6,217 research outputs found

    A general conservative extension theorem in process algebras with inequalities

    Get PDF
    We prove a general conservative extension theorem for transition system based process theories with easy-to-check and reasonable conditions. The core of this result is another general theorem which gives sufficient conditions for a system of operational rules and an extension of it in order to ensure conservativity, that is, provable transitions from an original term in the extension are the same as in the original system. As a simple corollary of the conservative extension theorem we prove a completeness theorem. We also prove a general theorem giving sufficient conditions to reduce the question of ground confluence modulo some equations for a large term rewriting system associated with an equational process theory to a small term rewriting system under the condition that the large system is a conservative extension of the small one. We provide many applications to show that our results are useful. The applications include (but are not limited to) various real and discrete time settings in ACP, ATP, and CCS and the notions projection, renaming, stage operator, priority, recursion, the silent step, autonomous actions, the empty process, divergence, etc

    Refinement Types as Higher Order Dependency Pairs

    Get PDF
    Refinement types are a well-studied manner of performing in-depth analysis on functional programs. The dependency pair method is a very powerful method used to prove termination of rewrite systems; however its extension to higher order rewrite systems is still the object of active research. We observe that a variant of refinement types allow us to express a form of higher-order dependency pair criterion that only uses information at the type level, and we prove the correctness of this criterion

    Inductive-data-type Systems

    Get PDF
    In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed lambda-calculus enriched by pattern-matching definitions following a certain format, called the "General Schema", which generalizes the usual recursor definitions for natural numbers and similar "basic inductive types". This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called "strictly positive", and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.Comment: Theoretical Computer Science (2002

    Program transformations using temporal logic side conditions

    Get PDF
    This paper describes an approach to program optimisation based on transformations, where temporal logic is used to specify side conditions, and strategies are created which expand the repertoire of transformations and provide a suitable level of abstraction. We demonstrate the power of this approach by developing a set of optimisations using our transformation language and showing how the transformations can be converted into a form which makes it easier to apply them, while maintaining trust in the resulting optimising steps. The approach is illustrated through a transformational case study where we apply several optimisations to a small program
    • ā€¦
    corecore