps (8 KHz for speech bandwidth ×
8 bits per sample = 64Kbps) for a telephony channel and𝑃𝑒 was assumed to be equal to the BER in the watermark
detection process. Figure 8 shows the amount of the BSC for
different WNRs for various quantization steps. As observed,
the capacity increased whenever the WNR increased. This is
because the watermark was extracted with a minimum BER
when the WNR increased. Moreover, it can be inferred that
the amount of the BSC increased while the quantization step

Different quantization rate
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Figure 7: SNR versus Lp-norms for various quantization steps.

increased because the watermark was embedded with high
intensity when the quantization step increased. As observed,
the BSC capacity for fewer quantization steps (Δ ≤ 0.25) was
approximately zero under a high noisy channel.

Figure 9 shows the variation of the BSC capacity with
respect to different WNRs for different frame lengths. As
observed, it seems that, under serious noise, the frame size
was not a significant factor for the BSC capacity. Despite this,
the frame size was likely to be important whenever theWNR
increased.Thus, for a largeWNR, it is obvious that whenever
the frame size increased, the BER in the watermark detection
process decreased, which caused an improvement in the BSC
capacity.

To demonstrate the efficiency and performance of the
proposed speech watermarking technique, the robustness,
capacity, and inaudibility of the proposed technique must be
compared with other state-of-the-art speech watermarking
techniques.

Table 1 describes the benchmark for simulating the results
for the robustness test. Many of these attacks are based on the
StirMark Benchmark for Audio (SMBA) [24].
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Table 1: Benchmark for speech watermarking.

Attack type Attack name Description Parameter(s) Default
value(s)

Additive Noise

AddBrumm
It adds buzz or low frequency sinus
tone to the watermarked signal to

simulate the impact of a power supply
⟨STRENGTH⟩ ⟨FREQUENCY⟩ 2500 : 55 to

3000 : 75 A

AddDynNoise It adds a dynamic white noise to the
watermarked signal ⟨STRENGTH⟩ 20 to 40 B

AddFFTNoise
It adds white noise to the

watermarked signal in the frequency
domain

⟨FFTSIZE⟩ ⟨STRENGTH⟩ 256 : 1000 to
1024 : 3000 C

AddNoise
A white Gaussian noise is

contaminated the watermarked signal
to simulate ambient distortion

⟨STRENGTH⟩ 35 dB level to
5 dB D

AddSinus It adds a sinus signal to the
watermarked signal ⟨AMPLITUDE⟩ ⟨FREQUENCY⟩ 120 : 3000 to

150 : 3500 E

Conversion

Resampling

The sampling rate of the watermarked
signal is converted to⟨SAMPLERATE1⟩ and then is

reconverted to ⟨SAMPLERATE2⟩
⟨SAMPLERATE1⟩ ⟨SAMPLERATE2⟩ 4KHz : 16 KHz

to
8KHz : 16 KHz

F

Requantization

The sample of the watermarked signal
is quantized to ⟨QUANTIZATION1⟩

and then is requantized to⟨QUANTIZATION2⟩
⟨QUANTIZATION1⟩ ⟨QUANTIZATION2⟩ 8 bits and 16

bits G

Invert
It inverts all samples in the

watermarked signal, like a 180 degree
phase shift

NO PARAMETER REQUIRED None H

Ambience Echo
An echo with a delay ⟨DELAY⟩ and
decay ⟨DECAY⟩ is added to the

watermarked signal
⟨DELAY⟩ ⟨DECAY⟩ 20ms and 10%

to 100ms and
50%

I

Sample
permutations

Cut samples
⟨REMOVENUMBER⟩ samples are

removed from the watermarked signal
from every ⟨REMOVEDIST⟩ period ⟨REMOVEDIST⟩ ⟨REMOVENUMBER⟩ 1 and 1000 to 7

and 1000 J

Copy samples
Some of the samples of the

watermarked signal are copied
between the samples values

⟨PERIOD⟩ ⟨COPYDIST⟩ ⟨COPYCOUNT⟩ 1000 : 100 : 30
to

1000 : 200 : 60
K

LSB Zero Set all samples of the watermarked
signal to zero NO PARAMETER REQUIRED None L

Smooth
The new sample value depends on the

samples before and after the
modifying point

NO PARAMETER REQUIRED None M

Stat1 It averages the sample with its next
neighbors NO PARAMETER REQUIRED None N

Dynamics
Amplify

The amplitude of the watermarked
signal is increased up to ⟨FACTOR1⟩

and is decreased down to⟨FACTOR2⟩, respectively
⟨FACTOR1⟩ ⟨FACTOR2⟩ 150% and 75%

200% and 50% O

Denoising The watermarked signal is denoised
by ⟨FACTOR⟩ ⟨FACTOR⟩. −80 dB to−60 dB P

Filters

Low Pass Filter
(LPF)

The watermarked signal is filtered by
an elliptic LPF with cutoff frequency

of ⟨FREQUENCY⟩ ⟨FREQUENCY⟩ 5KHz to
4KHz Q

Band Pass
Filter (BPF)

The watermarked signal is filtered by
an elliptic filter with bandwidth from⟨FREQUENCY1⟩ to⟨FREQUENCY2⟩ to simulate a

narrowband telephony channel

⟨FREQUENCY1⟩ ⟨FREQUENCY2⟩
500Hz &
4000Hz to
300Hz &
3400Hz

R

High Pass
Filter (HPF)

The watermarked signal is filtered by
an elliptic HPF with cutoff frequency

of ⟨FREQUENCY⟩ ⟨FREQUENCY⟩ 500Hz to
800Hz S



Security and Communication Networks 9

Table 1: Continued.

Attack type Attack name Description Parameter(s) Default
value(s)

Time stretch
and pitch shift

Pitch scale
The pitch of the watermarked signal is
nonlinearly scaled without changing

the time
⟨SCALEFACTOR⟩ 1.05 to 1 : 10 T

Time stretch The time of the watermarked signal is
nonlinearly stretched ⟨TEMPOFACTOR⟩ 1.05 to 1.10 U

Compression

CELP coding

The watermarked signal is codded
with rate of ⟨BITRATE⟩ by CELP
codecs and then is decoded to

original one

⟨BITRATE⟩ 16 Kbps to
9.6 kbps V

MP3
compression

The watermarked signal is
compressed by MP3 with different

rate ⟨BITRATE⟩ ⟨BITRATE⟩ 128 to 32 W

G.711 The watermarked signal is codded by
standard 64 kbps, A/𝜇-law PCM NO PARAMETER REQUIRED None X
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Figure 8: Variation of the BSC capacity with respect to different
WNRs for different quantization steps.

Table 2 compares the BER with state-of-the-art speech
watermarking techniques. We implemented all the tech-
niques and tested them for the entire TIMIT corpus under
different attacks. As can be observed, the proposed speech
watermarking technique has a lower BER overall compared
with other techniques.

The perceptual quality of the watermarked signal is
critical for the evaluation of the proposed watermarked tech-
nique, which can be measured based on the mean opinion
score (MOS) (as proposed by the International Telecommu-
nicationsUnion (ITU-T) [23]) and SNR.TheMOSuses a sub-
jective evaluation technique to score the watermarked signal,
which is presented in Table 3. In theMOS evaluationmethod,
10 people were asked to listen blindly to the original and
watermarked signals. Then they reported the dissimilarities
between the quality of the original and watermarked speech
signals.The average of these reports were computed for MOS
music and MOS speech and presented in Table 4.
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Figure 9: Variation of the BSC capacity with respect to different
WNRs for different frame lengths.

An objective evaluation technique, such as SWR and
SNR, attempts to quantify this amount based on the following
formula:

SNR = 10 × log10
∑𝑛 𝑆2∑𝑛 (𝑆̂ − 𝑆)2 , (31)

where 𝑆 and 𝑆̂ are the original and watermarked signals,
respectively.

Table 4 presents a comparison of the proposed technique
and other techniques in terms of imperceptibility and capac-
ity. Based on the results, it seems that the proposed speech
watermarking technique outperformed the other techniques
in terms of capacity and imperceptibility. Although the SNR
for formant tuning [21] is higher than the proposed tech-
nique, the capacity and robustness of the proposed technique
are greater than those for formant tuning [21] and Analysis-
by-Synthesis [22].
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Table 2: Comparison with the robustness of different speech watermarking techniques in terms of BER (%).

Attack The proposed method DWPT+ multiplication [14] Formant tuning [21] Analysis-by-Synthesis [22]
No attack 0.00 0.00 0.04 0.06
A 1.91–4.23 2.09–5.43 3.65–6.45 7.96–9.65
B 9.65–21.77 10.45–22.32 12.76–24.45 16.23–25.23
C 10.13–20.43 12.43–21.32 14.23–23.54 17.43–26.32
D 10.53–19.23 10.33–18.93 11.63–23.23 15.33–25.98
E 0.32–2.02 0.763–1.14 1.23–2.32 2.98–4.32
F 13.54–17.23 14.32–17.65 26.23–37.83 29.45–33.06
G 3.23 2.65 19.32 23.87
H 0.23 0.00 9.43 12.45
I 1.34–4.65 2.34–5.11 4.65–10.43 8.23–16.43
J 1.23–2.54 1.32–4.67 6.54–10.54 11.54–18.87
K 1.32–3.16 1.78–4.23 7.51–10.34 11.49–19.43
L 0.92 1.98 1.50 4.04
M 3.12 5.76 10.34 21.68
N 4.10 4.23 6.65 9.54
O 1.21–2.54 0.00–1.43 5.97–8.76 8.98–15.54
P 1.00–3.54 2.43–5.43 9.65–14.56 19.65–26.45
Q 21.43–29.43 24.54–31.43 40.54–44.43 50.09–50.32
R 4.84–9.54 5.32–10.32 16.65–29.44 20.54–36.98
S 13.32–18.54 15.00–19.43 20.43–29.23 28.54–30.76
T 1.32–2.32 2.01–3.13 7.43–10.43 9.65–15.32
U 0.15–0.23 0.18–0.43 1.45–3.21 4.32–5.43
V 6.54–9.54 11.43–14.54 1.32–4.21 2.32–4.32
W 10.43–20.34 11.43–25.34 36.32–45.65 33.43–50.32
X 23.11 24.17 48.32 50.65
Average 5.80–9.04 6.68–10.04 12.95–17.39 16.82–21.48

Table 3: MOS grades [23].

MOS Quality Quality scale Effort required to understand meaning scale(5) Excellent Imperceptible No effort required(4) Good Perceptible, but not annoying No appreciable effort required(3) Fair Slightly annoying Moderate effort required(2) Poor Annoying Considerable effort required(1) Bad Very annoying No meaning was understood

As observed in Table 4, each entity was bounded between
two values that related a particular value of imperceptibility
(SNR andMOS) to a particular capacity. Consequently, when
the capacity increased, imperceptibility decreased.The trade-
off value is completely application dependent and should be
determined by the user.

5. Performance Analysis

Generally, two types of errors, false positive probability (FPP)
and false negative probability (FNP),must always be analyzed
to validate the security of a watermarking system [25]. FPP
is defined when an unwatermarked speech signal is declared
as a watermarked speech signal by the watermark extractor.
Similarly, FNP is defined when the watermarked speech
signal is declared as an unwatermarked speech signal by the

watermark extractor. By assuming that the watermark bits are
independent random variables, both the FPP and FNP can be
formulated based on Bernoulli trials, which is expressed as
follows:

𝑃𝑒 = 𝑇−1∑
𝑖=0

(𝑁𝑖 )𝑃𝑖FN (1 − 𝑃FN)(𝑁−𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
FNP

+ 𝑁∑
𝑖=𝑇

(𝑁𝑖 )𝑃𝑖FP (1 − 𝑃FP)(𝑁−𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
FPP

,
(32)

where𝑁 is the total number ofwatermark bits; 𝑖 is the number
of matching bits; (𝑁𝑖 ) is a binomial coefficient; 𝑃FP is the
probability of a false positive, which is assumed to be 0.5;
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Table 4: Comparison of various watermarking techniques in terms of payload and imperceptibility.

Technique Quality scale Effort required to understand meaning scale SNR (dB) Theoretical payload (bps)
Analysis-by-Synthesis [22] 4.01–3.80 4.76–3.95 28.08–25.32 33.33–50
Formant tuning [21] 4.98–4.32 5.00–4.55 30.32–27.54 33.33–50
DWPT+ multiplication [14] 4.32–3.10 5.00–3.55 37.21–20.08 31.25–125
The proposed method 4.87–3.65 5.00–4.05 42.11–20.71 40–400
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Figure 10: FPP with respect to various total number of watermark
bits for different BER.

𝑃FN is the probability of a false negative, which is assumed
to be 0.0919 (as in Table 2); and 𝑇 is the threshold, which is
computed as follows:

𝑇 = ⌈(1 − BER) × 𝑁⌉ . (33)

Figure 10 shows the FPP with respect to various total
number of watermark bits for different BER. For better
visualization, each line was shifted by adding a constant.
As observed, the FPP was close to zero for 𝑁 greater than
50. There was a small fluctuation for 𝑁 less than 50, which
depended on the BER.

Figure 11 shows the FNP with respect to various total
number of watermark bits for different BER. For better
visualization, each line was shifted by adding a constant. As
can be observed, the FNPwas close to zero for𝑁 greater than
100. Additionally, whenever the BER decreased, the fluctua-
tion increased.

6. Conclusion and Future Work

In this paper, a gain invariant speechwatermarking technique
was developed using the Lagrange optimization method. For
this purpose, samples of the signal were separated based on
odd and even indices. Then the ratio between the Lp-norms
was quantized using the QIM method. Finally, the Lagrange
method was used to estimate the optimized values. In a sim-
ilar manner, the extraction process detected the watermark
data blindly by finding the nearest quantization step.
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Figure 11: FNP with respect to various total number of watermark
bits for different BER.

By assuming Laplacian distribution for the speech signal
and Gaussian distribution for the noise signal, the probability
of error and watermarking distortion were modeled based on
a statistical analysis of the proposed technique. Additionally,
experimental results not only proved that the developed
watermarking technique was highly robust against different
attacks, such compression, AWGN, filtering, and resampling,
but also demonstrated the validity of the analytical model.
For future work, an investigation on synchronization and
adaptive quantization techniques might contribute to the
proposed watermarking technique.

Appendix

A. Estimation of the Mean and Variance of
the Ratio of Two Laplacian Variables Based
on Taylor Series

In [26], the bivariate second-order Taylor expansion for𝑓(𝑥, 𝑦) around 𝜃 = (𝐸(𝑥), 𝐸(𝑦)) is expressed as follows:

𝑓 (𝑥, 𝑦) = 𝑓 (𝜃) + 𝑓󸀠𝑥 (𝜃) (𝑥 − 𝜃𝑥) + 𝑓󸀠𝑦 (𝜃) (𝑦 − 𝜃𝑦)
+ 12 {𝑓󸀠󸀠𝑥𝑥 (𝜃) (𝑥 − 𝜃𝑥)2
+ 2𝑓󸀠󸀠𝑥𝑦 (𝜃) (𝑥 − 𝜃𝑥) (𝑦 − 𝜃𝑦) + 𝑓󸀠󸀠𝑦𝑦 (𝜃) (𝑦 − 𝜃𝑥)2}
+ remainder.

(A.1)
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Therefore, 𝐸[𝑓(𝑋, 𝑌)] can be expanded about 𝜃 = (𝐸(𝑋),𝐸(𝑌)) to compute the approximate values as follows:

𝐸 (𝑓 (𝑋, 𝑌)) = 𝑓 (𝜃) + 12 {𝑓󸀠󸀠𝑥𝑥 (𝜃) var (𝑋)
+ 2𝑓󸀠󸀠𝑥𝑦 (𝜃) cov (𝑋, 𝑌) + 𝑓󸀠󸀠𝑦𝑦 (𝜃) var (𝑌)}
+ 𝑂 (𝑛−1) .

(A.2)

For 𝑓 = 𝑅/𝑆, 𝑓󸀠󸀠𝑅𝑅 = 0, 𝑓󸀠󸀠𝑅𝑆 = −𝑆−2, and 𝑓󸀠󸀠𝑆𝑆 = 2𝑅/𝑆3. Then,
the mean and variance of the ratio between 𝑅 and 𝑆(𝐸(𝑅/𝑆)),
respectively, can be estimated as follows:

𝐸(𝑅𝑆 ) ≡ 𝐸 (𝑓 (𝑅, 𝑆))
≈ 𝐸 (𝑅)𝐸 (𝑆) − cov (𝑅, 𝑆)𝐸 (𝑆)2 + var (𝑆) 𝐸 (𝑅)𝐸 (𝑆)3
= 𝜇𝑅𝜇𝑆 (1 + 𝜎2𝑆𝜇2𝑆) ,

var(𝑅𝑆 ) ≈ 1𝐸2𝑆 var (𝑅) + 2−𝐸𝑅𝐸3𝑆 cov (𝑅, 𝑆)
+ 𝐸2𝑅𝐸4𝑆 var (𝑆)

= 𝜇2𝑅𝜇2𝑆 [
𝜎2𝑅𝜇2𝑅 − 2cov (𝑅, 𝑆)𝜇𝑅𝜇𝑆 + 𝜎2𝑆𝜇2𝑆 ]

= 𝜇2𝑅𝜇2𝑆 (
𝜎2𝑆𝜇2𝑆 −

𝜎4𝑆𝜇4𝑆) + 𝜎2𝑅𝜇2𝑆 .

(A.3)

B. Compute the Absolute Moment of
the Laplacian Distribution

Themoment of Laplacian distribution expressed as follows:

𝐸 (|𝑋|𝑛) = ∫∞
−∞

|𝑋|𝑛 ⋅ 12𝑏 ⋅ 𝑒−((𝑋−𝜇)/𝑏)𝑑𝑥
= 12𝑏 ∫∞

−∞
|𝑋|𝑛 ⋅ 𝑒−((𝑋−𝜇)/𝑏)𝑑𝑥. (B.1)

There are two cases,𝑋 ≥ 𝜇 and𝑋 < 𝜇:
𝐸 (|𝑋|𝑛)

= {{{{{{{
If 𝑋 ≥ 𝜇 then 12𝑏 ∫∞

−∞
|𝑋|𝑛 ⋅ 𝑒−((𝑋−𝜇)/𝑏)𝑑𝑥

If 𝑋 < 𝜇 then 12𝑏 ∫∞
−∞

|𝑋|𝑛 ⋅ 𝑒−((𝜇−𝑋)/𝑏)𝑑𝑥.
(B.2)

For first case, when𝑋 ≥ 𝜇,
𝐸 (|𝑋|𝑛) = 12𝑏 [∫0

−∞
−𝑋𝑛 ⋅ 𝑒−((𝑋−𝜇)/𝑏)𝑑𝑥

+ ∫∞
0

𝑋𝑛 ⋅ 𝑒−((𝑋−𝜇)/𝑏)𝑑𝑥]

= 𝑒𝜇/𝑏2𝑏 [[[[
(−1)𝑛 ∫0

−∞
𝑋𝑛𝑒𝑋/𝑏𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼𝑛

+ ∫∞
0

𝑋𝑛𝑒−𝑋/𝑏𝑑𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼

]]]]
.
(B.3)

If 𝑡 = −𝑋/𝑏, then 𝐼 can be expressed as

𝐼 = 𝑏𝑛+1 ∫∞
0

𝑡𝑛𝑒−𝑡𝑑𝑡 = 𝑏𝑛+1 ⋅ 𝑛! = 𝑛!, (B.4)

𝐼𝑛 can also be expressed as

𝐼𝑛 = ∫0
−∞

𝑋𝑛𝑒𝑋/𝑏𝑑𝑥 = ∫0
−∞

(𝑏 ⋅ 𝑡)𝑛 𝑒−𝑡 ⋅ 𝑏 ⋅ 𝑑𝑡
= 𝑏𝑛+1 ∫0

−∞
𝑡𝑛𝑒−𝑡𝑑𝑡

= 𝑡𝑛𝑒−𝑡−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
0

−∞

− ∫0
−∞

𝑛 ⋅ 𝑡𝑛−1𝑒−𝑡−1 𝑑𝑡 = 0 + 𝑛𝐼𝑛−1.
(B.5)

Substituting (B.4) and (B.5) into (B.3), the absolute moment
of the Laplacian distribution can be computed based on

𝐸 (|𝑋|𝑛) = (𝑒𝜇/𝑏𝑏𝑛2 ) [(−1)𝑛 ⋅ 𝐼𝑛 + 𝑛!] . (B.6)
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