2,153 research outputs found

    On the User Perception of Configurable Reference Process Models - Initial Insights

    Get PDF
    Enterprise Systems potentially lead to significant efficiency gains but require a well-conducted configuration process. A configurable reference modelling language based on the widely used EPC notation, which can be used to specify Configurable EPCs (C-EPCs), has been developed to support the task of Enterprise Systems configuration. This paper presents a laboratory experiment on C-EPCs and discusses empirical data on the comparison of C-EPCs to regular EPCs. Using the Method Adoption Model we report on modeller’s perceptions as to the usefulness and ease of use of C-EPCs, concluding that C-EPCs provide sufficient yet improvable conceptual support towards reference model configuration

    Specifying Self-configurable Component-based Systems with FracToy

    Get PDF
    International audienceOne of the key research challenges in autonomic computing is to define rigorous mathematical models for specifying, analyzing, and verifying high-level self-* policies. This paper presents the FracToy formal methodology to specify self-configurable component-based systems, and particularly both their component-based architectural description and their self-configuration policies. This rigorous methodology is based on the first-order relational logic, and is implemented with the Alloy formal specication language. The paper presents the dierent steps of the FracToy methodology and illustrates them on a self-configurable component-based example

    Configurable Formal Methods for Extreme Modeling

    Get PDF
    International audienceReliable model transformations are essential for agile modeling. We propose to employ a configurable-semantics approach to develop automatic model transformations which are correct by design and can be integrated smoothly into existing tools and work flows

    Correct Configuration of Process Variants in Provop

    Get PDF
    When engineering process-aware information systems (PAISs) one of the fundamental challenges is to cope with the variability of business processes. While some progress has been achieved regarding the configuration of process variants, there exists only little work on how to accomplish this in a correct manner. Configuring process variants constitutes a non-trivial challenge when considering the large number of process variants that exist in practice as well as the many syntactical and semantical constraints a configured process variant has to obey in a given context. In previous work we introduced the Provop approach for configuring and managing process variants. This paper picks up the Provop framework and shows how it ensures correctness of configurable process variants by construction. We discuss advanced concepts for the context- and constraint-based configuration of process variants, and show how they can be utilized to ensure correctness of the configured process variants. In this paper we also consider correctness issues in conjunction with dynamic variant re-configurations. Enhancing PAISs with the capability to correctly configure process models fitting to the given application context, and to correctly manage the resulting process variants afterwards, will enable a new quality in PAIS engineering

    An extended configurable UML activity diagram and a transformation algorithm for business process reference modeling

    Get PDF
    Enterprise Resource Planning (ERP) solutions provide generic off-the-shelf reference models usually known as best practices . The configuration !individualization of the reference model to meet specific requirements of business end users however, is a difficult task. The available modeling languages do not provide a complete configurable language that could be used to model configurable reference models. More specifically, there is no algorithm that monitors the transformation of configurable UML Activity Diagram (AD) models while preserving the syntactic correctness of the model. To fill these gaps we propose an extended UML AD modeling language which we named Configurable UML Activity Diagram (C-UML AD). The C-UML AD is used to represent a reference model while showing all the variation points and corresponding dependencies within the model. The C-UML AD covers the requirements and attributes of a configurable modeling language as prescribed by earlier researchers who developed Configurable EPC (C-EPC). We also propose a complete algorithm that transforms the C-UML AD business model to an individual consistent UML AD business model, where the end user\u27s configuration values are consistent with the constraints of the model. Meanwhile, the syntactic correctness of the transformed model is preserved. We validated the Transformation Algorithm by showing how all the transformation steps of the algorithm preserve the syntactic correctness of any given configurable business model, as prescribed by earlier researchers, and by running it on different sets of test scenarios to demonstrate its correctness. We developed a tool to apply the Transformation Algorithm and to demonstrate its validity on a set of test cases as well as a real case study that was used by earlier researchers who developed the C-EPC

    /facet: A browser for heterogeneous semantic web repositories

    Get PDF
    Facet browsing has become popular as a user friendly interface to data repositories. We extend facet browsing of Semantic Web data in four ways. First, users are able to select and navigate through facets of resources of any type and to make selections based on properties of other, semantically related, types. Second, we address a disadvantage of hierarchy-based navigation by adding a keyword search interface that dynamically makes semantically relevant suggestions. Third, the interface of our browser, /facet, allows the inclusion of facet-specific display options that go beyond the hierarchical navigation that characterizes current facet browsing. Fourth, the browser works on any RDFS dataset without any additional configuration. These properties make /facet an ideal tool for Semantic Web developers that need a instant interface to their complete dataset. The automatic facet configuration generated by the system can then be further refined to configure it as a tool for end users. The implementation is based on current Web standards and open source software. The new functionality we provide is motivated using a scenario from the cultural heritage domai
    corecore