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Refinement Types as Higher-Order Dependency

Pairs

Cody Roux

INRIA-Nancy Grand Est

Abstract. Refinement types are a well-studied manner of performing
in-depth analysis on functional programs. The dependency pair method
is a very powerful method used to prove termination of rewrite systems;
however its extension to higher-order rewrite systems is still the subject
of active research. We observe that a variant of refinement types allows
us to express a form of higher-order dependency pair method: from the
rewrite system labeled with typing information, we build a type-level

approximated dependency graph, and describe a type level embedding-

order. We describe a syntactic termination criterion involving the graph
and the order, and prove our main result: if the graph passes the criterion,
then every well-typed term is strongly normalizing.

1 Introduction

Types are used to perform static analysis on programs. Various type systems have
been developed to infer information about termination, run-time complexity, or
the presence of uncaught exceptions.

We are interested in one such development, namely dependent types [McK06,Bru68].
Dependent types explicitly allow“object level” terms to appear in the types, and
can express arbitrarily complex program properties using the so called Curry-
Howard isomorphism. We are particularly interested here in refinement types
[XS98,FP91]. For a given base type B and a property P on programs, we may
form a type R which is a refinement of B and which is intuitively given the
semantics:

R = {t : B | P(t)}

Programing languages based on dependent type systems have the reputation
of being unwieldy, due to the perceived weight of proof obligations in heavily
specified types. The field of dependently typed programing can be seen as a
quest to find the compromise between expressivity of types and ease of use for
the programmer.

Dependency pairs are a highly successful technique for proving termination of
first-order rewrite systems [AG00]. However, without modifications, it is difficult
to apply the method to higher-order rewrite systems. Indeed, the data-flow of
such systems is significantly different than that of first-order ones. Let us examine
the rewrite rule:



f (S x) � (λy. f y) x

The termination of well-typed terms under this rewrite system combined with
β-reduction cannot be inferred by simply looking at the left-hand side f (S x) and
the recursive call f y in the right hand side as it could be in first-order rewriting.
Here we need to infer that the variable y can only be instantiated by a subterm of
S x. This can be done using dependent types, using a framework called size-based
termination or sometimes type-based termination [HPS96,Abe04,BFG+04,Bla04,BR06].

The dependency pair method rests on the examination of the aptly-named
dependency pairs, which correspond to left-hand sides of rules and function calls
with their arguments in the right-hand side of the rules. For instance with a rule

f (c(x, y), z) � g( f (x, y))

We would have two dependency pairs, the pair f (c(x, y), z) � f (x, y) and the pair
f (c(x, y), z) � g( f (x, y)).

We can then define a chain to be a pair (θ, φ) of substitutions, and a couple
(t1 � u1, t2 � u2) of dependency pairs such that u1θ �

∗ t2φ. We may connect
chains in an intuitive manner, and the fundamental theorem of dependency pairs
may be stated: a (first-order) rewrite system is terminating if and only if there
are no infinite chains. See also the original article [AG00] for details.

To prove that no infinite chains exist, one wants to work with the dependency
graph: the graph built using the dependency pairs as nodes and with a vertex be-
tween N1 = t1 � u1 and N2 = t2 � u2 if there exist θ and φ such that (θ, φ), (N1,N2)
form a chain. It is then shown that if the system is finite, then it is sufficient
to consider only the cycles in this graph and prove that they may not lead to
infinite chains [GAO02]. It is known that in general computing the dependency
graph is undecidable (this is the unification modulo rewriting problem, see e.g.
Jouannaud et al . [JKK83]), so in practice we compute an approximation (or
estimation) of the graph that is conservative: all edges in the dependency graph
are sure to appear in the approximated graph. One common (see for instance
Giesl [GTSKF06]) and reasonable approximation is to perform ordinary unifi-
cation on non-defined symbols (that is, symbols that are not at the head of a
left-hand side), while replacing each subterm headed by a defined symbol by a
fresh variable, ensuring that it may unify with any other term.

In this article, we show that the dependency pair technique with the ap-
proximated dependency graph can be modeled using a form of refinement types
containing patterns which denote sets of possible values to which a term reduces.
These type-patterns must be explicitly abstracted and applied, a choice that al-
lows us to have very simple type inference. This allows us to build a notion of
type-based dependency pair for higher-order rewrite rules, as well as an approx-
imated dependency graph which corresponds to the estimation described above.
We describe an order on the type annotations, that essentially capture the sub-
term ordering, and use this order to express a decrease condition along cycles in
the approximated dependency graph. We then state the correctness of the crite-
rion: if in every strongly connected component of the graph and every cycle in the



component, the decrease condition holds, then every well-typed term is strongly
normalizing under the rewrite rules and β-reduction. The actual operational se-
mantics are defined not on the terms themselves, but on erased terms in which
we remove the explicit type information. We then conclude with a comparison
with other approaches to higher-order dependency pairs and possible extensions
of our criterion.

2 Syntax and Typing Rules

The language we consider is simply a variant of the λ-calculus with constants.
For simplicity we only consider the datatype of binary (unlabeled) trees. The
development may be generalized without difficulty to other first-order datatypes,
i.e. types whose constructors do not have higher-order recursive arguments. We
define the syntax of patterns

p, q ∈ P ≔ α | leaf | node(p, q) | | ⊥

With α ∈ V a set of pattern variables, and is called wildcard. Patterns appear
in types to describe possible reducts of terms. We define the set of types:

T,U ∈ T ≔ B(p) | T → U | ∀α.T

An atomic type is a type of the form B(p). The set of terms of our language
is defined by:

t, u ∈ Trm ≔ x | f | t u | t p | λx : T.t | λα.t | Node | Leaf

With x ∈ X a set of term variables, f ∈ Σ is a set of function symbols and α ∈ V.
Defined symbols are in lower case. Notice that application and abstraction of
patterns is explicit. A constructor is either Node or Leaf. A context is a list of
judgements x : T with x ∈ X and T ∈ T , with each variable appearing only once.

Intuitively, B(p) denotes the set of terms that reduce to some term that
matches the pattern p. For instance, any binary tree t is in the semantics of
B( ), only binary trees that reduce to Node t1 t2 for some binary trees t1 and
t2 are in B(node( , )), and only terms that never reduce to a constructor are in
B(⊥). Our operational semantics are defined by rewriting, which has the following
consequences, which may be surprising to a programming language theorist:

– It may be the case that a term t has several distinct normal forms. Indeed we
do not require our system to be orthogonal, or even confluent (we do require
it to be finitely branching though). Therefore a term is in the semantics of
B(node( , )) if all its reducts reduce to a term of the form Node t u.

– It is possible for a term to be stuck in the empty context, that is in normal
form and not headed by a constructor or an abstraction. Therefore B(⊥) is
not necessarily empty even in the empty context.



We write FV(t) (resp. FV(T ), FV(Γ)) for the set of free variables in a term
t (resp. a type T , a context Γ). If a term (resp. pattern) does not contain any
free variables, we say that it is closed. We write ∀α.T for ∀α1.∀α2 . . .∀αn.T , and
arrows and application are associative to the left and right respectively, as usual.
A pattern variable α appears in B(p) if it appears in p. It appears positively in
a type T if:

– T = B(p) and α appears in p
– T = T1 → T2 and α appears positively in T2 or negatively in T1 (or both).

With α appearing negatively in T if T = T1 → T2 and α appears negatively
in T2 or positively in T1 (or both).

We consider a type assignment τ : Σ → T , such that for each f ∈ Σ, there is
a number k such that τ f = ∀α1, . . . , αn.A1 → . . .→ Ak → T f with

– n ≥ k
– Ai = B(αi)
– ∀1 ≤ i ≤ k, αi appears positively in T f .

In this case k is called the number of recursive arguments.
The positivity condition is quite similar to the one used in the usual formu-

lation of type-based termination, see for instance Abel [Abe06] for an in depth
analysis. The typing rules are also similar to the ones for type-based termination.
The typing rules of our system are given by the typing rules in figure 1.

ax
Γ, x : T, ∆ ⊢ x : T

Γ, x : T ⊢ t : U
t-lam

Γ ⊢ λx : T.t : T → U

Γ ⊢ t : T
α < FV(Γ) p-lam

Γ ⊢ λα.t :∀α.T

leaf-intro
Γ ⊢ Leaf : B(leaf)

node-intro
Γ ⊢ Node :∀αβ.B(α)→ B(β)→ B(node(α, β))

Γ ⊢ t : T → U Γ ⊢ u : T
t-app

Γ ⊢ t u : U

Γ ⊢ t :∀α.T p-app
Γ ⊢ t p : T {α 7→ p}

symb
Γ ⊢ f : τ f

Fig. 1. Typing Rules



To these rules we add the subtyping rule:

G ⊢ t : T T ≤ U
sub

Γ ⊢ t : U

Where the subtyping relation is defined by an order on patterns:

– p≪
– α≪ α
– node≪ node
– p1 ≪ q1 ∧ p2 ≪ q2 ⇒ node(p1, p2) ≪ node(q1, q2)
– ⊥ ≪ p

For all patterns p, p1, p2, q1, q2. This order is carried to types by:

– p≪ q⇒ B(p) ≤ B(q)
– T2 ≤ T1 ∧ U1 ≤ U2 ⇒ T1 → U1 ≤ T2 → U2

– T ≤ U ⇒ ∀α.T ≤ ∀α.U

This type system is quite similar to the refinement types described for mini-
ML by Freeman et al . [FP91], and is not very distant from generalized algebraic
datatypes as are implemented in certain Haskell compilers [JVWW06], though
subtyping is not present in that framework.

It may seem surprising that we choose to explicitly represent pattern abstrac-
tion and application in our system. This choice is justified by the simplicity of
type inference with explicit parameters. In the author’s opinion, implicit argu-
ments should be handled by the following schema: at the user level a language
without implicit parameters; these parameters are inferred by the compiler,
which type-checks a language with all parameters present. Then at run-time
they are once again erased. This is exactly analogous to a Hindley-Milner type
language in which System F is used as an intermediate language [Mil78,JM97].
It is also our belief that explicit parameters will allow this criterion to be more
easily integrated into languages with pre-existing dependent types, e.g. Adga
[Nor07], Epigram [McK06] or Coq [Coq08].

A constructor term l ∈ L is a term built following the rules:

l1, l2 ∈ L ≔ x | Leaf | Node l1 l2

with x ∈ X.
A rewrite rule is a pair of terms (l, r) which we write l � r, such that l is of the

form f p1 . . . pn l1 . . . lk with f ∈ Σ, pi ∈ P and li ∈ L, such that k is the number
of recursive arguments of f . We suppose that the free variables of r appear in l.

We suppose in addition that every function symbol g ∈ r is fully applied to
its pattern arguments, that is if τg = ∀α1 . . . αl.T then for each occurrence of g in
r there are patterns p1, . . . , pl ∈ P such that g p1 . . . pl appears at that position.

In the following we consider a finite set R of rewrite rules. The set R is
well-typed if for each rule l � r ∈ R, there is a context Γ and a type T such that

Γ ⊢min l : T



and
Γ ⊢ r : T

with ⊢min defined in figure 2.

α < Γ, Γ′
Γ, x : B(α), Γ′ ⊢min x : B(α)

Γ ⊢min Leaf : B(leaf)

Γ ⊢min l1 : B(p1) Γ ⊢min l2 : B(p2)
Γ ⊢min Node p1 p2 l1 l2 : B(node(p1, p2))

Γ ⊢min l1 : B(p1) . . . Γ ⊢min lk : B(pk)
α < Γ

Γ ⊢min f p1 . . . pk βk+1 . . . βl l1 . . . lk : T fφ

With τ f = ∀α1 . . . αl.A1 → . . . → Ak → T f and φ(αi) = pi if 1 ≤ i ≤ k and φ(α j) = β j for
k < i ≤ l.

Fig. 2. Minimal Typing Rules

Notice that if Γ ⊢min li : T then T is unique. Minimal typing is present in
other work on size-based termination [BR09], in which it is called the pattern
condition. The purpose of minimal typing is to constrain the possible types of
constructor terms in left hand sides.

We can then define the higher-order analogue of dependency pairs, which use
type information instead of term information.

Definition 1 Let ρ = f p l � r be a rule in R, with Γ such that Γ ⊢min f p l : T ,
and Γ ⊢ r : T . The set of type dependency pairs DPT (ρ) is the set

{ f ♯(p1, . . . , pk) � g♯(q1, . . . , ql) | ∀i, Γ ⊢min li : B(pi) ∧ g q1 . . . ql appears in r}

The set DPT (R) is defined as the union of all DPT (ρ), for ρ ∈ R, where we suppose
that all variables are disjoint between dependency pairs.

The set of higher-order dependency pairs defined above should already be
seen as an abstraction of the traditional dependency pair notion (for example
those defined in [AG00]). Indeed, due to subtyping, there may be some informa-
tion lost in the types, if for instance the wildcard pattern is used. As an example,
if f , g and h all have type ∀α.B(α)→ B( ), consider the rule

f α x � g (h α x)

The dependency pair we obtain is

f ♯(x) � g♯( )



The information that g is called on the argument h x is lost.
This approach can therefore be seen as a type based manner to study an

approximation of the dependency graph. Note that in the case where h is given
a more precise type, like B(α)→ B(leaf), which is the case if every normal form
of h t is either neutral or Leaf, we have a more precise approximation.

Note that, in addition, a dependency pair is not formally a (higher-order)
rewrite rule, though it may be seen as a first-order one.

Definition 2 Let p and q be patterns. We say that p and q are pattern-unifyable,
and write p ⊲⊳ q, if p′ and q′ are unifyable, where p′ and q′ are the patterns p
and q in which each occurrence of and each occurrence of a variable is replaced
by some fresh variable.

The standard typed dependency graph GR is defined as the graph with

– As set of nodes the set DPT (R).
– An edge between the dependency pairs t � g♯(p1, . . . , pk) and h♯(q1, . . . , ql) � u

if g = h, k = l and for every 1 ≤ i ≤ k, pi ⊲⊳ qi.

This definition gives us an adequate higher-order notion of standard approx-
imated dependency graph. We will now show that it is possible to give an order
on the terms in the dependency pairs, which is similar to a simplification order
and which will allow us to show termination of well-typed terms under the rules,
if the graph satisfies an intuitive decrease criterion.

Definition 3 We define the embeddeding preorder on P written p ⊲ q by the
following rules

– pi D q⇒ node(p1, p2) ⊲ q for i = 1, 2
– p1 ⊲ q1 ∧ p2 D q2 ⇒ node(p1, p2) ⊲ node(q1, q2)
– p1 D q1 ∧ p2 ⊲ q2 ⇒ node(p1, p2) ⊲ node(q1, q2)

With D as the reflexive closure of ⊲ and with the further condition that if p⊲ q,
then p and q may not contain any occurrence of .

Non termination can intuitively be traced to cycles in the dependency graph.
We wish to consider termination on terms with erased pattern arguments and
type annotations.

3 Operational Semantics and the Main Theorem

Rewriting needs to be performed over terms with erased pattern annotations.
The problem with the näıve definition of rewriting arises when trying to match
on patterns. Take the rule

f node(α, β) (Node x y) � Leaf



In the presence of this rule, we wish to have, for instance, the reduction

f (Node (g x) (h x)) � Leaf

However, there is no substitution θ such that node(α, β)θ = . There are two
ways to deal with this. Either we take subtyping into account when performing
matching, or we do away with the pattern arguments when performing reduc-
tion. We adopt the second solution, as it is used in practice when dealing with
languages with dependent type annotations (see for example McKinna [McK06]).
Symmetrically, we erase pattern abstractions as well.

Definition 4 We define the set of erased terms Trm|�| as:

t, u ∈ Trm|�| ≔ x | f | λx.t | t u | Leaf | Node

Where x ∈ X and f ∈ F .
Given a term t ∈ Trm, we define the erasure |t| ∈ Trm|�| of t as:

|x| = x
| f | = f
|λx : T.t| = λx.|t|
|λα.t| = |t|
|t u| = |t| |u|
|t p| = |t|
|Leaf | = Leaf
|Node | = Node

An erased term can intuitively be thought of as the compiled form of a well
typed term.

Definition 5 An erased term t head rewrites to a term u if there is some rule
l � r ∈ R and some substitution σ from X to terms in Trm|�| such that

|l|σ = t ∧ |r|σ = u

We define β-reduction �β as

λx.t u �β t{x 7→ u}

And we define the reduction � as the closure of head-rewriting and β-reduction
by term contexts. We then define �

∗ and �
+ as the symmetric transitive and

transitive closure of �, respectively.

We can now express our termination criterion. We need to consider the
strongly connected components, or SCCs of the typed dependency graph. A
strongly connected component of a graph G is a full subgraph such that each
node is reachable from all the others.



Theorem 6 Let G be the typed dependency graph for R and let G1, . . . ,Gn be
the SCCs of G. Suppose that for each Gi, there is a recursive index ιi : Σ → N
which to f ∈ Σ associates an integer 1 ≤ ιif ≤ k (with k the number of recursive

arguments of f ).
Suppose that for each 1 ≤ i ≤ n and each rule f ♯(p1, . . . , pn) � g♯(q1, . . . , qm)

in Gi, we have pιif D qιig . Finally suppose that for each cycle in Gi, there is some

rule f ♯(p1, . . . , pn) � g♯(q1, . . . , qm) such that

pιif ⊲ qιig

then for every Γ, t, T such that Γ ⊢ t : T ,

|t| ∈ SNR

The proof of this theorem can be found in the appendix. Let us give two
examples of the application of this technique.

Example 1 Take the rewrite system given by the signature: {app:∀αβ.(B(α)→
B(β)) → B(α) → B(β), f : B(leaf), g : ∀α.B(α) → B(leaf)}, . We give the rewrite
rules:

app → λαβ.λx : B(α)→ B(β).λy : B(α).x y

f → app node(lea f , lea f ) leaf (g node(leaf, leaf)) (Node leaf leaf Leaf Leaf)

g node(α, β) (Nodeα β x y)→ Leaf

g leaf Leaf → f

or, in more readable form with pattern arguments and type annotations omit-
ted:

app → λx.λy.x y
f → app g (Node Leaf Leaf)

g (Node x y) → Leaf
g Leaf → f

It is possible to verify that the criterion can be applied and that in consequence,
according to theorem 6, all well typed terms are strongly normalizing under R∪β.

Indeed, we may easily check that each of these rules is minimally typed in
some context. Furthermore, we can check that the dependency graph in figure 3
has no cycles.

One may object that if we inline the definition of app and perform β-reduction
on the right-hand sides of rules we obtain a rewrite system that can be treated
with more conventional methods, such as those performed by the AProVe tool
[GTSK05] (on terms without abstraction, and without β-reduction). However
this operation can be very costly if performed automatically and is, in its most
näıve form, ineffective for even slightly more complex higher-order programs such
as map, which performs pattern matching and for which we need to instantiate.



g♯(leaf) � f ♯

f ♯ � app♯

f ♯ � g♯(node(leaf, leaf))

Fig. 3. Dependency graph of example 1

By resorting to typing, we allow termination to be proven using only “local”
considerations, as the information encoding the semantics of app is contained in
its type.

However it becomes necessary, if one desires a fully automated termination
check on an unannotated system, to somehow infer the type of defined constants,
and possibly perform an analysis quite similar in effect to the one proposed above.
We believe that to this end one may apply known type inference technology, such
as the one described in [CK01], to compute these annotated types. In conclu-
sion, what used to be a termination problem becomes a type inference problem,
and may benefit from the knowledge and techniques of this new community, as
well as facilitate integration of these techniques into type-theoretic based proof
assistants like Coq [Coq08].

Let us examine a second, slightly more complex example, in which there is
“real” recursion.

Example 2 Let R be the rewrite system defined by

f (Node x y) → g (i (Node x y)
g (Node x y) → f (i x)

g Leaf → f (h Leaf)
i (Node x y) → Node (i x) (i y)

i Leaf → Leaf
h (Node x y) → h x

Again with the type arguments omited, and with types f , g : ∀α.B(α) → B( ),
h : ∀α.B(α) → B(⊥) and i : ∀α.B(α) → B(α). Every equation can by typed in the
context Γ = x : B(α), y : B(β), The system with full type annotations is given in
the appendix.

The dependency graph is given in figure 3, and has as SCCs the full subgraphs
of GR with nodes {i♯(node(α, β)) � i♯(α), i♯(node(α, β)) � i♯(β)}, { f ♯(node(α, β)) �

g♯(node(α, β), g♯(node(α, β) � f ♯(α)} and {h♯(node(α, β)) � h♯(α)} respectively.



Taking ιs = 1 for every SCC and every symbol s ∈ Σ, it is easy to show that
every SCC respects the decrease criterion on cycles. For example, in the cycle

f ♯(node(α, β)) � g♯(node(α, β))⇆ g♯(node(α, β)) � f ♯(α)

we have node(α, β)Dnode(α, β) and node(α, β)⊲α, so the cycle is weakly decreasing
with at least one strict decrease.

We may then again apply the correctness theorem to conclude that the era-
sure of all well-typed terms are strongly normalizing with respect to R ∪ β.

i♯(node(α, β)) � i♯(α)

i♯(node(α, β)) � i♯(β)

f ♯(node(α, β)) � g♯(node(α, β))

f ♯(node(α, β)) � i♯(node(α, β))

g♯(node(α, β)) � f ♯(α)

g♯(node(α, β)) � i♯(node(α, β))

g♯(leaf) � f ♯(⊥) g♯(lea f ) � h♯(leaf)h♯(node(α, β)) � h♯(α)

Fig. 4. The dependency graph for example 2

Note that the minimality condition is important: otherwise one could take
f :∀αβ.B(α)→ B(β)→ B( ) with the rule

f node(leaf, leaf) leaf x y � f leaf leaf y y

This rule can be typed in the context x : B(node(leaf, leaf)), y : B(leaf), but not
minimally typed, and passes the termination criterion: the dependency graph is
without cycles, as node(leaf, leaf) does not unify with leaf. However, this system
leads to the non terminating reduction f Leaf Leaf � f Leaf Leaf.

4 Comparison, future work

Several extensions of dependency pairs to different forms of higher-order rewrit-
ing have been proposed [KISB09,Bla06,GTSK05,SK05,AY05]. However, these
frameworks do not handle the presence of bound variables, for which the usual
approach is to defunctionalize (also called lambda-lifting) [DN01,Joh85].

In particular, all the techniques cited above, when applied to example 1,
where we replace the rule app → λx.λy.x y with the rule app x y → x y (which



does not involve bound variables), generate a dependency graph with cycles. For
example, in Sakai & Kusakari [SK05], using the SN framework the dependency
graph is:

f [] � g[] f [] � app[g, Node[Leaf,Leaf]] g[Leaf] � f []

app[x, y] � x[y]

It is of course possible to prove that there are no infinite chains for this
problem (the criterion is complete), but we have not much progressed from the
initial formulation!

Using the SC-framework from the same paper, which is based on computabil-
ity (as is our framework), we obtain the following graph:

f [] � g[z] f [] � app[g, Node[Leaf,Leaf]] g[Leaf] � f []

However it is not possible to prove that there are no infinite chains for this
problem, as there is one! Therefore the criterion presented in this paper allows
a finer analysis of the possible calls.

The termination checking software AProVE [GTSK05] succeeds in proving
termination of example 1, by using an analysis involving instance computation
and symbolic reduction. As noted previously, it seems that such an analysis
may be used to infer the type annotations required in our framework. At the
moment it is unclear how the typing approach compares to these techniques.
More investigation is clearly needed in this direction.

AProVE can also easily prove termination of the second rewrite system (ex-
ample 2). However semantic information needs to be inferred (for example a



polynomial interpretation needs to be given) when trying to well-order the cycle

f (Node x y) � g (i (Node x y)⇆ g (Node x y) � f (i x)

This information is already supplied by our type system (through the fact that
i is of type ∀α.B(α) → B(α)), and therefore it suffices to consider only syntactic
information on the approximated dependency graph. The subterm criterion by
Aoto and Yamada [AY05] is insufficient to treat this example.

The framework described here is only the first step towards a satisfactory
higher-order dependency pair framework using refinement types. We intuitively
consider a“type level”first-order rewrite system, use standard techniques to show
that that system is terminating, and show that this implies termination of the
object level system. More work is required to obtain a satisfactory “dependency
pairs by typing” framework.

Our work seems quite orthogonal to the size-change principle [LJBa01], which
suggests we could apply this principle to treat cycles in the typed dependency
graph, as a more powerful criterion than simple decrease on one indexed argu-
ment.

It is clear that the definitions and proofs in the current work extend to other
first-order inductive types like lists, Peano natural numbers, etc. We conjecture
that this framework can be extended to more general positive inductive types,
like the type of Brower ordinals [BJO02]. These kinds of inductive types seem
to be difficult to treat with other (non type-based) methods.

For now types have to be explicitly given by the user, and it would be in-
teresting to investigate inference of annotations. Notice that trivial annotations
(return type always B( )) can very easily be infered automatically. Some work
on automatic inference of type-level annotations has been carried out by Chin et
al . [CK01] which may provide inspiration. On the other hand, we believe that
the inference of the explicit type information in the terms is quite feasible with
current state-of-the-art methods, for example those used for inferring the type
of functional programs using GADTs [JVWW06].

We believe that refinement types are simply an alternative way of presenting
the dependency pair method for higher-order rewrite systems. It is the occasion
to draw a parallel between the types community and the rewriting community,
by emphasizing that techniques used for the inference of dependent type anno-
tations (for example work on liquid types [RKJ08]), may in fact be used to infer
information necessary for proving termination and (we believe) vice-versa. It may
also be interesting in the case of a programming language for the user to supply
the types as documentation, in what some call “type directed programing”.

We only consider matching on non-defined symbols, though an extension to
a framework with matching on defined symbols seems feasible if we add some
conversion rule to our type system.
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A The full system of example 2

Every rule is typed in the context x : B(α), y : B(β), and we remind that the types
of defined functions are:

f , g :∀α.B(α)→ B( ) h :∀α.B(α)→ B(⊥) i : ∀α.B(α)→ B(α)

The rewrite system with all type annotations is then

f node(α, β) (Node α β x y) → g node(α, β) (i node(α, β) (Node α β x y)
g node(α, β) (Node α β x y) → f α (i α x)

g leaf Leaf → f ⊥ (h leaf Leaf)
i node(α, β) (Node α β x y) → Node node(α, β) (i α x) (i β y)

i leaf Leaf → Leaf
h node(α, β) (Node α β x y) → h α x

B Proof of theorem 6

The proof uses computability predicates (or candidates). As mentioned before,
the absence of control, and particularly the lack of orthogonality makes giving
accurate semantics somewhat difficult. We draw inspiration from the termina-
tion semantics of Berger [Ber05], which uses sets of values to denote terms. As
is standard in computability proofs, each type will be interpreted as a set of
strongly normalizing (erased) terms. Suppose a term t reduces to the normal
forms Leaf and Node Leaf Leaf. In that case t is in the candidate that contains
all terms that reduce to Leaf or Node Leaf Leaf, or are hereditarily neutral. If t
the erasure of a term of type B(α) for some pattern variable α, the interpretation
[[B(α)]] must depend on some valuation of the free variable α. If we valuate α by
some closed pattern p and interpret [[B(α)]] by the set of terms whose normal
forms are neutral or match p, then the only possible choice for p is . Clearly
this does not give us the most precise possible semantics for t, as it also includes
terms such as u = Node (Node x y) Leaf. However we need precise semantics
if we are to capture the information needed for the dependency analysis: if we
take the constructor term l = Node Lea f x, then a reduct of t does match l,
but this can never happen for u. To give sufficiently precise semantics to terms,
we therefore need to interpret pattern variables with sets of closed patterns. In
this case we will interpret α by the set {leaf, node(leaf, leaf)} to capture the most
precise semantics possible for t.

We define the interpretation of types, and prove that they satisfy the Girard
conditions. We then show that correctness of the defined function symbols implies
correctness of the semantics.

Definition 7 A value is a term v ∈ Trm|�| of the form:

– λx.t



– Node t u
– Leaf

For any t ∈ Trm|�| we say v is a value of t if t �
∗
R∪β v and v is a value.

A term is neutral if it is not a value, and is hereditarily neutral if it has no
values.

Definition 8 Let Pc be the set of closed patterns, and NF is the set of Rβ-
normal forms in Trm|�|. The term matching relation ≪�⊆ NF × Pc is defined in
the following way:

– v≪�

– v≪� p if v is neutral.
– v≪� node(p, q) if v = Node v1 v2 with v1 ≪� p ∧ v2 ≪� q.
– v≪� leaf if v = Leaf.

A pattern valuation, or valuation if the context is clear, is a partial function
with finite support from pattern variablesV to non-empty sets of closed patterns.
If p is a pattern, θ is a pattern valuation and FV(p) ⊆ dom(θ) then pθ is the set
defined inductively by:

– αθ = θ(α)
– leaf θ = leaf
– θ =
– ⊥θ = ⊥
– node(p1, p2)θ = {node(q1, q2) | q1 ∈ p1θ ∧ q2 ∈ p2θ}

We may write pθ = {p | α1 ← θ(α1), . . . , αn ← θ(αn)}, using inspiration from list
comprehension notation (as in Berger [Ber05]). If α < dom(θ) and P is a non-
empty set of closed patterns, we write θal

P for the valuation that sends β ∈ dom(θ)
to θ(β) and α to P. Notice that pθ is a set of closed patterns.

Finally if θ is a valuation and t is a term in SN , we write t ≪� pθ if for every
normal form v of t:

∃q ∈ pθ, v ≪� q

The type interpretation [[ ]] is a function that to each T ∈ T and each
valuation θ such that FV(T ) ⊆ dom(θ) associates a set [[T ]]θ ⊆ SNR∪β. We define
it by induction on the structure of T :

– [[B(p)]]θ = {t ∈ B | t ≪� pθ}
– [[T → U]]θ = {t ∈ SN | ∀u ∈ [[T ]]θ, t u ∈ [[U]]θ}
– [[∀α.T ]]θ = {t ∈ SN | ∀P, t ∈ [[T ]]θαP}

Where B is the smallest set that verifies:

B = {t ∈ SN | ∀v a value of t, v = Leaf ∨v = Node t1 t2 ∧ t1, t2 ∈ B}



The next step in the reducibility proof is to verify that the interpretation
of terms verify the Girard conditions : A subset X ⊆ Trm|�| satisfies the Girard
conditions if

1. strong normalization: X ⊆ SN
2. stability by reduction: for every term t ∈ X, if u is such that t �

∗ u, then u ∈ X.
3. “sheaf condition”: if t is neutral, and for every term u such that t � u, u ∈ X,

then t ∈ X.

These embody the exact combinatorial properties required to carry through
the inductive proof of correctness, namely that every well-typed term is in the
interpretation of its type.

Lemma 9 If T ∈ T is a type, then for every valuation θ,

[[T ]]θ satisfies the girard conditions

Proof. We proceed by induction on the structure of T .

– T = B(p)
• Strong normalization: by definition of B.
• Stability by reduction. Suppose that t ∈ [[B(p)]]θ. If t �

∗ u, then the set of
normal forms of u is contained in the set of normal forms of t.

• Sheaf condition. Suppose that t is neutral and that each one step reduct of
t is in [[B(p)]]θ. Now either t is in normal form, and then t ≪� pθ (as it is
non empty), or for every one step reduct u of t, u ≪� pθ. But in this case
every normal form of t is the normal form of some t � u, and thus t ≪� pθ.

– T = T1 → T2

• Strong normalization: by definition.
• Stability by reduction. Simple application of induction hypothesis.
• Sheaf condition: Let t be neutral and suppose that t′ ∈ [[T → U]]θ for every

t′ a reduct of t. Let u be an arbitrary element of [[T ]]θ. Then t′ u′ ∈ [[U]]θ
for every reduct u �

∗ u′, by definition of the interpretation and stability
by reduction. By induction hypothesis, this implies that t u ∈ [[U]]θ, as it is
again a neutral term. As u was chosen arbitrarily, then t is in [[T → U]]θ.

– T = ∀α.U
• Strong normalization: by definition.
• Stability by reduction: Let t ∈ [[∀α.U]]θ. We have for every set P of closed
terms, t ∈ [[U]]θαP. By induction, every reduct u of t is also in [[U]]θαP. As P
was chosen arbitrarily, u is also in [[∀α.U]]θ.

• Sheaf condition. Let t be neutral and suppose that one step reducts of t are
in [[∀α.U]]θ. Take an arbitrary P. Every reduct of t is in [[U]]θαP. By induction
hypothesis, t is in [[U]]θαP, from which we may conclude.

�

Now we give the conditional correctness theorem, which states that if the
function symbols belong to the interpretation of their types, then so does every
well-typed term.



Definition 10 Let θ be a pattern valuation, σ a substitution from term variables
to erased terms, and Γ a context. We say that (θ, σ) validates Γ, and we write
σ |=θ Γ, if the set of free pattern variables in Γ is contained in dom(θ), and if for
every x ∈ dom(Γ)

σ(x) ∈ [[Γx]]θ

Likewise, we write σ |=θ t : T if FV(t) ⊆ dom(σ), FV(T ) ⊆ dom(θ) and

|t|σ ∈ [[T ]]θ

Theorem 11 Suppose that for each f ∈ Σ and each valuation θ,

f ∈ [[τ f ]]θ

then for every context Γ, term t and type T , if Γ ⊢ t : T

∀(θ, σ), σ |=θ Γ ⇒ σ |=θ t : T

We need the classic substitution lemma for types:

Lemma 12 For every patterns q, p and valuation θ, if α is not in the domain of
θ, then

p{α 7→ q}θ = pθαqθ

Proof. We proceed by induction on the structure of p:

– p = α: trivial.
– p = β , α: We have p{α 7→ q} = β and therefore p{α 7→ q}θ = θ(β) = θαqθ(β).
– p = leaf, ,⊥: trivial.
– p = node(p1, p2): We have p{α 7→ q}θ = node(p1{α 7→ q}, p2{α 7→ q})θ. But this

last term is equal to

{node(q1, q2) | qi ∈ pi{α 7→ q}θ, i = 1, 2}

which by induction is equal to

{node(q1, q2) | qi ∈ piθ
α
qθ, i = 1, 2}

which allows us to conclude.

�

Lemma 13 (substitution lemma)
Let T be a type and θ a pattern valuation. If α does not appear in the domain

of θ then:

[[T {α 7→ p}]]θ = [[T ]]θαpθ

Proof. We proceed by induction on the type.



– Atomic case:

[[B(q){α 7→ p}]]θ = {t ∈ SN | t ≪� q{α 7→ p}θ}

But by lemma 12, q{α 7→ p}θ = pθαpθ, from which we can conclude.
– Arrow case: straightforward from induction hypothesis.
– case ∀β.T . We may suppose by Barendregts convention that β is distinct from
α, not in the domain of θ and distinct from all variables in p. We then have:

[[(∀β.T ){α 7→ p}]]θ = {t ∈ SN | ∀Q, t ∈ [[T {α 7→ p}]]θβQ}

Let θ′ = θ
β
Q. We may apply the induction hypothesis, which gives:

[[T {α 7→ p}]]θ′ = [[T ]]θ′α
pθ′

And as β does not appear in p:

[[T ]]θ′α
pθ′
= [[T ]]θα β

pθ Q

But we have:
{t ∈ SN | ∀Q, t ∈ [[T ]]θα β

pθ Q
} = [[∀β.T ]]θαpθ

Which concludes the argument.

�

We may easily generalize this result to:

Corollary 14 Let T be a type. If φ is a substitution, and θ is a valuation such
that the variables of T do not appear in the domain of θ, then:

[[Tφ]]θ = [[T ]]θ◦φ

Where θ ◦ φ is the valuation defined by θ ◦ φ(α) = φ(α)θ.

Another useful lemma states that type interpretations only depend on the
value of the pattern substitutions in the free variables of the type.

Lemma 15 Let T be some type and θ, θ′ be two closed pattern substitutions.
If θ(α) = θ′(α) for every α ∈ FV(T ), then [[T ]]θ = [[T ]]θ′.

Proof. Straightforward induction on T .
The next lemmas show correctness of the interpretation with respect to sub-

typing.

Definition 16 Let P and Q be sets of closed patterns. We write P ≪ Q if for
each p ∈ P, there is a q ∈ Q such that p ≪ q.

Lemma 17 Let θ be a pattern valuation. If p ≪ q, then pθ ≪ qθ



Proof. Induction on the derivation of p ≪ q. The only interesting case
is node(p1, p2) ≪ node(q1, q2) with pi ≪ qi for i = 1, 2. In that case, if r ∈
node(p1, p2)θ, we have r = node(r1, r2) with ri ∈ piθ for i = 1, 2. By induction
hypothesis, there is r′1, r

′
2 in node(q1, q2)θ such that ri ≪ r′i for each i. Then we

take node(r′1, r
′
2) ∈ node(q1, q2)θ to conclude.

�

Lemma 18 Suppose T ≤ U. Then for all θ, [[T ]]θ ⊆ [[U]]θ

Proof. We proceed by induction on all the possible cases for the judgement
T ≤ U.

– p ≪ q: We first show that for all terms t, and every non-empty set of closed
patterns P and Q, if P ≪ Q, then t ≪� P ⇒ t ≪� Q. This follows from the
following fact: if v is in normal form and r ≪ s, then

v ≪� r ⇒ v ≪� s

To show this we proceed by induction on the ≪ judgement. The first three
cases are easy. In the fourth case, v ≪� node(r1, r2) which by definition implies
that v = Node v1 v2, with v1 ≪� r1 and v2 ≪� r2. We can then conclude by
the induction hypothesis.
Now using lemma 17, we have, if p ≪ q, t ≪� pθ⇒ t ≪� qθ.

Now let t ∈ [[B(p)]]θ, we have by definition t ≪� pθ, and by the previous
remark, t ≪� qθ which implies t ∈ [[B(q)]]θ.

– Suppose T2 ≤ T1 and U1 ≤ U2. Let t be in [[T1 → U2]]θ, we show that it is
in [[T2 → U2]]θ. Let u be in [[T2]]θ. By the induction hypothesis, u ∈ [[T1]]θ,
therefore (by definition of [[T1 → U1]]θ), t u is in [[U1]]θ, which by another
application of the induction hypothesis, is included in [[U2]]θ. From this we
can conclude that t is in [[T2 → U2]]θ.

– Let t be a term in [[∀α.T ]]θ and P be some arbitrary set of closed patterns,
and suppose that α is a variable not appearing in the domain of θ. We then
have

t ∈ [[T ]]θαP
Since ∀α.T ≤ ∀α.U, we have T ≤ U. The induction hypothesis gives:

[[T ]]θ′ ⊆ [[U]]θ′

for all valuations θ′. Take θ′ to be θαP. We have:

[[T ]]θαP ⊆ [[U]]θαP

From this we can deduce t ∈ [[U]]θαP and conclude.

�

We shall also need the fact that given T and a valuation θ, then [[T ]]θ is
included in [[T ]]θ′ if θ′ is a weakening of θ on the variables in positive position in
T .



Lemma 19 Let T be a type and θ, θ′ two pattern valuations. If θ(α) ≪ θ′(α) for
every free variable α ∈ T in a positive position, and θ(β) = θ′(β) for every other
variable, then

[[T ]]θ ⊆ [[T ]]θ′

Conversely if θ(α) ≪ θ′(α) for every free variable α in a negative position, then

[[T ]]θ′ ⊆ [[T ]]θ

Proof. First notice that if p is a pattern, then pθ ≪ pθ′, by a simple induction
on p. We prove both propositions simultaneously by induction on T :

– T = B(p). All variables of p appear positively in T . Then by the above remark,
pθ ≪ pθ′, and therefore [[B(p)]]θ ⊆ [[B(p)]]θ′.

– T = T1 → T2. We treat the positive case. We have by induction hypothesis
[[T1]]θ′ ⊆ [[T1]]θ, as all variable of T1 that appear positively in T appear neg-
atively in T1, and [[T2]]θ ⊆ [[T2]]θ′ . Therefore, by definition of [[T1 → T2]]φ, we
have:

[[T1 → T2]]θ ⊆ [[T1 → T2]]θ′

The negative case is treated in the same fashion.

– T = ∀α.U: straightforward induction.

�

We can now prove the correctness of the interpretation relative to that of the
function symbols (theorem 11).

Proof. We proceed by induction on the typing derivation.

– ax: by definition of σ |=θ Γ.
– t-lam: By induction hypothesis, for all σ′, θ′ such that σ′ |=θ′ Γ, x : T , tσ′ is in

[[U]]θ′. By definition of [[T → U]]θ, we need to show that for any u ∈ [[T ]]θ,
(λx : T.t)σu is in [[U]]θ. Now as this term is neutral, it suffices to show that
every reduct is in [[U]]θ. We proceed by well founded induction on the reducts
of t and u. Thus if (λx : T.t)σu � (λx : T.t′)σu′ with t � t′ or u � u′, then we
may conclude by well-founded induction hypothesis. The remaining case is
(λx : T.t)σu � tσ{x 7→ u}. To show that this is in [[U]]θ, we apply the main
induction hypothesis with σ′ = σx

u and θ′ = θ.

It can be argued that this argument is the fundamental combinatory expla-
nation for normalization of β-reduction.

– p-lam: by induction hypothesis, for all σ′, θ′ such that σ′ |=θ′ Γ, |t|σ′ is in
[[T ]]θ′. Let σ, θ be some such valuations and P be a set of closed patterns. As
|λα.t|σ = |t|σ, we need to show that |t|σ ∈ [[T ]]θαP
Observe that if α does not appear in Γ, then σ |=θ Γ implies σ |=θαP Γ, by virtue
of lemma 15. We may therefore conclude that |t|σ is in [[T ]]θαP .

– leaf-intro: Clear by definition of [[B(leaf)]]θ



– node-intro: let t, u be terms in [[B(α)]]θ and [[B(β)]]θ, respectively. The normal
forms of Node t u are of the form Node t′ u′, with t′ and u′ normal forms
of t and u, respectively. Therefore, to check if Node t u ≪� node(θ(α), θ(β)), it
suffices to check t ≪� θ(α) and u ≪� θ(β), both of which are true by hypothesis.

– t-app: straightforward by the induction hypothesis.
– p-app: by hypothesis, |t|σ ∈ [[∀x.T ]]θ, this gives by definition |t|σ ∈ [[T ]]θx

pθ
, and

by the substitution lemma (lemma 13), |t|σ ∈ [[T {x 7→ p}]]θ, therefore

|t p|σ ∈ [[T {x 7→ p}]]θ

– symb: By hypothesis.
– sub: By application of the correctness of subtyping (lemma 18), and the in-

duction hypothesis.

�

Now it remains to show that each function symbol is computable. By analogy
with the first-order dependency pair framework, we need to build an order on
terms that is in relation to the approximated dependency graph. Then sequences
of decreasing terms will be the analogue of chains, and we will show that there
can be no infinite decreasing sequences. Instead of actual terms, it is more conve-
nient, when dealing with higher-order rewriting, to order tuples of terms labeled
by a head function symbol, i.e. instead of having f t > gu we have ( f , t) > (g, u).
The reason for this is that recursive calls in the right-hand side of rewrite rules
needn’t be applied to all their arguments. We will therefore need a way of using
typing to “predict” which arguments may be applied, using the order on tuples
as above.

However it is quite subtle to build this order in practice: indeed, a natural
candidate for such an order is (the transitive closure of) the order defined by
( f , t) > (g, u) if and only if

∃θ, φ, f ♯(p1, . . . , pn) � g♯(q1, . . . , qm) ∈ G, ∀i, j, ti ∈ [[B(pi)]]θ ∧ u j ∈ [[B(q j)]]φ

This would allow us to easily build the relation between the graph and the order,
and show that each call induces a decrease in this order. Sadly, this order may
not be well founded even in the event that the termination criterion is satisfied.
Consider for example the rule f node(α, β) (Node x y) � f α x, typeable in the
context Γ = x : B(α), y : B(β). Given the above definition, we have ( f , t) > ( f , u)
provided that there are closed p and q such that t ≪� p and u ≪� q. But then
we may take p = q = and if t = z and u = z with z a variable, then ( f , z) > ( f , z).
The rewrite system does satisfy the criterion, as node(α, β) ⊲ α, but the order is
not well founded.

One possible solution is to restrict the reduction to call-by value on closed
terms, where a reduction in R can occur only if the arguments to the defined
function are in normal form, and values (although β-reduction can occur at any
moment). However we strive for more generality.

Another solution, in the previous example, is to impose the condition that t
must be equal to Node t1 t2, which makes the counter-example invalid. However,



we still do not have any necessary relationship between t and u, and we may take
in particular t = Node x y and u = Node x y, which again results in a non well
founded sequence. The solution is to take, instead of just a particular instance
of the pattern variables, the most general possible instance.

Definition 20 Take the set Pmin of minimal patterns to be the subset of P
defined by:

p, q ∈ Pmin ≔ α | leaf | node(p, q)

Let t be a term in normal form. We inductively define the pattern form pat(t)
of t inductively:

– pat(t) = ⊥ if t is neutral.
– pat(Leaf) = leaf
– pat(Node t u) = node(pat(t), pat(u))
– pat(t) = otherwise.

We define the partial type matching function matchP that takes terms t1, . . . , tn
in Trm|�|, and minimal patterns p1, . . . , pn in Pmin and returns a pattern valuation:

– if p1 = α1, . . . , pn = αn and ti = t j whenever αi = α j, then

matchP(t, p)(αi) = ti

– if pi = node(q1, q2) and ti = Node u1 u2 then

matchP(t; p) = matchP(t1, . . . , ti−1, u1, u2, ti+1, . . . , tn ; p1, . . . , pi−1, q1, q2, pi+1, . . . , pn)

– if pi = leaf and ti = Leaf then

matchP(p, t) = matchP(t1, . . . , ti−1, ti+1, . . . , tn ; p1, . . . , pi−1, pi+1, . . . , pn)

– matchP is undefined in other cases.

The type matching can be seen as a way of giving the most precise possible
valuation for terms that match some left-hand side of a rule. Notice that for
each f ♯(p) � g♯(q) ∈ G, each pi is in Pmin. Indeed, an examination of the minimal
typing rules show that only minimal patterns may appear in types.

Note also that if match(t, p) = θ, then for each i, ti ≪� piθ, by a simple
induction.

Definition 21 A link is a tuple (n, t, u) such that

– t, u ∈ SN
– n = f ♯(p) � g♯(q) ∈ G
– matchP(t, p) is defined, and if it is equal to θ, then

∀ j, u j ≪� q jθ
′

For some extension θ′ of θ such that FV(q) ⊆ dom(θ′).



A chain is an eventually infinite sequence c1, c2, . . . of links such that if ci =

(ni, ti, ui), then for each i,
ui �

∗ t i+1

and if ni = f ♯i (p) � g♯i (q) then gi = fi+1.

Notice that if FV(q) ⊆ FV(p) then we may take θ′ = θ in the definition of
chains.

We first need to show a correspondence between the chains and the graph,
that is:

Lemma 22 For each chain c1, c2, . . . such that ci = (ni, ti, ui), there is a path
n1 → n2 → . . . in GR.

Proof. It suffices to show that if c1 = (n1, t, u), c2 = (n2, u′, v) is a chain, then
there is an edge between n1 = f ♯(p) � g♯(q) and n2 = g♯(r) � h♯(s). First note
that the variables of q and r are distinct by hypothesis. Notice that for each i,
ui ≪� qiθ for some t and matchP(ri, u′i) is defined. We need to prove for each i
that qi ⊲⊳ ri. As ui �

∗ u′i , all normal forms of u′i are also normal forms of ui. We
proceed by induction on matchP(ri, u′i).

– ri is a variable. We can conclude immediately by the definition of ⊲⊳, as a fresh
variable can unify with any pattern.

– u′i = Leaf and ri = leaf. In this case Leaf is a normal form of ui, so there is
some q′ ∈ qiθ such that Leaf ≪� q′. From this it follows that qi is either leaf,
or some variable. This allows us to conclude that qi ⊲⊳ leaf.

– u′i = Node u′1i u′2i and ri = node(r1
i , r

2
i ). Now let us examine qi. We may exclude

the cases qi = leaf and qi = ⊥, as every normal form of u′i is a normal form
of ui and is of the form Node v v′. In the case qi = α or qi = we may easily
conclude. The only remaining case is qi = node(q1

i , q
2
i ). From the induction

hypothesis we get q1
i ⊲⊳ r1

i and q2
i ⊲⊳ r2

i , which imply qi ⊲⊳ ri

�

If the conditions of the termination theorem are satisfied, the there are no
infinite chains, in the same way as for the first-order dependency pair approach.

Theorem 23 Suppose that the conditions of theorem 6 are satisfied. Then there
are no infinite chains.

We need to define and establish the well foundedness of the embedding order
on terms.

Definition 24 We mutually define the strict and large embedding preorder on
erased terms in normal form ⊲ and D by:

– t1 D u⇒ Node t1 t2 ⊲ u
– t2 D u⇒ Node t1 t2 ⊲ u



– t1 ⊲ u1 ∧ t2 D u2 ⇒ Node t1 t2 ⊲ Node u1 u2

– t1 D u1 ∧ t2 ⊲ u2 ⇒ Node t1 t2 ⊲ Node u1 u2

– Leaf DLeaf
– t D u if t and u are neutral.
– t ⊲ u⇒ t D u

Note that the preorder is not an order: for instance, x D y and y D x.

Lemma 25 The preorder ⊲ is well-founded.

Proof. Given a term in normal form t, define size(t) inductively:

– size(Node t1 t2) = size(t1) + size(t2) + 1
– size(t) = 0 otherwise.

It is then easy to verify by mutual induction that if t ⊲ u, size(t) > size(u) and if
t D u then size(t) ≥ size(u). Well foundedness of the order on naturals yields the
desired conclusion.

�

To show that there are no infinite chains, we will exploit the fact that if
c = (n, t, u) is a link, that is decreasing in the embedding order on patterns, then
there is a decrease in the normal forms from t to u.

To show this, we must prove that pattern-matching does indeed completely
capture the “pattern semantics” of a term in B.

Lemma 26 Suppose t are terms in B and p are minimal patterns. If matchP(t, p)
is defined and equal to θ, then for each q ∈ piθ, there is a normal form v of ti
such that pat(v) = q.

Proof. We proceed by induction on the definition of matchP:

– pi = αi. In this case (as matchP(t, p) is defined) By definition αθ is equal to
{pat(v) | v is a normal form of ti}.

– pi = leaf. In this case ti = Leaf and therefore we can take v = Leaf.
– pi = node(p1

i , p2
i ). In this case, ti = Node t1

i t2
i . By the induction hypothesis,

for any q1 ∈ p1
i θ and q2 ∈ p2

i θ there are normal forms v1 and v2 of t1
i and

t2
i such that q j = pat(v j) for j = 1, 2. It is easy to observe that Node v1 v2

is a normal form of ti, and that q = node(q1, q2) is an element of piθ, and
pat(Node v1 v2) = q allows us to conclude.

�

To prove that there are no infinite chains, we need to relate the decrease of
the patterns to the decrease of the normal forms of the terms that appear in
chains.

Lemma 27 Suppose that p and q are closed patterns such that p ⊲ q (respec-
tively p D q), and v1, v2 normal forms such that pat(v1) = p and v2 ≪� q. Then
v1 ⊲ v2 (respectively v1 D v2).



Proof. We prove both properties simultaneously by induction on the deriva-
tion of p ⊲ q:

– p = node(p1, p2) and p1 D q. We have v1 = Node u1 u2 with pat(u1) = p1. By
induction hypothesis u1 D v2, and therefore Node u1 u2 ⊲ v2.

– p = node(p1, p2), q = node(q1, q2) with p1 ⊲ q1 and p2 D q2. In that case v1 =

Node v1
1 v2

1 and v2 = Node v1
2 v2

2. The induction hypothesis gives v1
1 ⊲ v1

2 and
v2

1 D v2
2, from which we may conclude.

– The symmetrical cases are treated in the same manner.
– p = leaf and q = leaf. In this case, v1 = v2 = Leaf, and v1 D v2.

Lemma 28 Let c = (n, t, u) be some link such that n = f ♯(p) � g♯(q). Suppose
that there is i such that pi ⊲ qi, (respectively pi D qi). Then if v is a normal form
of u, there exists some normal form v′ of t such that v′ ⊲ v, (respectively v′ D v).

Proof. Let θ = matchP(t, p), which is guaranteed to exist by hypothesis. First
notice that for every α ∈ FV(p), θ(α) does not contain . Indeed, given t ∈ B,
the normal form of t is also in B. It can only be neutral, equal to Leaf, or in the
form Node t1 t2 with ti in the above form.

We treat the ⊲ case first. Suppose that v is a normal form of ui. By definition,
we have ui ≪� qiθ, which means by definition that there is some r ∈ qiθ such
that v ≪� r. Since pi ⊲ qi, this implies that there is some r′ ∈ pi such that r′ ⊲ r.
We have by lemma 26 that there exists some v′ a normal form of ti such that
pat(v′) = r′, which allows us to conclude using lemma 27.

�

We finally have all the tools to give the proof of well foundedness of chains.
Proof. of theorem 23.
By contradiction, let c1, c2, . . . be an infinite chain, such that for each i, ci =

(ni, ti, ui). By lemma 22, n1, n2, . . . is an infinite path in G. By finiteness of G, there
is some SCC G′ and some natural number k such that nk, nk+1, . . . is contained
in G′. By hypothesis, if ni = f ♯i (pi) � g♯i (qi), there is an index j such that for

each i, pi
j D qi

j or pi
j ⊲ p j

i . Furthermore, again by hypothesis, there are an infinite

number of indexes i such that pi
j ⊲ qi

j. Let Vi = {v | v is a normal form of ti
j} and

Ui = {v | v is a normal form of ui
j}. We apply lemma 28 to show that for each

v′i ∈ Ui there exists vi ∈ Vi such that vi ⊲ v′i for these indexes and vi D v′i for the
others.

We wish to show that there is an infinite chain v1, v2, . . . such that vi D vi+1

for each i and vi ⊲ vi+1 for an infinite number of indexes i, contradicting well-
foundedness of ⊲ (lemma 25).

To do this we first notice that Vi+1 ⊆ Ui, as ui �
∗ t i+1. Then we build the

following tree:

– We have a node at the top, connected to every element of Vk.
– We have a node between a ∈ Vi and b in Ui if a D b or a ⊲ b.
– We have a node between a ∈ Ui and b ∈ Vi+1 if a = b.



Notice first that every Vi,Ui is finite, as the rewrite system is finite (each strongly
normalizing term therefore has a finite number of normal forms). We wish to
apply König’s lemma which states: every finitely branching infinite tree has an
infinite path. It is easy to see that the tree is finitely branching: every Vi and Ui

is finite, and it is equally easy to verify that the tree is infinite, as no Vi or Ui

is empty (the ti and ui are strongly normalizing and therefore have at least one
normal form). This give us the existence of an infinite path in the tree, which
concludes the proof.

�

To prove that the function symbols are in the interpretation of their type,
we shall (obviously) need to consider the rewrite rules. In particular, we need to
relate the minimal typing used to derive the types of left hand sides and pattern
matching, in order to prove that our notion of chain is the correct one.

Lemma 29 Suppose that Γ is a context, that l1, . . . , lk are constructor terms and
that Γ ⊢min l1 : B(p1), . . . , Γ ⊢min lk : B(pk). Suppose that t1, . . . , tk match l1, . . . , lk.
Then matchP(t, p) is defined.

Proof. We proceed by induction on the structures of li (matching the cases
of the matchP judgement)

– l1 = x1, . . . , ln = xn. In this case, the only applicable case for ⊢min is the variable
case. If xi = x j, then ti = t j. Furthermore pi = αi for some variable αi and
again, αi = α j if and only if xi = x j, by linearity of αi and α j in Γ. Therefore
if αi = α j, then ti = t j, and matchP(t, p) is defined.

– li = Leaf. In this case the only applicable rule is the leaf rule, and pi = leaf
and ti = Leaf. By induction matchP(t, p) is defined.

– li = Node l1i l2i . In this case we apply the node rule, and we have pi =

node(p1
i , p2

i ). Again, we have ti = Node t1
i t2

i , and we may conclude by the
induction hypothesis.

�

Our reason for defining pattern matching is to provide the “closest” possi-
ble pattern semantics for a term. In fact we have the following result, which
states that any valuation θ such that t is in [[B(α)]]θ can be “factored through”
match(t, p):

Lemma 30 Suppose that t is a tuple of strongly normalizing terms, that α is a
tuple of pattern variables, and θ′ is a valuation that verifies:

∀i, ti ∈ [[B(αi)]]θ′

Suppose in addition that p are minimal patterns such that matchP(t, p) is defined
and equal to θ. Let φ be the substitution that sends αi to pi. Then

∀i, θ ◦ φ(αi) ≪ θ′(αi)



Proof. We proceed by induction on the judgment matchP(t, p).

– pi = βi for each pi, and therefore φ(αi) = βi. In that case, θ ◦ φ(αi) = {pat(v) |
v normal form of ti}. Furthermore, ti ≪� θ′(αi). Take some v a normal form of
ti. We have some q ∈ θ′(αi) such that v ≪� q. We then verify that pat(v)≪ q,
which implies θ ◦ φ(αi) ≪ θ′(αi)

– pi = leaf. In this case, θ′ ◦ φ(αi) = leaf. By ti ≪� θ′(αi) and ti = Leaf, we have
that θ′(αi) contains leaf or , and in each case we can conclude.

– pi = node(p1
i , p2

i ). In this case, ti = Node t1
1 t2

i , and

θ ◦ φ(αi) = {node(r1, r2) | r1 ∈ p1
i θ ∧ r1 ∈ p2

i θ}

By ti ≪� θ′(αi) we have for each normal form v of ti some q in θ′(αi) such that
v ≪� q. In addition v is of the form Node v1 v2, where v1 is a normal form of
t1
i and v2 is a normal form of t2

i . From this we get that either q = , in which
case we are done, or q = node(q1, q2) with v1 ≪� q1 and v2 ≪� q2. In this case
we apply the induction hypothesis to deduce that there is some r1 ∈ p1

i θ and
r2 ∈ p2

i θ such that r1 ≪ q1 and r2 ≪ q2, and thus node(r1, r2)≪ node(q1, q2).

�

Definition 31 We define the following order >dp on pairs ( f , t) with f ∈ Σ and
t a tuple of terms:

( f , t) >dp (g, u)⇔ ∃t′, n = f ♯(p) � g♯(q), t �
∗ t′ ∧ (n, t′, u) is a link

That is, if t reduces to t′ such that there is a link between t′ and u, and where
the associated node corresponds to a call from f to g.

Lemma 32 If the conditions of theorem 6 are satisfied then the order >dp is
well-founded.

Proof. Any infinite decreasing sequence ( f1, t1) > ( f1, t2) > . . . gives rise to
an infinite chain, which is not possible by theorem 23.

We have enough to prove the main theorem, that is correctness of defined
symbols.

Theorem 33 Suppose that the conditions of theorem 6 are satisfied. Then for
each f ∈ Σ and each valuation θ, f ∈ [[τ f ]].

Proof. Suppose that τ f = ∀α.B(α1)→ . . .→ B(αk)→ T f . Take θ a valuation
and t1, . . . , tn in [[B(α1)]]θ, . . . , [[B(αk)]]θ. We need to show that

f t1 . . . tn ∈ [[T f ]]θ

Note that each ti is strongly normalizing. We proceed first by induction on t
ordered by strict reduction. As t = f t is neutral, it suffices to consider all the
one step reducts t′ of t. These reducts are of two forms:



– t′ = f t1 . . . t′i . . . tk with ti � t′i . We conclude by the induction hypothesis.
– There is some rule l � r ∈ R, and some substitution σ such that |l|σ = t, and
|r|σ = t′. We then proceed by induction on ( f , t) ordered by >dp. We have by
hypothesis that there is some context Γ and some derivation Γ ⊢min li : B(pi)
for each i, and a derivation Γ ⊢ r : T fφ, with φ the substitution that sends αi

to pi.
By lemma 29, matchP = ψ is defined. We therefore have ti ∈ [[B(pi)]]ψ for
each i, which gives ti ∈ [[B(αi)]]ψ◦φ by the substitution lemma. By lemma 30,
ψ ◦ φ ≪ θ. We may then apply the positivity condition of τ f using lemma
19 to deduce that [[T f ]]ψ◦φ ⊆ [[T f ]]θ. Therefore it suffices to show that t′ is in
[[T f ]]ψ◦φ, which is equal to [[T fφ]]ψ by the substitution lemma. By hypothesis,
Γ ⊢ r : T fφ, so we would like to apply the correctness theorem 11 to show that
t′ = |r|σ ∈ [[T fφ]]ψ. The correctness theorem itself can not be applied, as it
takes as hypothesis the correctness of function symbols, which we are trying
to prove. But we will proceed in the same manner, making essential use of the
well-founded induction hypothesis.
Let us first show by induction on the derivation of Γ ⊢min li that for each
x ∈ dom(σ), σ(x) ∈ [[Γ(x)]]ψ.
• li = x. We have σ(x) = ti ∈ [[B(γ)]]ψ with γ = pi and ψ(βi) = {pat(v) |

v normal form of ti}
• li = Leaf. We have nothing to show here.
• li = Node l1 l2. Simple application of the induction hypothesis.

Now we prove by induction on the derivation of Γ ⊢ r : T fφ that |r|σ ∈ [[T fφ]]ψ.
We can exactly mimic the proof of theorem 11, except for the symb case.
In this case, there is a g such that r = gq, and if τg = ∀β.B(β1) → . . . →
B(βm)→ Tg, we need to show that, for some extension ψ′ of psi, g ∈ [[B(q1)→
. . . → B(qm) → Tg]]ψ′ . Recall the induction hypothesis on ( f , t), which states
that for every θ, if ( f , t) >dp (g, u), then gu ∈ [[Tg]]θ. Now take θ to be ψ′ ◦ ζ
where ζ is the substitution that sends βi to qi. It suffices to show that if for
i = 1, . . . ,m ui ∈ [[B(βi)]]ψ′◦ζ , then ( f , t) >dp (g, u). For this we need to show
that there exists n ∈ G such that:

• n = f ♯(r) � g♯(s)
• matchP(t, r) = θ
• There is an extension θ′ of θ such that

u≪� σθ′

We just take n to be the node that corresponds to the call site of gq. In this
case, r = p and s = q. By definition, matchP(t, p) is defined and equal to ψ.
Then ψ′ is an extension of ψ and as ui ∈ [[B(βi)]]ψ′◦ζ = [[B(qi)]]ψ′ , we have
ui ≪� qiψ

′.

�

Corollary 34 Every well-typed term is in the interpretation of its type, that is

∀Γ, t, T Γ ⊢ t : T ⇒ |t| ∈ [[T ]]



Where [[T ]] is [[T ]]θ where θ is the valuation that sends every variable to the set
{ }.

Proof. In fact it does not matter which θ we choose: let θ be any valuation.
Given a variable x and a type T , by lemma 9, x ∈ [[T ]]θ, as x is neutral and in
normal form. Given Γ ⊢ t : T , we can therefore take the substitution σ that sends
every variable x ∈ dom(Γ) to itself. In that case σ(x) ∈ [[Γ(x)]]θ by the above
remark, and by the combination of theorem 11 and theorem 33, |t|σ ∈ [[T ]]θ. But
in this case |t|σ = |t|.

�

We obtain the statement of theorem 6 as a corollary: every well typed term
is in the interpretation of its type, but this interpretation only contains strongly
normalizing terms by lemma 9.
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