
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Archived Theses and Dissertations

6-1-2010

An extended configurable UML activity diagram and a An extended configurable UML activity diagram and a

transformation algorithm for business process reference transformation algorithm for business process reference

modeling modeling

Yosra Badr

Follow this and additional works at: https://fount.aucegypt.edu/retro_etds

Recommended Citation Recommended Citation

APA Citation
Badr, Y. (2010).An extended configurable UML activity diagram and a transformation algorithm for
business process reference modeling [Master’s thesis, the American University in Cairo]. AUC Knowledge
Fountain.
https://fount.aucegypt.edu/retro_etds/2323

MLA Citation
Badr, Yosra. An extended configurable UML activity diagram and a transformation algorithm for business
process reference modeling. 2010. American University in Cairo, Master's thesis. AUC Knowledge
Fountain.
https://fount.aucegypt.edu/retro_etds/2323

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Archived Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For
more information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/retro_etds
https://fount.aucegypt.edu/retro_etds?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2323?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2323?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2323&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

The American University in Cairo
School of Sciences and Engineering

An Extended Configurable UML Activity
Diagram and a Transformation Algorithm for

Business Process Reference Modeling

A Thesis Submitted to the
Department of Computer Science and Engineering

in partial fulfilment of the requirements for
the degree of Master of Computer Science

By: Yosra Osama Badr
B.Se. Computer Science
Qatar University, 2004

Under the Supervision of:
Dr. Hoda Hosny

Dr. Sherif Aly

June 2009

I De AmencaD lJDIVersny ID L31ro

AN EXTENDED CONFIGURABLE UML ACTIVITY DIAGRAM AND

TARNSFORMATION ALGORITHM FOR BUSINESS PROCESS REFERENCE

MODELING

A Thesis Submitted by

Y osra Osama Badr

to Department of Computer Science & Engineering

July 2009

in partial fulfillment of the requirements for

The degree of Master of Science

has been approved by

Dr. Hoda Hosny

Thesis Committee Chair / Adviser
~~~~---7+-----

Affiliation: Professor, Department of Computer Science Engineering, The American University in Cairo. 

Dr. Sherif Aly 

Thesis Committee Chair / Adviser 
-d~~~~r---~~~ 

Affiliation: Associate Professor D The American Universi in Cairo. 

Dr. Sherif El-Kassas ~>'1 
Thesis Committee Reader / Examiner \-+-l=' =L~Jc>s+-.>..--__ ...>,.......+--,~ 
Affiliation: Associate Professor De'n .. rt...."..,« The American Universi in Cairo. 

~~;~~=: Reader I Examiner ~ ~ h" · 
Affiliation: Professor. Department ofCom;uter Science & Engin~The American University in Cairo. 

Dr. Mohamed Fahmy Tolba .\. . f'f\ 
Thesis Committee Reader / External Examiner ~\ . JlL\ ~ 

------ri~~~~---

Shams Universi . 

Dean 

~LPo9 
Date 



ABSTRACT 

University Name: The American University in Cairo 

Thesis Title: An Extended Configurable UML Activity Diagram and a 

Transformation Algorithm for Business Process Reference Modeling 

By: Yosra Badr 

Supervisors: Prof. Dr. Hoda M. Hosny, Dr. Sherif Aly 

Enterprise Resource Planning (ERP) solutions provide generic off-the-shelf reference 

models usually known as "best practices". The configuration !individualization of the 

reference model to meet specific requirements of business end users however, is a 

difficult task. The available modeling languages do not provide a complete 

configurable language that could be used to model configurable reference models. 

More specifically, there is no algorithm that monitors the transformation of 

configurable UML Activity Diagram (AD) models while preserving the syntactic 

correctness of the model. To fill these gaps we propose an extended UML AD 

modeling language which we named Configurable UML Activity Diagram (C-UML 

AD). The C-UML AD is used to represent a reference model while showing all the 

variation points and corresponding dependencies within the model. The C-UML AD 

covers the requirements and attributes of a configurable modeling language as 

prescribed by earlier researchers who developed Configurable EPC (C-EPC). We also 

propose a complete algorithm that transforms the C-UML AD business model to an 

individual consistent UML AD business model, where the end user's configuration 

values are consistent with the constraints of the model. Meanwhile, the syntactic 

correctness of the transformed model is preserved. We validated the Transformation 

Algorithm by showing how all the transformation steps of the algorithm preserve the 

syntactic correctness of any given configurable business model, as prescribed by 



earlier researchers, and by running it on different sets of test scenarios to demonstrate 

its correctness. We developed a tool to apply the Transformation Algorithm and to 

demonstrate its validity on a set of test cases as well as a real case study that was used 

by earlier researchers who developed the C-EPC. 



1 

TABLE OF CONTENTS 

 

LIST OF FIGURES .......................................................................................................... 3!

LIST OF TABLES ............................................................................................................ 5!

1. INTRODUCTION ........................................................................................................ 7!

1.1 MOTIVATION................................................................................................................................... 8!
1.2 BACKGROUND............................................................................................................................... 11!
1.3 RESEARCH OBJECTIVE .................................................................................................................. 12!
1.4 RESEARCH ACHIEVEMENT ............................................................................................................ 12!
1.5 THESIS STRUCTURE ...................................................................................................................... 13!

2. LITERATURE SURVEY........................................................................................... 14!

2.1 BUSINESS PROCESS MODELS ........................................................................................................ 14!
2.2 BUSINESS PROCESS REFERENCE MODELS..................................................................................... 16!
2.3 BUSINESS PROCESS MODELING LANGUAGES................................................................................ 20!

2.3.1 UML 2.0 Activity Diagrams ................................................................................................. 20!
2.3.2 Event Process Chain ............................................................................................................ 22!
2.3.3 UML and EPC...................................................................................................................... 24!

2.4 SAP REFERENCE MODEL.............................................................................................................. 26!
2.5 CONFIGURABLE BUSINESS PROCESS REFERENCE MODELS........................................................... 27!
2.6 CONFIGURABLE BUSINESS PROCESS MODELING LANGUAGES ..................................................... 28!

2.6.1 Configuration Patterns......................................................................................................... 29!
2.6.2 Configuration Requirements ................................................................................................ 31!
2.6.3 Configuration Attributes and Configurable Nodes .............................................................. 32!

2.7 EPC INVOICE VERIFICATION BUSINESS EXAMPLE ....................................................................... 36!
2.8 THE TRANSFORMATION PROCESS ................................................................................................. 38!

2.8.1 Deriving Configured Functions ........................................................................................... 40!
2.8.2 Deriving Configured Connectors ......................................................................................... 41!
2.8.3 Deriving the Complete Model .............................................................................................. 42!
2.8.4 Deriving the complete Algorithm ......................................................................................... 43!

2.9 DISCUSSION OF RELATED WORK .................................................................................................. 45!

3. THE CONFIGURABLE UML ACTIVITY DIAGRAM ........................................ 48!

3.1 THE CONFIGURABLE ELEMENTS ................................................................................................... 48!
3.1.1! Configurable Actions........................................................................................................ 49!
3.1.2! Configurable Connectors ................................................................................................. 50!

3.2 CONFIGURATION REQUIREMENTS AND ATTRIBUTES .................................................................... 52!
3.3! IMPLEMENTATION OF THE ATTRIBUTES .................................................................................... 56!
3.4! INVOICE VERIFICATION BUSINESS EXAMPLE............................................................................ 58!

4. THE TRANSFORMATION PROCESS................................................................... 62!

4.1 TRANSFORMATION OF CONFIGURABLE ACTIONS.......................................................................... 63!
4.2 TRANSFORMATION OF CONFIGURABLE CONNECTORS .................................................................. 66!
4.3 OPTIMIZING THE TRANSFORMED MODEL ..................................................................................... 69!
4.4 THE TRANSFORMATION ALGORITHM............................................................................................ 72!
4.5 EXAMPLE ...................................................................................................................................... 76!
4.6 CASE STUDY ................................................................................................................................. 78!

5. VALIDATION OF THE TRANSFORMATION ALGORITHM.......................... 85!

5.1 VALIDATING THE TRANSFORMATION ALGORITHM....................................................................... 86!
5.2 VALIDATION BY TESTING ............................................................................................................. 87!

5.2.1 Unit Testing .......................................................................................................................... 88!
5.2.2! Integration Testing ........................................................................................................... 94!

6. SUMMARY AND CONCLUSION ......................................................................... 101!

6.1 RESEARCH CONTRIBUTIONS ....................................................................................................... 102!



2 

6.2 LIMITATIONS AND FUTURE WORK.............................................................................................. 103!

7. REFERENCES.......................................................................................................... 105!

APPENDIX A. THE C-UML AD TRANSFORMATION TOOL............................ 109!

 



3 

LIST OF FIGURES 

 

Figure 2.1. Criteria for Characterizing Business Process Reference Models [33] ......18!

Figure 2.2. Basic Elements of the AD [12]..................................................................21!

Figure 2.3. Procurement Logistic Processes Using AD [12] .......................................22!

Figure 2.4. Basic Elements of the EPC [12] ................................................................23!

Figure 2.5. Procurement Logistic Processes Using EPC [12] .....................................24!

Figure 2.6. Expressing inclusive “OR” Using EPC and AD. [12]...............................25!

Figure 2.7. The Different Decision Levels [15]...........................................................29!

Figure 2.8. Invoice verification Example Using EPC ([1], [28]).................................37!

Figure 2.9. Invoice verification Example Using C-EPC ((1], [28]).............................38!

Figure 2.10. An Example with a Syntactic Error [14] .................................................39!

Figure 2.11. Derivation Rules for Configurable Functions [13]..................................41!

Figure 2.12. A Possible Derivation of a Configured Connector [13] ..........................42!

Figure 2.13. The Derived Reduction Rules [13]..........................................................43!

Figure 3.1. Invoice Verification Example Using Standard UML AD .........................59!

Figure 3.2. Invoice Verification Example Using C-UML AD ....................................60!

Figure 3.3. A Possible Configuration of the Invoice Verification Example................60!

 Figure 4.1.The Transformation Algorithm .................................................................75!

Figure 4.2. A Configurable Business Model ...............................................................77!

Figure 4.3. The Resulting Transformed Business Model from Figure 4.2. .................78!

Figure 4.4. Travel Form Approval Business Process Reference Model Using C-EPC 

[40].......................................................................................................................79!

Figure 4.5. Induced C-UML AD Business Process Reference Model ........................80!

Figure 4.6. A Configured UML AD Business Process Reference Model ...................82!



4 

Figure 4.7. Another configured UML AD Business Process Reference Model..........84!

Figure 5.1. Input: C-UML AD Business Model ..........................................................98!

Figure 5.2. Output: Resulting Transformed Business Model from Figure 5.1. ...........99!

Figure 5.3. Output: Resulting Transformed Business Model from Figure 5.1. .........100!

Figure A.1. System Architecture ...............................................................................110!

Figure A.2. System Flow ...........................................................................................112!

 



5 

LIST OF TABLES 

 

Table 2.1. Comparison Between EPC and AD [12] ....................................................25!

Table. 2.2. Configuration Attributes [1] ......................................................................33!

Table 2.3. Comparison of the Recent Approaches in Configurable Business Process 

Modeling..............................................................................................................47!

Table 3.1. Notations of a Standard and a Configurable Action in C-UML AD ..........49!

Table 3.2. Possible Configurations of a Configurable Action .....................................50!

Table 3.3. Notations of the Standard and Configurable Connectors in C-UML AD...50!

Table 3.4. Configuring a Configurable Decision to a Seq n........................................51!

Table 3.5. Summary of Possible Connector Configurations........................................52!

Table 3.6. Notations of the Configuration Attributes in C-UML AD .........................56!

Table 3.7. Comparison Between C-UML AD and C-EPC ..........................................57!

Table 4.1. Configuration Alternatives of a Configurable Action Between Two Actions 

(Case 1) ................................................................................................................64!

Table 4.2. Configuration Alternatives of a Configurable Action Between Two 

Connectors(Case2)...............................................................................................65!

Table 4.3. Configuration Alternatives of a Configurable Action Between an Action 

and a Connector (case 3)......................................................................................65!

Table 4.4. Configuration Alternatives of a Configurable Action Between a Connector 

and an Action (case 4)..........................................................................................66!

Table 4.5. Example of Configuring a Configurable Fork/Join ....................................67!

Table 4.6. Example of Configuring a Configurable Decision/ Merge.........................68!

Table 4.7. Example of Configuring a Fork/Join ..........................................................68!

Table 4.8. Example of Applying the 1st Reduction Rule ............................................70!



6 

Table 4.9. Example of Applying the 2nd Reduction Rule...........................................71!

Table 4.10. Example of Applying the 3rd Reduction Rule..........................................72!

Table 5.1. Test Case for Case 1 of Section 4.1 ............................................................89!

Table 5.2. Test Case for Case 2 of Section 4.1 ............................................................90!

Table 5.3. Test Case for Case 3 of Section 4.3 ............................................................91!

Table 5.4. Test Case for Case 4 of Section 4.1 ............................................................92!

Table 5.5. Test Cases for Testing the Rules of Section 4.2 .........................................93!

Table 5.6. Test Cases for Testing the Reduction Rules of Section 4.3........................95!

Table 5.7. Test Case for Testing the Model with the "Mandatory/Optional" Attribute

..............................................................................................................................97!

 



7 

1. Introduction 

 
Business process modeling has recently gained a great deal of attention due to the rapid 

increase in the size and complexity of organizational practices which forced organizations 

to continuously improve their standards to meet the growing competition. One of the 

major stimulators behind this trend is the desire to automate and to enhance the current 

processes.  

 

Many domains and business areas, such as procurement, material management and sales, 

implement similar processes across many organizations, with some specific modifications 

that meet the requirements of each individual organization. This fact has influenced the 

emergence of reference models. Reference models are “generic conceptual models that 

formalize recommended practices for a certain domain, often labeled with the term best 

practice” [15]. Reference models claim to capture reusable state-of-the-art practices. 

Reference models were promoted by Enterprise Resource Planning (ERP) vendors, who 

used them as a prescription for processes that should be adopted as part of the 

implementation of the ERP system [11]. Reference models exist in the form of functions, 

data, system organization, objects and business process models, although business 

process models are the most popular type [15].  

 

The process of building accurate reference models is a major issue that has been 

discussed frequently [11]. Although the construction of reference models is a complicated 

and critical task, reusing these generic reference models and customizing them to meet an 

individual organization’s requirements is a difficult and costly task that needs to be more 

carefully studied and managed. The configuration process of the generic reference model 

is very critical because it may either lead to the success or failure of the whole 

organization. “Consider the example of FoxMeyer, once a $5 billion wholesale drug 



8 

distributor, which filed for bankruptcy in 1996 after Andersen Consulting concluded that 

the insufficient customization of its reference model crippled the firm's distribution” [15].  

 

All the reference models that are available in industry today are built using standard 

available modeling languages that are designed for the modeling of specific individual 

models rather than generic reusable ones. Hence, these languages are not capable of 

expressing any variation points or options or even giving guidance and help at build time, 

i.e. time of reusing and individualizing a business model. 

 

A number of methodologies were applied to reuse (customize) reference models to 

individual cases. One new and promising approach is to extend the modeling languages to 

make them more configurable in order to use them to model the reference models, giving 

them more guidance and help. This, in return, facilitates the reusability of the reference 

models and makes their adaptation almost error free.  

 

The use of such extended modeling languages introduces an additional step whereby the 

“configurable” generic business model gets customized to a specific individual business 

model. Transformation algorithms are thus needed to ensure and monitor the syntactic 

correctness of the derived individual reference models from the generic configurable 

reference models.  

 

1.1 Motivation  

 
Since business process modeling became an essential and crucial tool for the success of 

an organization, greater attention has been given to all the possible approaches that could 

be applied to help organizations set their own successful business models. This fact 



9 

motivated a lot of academic and practical work in this field, finally reaching the idea of 

reference modeling.  

 

A major difficulty with reference modeling is the way a reference model is customized to 

each individual organization to meet its specific requirements. Hence, alternative 

approaches must be considered to make the reusability of the reference model more 

effective, in terms of cost and time. To do so, reference models are changed to include 

more guidance and clarification for the user about the set of dependencies at each possible 

variation point. These models, known as ‘configurable reference models’, need some new 

modeling languages other than the standard ones, since the standard languages are not 

capable of expressing such dependencies or providing such guidance.  

 

It is also essential to define algorithms that transform such configurable reference models 

to syntactically correct, configured and instantiated individual models.  

 

The above approach has been applied successfully on reference models constructed using 

the Event Process Chain (EPC) modeling language. The Unified Modeling Language 

(UML), a more widely known modeling language than EPC, (and specifically its activity 

diagrams) was not extended likewise, despite recommendations to apply the approach on 

any modeling language [28].  

 

Recent research work conducted in this area was directed towards proving the perceived 

usefulness and ease of use of the configurable reference modeling technique as opposed 

to the standard reference modeling technique. But all this research targeted the EPC 

language. The researchers also proved, by experiments, that the new methodology C-EPC 

(Configurable-EPC) possesses more expressive power than EPC in terms of identifying 

configuration decisions. C-EPC also increases the clarity of the configuration process in 



10 

terms of selecting alternative configuration decisions in a reference model. The research 

concluded that the configurable reference modeling technique is very promising and 

needs to be further researched [16].  

 

UML is the de facto standard language used in practice. It is also known as the “swiss 

army knife” of systems modeling and design activities [29]. It includes a number of 

modeling possibilities that have broad applications in capturing both the static and 

dynamic aspects of software systems. Therefore, providing configurable reference 

models using configurable UML activity diagrams would be useful and essential to 

the business process modeling community. We were strongly motivated to join the 

research efforts in proposing the first configurable UML activity diagram (AD). 



11 

1.2 Background 

 

The idea of business process modeling had a strong impact on the design of enterprise 

systems in the 19th century and resulted in the emergence of the business process 

management. The business modeling community looked for several solutions to facilitate 

the process of modeling the business processes of enterprises. Since many business 

scenarios of similar industries have similar and common business processes the idea of 

business process reference models was brought up, also known as ‘generic’, ‘best 

practice’ models or ‘reusable business process’ models.  

 

One of the major problems that emerged with reference models is how to reuse and 

individualize the reference models. Aalst and Rosemann [28] were the first to introduce a 

new approach for the re-usability of reference models, also known as 

‘configuring/customizing’ of the reference models. Since all the available methodologies 

do not really help in the configuration process, the new approach was to indicate all the 

possible variation points and their corresponding dependencies in the model. But the 

available modeling languages, such as EPC and UML AD and Petri net, were still not 

capable of demonstrating such variations and providing guidance to model such 

configurable business process models [16]. Aalst and Rosemann [28] therefore, started to 

put the foundation steps for any configurable business process modeling language. Then 

they extended the EPC language to C-EPC. The next step was transforming the new C-

EPC business models back to EPC at build time while keeping the models syntactically 

and semantically correct [20], [23], and [24]. Their algorithm, introduced in [13] and [14], 

was the first algorithm provided to ensure that the transformation/configuration of C-EPC 

business models to individualized EPC is syntactically correct.  

 



12 

Other approaches that were applied on UML AD to express variation points of the model 

did not provide an algorithm that preserves the syntactic correctness of the derived 

individualized UML AD. A detailed comparison of the previous approaches are discusses 

in section 2.9. 

 

1.3 Research Objective 

 

The idea of setting a configurable business process modeling language was only 

considered for EPC and not for UML AD. Hence, our research work aims at extending 

the UML Activity Diagram to set a Configurable UML AD (C-UML AD) modeling 

language covering a wider set of the requirements than those set in [28].  

 

We also set a complete algorithm that transforms a C-UML AD business model to an 

individual UML AD business model that is both consistent and syntactically correct.  

 

1.4 Research Achievement 
 

We successfully developed and implemented the Configurable UML-AD requirements in 

a similar manner to the work done on C-EPC. We developed graphical notations and 

attributes for our newly introduced constructs. Our work also includes a full algorithm 

that is responsible for transforming a configurable UML Activity Diagram (C-UML AD) 

business model to a standard UML AD at build time without causing any syntactic errors 

to the model.  



13 

1.5 Thesis Structure 

 

The remaining chapters of this thesis are organized as follows: the literature survey is 

covered in Chapter 2; Chapter 3 introduces the extended parts of the C-UML AD 

modeling language; the transformation process that monitors the derivation of standard 

UML AD business models from C-UML AD business models is explained in Chapter 4; 

and the testing and validations are presented in Chapter 5. Finally, the research summary 

and conclusion are made in Chapter 6. 



14 

2. Literature Survey 
 

2.1 Business Process Models 

 
In today’s world, companies of all sizes are getting more and more sophisticated. 

Accordingly, there is a growing need for in-house organizations that rise to streamline 

the internal business processes and allow the technical staff to focus on more 

important issues like the markets and contextual changes, and the business’s 

strategies. 

 

To facilitate this streamlining, global trends are moving towards embedding 

information technology into the heart of the business and its processes to the furthest 

extent possible. However, introducing information technology to an institution that 

lacks proper definition of its business processes will make matters even worse, and 

will only slow down the processes and consume more financial and non-financial 

resources. Hence, proper business process modeling is a mandatory prerequisite for 

introducing an effective IT system to a company, and using it to take the company to 

new horizons of efficiency and reduction in costs. 

 

In 1934 Nordsieck [1] stated that the structure of a company should be process-

oriented and he compared it to a stream. Based on this idea and many other similar 

ones, business process management became a popular approach. And only since then 

the business process orientation managed to significantly impact the Information 

Systems field. Later, the concept of Enterprise Resource Planning (ERP) systems was 

established. ERP projects may vary in size and structure, each requiring careful 

management decisions during implementation. Today, these ERP systems are known 



15 

as enterprise systems. Nowadays, enterprise systems need to offer more complicated 

and interrelated business processes to meet the organization’s requirements. 

  

Before introducing business process models one needs to clarify what is meant by a 

model. A model “is a representation of a part of a function, structure and/or behavior 

of an application or system.” Representation is then considered formal when it is 

based on a language that is well-defined, i.e. syntax, and has a meaning, i.e. 

semantics, and possibly defined rules and a proof for its constructs [18]. 

  

The syntax of a model could be expressed graphically or textually. The semantics of a 

model could be defined on different levels of formality, based on the things being 

observed in the world being described, or by translating higher level language 

constructs into other constructs that have a well-defined meaning [31]. 

 

A model is also defined in Wikipedia [38] as “a pattern, plan, representation 

(especially in miniature), or description designed to show the main object or workings 

of an object, system, or concept.” Another definition for a model is that “A model is a 

set of statements about some system under study.” [4] 

 

Business Process was defined by the Workflow Reference Model [26] as a “set of one 

or more connected activities, which collectively realize a business objective or policy 

goal, normally within the context of an organizational structure defining functional 

responsibilities and relationships.” Davenport and Short [26] state that a business 

process is a set of logically related tasks performed to achieve a defined business 

outcome. 

 



16 

In Wikipedia [38] a business process model is referred to as an enterprise process 

model, where a process model is used to show how things must/should/could be done 

in contrast to the process itself which is really what happens. A process model is 

roughly an anticipation of what the process will look like. 

  

The problem with business process modeling in enterprise systems is that it is a long 

and tedious process in itself, especially when the task owner has to conduct it for all 

the processes within a given organization. Consequently, it is essential to find off-the 

shelf generic business process modeling packages, known as Business Process 

Reference Models, which could be used and customized by the organizations to 

model their processes in an easy and quick manner. 

 

2.2 Business Process Reference Models 

 
In the 19th century the term “reference” was initially used in the business language to 

refer to a person or company who is capable of giving information concerning the 

trustworthiness of a business partner. The definition of a person or place to whom or 

where one could appeal for his or her (social) recommendation came later [32]. 

 

Towards the end of the 1980s, Scheer [32] was one of the first users of the technical 

term “reference model”. In one of his books he referred to the model as a reference 

model. The acceptance of the model as a reference model in practice encouraged 

Scheer to give his book a different subtitle in the second edition: Reference Models 

for Industrial Enterprises [32]. 

 



17 

A Business Process Reference Model, or simply a reference model, is defined as a 

“conceptual framework that can be used as a blueprint for information system 

construction” [33]. Reference models are also called universal models, generic 

models, or  

model patterns.  

 

“The main objective of reference models is to streamline the design of particular 

models by providing a generic solution. The application of reference models is 

motivated by the "Design by Reuse" paradigm “[15]. Reference models accelerate the 

modeling process by providing a repository of potentially relevant models. These 

models are ideally "plug and play" but often require some customization and 

configuration [15]. 

  

Reference models can be differentiated along the following main criteria as stated in 

[28]: 

• Scope of the model (e.g., functional areas covered) 

• Granularity of the model (e.g., number of levels of decomposition detail) 

• Views (e.g., process, data, objects, organization) that are depicted in the 

model 

• Degree of integration between the views 

• Purposes supported 

• User groups addressed 

• Internal or external (commercial) use 

• Availability of the model (e.g., paper, tool-based, Web-based) 

• Availability of further textual explanation of the model 

• Explicit inclusion of alternative business scenarios 



18 

• Existence of guidelines on how to use these models 

• Availability of relevant quantitative benchmarking data 

 

In [33] reference models are characterized according to a set of criteria, as shown in 

Figure 2.1. The Application category is an important and a crucial one, if not the most 

important. Therefore, looking at the application methods, reuse and customization of a 

reference model is a critical step in the success of any reference model. 

 

Figure 2.1. Criteria for Characterizing Business Process Reference Models [33] 

 

The reuse and customization of the reference models are studied in more details and 

they are taken into a next step where they are classified into four categories according 

to the way the business processes within the reference models are reused: reuse by 

adoption, reuse by assembly, reuse by specialization, or reuse by customization [11]. 

1. Reuse by adoption: Reference models used by this approach are very detailed 

and they provide knowledge at the lowest level of abstraction. These models 

should be used as-is without any modifications. Most organizations do not use 

the full models; therefore they have to change the areas and parts of the model 

that do not suit them by modifying or building them from scratch. These 



19 

models do not provide any guidelines for such actions, such as SAP and 

Scheer reference models [32]. 

 

2. Reuse by assembly: Reference models used under this approach are also 

detailed and provide knowledge at the lowest level. However, they represent 

the processes as different building blocks that need to be selected and 

assembled to form a final customized model. This approach offers more 

flexibility than the above but keeping the whole model consistent is more 

difficult. The DEM reference model is an example. 

 

3. Reuse by Specialization: Reference models used under this approach differ 

completely from the earlier ones; they provide knowledge at the highest levels 

of abstraction. Organizations using such models need to specialize these 

models to come up with lower level models that could be used. The problem is 

that no guidance is given when specializing these models. The Supply Chain 

Operations (SCOR) reference model falls under this category of reference 

models. 

 

 

4. Reuse by customization: Reference models used under this approach are 

known as configurable reference models, and they are similar to the ones used 

in the reuse by adoption approach. This approach overcomes the limitations of 

the reuse by adoption approach by using a detailed low-level model that shows 

explicitly all the possible variation and configuration possibilities as well as 

their dependencies. This approach is a new one that has not been actually 

implemented on any model but has gained much interest. A configurable 



20 

reference model will show all different possible configurations of the generic 

model. Each organization could then easily choose and apply one of the 

possible given configurations. A configurable reference model must be able to 

provide a complete, integrated set of all possible process configurations. Only 

in this case can each individual model be derived from the model. In other 

words the configurable reference model can be described as the “least 

common multiple” of all process variations. The task of configuration is to 

create a new model by selecting that parts of the configurable model that are 

relevant to the user or – the other way around – by deselecting the irrelevant 

parts [7]. This approach is the one that we studied in depth and based our work 

on. 

 

2.3 Business Process Modeling Languages 

 

2.3.1 UML 2.0 Activity Diagrams 

 
Many modeling languages have been set to model business processes. One of these 

modeling languages that were derived from the object-oriented paradigm is the 

Unified Modeling Language (UML) [30]. UML is a graphical language for 

visualizing, specifying, constructing and documenting the artifacts of software 

systems. UML was originally derived from the three leading object oriented methods: 

Booch, Object Modeling Technique (OMT) and Object Oriented Software 

Engineering (OOSE). Today, UML is a common standard for object-oriented 

modeling and is derived from a shared set of commonly accepted concepts, which 

have successfully been proven in the modeling of software systems. The UML is 

increasingly being seen as the de-facto standard for software modeling and design. 

[11]. However, the object-oriented methods were used to cover the implementation 



21 

aspects, not the business processes. The developers of UML realized the need to 

extend UML’s capability to model business processes. Hence, diagrams like use cases 

and activity diagrams are incorporated into the UML. Activity diagrams (AD) are 

capable of modeling business processes since they have a control and data-flow 

model. The Activity Diagram is represented as a graph made of nodes and edges. Data 

values and control are passed on from one node to another through the edges. The 

nodes operate on the received inputs and provide output that flows out onto the edges 

to be passed on to the following nodes of the diagram. 

 

In the UML Activity Diagram the fundamental unit of behavior specification is the 

action. An action takes a set of inputs and converts them to a set of outputs. Actions 

may also modify the state of the system. In order to represent the overall behavior of a 

system, the concept of the activity is used. Activities are composed of actions and/or 

other activities and they define dependencies between their elements. Nodes represent 

Actions, Activities, Data Objects, or Control Nodes. The various types of Actions and 

Control Nodes are shown in Figure 2.2. 

 

Figure 2.2. Basic Elements of the AD [12] 

 

The diagram in Figure 2.3 shows an example of procurement logistics processes using 

an Activity Diagram (AD).  



22 

 

Figure 2.3. Procurement Logistic Processes Using AD [12] 

2.3.2 Event Process Chain 

 
Another modeling language that has been used by many reference models is the Event 

Process Chain (EPC), which was developed within the framework of Architecture of 

Integrated Information System (ARIS) by Scheer, Keller and Nüttgens [15]. ARIS is a 

standard framework for business process engineering that is accepted in research and 

in practice [28]. The strength of EPC lies in its easy-to-understand notation that is 

capable of portraying business information systems. EPC is used within many models; 

one of the most common reference models that uses EPC is the SAP reference model 

[15].  

 



23 

The EPC originated from the business prospective rather than from IT. It has many 

ambiguities and deadlocks that can cause many technical issues when checked or 

implemented as stated in [12].  EPC is basically denoted by directed graphs, which 

visualize the control flow and consist of events, functions and connectors [15]. Each 

EPC starts with at least one event and ends with at least one event. An event triggers a 

function, which leads to a new event.  The basic elements used in EPC are shown in 

the Figure 2.4. 

 

Figure 2.4. Basic Elements of the EPC [12] 

 

Figure 2.5. shows the same procurement logistics example illustrated in Figure 2.3 but 

using EPC. 



24 

 

Figure 2.5. Procurement Logistic Processes Using EPC [12]  

 

2.3.3 UML and EPC 

 
It is important for us to study the similarities and differences between the two 

modeling languages to be able to convert from one form to another. Converting EPC 

to UML is our first step in this research since all the previous work done in the area of 

configurable reference modeling was done using EPC only. The comparison between 

them is summarized in Table 2.1.  

 

 



25 

Table 2.1. Comparison Between EPC and AD [12] 

 

The process of transforming EPC models to Activity Diagrams is almost straight 

forward with one major problem. The inclusive “OR” in EPC is not represented with 

a corresponding connector in Activity Diagrams; hence, it could be represented 

indirectly as shown in Figure 2.6: 

 

 

Figure 2.6. Expressing inclusive “OR” Using EPC and AD. [12] 

 

In [10] a thorough comparison was made between the syntax, semantics, tool 

availability and software lifecycle availability of EPC and UML AD modeling 



26 

languages. The following points were made to sum up the advantages of UML AD 

over EPC: 

 

1. UML is a commonly accepted international standard while EPC is mainly 

used in Germany (specifically for organizations using SAP software). 

 

2. There is a huge set of implementation tools available for UML AD with 

different ranges of prices than there is for EPC. 

 

3. Since UML is a de facto standard of software engineering, all professional 

software engineers (and most computer scientists) will have had at least some 

exposure to UML, but frequently none to EPC. Therefore, UML AD is a more 

viable choice in a software development project than EPC. 

 

4. More scientific books, papers and tools are available for UML AD than EPC 

 

None of the above reasons is entirely compelling but together, however, it is likely 

that UML AD will stay dominant over EPC in the long run. “Even for specialties of 

EPC, where it currently still has an advantages over UML AD (such as certain tools, 

as SAP tools) UML AD will spread to become the standard notation. How long this 

process may take remains to be seen.” [10]  

 

2.4 SAP Reference Model 

 
The SAP Reference Model is a set of information models that are utilized to guide the 

configuration of SAP systems. It is used to describe all areas of the system, from 



27 

logistics to personnel time or compensation management. The SAP R/3 reference 

model has evolved in the middle of the 1990s in different versions to suit the 

implementation and configuration of various systems [6]. It is said to be the biggest 

enterprise system vendor worldwide with more than 100,000 installations [39]. It 

covers data and organization structures, but it is mainly known for its business 

processes. 

 

The widespread and practical acceptance of SAP motivated our choice of using it in 

this research. As mentioned earlier, the SAP uses the EPC modeling language. In this 

research work we rely on parts of the SAP reference model to demonstrate and verify 

our results so that we can compare our work with the work done on EPC. 

 

2.5 Configurable Business Process Reference Models 

 

The configuration process is defined by Davenport [35] as an approach applied to 

balance the business IT functionalities with its requirements. It is also described by 

Soffer [2] as an alignment process of adapting the needs of the enterprise to its 

system. 

 

Configuration and customization are very close and they are often used 

interchangeably. As stated in [1] and referred to by the Webster’s Collegiate 

Dictionary configuration is defined as “relative arrangement of parts or elements” 

while customization is defined as “to build, fit, or alter according to individual 

specifications” [25]. 

 



28 

Configuration of business reference models could be summarized as the process of 

adapting business processes of a given generic reference model to meet the 

requirements and needs of an enterprise. However, the main problem with the 

configuration of reference models is the lack of explicit support on how and where to 

apply such configuration in the reference model and the set of dependencies that will 

result due to such configuration. Accordingly, there is a shortage in the available 

standard reference modeling languages since they are not capable of highlighting and 

expressing the variation points and their corresponding dependencies. Consequently, 

the unguided configuration of reference models may lead to inappropriate semantic 

and syntactic reference models [3]. Hence, Aalst and Rossmann, as mentioned earlier, 

developed the concept of Configurable Reference Models using extended modeling 

languages that assist in the construction of such reference models. 

 

The idea of configurable business process reference modeling is simply a model that 

represents a set of all possible variants of the model. This idea is consistent with the 

concept of Software Production Lines (SPLs), where all the possible alternatives are 

captured as variation points in the model or system. [17]  

 

2.6 Configurable Business Process Modeling Languages 

 
The construction of configurable reference models need to be supported by 

configurable modeling languages that are capable of expressing the variation points 

and their corresponding dependencies.  

 

A configurable modeling language has to capture decisions at the type level as well as 

instance level. Decisions at type level, i.e. at build time, have an impact on the actual 

structure of the model unlike decisions at instance level, i.e. at run time. The build 



29 

time decisions have to be clearly identified in a model and they are known as 

variation points.  

  

There is also configuration time, which is defined as “the moment in time where 

configuration decisions need to be made” [1]. A model in this phase cannot 

necessarily be executed. It rather captures different alternatives for a domain and has 

to be configured before it can serve as the actual build time model for individual 

process instances. 

 

All the above decision levels are summarized in Figure 2.7 using EPC notation [15]. 

 

Figure 2.7. The Different Decision Levels [15] 

 

2.6.1 Configuration Patterns 

 
The first step towards establishing configurable modeling languages is to analyze the 

different configuration scenarios of business processes. To do so, configuration 

patterns were developed in [1]. 

 



30 

Configuration patterns are defined as “patterns which depict a configuration scenario 

and highlight the potential implementation alternatives that are available. A 

configuration pattern shows the options that are available at configuration time.” [1]. 

 

These configuration patterns were used to construct configuration notations forming 

an extension to the standard EPC modeling language and thus leading to a new 

configurable modeling language; Configurable-EPC (C-EPC). 

 

The configuration patterns according to Aalst [1] are summarized as follows: 

 

1. Optionality: Functions within EPC that could be switched ON, OFF or 

OPTIONAL. 

 

2. Parallel Split: This pattern signifies a point in the model where one path is 

split into multi paths all of which need to be executed in synchronization. In 

EPC this comprises the AND connector in a split. 

 

3. Exclusive Choice: This pattern considers all alternative cases involving a 

configurable XOR connector in a split. 

 

4. Multi Choice: This pattern considers all possible alternatives available at an 

OR connector split. 

 

5. Synchronization: This pattern is similar to pattern 2 except that it considers the 

alternatives at an AND join, where at least two branches are being joined 

instead of one being split. 



31 

 

6.  Simple Merge: This pattern is similar to pattern 3, except that again it 

considers the alternative cases where the paths are being joined by an XOR 

connector instead of being split. 

 

7. Synchronizing Merge: This pattern is similar to pattern 4, except that it 

considers the alternatives of an OR merge and not a split. 

 

8. Interleaved Parallel Routing: This pattern considers the case when the order of 

execution of a number of processes is configurable. 

 

9. Sequence Inter-relationships: This pattern is based on the case where 

configuration of one process could depend on the configuration of another 

isolated one. This interdependency is described as a relationship. 

 

2.6.2 Configuration Requirements 

 
A configurable modeling language has also to demonstrate the following 

characteristics as stated in [28]: 

 

1. The language has to support configurations regarding entire processes, 

functions, control flow and data. 

 

2. It should be possible to differentiate configuration decisions into mandatory 

and optional decisions. 

 



32 

3. Configuration should be differentiated into global and local decisions. 

 

4. Configuration decisions should also be differentiated into critical and non-

critical decisions. 

 

5. Configuration decisions can have interrelationships. Any pre-requisites for a 

configuration decision should be clearly highlighted. 

 

6. Configuration decisions can be made on different levels. 

 

"# Variation points should refer to further related information within the 

Enterprise System. $%&'!()*!&*(+,-.!/%.!'0'/.1!2*+&*.!%.+3!24!/%.!'0'/.1!

&13+.1.*/)/&2*!5,&-.#!

!

8. The entire configuration process should also be guided by recommendations or 

configuration guidelines. 

 

9. Enterprise System reference models are already very comprehensive. Any 

further extension of these modeling languages has to carefully consider the 

impact on the perceived model complexity. 

 

2.6.3 Configuration Attributes and Configurable Nodes 

 
Based on the above configuration patterns and configuration requirements, 

configuration attributes are constructed for describing the configurable nodes. In EPC 

Configurable nodes consist of configurable functions and configurable connectors. 



33 

The configurable nodes are denoted with a thicker border than non-configurable ones 

[1]. The configuration attributes are summarized in Table 2.2. 

Table. 2.2. Configuration Attributes [1] 

 

The formal description and details of building a configurable-EPC can be found in 

[28]. The language is not fully configured since it does not cover all the aspects of a 

configurable modeling language yet. 

  



34 

The earlier work done in the area of constructing a configurable EPC (C-EPC) did not 

cover all the requirements discussed above in section 2.6.2. The following list reflects 

the parts that were covered by C-EPC in [28]: 

 

1. The C-EPC language mainly focuses on the process and control-flow aspects. 

The data aspect and function aspect have not been addressed explicitly. Note 

that functions can be configured but this only refers to their presence rather 

than the functionality of these functions. 

 

2. It does not distinguish between mandatory and optional decisions. To do so, an 

additional attribute has to be added to the configurable nodes identifying 

whether their configuration is mandatory or not. 

 

3. It does not differentiate between global and local decisions. Again, another 

attribute has to be added to each configurable node. However, the real 

challenge is to get this information. 

 

4. Similar remarks hold for the difference between critical and non-critical 

decisions. 

 

5. Configuration decisions can have interrelationships. This is partly covered by 

the requirements and guidelines in a C-EPC. However, these are restricted to 

interrelationships within one model. 

 

6. Configuration decisions can be made on different levels. This can be 

supported by the concept of partially configurable C-EPCs. A partially 



35 

configured C-EPC is simply a C-EPC with some nodes that have already been 

configured and others that are not. A partially configured C-EPC allows the 

configuration to take place at subsidiary levels. 

 

For example, there could exist a top level C-EPC model like the SAP model, 

which indicates all the possible configurations with respect to a given process. 

This model could be partially configured for each industry, i.e. some nodes 

could be configured and others could be left out for configuration in the next 

level. Then, each industry could use this partially configured C-EPC as a 

starting point within a given organization. For large organizations there may 

be different versions of the same process for each country or region. 

Therefore, the industry specific C-EPC may be partially configured into an 

organization-specific C-EPC. Only the bottom organization-specific C-EPC 

has to be configured completely and not partially to support a concrete 

business process model. 

 

This level specification requirement could also be added as an attribute to each 

configurable node indicating at which level its configuration should take 

place. 

 

7. In C-EPC variation points do not refer to further related information within the 

enterprise system. However, this could be easily applied. 

  

8. The entire configuration process should also be guided by recommendations or 

configuration guidelines. This is supported by the guidelines attribute. 

 



36 

9. The last requirement refers to the impact of configuration extensions on the 

perceived model complexity. The C-EPC is a natural extension of the standard 

EPC and should not cause any problems for the typical user of a reference 

model. The only addition to the language is the logical expressions used in 

describing the interrelationships used in the guideline and requirement 

attributes. To maintain the simplicity of the model further investigations have 

to be conducted to convert such logical expressions to some sort of graphical 

notations. 

 

2.7 EPC Invoice Verification Business Example 

 
The following example was used in [1] and [28] to show the extended C-EPC 

modeling language. Figure 2.8 shows part of the SAP reference model SAP R/3 Ver. 

4.6c using the standard EPC language. 



37 

 

Figure 2.8. Invoice verification Example Using EPC ([1], [28]) 

 

Figure 2.9. shows the same SAP reference model section using C-EPC. This model 

shows three configurable connectors and two configurable functions (Evaluated 

Receipt Settlement (ERS) and Invoicing Plan Settlement). 



38 

 

Figure 2.9. Invoice verification Example Using C-EPC ((1], [28]) 

 

Based on the organization’s requirements and needs in a given scenario the above 

model was configured by turning the Evaluated Receipt Settlement (ERS) ON.  The 

transformation process is discussed in more details in the next section. 

 

2.8 The Transformation Process 

 

The transformation process of a configurable model to a configured model is the 

process of deriving a configured build time model according to the organization’s 

requirements and needs from the configurable reference model. The terms 

configuration, individualization and derivation are used interchangeably in the 

literature with the term transformation. 

 



39 

 

Figure 2.10. An Example with a Syntactic Error [14] 

 

This process may sometimes result in a syntactically and semantically incorrect 

model. This issue has been ignored for a long while, although several of these 

problems were mentioned in [14].   

 

Aalst and Rosemann in [28] tried to establish a systematic approach for ensuring the 

syntactic correctness of the derived build time model using the C-EPC and EPC 

modeling language. Let us consider the example in Figure 2.10 which shows one of 

those syntactic problems. The rightmost part of Figure 2.10 shows a syntactically 

incorrect model, where two events follow each other directly, after function A has 

been turned off and removed (Event 1 and Event 2). Therefore, establishing a 

transformation algorithm that ensures the syntactic correctness of the derived build 

time model is essential for the success of the whole configurable reference modeling 

methodology. The next section illustrates the steps that were applied in [13] to ensure 

such correctness, using the C-EPC modeling language. The transformation process 

constitutes three major steps:  



40 

 

1. Deriving Configured Functions 

2. Deriving Configured Connectors 

3. Deriving the complete model by excluding all unnecessary paths. 

 

The calculation of deriving a correct configured EPC is based on the minimality 

criterion: “if elements have to be added by a configuration, add as few elements as 

possible; if elements have to be removed by a configuration, remove as many as 

possible and optimize the graph so as to include no unnecessary paths.” [13]  

 

More recently, Aalst et al. [40], [41] addressed the semantic correctness of the derived 

individualized model. For example, a semantic error could be a model with a 

deadlock.  As semantic correctness is beyond the scope of our work, it is not covered 

in this survey. 

2.8.1 Deriving Configured Functions 

 

According to C-EPC [13], the four cases where a configurable function may appear in 

a C-EPC are:  

1. Between two events 

2. Between a connector and an event 

3. Between an event and a connector 

4. Between two connectors 

Figure 2.11.  illustrates the derivation rules for these four cases: 



41 

 

Figure 2.11. Derivation Rules for Configurable Functions [13] 

 

2.8.2 Deriving Configured Connectors 

 

As stated in [13]: “Configuring connectors is quite straight forward. The connector’s 

label is only changed unless it is configured to the sequence “Seq n” type. If a 

connector is configured to a sequence, the succeeding paths that are not to be included 

in the build time model have to be eliminated. This means that all subsequent 

elements are to be excluded from the model until a join connector is reached. If there 

are no more paths to be eliminated, it must be further checked to determine whether 



42 

there are join connectors in the model that do not link to any incoming arcs. Paths 

starting with these joins have to be eliminated, too, and the check must be repeated. 

This procedure is iterated until there are no more connectors without incoming arcs.”  

Figure 2.12 shows a corresponding example. 

 

Figure 2.12. A Possible Derivation of a Configured Connector [13] 

 

2.8.3 Deriving the Complete Model 

 
After the derivation of configured functions and connectors the model may end up 

with some unnecessary paths or connectors that need to be removed.  The model is 

visualized as a graph. Thus, some reduction rules need to be applied to recalculate the 

final graph. The reduction rules that were derived in [13] are illustrated in Figure 

2.13. Figure 2.13 (a) eliminates any empty arc that goes from an AND connector to 

another join connector. Figure 2.13 (b) eliminates an arc that goes from an AND 

connector to another join connector if it only contains an event and no functions. 

Figure 2.13 (c) deletes any connector having one incoming arc and one outgoing arc. 



43 

Figure 2.13 (d) shows that if more than one empty arc are found between an OR/XOR 

connector and a join connector then all the empty arcs are eliminated leaving only one 

arc. Figure 2.13 (e) merges more than one event if and only if they are the successors 

of an OR/XOR connector and the predecessors of the same join connector. 

 

Figure 2.13. The Derived Reduction Rules [13] 

 

2.8.4 Deriving the complete Algorithm 

 

Eventually, all the above cases and their corresponding decisions were summarized 

and put together in the following algorithm [13]: 

 

1. Change the connector type of configured connectors to their configuration value. 

 



44 

2. If the configuration value is “Seq n” eliminate paths (including all nodes), i < > n, 

with n being specified in the go to attribute, until a join connector or an end node is 

reached. 

 

3. Check whether there is a connector c without any incoming arcs. If yes, go to 4. If 

no, go to 5. 

 

4. Eliminate all paths starting with connector c until a join connector or an end node is 

reached. Go to 3. 

 

5. Check whether one of the reduction rules (as in section 2.8.3 above) is applicable. 

If yes, go to 6, if no, go to 7. 

 

6. Apply one of the reduction rules and go to 5. 

 

7. Configure functions according to the rules/cases mentioned above (in section 

2.8.1).  

 

8. Check again whether one of the reduction rules is applicable. If yes, go to 9. If no, 

end. 

 

9. Apply one reduction rule and go to 7.  

 

The above algorithm was proven to be syntactically correct and its termination was 

also proven in [13]. Semantic correctness however, was beyond the scope of the 

research work in [13] and [14]. 



45 

2.9 Discussion of Related Work 

 

The more recent work on configurable process modeling was implemented on top of 

C-EPC to aid in the transformation process, taking into consideration the 

“requirement” attributes and constraints of the model. Introducing such constraints 

together with the concept of preserving the semantic correctness of the derived model, 

induced from the transformation process, increased the complexity of the 

transformation process considerably.  

 

Only a few researches addressed the constraints issue. One of the approaches 

discussed in [40] and [41] used prepositional logic to express the constraints of the 

model. Other researches (such as [21], [23] and [24]) discussed the use of a 

questionnaire-based interface to configure and individualize a configurable business 

process reference model while preserving the semantic and syntactic correctness of 

the model. Ensuring the semantic correctness of the transformed model was only 

recently considered by large-scale research efforts such as [20].  

 

Since all the previous work was applied on the EPC modeling language only, it was 

strongly recommended (as in [28] for example) to extend such approach to other 

modeling languages such as UML AD, BPMN and Petri nets. 

 

The concept of expressing variations points and their variants using the UML 

modeling language was discussed in [19], [34], [36], [42] but the work applied in all 

of these papers was aiming to support and assist in the building of Software 

Production Lines (SPLs). None of these researches aimed at building a complete 



46 

configurable modeling language that could be dedicated for building configurable 

business process models. 

 

Some other approaches were proposed (such as [8], [17] and [27]) to extend the UML 

AD for modeling business models. These approaches, however, used the annotation 

technique to identify the variation points within a model, which complicates the 

model and makes it less understandable, especially to the business end users who are 

going to use the configurable reference models. Usually the business users of such 

models are not IT experts. Besides they are not really aiming at building a completely 

configurable modeling language that covers all the requirements discussed in section 

2.6.3.  

 

Finally, these techniques did not provide a full algorithm for transforming and 

individualizing the configurable reference model while ensuring the syntactic 

correctness of the model [20]. 

 

A summary and comparison of the recent approaches applied in the area of 

configurable modeling languages is shown in Table 2.3.  Based on the authors’ 

reports, the table indicates the language that each approach used, the variation 

mechanism, the presence/absence (+/-) of each of syntactic correctness, semantic 

correctness, transformation algorithms and in the last column our judgment of the 

approach’s effect on complexity.  



47 

Table 2.3. Comparison of the Recent Approaches in Configurable Business Process Modeling 

The Author(s)  

     of the  

 Approach 

 

Target 

Language 

Variati

on 

Mecha

nism 

Syntactic 

correctness 

Semantic 

correctness 

Transformati

on algorithm 

Complexit

y 

Aalst, Dumas, 

Gottschalk, ter 

Hofstede, La Rosa and 

Mendling [20] 

EPC Config

urable 

nodes 

+ + + Not 

increased 

Puhlmann,Schnieders,

Weiland and Weske 

[8] 

BPMN, 

UML AD 

Annot

ation 

- - - Increased 

Razavian and 

Khosravi [27] 

UML AD Annot

ation 

- - - Increased 

Czarnecki and 

Antkiewicz [17] 

UML AD Annot

ation 

- - + Increased 

 

The approach that we introduce in this research aims at filling the missing gaps of the 

previous approaches that were used to model configurable business process models 

using UML AD. Therefore, we extended the standard UML AD using configurable 

notations and attributes that focus on fulfilling the requirements of a configurable 

modeling language as discussed in section 2.6.2 and 2.6.3. We called this extended 

language C-UML AD. We also developed a complete algorithm that transforms the 

C-UML AD back to individual specific UML AD that is both consistent and 

syntactically correct. 



48 

3. The Configurable UML Activity Diagram 
 

In this chapter we explain, in details, all the extensions that we applied to the UML 

Activity Diagram (UML AD) modeling language to make it a configurable one. We 

called this extended language Configurable-UML Activity Diagram (C-UML AD) 

modeling language. Following a similar approach to that applied in C-EPC, the C-

UML AD is developed in such a way so as to allow the user to express the variation 

points of a business model and to give him/her more guidance and help in the process 

of reusing and configuring the business model. 

  

The first part of this chapter explains the configurable elements of the C-UML AD. 

The second part shows how the set of requirements that need to be covered by any 

configurable modeling language, discussed in section 2.6.2, were fulfilled by the C-

UML AD. 

 

3.1 The Configurable Elements 

 

C-UML AD is a configurable language and hence some configurable nodes had to be 

introduced to it. A configurable node is a point in the business model that represents a 

variation point. At any configurable node a decision has to be taken by the business 

model end user. We referred to such decisions in section 2.6 as build time decisions. 

In C-UML AD a configurable node could be either a configurable action or a 

configurable connector. 

 



49 

3.1.1 Configurable Actions 

 

The first step in extending the UML AD is to set the new notations for the extended 

elements of the language. This section covers the standard action. The configurable 

actions are represented in a similar way as the standard actions but configurable 

actions use dashed borders to distinguish them from standard actions.  

Table 3.1. shows the notations of a standard and a configurable action. 

Table 3.1. Notations of a Standard and a Configurable Action in C-UML AD 

Standard Action Configurable Action 

 

 

 

 

 

 

Possible Configurations: 

Our main objective here is to configure the presence of the action rather then its 

functionality. The configurable actions could be configured to ON, OFF or 

OPTIONAL. The ON option indicates that the user of the business model always 

needs this action. OFF means that this action is never needed, while OPTIONAL 

indicates that the decision of choosing this action will be made during run time and 

therefore, this action in the business model will be given two alternative paths: one 

with the action and one without it. Since a decision node will be introduced to the 

model in the OPTIONAL case then a set of appropriate conditions should be 

associated with the decision node to identify when each path will be taken. 

Table 3.2. illustrates the possible configurations of an action.  



50 

Table 3.2. Possible Configurations of a Configurable Action 

C-UML AD business 

model 

ON OFF OPTIONAL 

 

  

 

3.1.2 Configurable Connectors 

This section shows the configurable connectors that were added to the C-UML AD. In 

C-UML AD we extended the basic connectors, i.e. control nodes, which include the 

Decision/Merge and Fork/Join. Unlike configurable actions, the functionality of the 

configurable connectors as well as their presence could be configured. A configurable 

connector could be converted to another connector type or to one specific path out of 

the available paths. Table 3.3 shows the notations of the configurable connectors 

against the standard ones: 

Table 3.3. Notations of the Standard and Configurable Connectors in C-UML AD 

Connector Type Standard Notation Configurable Notation 

Decision/Merge 
  

Fork/Join   

Possible Configurations: 



51 

The researches that developed the configurable EPC allowed the configuration of the 

configurable connectors to other connectors that only restrict their behavior. For 

example an “AND” connector cannot be transformed to any other connectors but an 

“Or” connector could be transformed to any other connector. In our research the 

configuration of connectors is wider, aiming to make the configuration more useful. 

Therefore, a configurable connector could be transformed from one connector type to 

another or could be configured to a specific path (called a sequence). 

A sequence is a new terminology that we introduce in our C-UML AD language. A 

sequence “Seq n” represents a specific path where “n” is one of the available paths. 

Table 3.4 shows a sequence “Seq 2” where n=2. 

 

Table 3.4. Configuring a Configurable Decision to a Seq n 

C-UML AD business model Configured UML AD with 

configuration decision: “seqn” and 

n=2 

 

 

 

We summarize all the possible configurations that we introduced so far in Table 3.5. 

below. 



52 

Table 3.5. Summary of Possible Connector Configurations 

 

 Sequence n Decision/Merge Fork/Join 

Configurable 

Decision/Merge 

Yes Yes Yes 

Configurable 

Fork/Join 

Yes Yes Yes 

 

To apply the above configurations to a configurable connector in a C-UML AD 

business model, a couple of prerequisite decisions have to be made: 

 

1. When configuring a configurable Fork/Join to a Decision/Merge a set of 

conditions have to be imposed and added to the new business model. 

 

2. When configuring a configurable Decision/Merge to Fork/Join all the 

conditions that were available on the alternative paths of the decision have to 

be removed. 

 

3.2 Configuration Requirements and Attributes  

 

Any configurable modeling language has to meet a set of configuration requirements 

and characteristics as mentioned earlier in section 2.6.2. Although in section 2.6.3 

many guidelines were given to apply such requirements, yet most of them were not 

actually implemented in C-EPC.  In this work we managed to satisfy most of these 

requirements. The following list includes the set of requirements that are covered by 

the proposed C-UML AD modeling language: 



53 

1. Configuration coverage requirement: The configurable language should support 

configurations regarding entire processes, functions, control flow and data. However, 

C-UML AD mainly focuses on the process and control-flow aspects, noting that the 

presence of any action could be configured and not its functionality. The data aspect 

and function aspect have not been addressed explicitly. We emphasize that C-EPC [] 

covers this requirement in the same manner. 

 

2. Mandatory/optional requirement: The configurable language should distinguish 

between mandatory and optional decisions. We fulfilled this requirement by adding an 

attribute with each configurable node that identifies such input. C-EPC does not 

provide an explicit implementation for such configuration attribute. 

 

If the user of the model chooses an “optional” value for an attribute then a default 

value must be given as well. This default value will be used when the end user 

chooses not to give an explicit configuration value for the associated configurable 

node. Therefore, the default values must be associated with “optional” decisions. If 

“mandatory” is used for the associated attribute then an explicit decision must be 

taken from the end user. 

 

For example, assume that a given business model has one of the attributes of its 

configurable actions set to optional. Then a default value has to be set for this 

configurable action, for example let us assume the default value is OFF. Then, this 

action will be turned OFF if the end user does not give any other explicit 

configuration value at build time.      

3. Global/Local requirement: The configurable language should differentiate between 

global and local decisions. Again we introduce another attribute with each 



54 

configurable node to indicate such a decision.  This attribute was also not explicitly 

covered by C-EPC but it was recommended and discussed. 

 

4. Critical/non-critical requirement: The configurable language should also 

differentiate between critical and non-critical decisions. We implement this 

requirement by introducing another attribute associated with each configurable node 

to hold such a value. Again this attribute was not explicitly implemented by C-EPC. 

 

5. Interrelationship requirement: The configurable language should be able to 

demonstrate interrelationships. This requirement is mainly covered by introducing the 

requirements and guidelines attributes associated with each configurable node to our 

C-UML AD. These attributes were implemented by C-EPC and we adapted them 

from C-EPC. However, these attributes in both C-EPC and C-UML AD are restricted 

to interrelationships within one business model. 

  

6. Specification Level requirement: The configurable language should allow 

configuration decisions to be made at different organizational levels. This can be 

supported by the concept of partially configurable C-UML AD.  The concept of 

partially configured C-UML AD is similar to that of partially configured C-EPC []. A 

partially configured C-UML AD is simply a C-UML AD with some nodes that have 

already been configured and others that have not. A partially configured C-UML AD 

allows the configuration to take place at subsidiary levels. To identify at which level a 

configurable node must be configured we add another attribute, called specification 

level attribute, to each configurable node stating the specific level at which the 

configuration should take place. The specification level attribute is not explicitly 

implemented in C-EPC. 



55 

 

7. Extended related information requirement: The variation points of a configurable 

language should refer to further related information within the enterprise system. We 

did not implement this requirement but to do so, C-UML AD may later on include a 

system online help or system implementation guide as proposed in [28]. 

  

8. Recommendation Requirement The configurable language should be guided by 

recommendations or configuration guidelines. This requirement is satisfied through 

the guideline attribute associated with each configurable node, if required. This 

attribute is provided by C-EPC as well. 

 

9. Complexity requirement: The last requirement of a configurable language refers to 

the impact of configuration extensions on the perceived model complexity. The only 

addition that we applied on the model for this requirement is the use of logical 

expressions when describing the requirements and guidelines attributes. However, the 

C-UML AD is a natural extension to the standard UML AD modeling language and 

the addition of such logical expressions should not cause a problem to the typical user 

of the language. 

 

Based on Aalst et al. [28] configurable language requirements the set of configuration 

attributes discussed above had to be introduced to the C-UML AD modeling 

language. Any configuration attribute has to be associated with a configurable node in 

any given C-UML AD business model. The notations of the configuration attributes 

are shown in Table 3.6. In Table 3.7 we compare between the configuration attributes 

available in C-UML AD and those in C-EPC. 

 



56 

3.3  Implementation of the Attributes 

 
We developed a C-UML AD Transformation Tool to help us implement the new 

notation. Our C-UML AD Transformation Tool includes the standard UML AD 

constructs as well as the new configurable actions, configurable connectors and 

configuration attributes introduced in Table 3.6.  

 

Table 3.6. Notations of the Configuration Attributes in C-UML AD 

 

Introduced 

Attribute 

Corresponding 

Requirement 

 Introduced Notation 

Mandatory/Optional 

Default=Mandatory 

Mandatory/Optional 

 

If optional: 

 

Local/Global 

Default=Global 

Local/Global 

 

Critical/Non critical 

Default= Non critical 

Critical/Non critical 

Default= Non critical 

If critical (hardly reversible): 

 

* Requirement Interrelationship  

 

*Guideline Recommendation 

 

*Specification 

Level 

Specification Level 

 

*If attribute is not provided then no checks or interrelationships are applied. 



57 

Table 3.7. Comparison Between C-UML AD and C-EPC 

Attributes C-UML AD C-EPC 

Mandatory/Optional Yes No 

Local/Global Yes No 

Critical/Non critical Yes No 

Requirement Yes Yes 

Guideline Yes Yes 

Specification Level Yes No 

 

The Local/global, critical/non-critical, guideline and specification level attributes 

were all implemented in a similar manner. These attributes can be added to the model 

to display some specific features. For example, if the configuration of a configurable 

node in the model has a critical effect then this configurable node will have the 

critical notation drawn associated to this node in the model. 

  

The requirement attribute holds logical expressions that are used to express any 

interrelationships between the associated configurable node and other configurable 

nodes in the business model. The requirement attribute is handled in a different 

manner than all the other attributes because the logical expression that is stated in this 

attribute must be enforced on the model and therefore this logical expression must be 

acquired by the C-UML AD Transformation Tool. The logical expressions stated in 

the requirement attribute are not left to the user to enter them freely, since these 

expressions have to be specific and correct. However, we applied another technique to 

acquire these logical expressions. We captured these logical expressions through our 

own implemented graphical interface with the user. Hence, we are always in control 



58 

of the requirements that the user enters. The only limitation with this technique is that 

each configurable node is limited to one type of requirements. 

  

The mandatory/optional, local/global and critical/non-critical attributes have all been 

given default values. These default values are used since not every configurable node 

in a business model must have explicit values for all the attributes. If one of these 

attributes is not explicitly associated with a configurable node then the default values 

mentioned in Table 3.6 will be applied. 

  

The requirement, guideline and specification level attributes are associated to 

configurable nodes only if interrelationships, guidelines or organizational levels need 

to be identified respectively, otherwise, these attributes are not used and no default 

values are needed. 

 

3.4 Invoice Verification Business Example  

In Figure 3.1. we show the same example used in section 2.7 for Invoice Verification 

but we use C-UML AD instead of C-EPC: 

 



59 

 

Figure 3.1. Invoice Verification Example Using Standard UML AD 

 

The Configurable version of the above business model, Figure 3.1, is shown in 

Figure 3.2 using C-UML AD. The example shows three configurable nodes: two 

configurable actions, one configurable connector, and three configuration 

attributes associated with two configurable nodes: guideline, requirement and 

optional/mandatory attributes. The requirements attribute indicates that if 

Invoicing Plan Settlement (IPS) is left ON then Evaluated Receipt Settlement 

(ERS) must be included in the model as well, i.e. turned ON. The guideline 

attribute gives some guidance and help as soft constraints, i.e. suggestions. The 

third attribute is the optional/ mandatory attribute, which indicates that the 

configuration of the IPS is optional not mandatory, and if not configured explicitly 

then its default configuration will be ON, and as a result of turning IPS to ON, 

based on the requirement associated with it, ERS must be turned ON as well. The 

attributes are always associated with the configurable nodes using dashed 

connections. 



60 

 

Figure 3.2. Invoice Verification Example Using C-UML AD 

 

Figure 3.3 shows a possible configuration for the above model, where IPS= off and 

ERS=off and thus the configurable connector = seq1 (since it will be removed and 

one sequence will be followed always). 

  

 

Figure 3.3. A Possible Configuration of the Invoice Verification Example 

 

Another alternative configuration decision could be reached by keeping IPS= ON and 

since there is a requirement controlling the configuration decision on ERS then ERS 



61 

must be = ON and as a result the connector will be kept as is. The result of such 

decisions will keep the business model as is without any changes i.e. as shown in 

Figure 3.1. 

 



62 

4. The Transformation Process 
 

After establishing the C-UML AD modeling language notation (in Chapter 3), our 

next step is to ensure that the transformation process from the configured C-UML AD 

business model back to the standard UML AD at build time is syntactically correct. 

This chapter focuses on the algorithm that should be applied during the transformation 

process, sometimes called the configuration process. This transformation process 

explains how the end users can reuse (configure) the generic business models that are 

designed using the C-UML AD modeling language to suit their specific requirements, 

thus going from generic C-UML AD business models to specific UML AD business 

models. 

 

We now show how the end user of the business model can configure the C-UML AD 

business model back to a syntactically correct UML AD. At run time all the business 

models have to be syntactically correct UML AD models and not C-UML AD. 

Therefore, all the configurable nodes and their associated attributes that were 

introduced in the C-UML AD modeling language, have to be exchanged with 

standard UML AD constructs based on the end user’s decision. 

  

It is only natural to expect that the configuration of C-UML AD models results in 

models that may have syntactic errors, such as unnecessary paths or nodes. We 

followed the approach suggested by [13] to develop a full algorithm that monitors the 

whole transformation process which would lead to a syntactically correct UML AD 

model. We note that in our algorithm we considered the configuration attributes 

associated with the configurable nodes, which is a significant difference from the 

approach followed by the C-EPC in section 2.8 [13].  



63 

4.1 Transformation of Configurable Actions 

 

As mentioned in chapter 3, the three alternatives for a configurable action are ON, 

OFF or OPTIONAL.  In each case a different transformation procedure takes place 

based on the position of the configurable action in the business model. 

A configurable action may appear in four different positions within the C-UML AD 

business model, which are as follows: 

 

Case 1: A configurable action can lie between two actions.   

Case 2: A configurable action can lie between two connectors. 

Case 3: A configurable action can lie between an action and a connector. 

Case 4: A configurable action can lie between a connector and an action.  

 

We analyzed each of the above cases to reach the correct transformation shown in 

Tables 4.1, 4.2, 4.3 and 4.4. respectively. 

 

Table 4.1 shows a configurable action, indicated by the dashed borders, that lies 

between two actions.  In case the end user’s decision is ON then the configurable 

action is changed to a standard one, but if the end user’s decision is OFF then the 

configurable action is removed. In case the end user’s decision is OPTIONAL then 

two paths are given to the end user; one with the action and one without it. Hence, the 

end user’s decision in this case will be left for run time. 



64 

 

Table 4.1. Configuration Alternatives of a Configurable Action Between Two Actions (Case 1) 

C- UML AD business model ON OFF OPTIONAL 

   

 

 

Table 4.2 shows an example of the second case, where a configurable action lies 

between two connectors. The same approach discussed in Table 1 applies here: if the 

end user’s decision is ON then the action is kept and if the end user’s decision is OFF 

then the action is removed. When the action is removed an empty path will appear 

between the fork and the join which is useless and has to be removed, this case is 

discussed in the next section, section 4.3, but if the end user’s decision is OPTIONAL 

then two paths are given; one with the action and one without it. 



65 

Table 4.2. Configuration Alternatives of a Configurable Action Between Two Connectors(Case2) 

 

The third case follows the same approach as the first two cases. However, when an 

end user’s decision is OPTIONAL a model might end up with two consecutive 

connectors. This does not violate the syntactic correctness of the model. This is shown 

in Table 4.3. 

Table 4.3. Configuration Alternatives of a Configurable Action Between an Action and a 

Connector (case 3) 

C-UML AD business 

model 

ON OFF OPTIONAL 

  
  

 

C-UML AD 

business model 

ON OFF OPTIONAL 

    



66 

Table 4.4 shows the alternatives for a configurable action that lies between a 

connector and an action.  

 

Table 4.4. Configuration Alternatives of a Configurable Action Between a Connector and an 

Action (case 4) 

C-UML AD business 

model 

ON OFF OPTIONAL 

    

 

 

4.2 Transformation of Configurable Connectors 

 

A configurable connector could be configured to stay as is or it could be configured to 

the other connector or to one of the available sequences (paths). Table 4.5 shows an 

example where a fork/join connector is configured to a sequence, Seq n. Table 4.6 

shows an example where the fork/join connector is configured to a Decision/merge. 

In the example shown in Table 4.5, a configurable Fork/Join is transformed to a seq n 

where n=2. Since the end user’s decision was n=2 then all other paths between this 

configurable fork and its corresponding join are removed leaving only path 2. 

All the actions and connectors on all the other paths have to be removed until a 

connector with an incoming arc is reached. At this point no more actions or 



67 

connectors should be removed. This case is shown in the example illustrated in Table 

4.6. 

Table 4.5. Example of Configuring a Configurable Fork/Join 

Fork/Join Sequence n=2 

  

 

In Table 4.6 the configurable decision is configured to seq n, n=1. Therefore, Action 

State 3 was removed and the second decision node was not removed because there 

was still an incoming arc from Action State 4. Then Action state 4 was removed, and 

since the second decision node now has no other incoming arcs it was also removed. 

After that, Action State 6 was removed. When the last decision node was reached it 

was not removed at this point because it had an incoming arc from Action State 2. 

This last decision node was removed from the model in the next step based on the 

reduction rules discussed in the next section, section 4.3. 



68 

Table 4.6. Example of Configuring a Configurable Decision/ Merge  

Decision/merge Sequence n=1 

 

 

In Table 4.7. the end user chooses to transform the configurable fork/ join connector 

to a decision/merge connector. 

Table 4.7. Example of Configuring a Fork/Join 

Fork/Join Decision/Merge 

 

 

 



69 

4.3 Optimizing the Transformed Model 
 

In some cases the transformation of the configurable nodes may lead to some 

unnecessary nodes and/or paths, which in turn, may lead to an incorrect UML AD 

business model. To overcome this problem we analyzed all the conditions that may 

cause such problems and followed a similar approach to that used in section 2.8.3 [13] 

by C-EPC. The configured business models were realized as a graph as stated in [13]. 

Therefore, all unnecessary paths have to be removed to meet the minimality criteria of 

a correct model [13]. 

  

Our analysis resulted in that the configuration of C-UML AD may lead to three cases 

where unnecessary paths/nodes are likely to appear. The three cases are as follows: 

 

1. Having more than one empty path between a decision and a merge connector. 

2. Having an empty path(s) between a fork and a join connector. 

3. Having one incoming arc and one outgoing arc out of the same connector. 

 

To remove the unnecessary paths/nodes the following three corresponding reduction 

rules were applied: 

 

1. Remove all the empty paths between a decision node and a merge node, leaving 

only one empty path. 

2. Remove all empty path(s) between a fork node and a join node.  

3. Remove the connector that has one outgoing and one incoming arc. 

 

In Table 4.8 (column 2) Action State 2 and Action State 4 are configurable actions. If 

the end user’s configuration decision is ON for any of the two actions then this action 



70 

will be changed to a standard action and the resulting model will be a correct model. 

If the end user’s configuration decision for any of the two actions is OPTIONAL then 

this action will be exchanged with two paths; one with this action and one without it, 

and the model will still be correct. A problem will only appear if the end user’s 

decision is OFF for both actions. The OFF value will cause the removal of both 

actions and in return the model will end up with two empty paths between the 

decision and its corresponding merge. Table 4.8 (column 3) shows this case where the 

first reduction rule was applied, i.e. all empty paths were removed leaving only one 

empty path between the decision and its corresponding merge.  

 

Table 4.8. Example of Applying the 1st Reduction Rule 

 C-UML AD model UML AD model after 

applying first reduction 

rule 

1st Reduction Rule 

  

 

 

Table 4.9 shows an example where the second reduction rule was applied. The 

example demonstrates a scenario where the end user’s configuration value for action 

state 4 is OFF, thus leading to an empty path between a fork and its corresponding 

join. In this case the empty path is removed. 



71 

Table 4.9. Example of Applying the 2nd Reduction Rule 

 C-UML AD model UML AD model after 

applying 2
nd

 reduction 

rule 

2nd reduction rule 

  

 

 

The third reduction rule applies when you have any connector, whether a fork/join or 

decision/merge, with one incoming arc and one outgoing arc. The connector in this 

case is useless and therefore it should be removed. Usually, this case occurs when a 

configurable action is turned OFF and then its path is removed due to one of the other 

two previous reduction rules, ending up with one incoming path and also one 

outgoing path of the same connector. Table 4.10 shows an example where the end 

user’s decision was to turn action state 4 OFF. Based on this decision Action state 4 

was removed leading to two empty paths between a decision and its corresponding 

merge. Thus, the first reduction rule was applied leading to only one empty path 

between the decision and its corresponding merge. Finally, the third reduction rule 

was applied because of having one empty path going into the decision and one 

outgoing path from it. The third reduction rule removed this decision/merge connector 

leading to a simple path between action state 1 and action state 5. 



72 

 

Table 4.10. Example of Applying the 3rd Reduction Rule 

 C-UML AD model UML AD model after 

applying 3
rd

 reduction 

rule 

3 rd reduction rule 

  

 

4.4 The Transformation Algorithm 

 

The transformation of the C-UML AD to UML AD based on the end user decisions 

has to be monitored to make sure that the configured derived model is syntactically 

correct. To achieve this goal, the rules applied in section 4.1, 4.2 and 4.3 above had to 

be integrated and applied together with the associated configuration attributes of each 

configurable node. 

 

Not all the configuration attributes have a great influence on the transformation 

process. However, the “requirement” attribute and the “mandatory/optional” attribute 

will have the major influence, since they both impose some conditions on the 

transformation of the model. For example, applying the transformation algorithm on a 

configurable model having a configurable node with a mandatory value must force the 



73 

end user to provide an explicit configuration value for such a node. Another 

configurable connector could have a requirement attribute. When configuring such a 

connector, its associated requirement has to be applied on the model automatically 

and the effect of a requirement and the explicit configuration value of the user should 

be compatible otherwise a contradiction/inconsistency problem will appear and the 

end user is alerted and must resolve the issue. All the other attributes listed in section 

3.2 are just used to enhance and help the end user reuse and configure the C-UML AD 

business models by providing essential information to the end user, such as the 

guideline attribute. For example, the guideline attribute is used to display to the end 

user a recommended condition only. Hence, this attribute does not influence the 

transformation process directly and thus is not considered in the transformation 

algorithm. 

 

The algorithm starts out by stopping at each configurable node and checking whether 

the end user would provide a configuration decision value or not. If the associated 

mandatory/optional attribute is set to mandatory then the end user is forced to enter a 

configuration value. In case the end user does not enter a value then the default value 

associated with the optional attribute will be used. 

 

In any case, the configuration value is checked against any violation to a requirement 

that was applied in an earlier step. If a violation occurs then the inconsistency has to 

be resolved first. Then the associated new requirement is also checked to see if it is 

going to contradict any configuration value entered by the end user in an earlier step. 

If no inconsistency problems occur then the next step is to start applying the 

appropriate transformation. 

 



74 

If the configurable node is a configurable action then the appropriate rule (from 

section 4.1) is applied. If the configurable node is a connector then the appropriate 

rule (from section 4.2) is applied. After that, the model is checked to see whether a 

reduction rule needs to be applied or not, if a reduction rule is needed then it is 

applied until no more reduction rules are needed. 

 

Finally, if a requirement attribute is associated with the node then a specific constraint 

needs to be applied on the model. The complete algorithm is expressed in the activity 

diagram in Figure 4.1. 

  



75 

 Figure 4.1.The Transformation Algorithm 



76 

4.5 Example 

 
 
In this example we demonstrate how the full Transformation Algorithm is applied on 

a full business model. We chose an example with some nested connectors to illustrate 

how the algorithm works successfully on more complex C-UML AD models. 

 

Figure 4.2 shows the configurable reference model with C-UML AD. Figure 4.3 

shows the configured reference model after applying the end user’s configuration 

values. The configuration value for the first decision node was seq n, n=2, and the 

configuration values for the second and third decision nodes were fork/join. 

  

When the first decision node was configured to seq n, n=2 all other paths were 

removed, as mentioned in section 4.2, leaving the last decision node with one 

incoming arc and one outgoing arc. This decision node was removed when the 

reduction rules were applied. Then the second and third decision nodes were 

converted to fork/join.  The resulting transformed model after applying the 

Transformation Algorithm is shown in Figure 4.3. 



77 

 

Figure 4.2. A Configurable Business Model 

 

 



78 

 

Figure 4.3. The Resulting Transformed Business Model from Figure 4.2. 

 

4.6 Case Study 

 

In this section we apply our configurable approach on a real life case to test the 

applicability of our approach. This case was used by Aalst et al. in [40] to 

demonstrate the applicability of C-EPC modeling in real life situations. 

 

Figure 4.4 represents a travel form approval business reference model using C-EPC. 

The model in Figure 4.4 starts by giving two alternative paths one for domestic 

‘simple procedure’ travel and another for complicated international travels. Some of 

the actions could be applied by the secretary and others by the employees. At the end, 

the travel form is accepted, rejected or changed. 

 



79 

 

Figure 4.4. Travel Form Approval Business Process Reference Model Using C-EPC [40] 

 

First Step: Transforming the C-EPC model to C-UML AD 

 

According to the formal rules stated in section 2.3.3 we were able to convert the 

above C-EPC business model to C-UML AD business model. Figure 4.5 shows the 

induced C-UML AD business model. To test the applicability of our approach we 

introduced some attributes to the model. First, we introduced a mandatory/optional 

attribute on one of the configurable nodes. Then we introduced a requirement attribute 



80 

on another configurable node. All the other attributes stated in section 3.2 could also 

be added but we just focused on those attributes that directly affect the transformation 

process. 

 

Second Step: Transforming the C-UML AD model to a consistent and syntactically 

correct configured UML AD model by applying the Transformation Algorithm 

outlined in section 4.4. 

 

 

Figure 4.5. Induced C-UML AD Business Process Reference Model 

 



81 

We transformed the configurable models to two different individual models based on 

a set of different configuration values for the configurable nodes of the model. Figure 

4.6. and Figure 4.7. show two different individualized and configured UML AD 

models. 

 

Figure 4.6 shows an individualized UML AD model where both domestic and 

international travels are supported. Both options for “Prepare Travel Form” by 

secretary and employee are also supported. Then the “Check & Update Form” is 

turned ON. Hence, it was simply kept as is while the “Request Change” and “Drop 

Travel Request” were turned OFF and thus were removed from the model. Finally, 

the action that was turned to OPTIONAL, “Reject Travel Form”, introduced two 

alternative paths to the model. The last remark that we need to make is that when 

“Request Change” action was turned OFF the “Drop Travel Request” action was 

forced to be turned OFF due to the requirement attribute associated with the “Request 

Change” action. 

 



82 

 

Figure 4.6. A Configured UML AD Business Process Reference Model 

 

In Figure 4.7 the individualized model is applied by a business end user who only 

uses the international travels. Therefore, the first decision is turned to a specific path 

(sequence). The second decision was also turned to a specific sequence since the 

“prepare Travel Form (secretary)” path is also never used by the business end user. 

The “Check & Update Form”, “Request Change” and “Drop Travel Request” actions 

were all turned OFF. 

  

By looking at the model in Figure 4.7 we note some logical and semantic errors but 

not syntactic errors. To avoid such errors, several prepared and detailed 



83 

requirements/constraints, should be added to the model. The concept of applying 

requirements/constraints on the model needs more research to be able to identify and 

apply a whole set of constraints that force the model to be semantically correct. Very 

recent papers [20], [40], [41] have started researching and studying how to achieve 

such goals, i.e. ensuring that the transformed individualized model is syntactically and 

semantically correct.  



84 

 

Figure 4.7. Another configured UML AD Business Process Reference Model 



85 

5. Validation of the Transformation Algorithm 
 

This chapter is dedicated to prove the validity of our Transformation Algorithm (as 

described in Chapter 4). We validate the Transformation Algorithm by showing how 

all the transformation steps of the algorithm preserve the syntactic correctness of any 

given configurable business model, as prescribed by Aalst et al. [14]. Semantic 

correctness however, was not considered as it falls beyond the scope of this work. We 

further validate our algorithm by running it on different sets of test scenarios to 

demonstrate the correctness of our approach.  

 

To show the applicability of the algorithm and demonstrate its correctness, we 

devised a transformation C-UML AD Transformation Tool, which allows the end user 

to model a C-UML AD business model and then transforms it back to a standard 

UML AD based on the end user’s configuration values/ decisions. 

 

The C-UML AD Transformation Tool that we implemented converts the user’s 

business model to XML files that are used for controlling the transformation process. 

The C-UML AD Transformation Tool also extends the UML AD standard constructs 

to include the newly introduced configurable nodes and their associated attributes. For 

details about the C-UML AD Transformation Tool description and use, please refer to 

Appendix A. 

 



86 

5.1 Validating the Transformation Algorithm 

  

In this section we will prove that the algorithm for transforming C-UML AD back to 

UML AD will preserve the syntactic correctness of the model, following the approach 

suggested by Aalst et al. in [14]. 

 

The Transformation Algorithm will either transform a configurable action or a 

configurable connector. In case of transforming a configurable action, as discussed in 

section 4.1, the configuration alternatives (whether ON or OPTIONAL) will not 

introduce any syntactic errors to the model regardless of the action’s location. 

However, when an action is turned OFF some unnecessary paths may result in the 

model, as discussed in section 4.3 and these unnecessary constructs will be removed 

by applying the three reduction rules of section 4.3 

  

In case of transforming a configurable connector, as discussed in section 4.2, the 

transformation alternatives (except for the seq n) will not introduce any syntactic 

errors to the model since nothing will be introduced to the model that will violate any 

of the syntax of the UML AD models. However, the problem with the seq n is that 

you have to remove all the other paths and unnecessary nodes from the model. This 

case is also explained in section 4.2 and avoided by the reduction rules of section 4.3.  

 

Eventually, after transforming both actions and connectors according to the rules of 

section 4.1 and 4.2 and applying the reduction rules of section 4.3, the derived model 

will always preserve the syntactic correctness of the initial model as was done by 

Aalst et al in [14].  



87 

5.2 Validation by Testing 

 

After proving the correctness of our approach we extended our work to validate the 

applicability of the Transformation Algorithm by developing test scenarios and testing 

them on our developed C-UML AD Transformation Tool. Validation by testing is a 

commonly and widely accepted technique used in industry [5]. It is based on 

providing a large set of testing scenarios covering a wide range of possible test cases 

and observing their results. The output is compared with the expected test case output 

to ensure that the algorithm applied is correct. An additional step that we introduced is 

to convert the generated UML AD to java code to ensure that the model is 

syntactically correct.  

 

The first step in this technique was to identify the set of test scenarios. We categorized 

the test scenarios into two main categories: Unit testing and Integration testing. The 

unit testing was used to ensure that every transformation rule is working properly on 

its own, without applying any of the reduction rules and without considering the effect 

of the associated attributes. Hence, the unit testing covered the transformation of 

configurable actions, in each of the four cases discussed in section 4.1, as well as the 

transformation of the configurable connectors, discussed in section 4.2. However, the 

integrated testing was applied to ensure that the whole algorithm is correct.  The 

tested examples are presented and discussed below in section 5.2. 

 

Whenever a test scenario was applied on our C-UML AD Transformation Tool, the 

generated output, i.e. the UML AD business model, was converted to java code to 

ensure that this output model is syntactically correct. The FUJABA CASE tool [9] 

was used in the conversion, since it is one of the few tools that are capable of 



88 

transforming dynamic models, such as activity diagrams, to code [37]. Most of the 

available tools are capable of transforming the static diagrams only, such as the class 

diagram, to code. The FUJABA served as a very suitable CASE tool for generating 

code for the UML AD business models except that it was not capable of generating 

code for the fork/join constructs and therefore these few cases were tested manually 

without having code generated for them.  Also in the current version of the C-UML 

AD Transformation Tool, when injecting any new conditions within a decision node 

on the business model one would have to set them manually.  

5.2.1 Unit Testing 

 
This section illustrates the steps that were followed to ensure that the transformation 

rules of configurable actions and connectors (as stated in sections 4.1 and 4.2) will 

result in a syntactically correct UML AD business model. 

 

5.2.1.1 Transforming a Configurable Action 

Tables 5.1, 5.2, 5.3 and 5.4 show the four cases where a configurable action might 

appear in a C-UML AD and the corresponding UML AD after applying the 

transformation rules using the OPTIONAL value as the configuration value 

(decision) of the end user. The OPTIONAL value was used for testing since it 

always results in the most complicated UML AD business model (more than ON 

and OFF values). It also implicitly covers the ON and OFF values. 

 

Table 5.1 shows the case where a configurable action lies between two actions. 

The configuration value is OPTIONAL and therefore the output model after the 

transformation should have two alternative paths: one with the action and one 

without it. 



89 

Table 5.1. Test Case for Case 1 of Section 4.1 

Section being tested Input Model 

C-UML AD business 

model 

Generated Output Model 

Transformed UML AD 

business model 

Configurable action 

between two actions 

 

 

 

 

Table 5.2. shows another case where the configurable action lies between two 

connectors. The configuration value is OPTIONAL and therefore two alternative 

paths are provided in the output model. 



90 

 

Table 5.2. Test Case for Case 2 of Section 4.1 

 

Table 5.3. shows an example where the configurable action lies between an action and 

a connector. The generated output using the OPTIONAL value is shown in the third 

column. 

Section being 

tested 

Input Model 

C-UML AD business model 

Generated Output Model 

Transformed UML AD 

business model 

Configurable 

action between two 

connectors 

 

 
 



91 

Table 5.3. Test Case for Case 3 of Section 4.3 

 

Table 5.4. shows the fourth case where a configurable action lies between a connector 

and an action using the OPTIONAL value as well. 

Section being tested Input Model 

C-UML AD business 

model 

Generated Output Model 

Transformed UML AD 

business model 

Configurable action 

between an action and a 

connector 

 

 

 



92 

Table 5.4. Test Case for Case 4 of Section 4.1 

Section being 

tested 

Input Model 

C-UML AD business model 

Generated Output Model 

Transformed UML AD business 

model 

Configurable 

action 

between a 

connector and 

an action 

 

 

  

 

5.2.1.2 Transforming a Configurable Connector 

Table 5.5 shows a subset of the test scenarios that were applied to validate the 

transformation rules of the fork/join and the decision/merge constructs discussed 

in section 4.2. The first case in Table 5.5 transforms the configurable fork/join to 

Seq2, i.e. path n= 2. Therefore, the generated output model removes all other 

paths leaving only path 2. The other case transforms the configurable fork/join to 

a decision/merge. 



93 

 

Table 5.5. Test Cases for Testing the Rules of Section 4.2 

Section 

being tested 

Input Model 

C-UML AD business model 

Generated Output Model 

Transformed UML AD business 

model 

Configurable 

fork/join 

transformed 

to sequence 

n=2 

 

 

Configurable 

fork/join 

transformed 

to decision/ 

merge 

  

 

Similar test scenarios were applied to test the transformation of the decision/ 

merge to fork/join and to a specific sequence.  

 



94 

5.2.2 Integration Testing 

  

This section covers the test scenarios that were applied to ensure that the complete 

algorithm is integrated correctly. This includes testing the effect of the configuration 

attributes as well as the reduction rules with each other. Some test scenarios were 

used to show positive results and others were used to show negative results, such as 

an inconsistency problem. 

 

 

1. First, we tested the algorithm by using different models that do not have any 

explicit attributes. These test cases illustrate one or more of the reduction rules 

stated in section 4.3.  

 

In the first case, shown in Table 5.6, the 1st t reduction rule was applied when 

the configuration values for both Action State 2 and Action State 4 were OFF, 

since these values will cause the model to have two empty paths between the 

decision and the merge. Therefore, one path had to be removed. 

The second case was used to test the 2nd reduction rule. Therefore the 

configuration value for Action State 4 was OFF, leading to an empty path 

between a fork and a join. 

 

The third case was applied to test the 3rd reduction rule. Thus, the 

configuration value for Action State 4 was OFF leading to two empty paths 

between the decision and the merge. This forced the 1st reduction rule to be 

applied removing one path and leaving one. This resulted in a decision/merge 

having one incoming arc and one outgoing arc. The 3rd reduction rule was 



95 

successfully applied in that case and the decision/merge connector was 

removed. 

 

Table 5.6. Test Cases for Testing the Reduction Rules of Section 4.3 

Section being tested Input Model 

C-UML AD business model 

Generated Output Model 

Transformed UML AD 

business model 

1st  Reduction Rule 

  

2nd Reduction Rule 

  



96 

3rd Reduction Rule 

  

 

2. Second, we tested the algorithm by using a model having an explicit 

“mandatory/optional” attribute only. The optional/default value attribute 

shown in Table 5.7 is applied whenever the end user chooses not to give an 

explicit configuration value for such a node. The model output in Table 5.7 

was generated when no explicit configuration value was given for the 

transformation and therefore the default value was used. The default value is 

Seq n=2. Hence, path 2 was kept and all the other paths were removed from 

the model. 

 



97 

Table 5.7. Test Case for Testing the Model with the "Mandatory/Optional" Attribute 

 

3. Third, we tested the algorithm by using a model having both a 

“mandatory/optional” and “requirement” attributes together, but without 

having any inconsistencies between the end user’s configuration values and 

the requirements imposed from the “requirement” attribute. 

 

Figure 5.1 shows a scenario where Action State 4 has a mandatory attribute 

and another requirement attribute. We applied the transformation using a 

configuration value for Action State 2 = ON and a configuration value for 

Action State 4 = ON and a configuration value for the configurable decision 

connector = standard decision connector. At Action State 4 the end user is 

forced to provide an explicit configuration value (because of the mandatory 

 Input Model 

C-UML AD business model 

Generated Output 

Model Transformed 

UML AD business 

model 

 

 

 



98 

attribute) then the requirement attribute is applied. The requirement attribute 

in this case does not contradict the previous configuration value for action 

state 2. Therefore, no inconsistency problems occurred and the output 

resulting from the test is as shown in Figure 5.2. 

 

Figure 5.1. Input: C-UML AD Business Model 

 



99 

 

Figure 5.2. Output: Resulting Transformed Business Model from Figure 5.1. 

 

4. The above test in Figure 5.1, was repeated but after imposing some 

inconsistencies between the end user’s configuration value and the 

requirements imposed from the “requirement” attribute of the model. The 

same model used in Figure 5.1 was tested but with different configuration 

values. 

  

In this test we considered that the end user’s configuration value for Action 

State 2 is OFF and his/her configuration value for Action State 4 is ON. An 

inconsistency occurred at this point and the configuration was not completed. 

In this case the end user should either change the configuration value for 

Action State 2 or for Action State 4. The end user could change the 

configuration value for Action State 2 to ON instead of OFF and Action State 

4 stays ON, in this case no inconsistency problems will occur and the output 

model will be again as the model shown in Figure 5.2. 



100 

 

Another alternative to resolve the inconsistency problem is to change the 

configuration value for Action State 4 and make it OFF while keeping Action 

State 2 OFF then this will not cause any inconsistency problems as shown in 

Figure 5.3. From the same figure we note that there is only one empty path in 

the model because of the 1st reduction rule being automatically applied on the 

model. 

 

Figure 5.3. Output: Resulting Transformed Business Model from Figure 5.1. 

 

The above scenarios were a sample of the test cases applied to test the 

correctness of the transformation process and hence to check the syntactic 

correctness and consistency of the derived UML AD business models. Since 

all the test scenarios discussed in this chapter and the case study discussed in 

Chapter 4 were successful, then we have reason to believe that our approach 

could be the first step towards applying C-UML AD in real life business cases.



101 

6. Summary and Conclusion 
 

Configurable business process reference models are simply a combination of all the 

possible variations of a specific business model within a given domain. For example, 

a model may include all the possible payments and invoice verification procedures 

that could take place in the logistics domain. Such models, known also as best 

practice models, are configured to meet the business end user’s specific individual 

requirements without having to design the models from scratch, and thereby allows 

him/her to reuse proven business practices. Configurable business process reference 

models provide the basic step for allowing the reusability of reference models in a 

guided and enhanced manner. 

 

The available standard modeling languages, such as EPC and UML AD, were not 

initially designed for expressing variation points nor for building configurable 

reference models. They lack essential characteristics that should be covered by any 

configurable modeling language.  Aalst and Rosemann [28] were the first to introduce a 

new approach for the re-usability of EPC reference models. 

 

According to Recker et al. [15]:  “Configurable reference models may be used to 

facilitate a model-driven implementation process of business systems. The usage of 

configurable reference models can lead to the cross-organizational consolidation of 

previous process configurations, thereby accumulating an evidence-based body of 

knowledge as to the configuration and enactment of business processes across 

multiple industry sectors, regions and cultures. These are just a few ideas but they 



102 

already indicate that reference modeling and model configurability continue to 

emerge as a vibrant and influential research discipline in the future.” 

 

In this work we presented an extension to the UML AD modeling language which we 

named Configurable UML AD, C-UML AD for short. This language represents the 

initial steps towards having a complete Configurable UML AD modeling language. 

We established the basic algorithm for transforming/configuring the C-UML AD 

business model to a specific individual model while making sure that the derived 

UML AD model is consistent and syntactically correct. 

 

6.1 Research Contributions 

 

While many approaches were previously applied on UML AD to express variation 

points for the Software Production Line engineering concepts only a few were 

dedicated for modeling configurable business process models. These approaches were 

not aiming at building a full and a complete configurable modeling language. The C-

UML AD modeling language that we introduce is a basic language that covers the 

major attributes of a configurable modeling language. The notations that we adopted 

ensure that the complexity of the model does not increase. We were fully aware that 

these notations should be easy and understandable by business end users who are not 

IT experts. 

 

We also developed a complete algorithm that monitors the transformation of the C-

UML AD business model to a specific individual UML AD model. The algorithm 

satisfies all the associated constraints (“requirement attribute”) of the model thus 



103 

ensuring that the derived model is consistent. At the same time it ensures that the 

derived model is syntactically correct. None of the previous approaches provided such 

an algorithm. 

  

We used a real case study to test the applicability of our introduced language and to 

validate the transformation algorithm. The case study used in this work was applied 

by Aalst et al. [40] to demonstrate the applicability of C-EPC. 

 

We made our algorithm visible by embedding it within a C-UML AD Transformation 

Tool that we developed. The C-UML AD Transformation Tool is used to model C-

UML AD business reference models and monitors their transformation/configuration 

to UML AD business models which are both consistent and syntactically correct. 

 

6.2 Limitations and Future Work 

 

Semantic correctness of the configured model was beyond the scope of our research 

work and hence was not covered. Also, the transformation of actions/functions was 

only limited to their existence not their functionality. However, further research can 

extend on our work and we expect future efforts that build on our work to move in 

one or more of the following directions: 

 

1. Extending our approach to ensure the semantic correctness of the derived 

model. 

 



104 

2. Extending our approach so that the transformation of actions/functions goes 

beyond their existence and includes their functionality as well. 

 

3. Checking the consistency of the constraints before applying them on the 

model, since the applied constraints could be contradicting among themselves. 

Different techniques should also be studied to acquire the business constraints 

from business experts in a language independent manner. 

 

4. Extending BPMN and other standard business modeling languages in a similar 

way. 

 

5. Suggesting extensions of UML CASE Tools to open the door for 

reconfigurable business modeling on such tools. 

 

6. Enhancing the C-UML AD Transformation Tool that was developed in this 

work to include more features, such as automating the injection of new 

conditions (associated with the decision node). 



105 

7. References 
 
1. A. Dreiling, M. Rosemann, W.M.PV.D. Aalst, W. Sadiq and S. Khan, “Model 

driven process configuration of enterprise systems.” In 18th Conference on 

Advanced Information Systems Engineering, June, 2006, Luxembourg, Germany, 
2005. 

 
2. D. Dori, B. Golany and P. Soffer, “ERP modeling: a comprehensive approach.” 

Information Systems, 2003. 
 
3. E. Kindler, “On the Semantics of EPCs: A Framework for Resolving the Vicious 

Circle.” In Proceedings of the Business Process Management: Second 

International Conference, Vol. 3080, pages. 82-97, Potsdam, Germany, 2004. 
 
4. E. Seidewitz, “What models mean.”  IEEE Software, Vol. 20, pages. 26-32, 2003. 
 
5. F. Fleurey, J. Steel and B.Baudry, “Model-Driven Engineering and Validation: 

Testing Model Transformations.” In Proceedings SIVOES-MoDeVa Workshop, 
2004. 

 
6. F. Gottschalk, W.M.P.V.D. Aalst and M.H.J. Jansen-Vullers, “Configurable 

Process Models: A Foundational Approach.” Reference Modeling, Efficient 

Information Systems Design Through Reuse of Information Models, pages. 59-78, 
July 2007. 
 

7. F. Gottschalk, W.M.P.V.D. Aalst and M.H.J. Jansen-Vullers, “SAP WebFlow 
Made Configurable: Unifying Workflow Templates into a Configurable Model.” 
BPM 2007, Vol. 4714, pages. 262-270, September 2007. 

 
8. F. Puhlmann, A. Schnieders, J. Weiland and M. Weske, “Variability Mechanisms 

for Process Models.” PESOA-Report TR 17/2005, Process Family Engineering in 

Service-Oriented Applications (PESOA), Hasso Plattner Institut, Postdam, 
Germany, 2005. 

 
9. Fujaba CASE Tool Website: 

http://www.cs.unipaderborn.de/cs/fujaba/projects/eclipse/index.html. [Accessed: 
15/6/2009.] 

 
10. H. Storrle, “A Comparison of (e)EPCs and UML 2 Activity Diagrams.” 

Tagungsband des 5. Workshops des GI-Arbeitskreises 

"Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten (WI-EPK)", 

Vol. 224, 2006 Available: http://CEUR-WS.org/Vol-224/ 
 
11. I. Reinhartz-Berger, P. Soffer and A. Sturm, “A Domain Engineering Approach to 

Specifying and Applying Reference Models.” In Proceedings of the Workshop 

Enterprise Modelling and Information Systems Architectures, Vol. 75, pages. 50–
63, Klagenfurt, Austria, October 2005. 

 



106 

12. J. Ferdian and W. Schmidt, “A Comparison of Event-driven Process Chains and 
UML Activity Diagram for Denoting Business Processes,” M.S.thesis, Technische 
Universität Hamburg, Harburg, Germany, 2001. 

 
13. J. Mendling, J. Recker, M. Rosemann and W.M.P.V.D. Aalst, “Generating 

Correct EPCs from Configured CEPCs.” ACM, Dijon, France, 2006. 
 
14. J. Recker, M. Rosemann, W.M.P.V.D. Aalst and J. Mendling, “On the Syntax of 

Reference Model Configuration. Transforming the C-EPC into Lawful EPC 
Models.” In Business Process Management Workshops, Vol.3812, pages. 497-
511, Berlin, Germany, 2006. 

 
15. J. Recker, M. Rosemann,W.M.P.V.D. Aalst, M. Jansen-Vullers and A. Dreiling, 

“Configurable Reference Modeling Languages.” In Reference Modeling for 

Business Systems Analysis, USA, 2006  http://eprints.qut.edu.au/10617/ 
 
16. J. Recker, M. Rosemann and W.M.P.V.D. Aalst, “On the User Perception of 

Configurable Reference Process Models – Initial Insights.” In Proceedings 16th 

Australasian Conference on Information System, Sydney, Australia, 2005. 
 
17. K. Czarnecki and M. Antkiewicz, “Mapping Features to Models: A Template 

Approach Based on Superimposed Variants.” In  GPCE, Vol. 3676 of Lecture 
Notes in Computer Science, 2005. 

 
18. M.A. Mansour, “Business Process Normalization using Model Transformation,” 

M.S. thesis, American University in Cairo, Cairo, Egypt, 2006. 
 
19. M. Clauß, “Generic Modeling using UML extensions for variability.” In 

Proceedings of OOPSLA 2001 Workshop, USA, 2001. 
 
20. M. La Rosa, “Managing Variability in Process-Aware Information Systems.” 

PH.D. dissertation, Queensland University of Technology, Brisbane, Australia, 
March 2009. 

 
21. M. La Rosa, F. Gottschalk, M. Dumas and W.M.P.V.D. Aalst, “Linking Domain 

Models and Process Models for Reference Model Configuration.” In Proceedings 

10th International Workshop on Reference Modeling, pages. 417-430, Brisbane, 
Australia, 2007. 

 
22. M. La Rosa, A.H.M.  ter Hofstede, M. Rosemann and K. Shortland, “Bringing 

Process to Post Production.” In Proceedings International Conference Creating 

Value: Between Commerce and Commons, Brisbane, Australia, 2008. 
 
23. M. La Rosa and M. Dumas, “Configurable Process Models: How to Adopt 

Standard Practices in Your Own Way?” BP Trends, November, 2008. 
 
24. M. La Rosa, W.M.P.V.D. Aalst, M. Dumas, M. and A.H.M. ter Hofstede, 

“Questionnaire-based Variability Modeling for System Configuration.” Software 

and Systems Modeling,2008. 
 



107 

25. M. Merriam-Webster. Merriam-Webster's Collegiate Dictionary: 11 th ed. USA: 
Springfield, 2003.[E-book] Available:http://www.mw.com. [Accessed: 
16/06/2009] 

 
26. M. Modarres, “Predicting and improving complex business processes: values and 

limitations of modelling and simulation technologies.” Proceedings of the IEEE 

2006 Winter Simulation Conference, 2006. 
 
27. M. Razavian and R. Khosravi, “Modeling Variability in Business Process 

Models Using UML.” In Proceedings of the 5
th

 International Conference on 

Information Technology: New Generations (ITGN’08), pages 82–87, 2008. 
 
28. M. Rosemann and W.M.P.V.D. Aalst, “A Configurable Reference Modelling 

Language.” Technical Report, Queensland University of Technology, Brisbane, 
Australia, 2003. 

 
29. N. Russell, W.M.P.V.D. Aalst, A.H.M. Hofstede and P. Wohed, “On the 

Suitability of UML 2.0 Activity Diagrams for Business Process Modelling.” Third 

Asia-Pacific Conference on Conceptual Modelling (APCCM2006), Hobart, 
Australia, 2006. 

 
30. OMG. MOF. 2.0 Query/ Views/ Transformations RFP, OMG document ad/2002-

04-10, 2002  Available: http://www.omg.org/docs/ad/02-04-10.pdf. [Accessed 
14/02/2009] 

 
31. OMG Unified Modeling Language (UML) Specification: Infrastructure, version 

2.0 
 
32. O. Thomas, “Understanding the Term Reference Model in Information Systems 

Research: History, Literature Analysis and Explanation.” Third International 

Conference on Business Process Management (BPM), Nancy, France, September, 
2005. 

 
33. P. Fettke, P. Loos and J. Zwicker, “Business Process Reference Models: Survey 

and Classification.” Third International Conference on Business Process 

Management (BPM), Nancy, France, September, 2005. 
 
34. R. Tawhid and C.D. Petriu, “Towards Automatic Derivation of a Product 

Performance Model from a UML Software Product Line Model.” ACM 

(WOSP’08), USA, 2008. 
 
35. S. Cantrell, T. Davenport and J. Harris, “Putting the Enterprise into the Enterprise 

System.” Harvard Business Review, USA, 1998. 
 
36. Schnieders and F. Puhlmann, “Variability Mechanisms in E-Business Process 

Families.” In Proceedings of the 9th International Conference on Business 

Information Systems (BIS’06), pages 583–601, Klagenfurt, Austria, 2006. 
 
 



108 

37. T. Dinh-Trong, “Rules for Generating Code from UML Collaboration Diagrams 
and Activity Diagrams.” M.S. thesis, Colorado State University, USA, 2003. 

 
38. Wikipedia, http://www.wikipedia.org  [Accessed: 18/06/2009] 
 
39. W.M.P.V.D. Aalst, B.V. Dongen, J. Mendling and E. Verbeek, “Errors in the SAP 

Reference Model.” BPTrends, June 2006 
 
40. W.M.P.V.D. Aalst, M. Dumas, F. Gottschalk, A.H.M, ter Hofstede, M. La Rosa 

and J. Mendling, “Preserving correctness during business process model 
configuration.” Queensland University, 2008. [Online]. Available: 
http://eprints.qut.edu.au/15717/. [Accessed: 17/06/2009].  

 
41. W.M.P.V.D. Aalst, M. Dumas, F. Gottschalk, A.H.M. ter Hofstede, M. LaRosa 

and J. Mendling, “Correctness-Preserving Configuration of Business Process 
Models.” In Proceedings Fundamental Approaches to Software Engineering 

(FASE 2008), Budapest, Hungary, 2008. 
 

42. Y. Choi, G. Shin, G., Y. Yang, and C. Park, “An Approach to Extension of UML 
2.0 for Representing Variabilities.” In Proceedings of the Fourth Annual ACIS 

International Conference on Computer and Information Science (ICIS’05), 2005. 
 



109 

Appendix A. The C-UML AD Transformation Tool 

 
This section is dedicated for describing and explaining the C-UML AD 

Transformation Tool that was implemented to support the work done in this research. 

This tool provides a graphical user interface to both the business process engineer 

who is responsible for building the configurable business process reference model and 

the business end user who is responsible for transforming and individualizing the 

configurable business process reference model to suit his/her specifications. 

 

Figure A.1. shows the system architecture of the C-UML AD Transformation Tool. 

The “Modeler” is the front end interface that is used by the process engineer to build 

the configurable business process model. This interface provides all the elements 

(both standard and configurable elements) needed to build the business model.  

 

Once the model is drawn on the Modeler the model is automatically converted to two 

XML files: one file stores the layout data of the model, such as the size of the 

elements, the color, border style etc. The other XML file stores the associated 

attributes data with each configurable node, such as the default value or the 

specification level, guideline information or the requirement attribute. 

 

The business end user could retrieve the desired configurable business process model. 

Then the business end user starts the transformation process via the “Transformer” as 

shown in Figure A.1. The “Transformer” applies the Transformation Algorithm 

discussed in Chapter 4. At each configurable node the possible configuration values 

are displayed to the end user to choose one of the available options. Once a 

configuration value is chosen, the “Consistency Checker” is invoked to check for 



110 

inconsistency problems. In case there is a problem an alert message is displayed to the 

end user. Otherwise, the transformation step is applied on the model and the “syntax 

checker” is invoked to ensure that the derived model at each transformation step stays 

syntactically correct. Each transformation step affects the associated XML files. After 

all the configurable nodes are transformed, the new transformed/configured business 

model is generated by the “Model Generator” and displayed to the end user on the 

“Modeler” interface. 

 

 

Figure A.1. System Architecture 

 

Figure A.2. shows the basic steps of the system flow. The C-UML AD 

Transformation Tool could be either used by the business process engineer to build a 

configurable reference model or by the business end user to retrieve and transform a 

saved configurable reference model according to his/her specific business situations. 

 



111 

The business process engineer starts by building the configurable business model 

using the standard and configurable elements of the C-UML AD. Then the attributes, 

such as the “requirement attribute” are entered into the system via our implemented 

front end interface. Finally, the configurable reference model is saved. 

 

At any other time, the business end user who is interested in one of the saved 

configurable reference model could retrieve this model and starts the transformation 

process. In this process the business end user will start giving the configuration values 

(according to his/her business requirements) to all the configurable actions and 

connectors in the model. At the back end, the Transformation Algorithm discussed in 

Chapter 4 will be applied, where both the consistency of the model (i.e. consistency 

between the configuration values entered by the business end user and any constraints 

“requirement attribute” applied on the model) and the syntax of the model are 

checked. If an inconsistency problem occurred then the business end user is alerted 

and the configuration value should be adjusted to avoid such problem. Eventually, 

after applying the transformation process the new transformed/ derived model will be 

displayed on the modeler to the business end user. 

 



112 

 

Figure A.2. System Flow 

 

 

 

 


	An extended configurable UML activity diagram and a transformation algorithm for business process reference modeling
	Recommended Citation
	APA Citation
	MLA Citation


	Microsoft Word - Full version_2.doc

