
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2008 Proceedings European Conference on Information Systems
(ECIS)

2008

Ontology Support for Configurative Reference
Modeling
Joerg Becker
ERCIS, becker@ercis.uni-muenster.de

Stefan Fleischer
University of Muenster, stefan.fleischer@ercis.uni-muenster.de

Ralf Knackstedt
University Muenster, ralf.knackstedt@ercis.uni-muenster.de

Armin Stein
University of Muenster, armin.stein@ercis.uni-muenster.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2008

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Becker, Joerg; Fleischer, Stefan; Knackstedt, Ralf; and Stein, Armin, "Ontology Support for Configurative Reference Modeling"
(2008). ECIS 2008 Proceedings. 135.
http://aisel.aisnet.org/ecis2008/135

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2008%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008?utm_source=aisel.aisnet.org%2Fecis2008%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2008%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2008%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008?utm_source=aisel.aisnet.org%2Fecis2008%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008/135?utm_source=aisel.aisnet.org%2Fecis2008%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ONTOLOGY SUPPORT FOR CONFIGURATIVE REFERENCE
MODELING

Becker, Jörg, European Research Center for Information Systems, Leonardo-Campus 3,
48149 Münster, Germany, becker@ercis.uni-muenster.de

Fleischer, Stefan, European Research Center for Information Systems, Leonardo-Campus 3,
48149 Münster, Germany, stefan.fleischer@ercis.uni-muenster.de

Knackstedt, Ralf, European Research Center for Information Systems, Leonardo-Campus 3,
48149 Münster, Germany, ralf.knackstedt@ercis.uni-muenster.de

Stein, Armin, European Research Center for Information Systems, Leonardo-Campus 3,
48149 Münster, Germany, armin.stein@ercis.uni-muenster.de

Abstract

The manual customization of reference information models to suite special purposes is an exhaustive
task that has to be accomplished thoroughly to preserve, expatiate and extend the inherent intention.
This can be facilitated by the usage of automatisms like those being provided by the configurative ref-
erence modeling approach. Thus, the reference information model has to be enriched by data describ-
ing for which application scenario a certain reference model element is relevant. By assigning this
data to application contexts, this structure builds a taxonomy. This taxonomy can be extended by rela-
tionships between the elements, thus forming an ontology. The paper illustrates the advantage of the
usage of such ontologies during three phases of the lifecycle of configurative reference models. Fur-
thermore, algorithms for the evaluation of the ontology and the deduction of the resulting effects are
presented. Finally, the impact of the usage of the approach to support the phases of creating and using
configurative reference models is demonstrated by using a software tool for reference modeling.

Keywords: Ontology Support, Configurative Reference Models, Tools, Model Lifecycle.

1 CONFIGURATIVE REFERENCE MODELING AS A FIELD FOR
ONTOLOGY APPLICATION

Reference information models—in the context of this paper solely called reference models—give re-
commendations for the structuring of information systems as best or common practices and can be
used as a starting basis for the development of application specific information system models. The
better the reference models are matched with the special features of individual application contexts,
the greater the benefit of the reference model’s usage. Reference models are representations of know-
ledge recorded by domain experts to be used as guidelines for everyday business as well as for further
research. They should be of general validity in terms of being applicable for more than one user (see
Schütte, Rotthow (1998); vom Brocke (2003); Fettke, Loos (2004)). General applicability is thus a
necessary requirement for any model to be characterized as reference model, as it has to grant the pos-
sibility to be adopted by e.g. different companies or even different users. Thus, the reference model
has to include information about different business models, different functional areas or different pur-
poses for its usage, e.g. information for different target audiences. A reference model for retail compa-
nies might cover economic levels like Retail or Wholesale, trading levels like Inland trade or Foreign
trade as well as functional areas like Sales, Production Planning and Control or Human Resource
Management. Furthermore, best or common practice information in terms of reference data models,
reference process models or reference organization plans might be included (cf. Becker, Schütte
(2007)). While this constitutes the general applicability for a certain domain, one special company
usually needs just one suitable variant—a subset—of this reference model, for example Retail/Inland
Trade, leaving the remaining information dispensable. This yields the problem that the perceived de-
mand of information for each individual user will be hardly met by the complete reference model or
by one single variant. Either the information delivered—in terms of models of different modeling lan-
guages which might consist of different element types and hold different element instances—is not
sufficient or it is too extensive. Hence the person addressed by the model will be overburdened on the
one hand or insufficiently supplied with information on the other hand. To compensate this in a con-
ventional manner, a complex manual customization of the reference model is necessary to meet the
individual users’ demands. Another implication is the maintenance of the reference model: Each time
changes are committed to the reference model due to e.g. new findings or a finer detailing, every mod-
el variant has to be manually updated as well.

This is the point where configurable reference models come into operation. The basic idea of an ap-
proach by Becker, Delfmann, Knackstedt (2007) is to attach parameters to elements of the reference
model in advance, defining the contexts to which these elements are relevant. The user eventually se-
lects a set of best suited parameters for his purpose and the respective configured model variant is
generated automatically. However, this approach doesn’t take into consideration that certain parame-
ters might include or exclude others. It is thus possible that an inconsistent choice of parameters is tak-
en. This paper fills this gap. By defining relations between the parameters, an ontology supporting the
creation and configuration of a configurable reference model can be developed. This ontology can be
evaluated such that consistent model variants can be derived from the reference model.

2 RELATED WORK

The usage of ontologies in combination with the creation of conceptual information models in general
and reference information models in particular is not new to the field of IS research. However, in the
majority of cases ontologies are used to semantically extend existing modeling languages. For the do-
main of ERP customizing, Soffer, Golany and Dori (2003) specify the context of an application scena-
rio of the reference model by instantiating several attributes, which define the resulting model variant.
Rosemann and van der Aalst (2007) or La Rosa et al. (2007) extend the eEPC (extended event-driven
process chain) by creating rules that formalize dependencies between model elements. Thus, when

removing certain elements from the model, the user gets instructions on how this affects other depen-
dent model areas. The Semantic EPC of Thomas and Fellmann (see Thomas, Fellmann (2007)) uses an
ontology to enhance the semantics inherent to the model elements by formal specification. This should
firstly enable and secondly simplify the comprehensibility of the model for human beings as well as
for machines. Besides this, the authors motivate the possibility to deduce additional information about
the elements by enriching them in the meta model with connections to existing domain specific ontol-
ogies. Another example is the semantically enhanced BPMN of Abramowicz et al. (2007). Another
area of interest concerning ontologies in the IS domain is their development. A prominent example for
the latter case is the BWW (Bunge-Wand-Weber) ontology (Wand, Weber (1995)), an attempt to ad-
just the original all-embracing ontology of Bunge (cf. Bunge (1979)) to suite the IS requirements.

Apparently, to enhance existing models with information inherent to ontologies, the ontology which is
used has to be developed in the first way, thus involving a two-step-procedure – the creation and the
application. This paper motivates a scenario suitable for both steps. Here, ontologies are not only used
to improve the comprehensibility of reference models but also to support their configuration. The on-
tology, of which one is exemplary presented in this paper, contains rules that describe how different
application specific variants can be derived. Each of these rules consists of a condition and an implica-
tion. Each condition describes one application context of the reference model. The respective implica-
tion determines the relevant model variant. For describing the application contexts, configuration pa-
rameters are used. These can be seen as dependent to each other. The choice of one parameter might
lead to the exclusion of another one, while the choice of a third one might require another specific pa-
rameter.

The analysis of the usefulness of ontologies for configurative reference modeling is based upon two
parts: The creation and usage of reference models that are configurable and their lifecycle on the one
hand and the creation of the supporting ontology on the other. Thus, the paper is structured as follows:
Section 3 gives an overview over the two pillars the framework is based upon: The phases of the life-
cycle of configurative reference models and ontologies. Section 4 analyses the usefulness of ontolo-
gies during three phases identified as being relevant for enabling the configuration process. This is
done textual and formally by using pseudo code examples. To demonstrate the feasibility and applica-
bility of the approach presented, a prototypical tool implementation is shown in section 5. The paper
concludes with an outlook on further research areas (section 6).

3 ANALYSIS FRAMEWORK FOR ONTOLOGY USAGE DURING
THE CONFIGURATIVE REFERENCE MODEL LIFECYCLE

3.1 Lifecycle phases of configurative reference models

The lifecycle of configurable reference models can be divided into two parts called Development and
Usage (see Schlagheck (2000), see also figure 1). The first part—relevant for the reference model de-
veloper—consists of the phases Project Aim Definition, Model Technique Definition and Model Con-
struction and Evaluation, the second one—relevant for the user—includes the phases Project Aim De-
finition, Search and Selection of existing and suitable reference models and Model Configuration. The
resulting configured model can, but doesn’t need to be further adapted to satisfy individual informa-
tion needs afterwards (see Becker et al. 2004). Several phases can be identified, where the application
of ontologies can be of value, especially Project Aim Definition and Model Construction (for the de-
veloper) and Model Configuration (for the user). Those phases were chosen because either the creation
of the ontology relevant for a certain reference model takes place, or its configuration using the ontol-
ogy. Although there are application areas during the other phases, they are not yet regarded as being as
effective as during the chosen ones. Thus these phases are not yet considered as being relevant to the
approach presented; however, future research will concentrate on this matter as well.

Figure 1 gives an overview of the whole lifecycle, where the phases that will be discussed in detail are
solid, the ones actually not considered are grayed out. The output of both parts Development and
Usage is printed in italics. Furthermore, this figure serves as a guideline for the analysis framework of
the application and usability of ontologies in the context of this paper.

Search and
Selection (6)

Development

Project Aim
Definition (1)

Model Technique
Definition (2)

Model
Construction (3)

Evaluation
(4)

Configurable
Reference Model

Project Aim
Definition (5)

Model
Configuration

(7)

Configurated/further
configurable Model

Usage

Further
adaptation (8)

Figure 1: Lifecycle of configurative reference models

3.2 Ontologies and their relationship types in the context of this paper

Gruber (1993) defines ontology as “an explicit specification of a conceptualization“. As such, every-
thing that exists can be related to other things in a certain manner. Hence, a lot of relations can be set
between the elements of an ontological system. However, the exemplary ontology presented in this
paper uses only three very basic relations between the elements (see Figure 2), relating to Guarino
(1998), stating that in the simplest case, an ontology describes a hierarchy of concepts (here: characte-
ristics, parameters) related by subsumption relationships.

While many different element types and relationship types between particular elements exist to de-
scribe any ontology, we focus on configuration characteristics and configuration parameters as ele-
ments and the relations Is-instance-of, Excludes and Implicates. The relationship type Is-instance-of is
used to construct a set of configuration parameters where each is instance of a certain configuration
characteristic, e.g. the parameter Catalog is instance of the characteristic SalesContactForm. Further-
more we will use an ontology to describe coherences between configuration parameters that may ex-
clude or implicate each other. Such exclusion and implications may be called the rules of an ontology,
because they restrict possible combinations of selected parameters. Figure 2 exemplarily demonstrates
these three relationship types, Is-instance-of, Excludes and Implicates, between the objects of interest,
namely configuration characteristics and configuration parameters. As you can see in Figure 2, Ven-
dingMachine and InvestmentGoodsTrade exclude each other, as investment goods can hardly be
bought via a vending machine. If the SalesContactForm is SelfService and/or SalesPerson, also the
PurchaseInitiationThrough VisitToStore has to be selected, because there is a physical contact be-
tween the customer and the location items purchased—the store.

In case that ContactOrientation is MailOrder, customers should be able to order items via Letter, Fax
and Internet. The VerticalCooperation can be two or all of the three peculiarities Retail, Wholesale
and IndustrialCompanies. These peculiarities are bundled to certain configuration parameters exclud-
ing each other to ensure that a minimum of two peculiarities is selected.

Figure 2: Example of elements and relationship types forming an exemplary ontology (extract)

4 APPLYING THE ANALYSIS FRAMEWORK

4.1 Phase 1: Project Aim Definition

During the first phase of the lifecycle, the developers have to agree upon the purpose of the reference
model to build. They have to decide for which domain the model should be used, which business
models should be supported, which functional areas should be integrated to support the distribution for
different perspectives and so on. Initially, all parameters for each possible characteristic have to be
listed. By selecting the relevant parameter for the reference model, the developers commit themselves
to one common project aim and reduce the given complexity. Thus, the emerging combination of cha-
racteristics and parameters constitutes a taxonomy, implying the variants included in the integrated
configurative reference model. By generating this taxonomy, the developers get aware of all possible
included variants. One special variant of the model will later on be generated by choosing one or a set
of the parameters by the user.

The choice of parameters should be controlled and supported by the underlying ontology, thus the de-
velopers have to decide whether or not dependencies between parameters exist. In some cases, the
choice of one specific parameter within one specific characteristic determines the necessity of another
parameter within another characteristic. Exclusions should not be considered yet, as the developer
might need to integrate conflicting information, e.g. for a reference model that includes both model
variants for the parameters Vending machine and Investment goods trade. However, exclusions and
implications must not contradict each other, what still has to be considered.

To select a certain set of parameters, two approaches can be pursued—at the same time if applicable:
Firstly, choosing some parameters (and ontology rules implicitly) from a pre-defined set and/or se-
condly defining new parameters not given yet. In the first case of choosing existing parameters, the
concrete buildup has to satisfy the underlying ontology—if one exists already. The pre-defined set of
parameters might have been created earlier during another instance of Project Aim Definition. At this

point only the implication rules have to be considered. Exclusion rules will be ignored since a refer-
ence model may contain information about different business models, different functional areas and
different purposes. In the second case of defining new parameters there is no ontology to check the
parameters against. But a new ontology can be created as well. In case of combining the two ap-
proaches the eventually existing ontology may be extended. Further implication and exclusion rules
must not contradict the ontology with regard to its existing rules. So, exclusions may only be ignored
selecting/defining certain configuration parameters but have to be considered validating the ontology’s
consistency.

In the following some pseudo-code snippets are presented implementing the postulated ontology func-
tionality. Several so called SAT solvers exist (van Maaren, Franco (2007)) providing such functionali-
ty, but they come along with wide generality which is not needed here. To dispense with the generality
of existing SAT solvers does not mean a seriously overhead self-implementing the algorithms needed
as the latter proved to be very simple and easy to implement. It is rather an edge to do only the compu-
tations really needed considering special case information we have. The following pseudo-code vali-
dates a set of rules—if there are no conflicting rules and it is thus valid:
bool ValidateRuleSet(Set<Rule> rules)
 foreach Exclusion rule in rules
 Set<Rule> rules’ := rules without rule
 if ImplicationPathExists(rule.cp1, rule.cp2, rules’)
 return false
 if ImplicationPathExists(rule.cp2, rule.cp1, rules’)
 return false
 return true

bool ImplicationPathExists(CP cp1, CP cp2, Set<Rule> rules)
 foreach Implication rule in rules
 if not rule.cp1 = cp1
 continue
 if rule.cp2 = cp2
 return true
 Set<Rule> rules’ := rules without rule
 if ImplicationPathExists(rule.cp2, cp2, rules’)
 return true
 return false

The function ValidateRuleSet checks if there are no exclusion rules contradicting any implica-
tion rule(s). It would not be sufficient to only check single implication rules against all exclusion rules
because there may be transitive paths of implication rules, e.g. CBA ⇒⇒ (A implicates B , B
implicates C) but CA ↔ (A and C exclude each other). ValidateRuleSet iterates the set of
rules and simply calls another function ImplicationPathExists for each exclusion rule on the
two particular configuration parameters the exclusion rule relates and a shortened set of remaining
rules to check against. ImplicationPathExists returns true if the set of rules passed in holds
a path)()1(,, nrr K of implication rules with 1

1
)1(cpr = and 2

2
)(cpr n = as well as

nkrr kk K2,2
)1(

1
)(== − , where ir is a rule from the set, 1

ir and 2
ir are the first and second configura-

tion parameters of rule ir , respectively, and 1cp and 2cp are the two configuration parameters
passed in. Therefore, ImplicationPathExists searches the set of rules for implication rules and
quickly returns true if the conditions 1

1 cpri = and 2
2 cpri = are met. If not so, the function recur-

sively calls itself. If the whole set has been iterated and the function has not returned true, the func-
tion result is false. Finally ValidateRuleSet returns true if no contradictions were found,
false otherwise. So—to ensure a valid set of rules—, the function ImplicationPathExists
must return false for each exclusion rule. ValidateRuleSet can also be applied on a just ex-
tended rule set to check if the set remains valid after adding the new rule(s).

As mentioned above during Project Aim Definition only the consideration of implication rules takes
place to validate the set of selected configuration parameters (provided that the set of rules is valid for
itself). As a matter of principle all selected configuration parameters must satisfy all implication rules
that there are no configuration parameters A selected and B not selected with BA⇒ (A impli-

cates B). Even more formal it can be said that () () ()()Ω∈∨Ω∉⇔⇒ BABA , where Ω
represents the set of selected configuration parameters. The following pseudo-code illustrates how this
can be realized:
bool ValidateCPSetAgainstImplications(Set<CP> cps, Set<Rule> rules)
 foreach Implication rule in rules
 if not ImplicationSatisfied(rule, cps)
 return false
 return true

bool ImplicationSatisfied(Implication rule, Set<CP> cps)
 bool first := false
 bool second := false
 foreach CP cp in cps
 if cp = rule.cp1
 first := true
 if cp = rule.cp2
 second := true
 return (not first) or (second)

() () ()() () ()()Ω∈∨Ω∈¬⇔Ω∈∨Ω∉⇔⇒ BABABA , in fact, is reflected in the last line of
function ImplicationSatisfied for the implication rule passed in, BA⇒ .

4.2 Phase 3: Model Construction

During the Model Construction Phase, the configurable reference model has to be developed in re-
gards to the decisions made during the preceding phase Project Aim Definition. To store the context
relevant meta information in the model, the respective parameters are attached to the model elements
in form of terms and can later be evaluated to true or false. Only if the equation is evaluated to
true or if there is no term attached to an element, the respective element remains in the configured
model. To specify these terms, which can get complex if many characteristics are used, a term editor
application has been developed, which enables the user to attach them to the relevant elements. Here,
again, the ontology can support the developer by automatically testing for correctness and reasonable-
ness of dependent parameters. Opposite to dependencies, exclusions take into account that under cer-
tain circumstances parameters may not be chosen together. This minimizes the risk of defective mod-
eling and raises the consistency level of the configurable reference model. In the example given above,
if the developer selects that SalesContactForm is VendingMachine, the parameter Beneficiary may not
be InvestmentGoodsTrade, as investment goods can hardly be bought via a vending machine (see
above). Thus, the occurrence of both statements concatenated with a logical AND is not allowed. The
same fact has to be regarded when evaluating dependencies: If, like stated above, ContactOrientation
= MailOrder determines the choice of PurchaseInitiationThrough = AND(Internet;Letter/Fax), the
same statement may not occur with a preceded NOT. Again, the previously generated taxonomy can
support the developer by structuring the included variants. The following pseudo-code describes the
consistency check of a given configuration term:
bool ValidateTermNode(Node root, Set<Rule> rules)
 if root is AndNode
 if not ValidateTermAndNode(root, rules)
 return false
 if root is XorNode
 if not ValidateTermXorNode(root, rules)
 return false
 foreach Node node in root.ChildNodes
 if not ValidateTermNode(node, rules)
 return false
 return true

bool ValidateTermAndNode(AndNode root, Set<Rule> rules)
 Set<CP> cps := { }
 foreach CPNode node in root.ChildNodes
 cps := cps with node.cp
 if not ValidateCPSetAgainstExclusions(cps, rules)
 return false
 foreach NotNode node in root.ChildNodes
 if not node.FirstChildNode is CPNode
 continue
 foreach Implication rule in rules

 if not rule.cp2 = node.FirstChildNode.cp
 continue
 if rule.cp1 in cps
 return false
 return true

bool ValidateTermXorNode(XorNode root, Set<Rule> rules)
 Set<CP> cps := { }
 foreach CPNode node in root.ChildNodes
 cps := cps with node.cp
 foreach CPNode node in root.ChildNodes
 foreach Implication rule in rules
 if not rule.cp2 = node.cp
 continue
 if rule.cp1 in cps
 return false
 return true

The check for a term’s consistency is limited to a very simple functionality. This functionality, for ex-
ample, disregards tests if a term or sub-term always solves to true or false, respectively. But it
guarantees that no AND-operator combines configuration parameters excluding each other and no
XOR-operator combines configuration parameters with one of them implicating another one. Further-
more, it ensures that no AND-operator combines configuration parameters where one of them impli-
cates another parameter with a preceded NOT on its part. As the term’s structure is free from nested
operators of same type, e.g. () CBACBA ∧∧=∧∧ or () AA =¬¬ , these checks remain simple
but very adequate and effective.

The terms are interpreted as trees with inner nodes representing logical operators (AND, OR, XOR,
NOT) and leaf nodes holding the configuration parameters to combine in some way. The function Va-
lidateTermNode expects a term’s root node and a set of rules—the ontology. It recursively iterates
through all tree nodes calling functions ValidateTermAndNode and ValidateTermXorNode
on inner nodes representing AND-operators and XOR-operators, respectively, to perform the consisten-
cy checks explained above. Function ValidateTermAndNode on its part uses function Valida-
teCPSetAgainstExclusions and furthermore function ExclusionSatisfied which are
very similar to functions ValidateCPSetAgainstImplications and ImplicationSa-
tisfied, respectively, stated earlier:
bool ValidateCPSetAgainstExclusions(Set<CP> cps, Set<Rule> rules)
 foreach Exclusion rule in rules
 if not ExclusionSatisfied(rule, cps)
 return false
 return true

bool ExclusionSatisfied(Exclusion rule, Set<CP> cps)
 bool first := false
 bool second := false
 foreach CP cp in cps
 if cp = rule.cp1
 first := true
 if cp = rule.cp2
 second := true
 return (not first) or (not second)

() () ()() () ()()Ω∈¬∨Ω∈¬⇔Ω∉∨Ω∉⇔↔ BABABA , in fact, is reflected in the last line of
function ExclusionSatisfied for the exclusion rule passed in BA ↔ .

4.3 Phase 7: Model Configuration

The Usage phase of a configurable reference model starts independently from its development. During
the user’s Project Aim Definition Phase (phase 5) the potential user defines the parameters relevant to
him to determine which reference model best meets his needs. He has got to search for it during the
Search and Selection Phase (phase 6). Here, the advantage of the approach presented comes into play.
Instead of having to customize the reference model manually, the user solely picks a suitable configur-
able reference model and uses the included ontology to pick the parameters relevant for his purpose.

By automatically including dependent parameters, the ontology can be of assistance in the same way
as before, assuring that the mistakes made by the user by choosing the wrong parameters are reduced
to a minimum. For each parameter—or set of parameters—a certain model variant is created. These
variants have to be differentiated by the aim of the configuration. On the one hand, the user might
want to configure a model that cannot be further adapted. This happens if a maximum of one parame-
ter per characteristic is chosen. In this case, the ontology has to consider dependencies as well as ex-
clusions. On the other hand, if the user decides to configure towards a model variant that should be
further configured, exclusions may not be considered and have to be integrated. Both possibilities have
to be covered by the ontology. Furthermore, a validation should cross-check against the ontology that
no terms exist that always equate to false. If an element is removed in every configuration scenario,
it should not have been integrated into the reference model in the first place. Thus, the taxonomy can
assist the user during the Configuration Phase by offering a set of parameters to choose from. Com-
bined with an underlying ontology, the possibility of making mistakes by using the taxonomy during
the model adaptation is reduced to a minimum. This can be done by passing the selected configuration
parameters and the ontology’s rules in ValidateCPSetAgainstExclusions and Valida-
teCPSetAgainstImplication from above, looking forward to results being true.

4.4 Summary

The meaningfulness of the application of ontologies during the phases of the lifecycle of configurative
reference models has been shown during the preceding section. However, the way how the terms of an
ontology are being evaluated changes during the phases. Moreover, not all rules have to be taken into
consideration, as the relationship type Implication is not relevant for configuration but only for the
structuring of the given characteristics. The following table provides an outline:

Phases Relationship types Reason

Implication Exclusion

Project Aim
Definition X

During the first phase, exclusions don’t have to be taken into ac-
count, as a configurable reference model has to contain information
for all inherent variants that possibly can be derived by configura-
tion.

Model
Construction X X

During the third phase, every rule has to be checked whether it is
valid or not and delivers a valid model. As such, exclusions have to
be considered as well.

Model
Configuration X (X)

During this phase, the model gets configured. Which relationship
types have to be regarded depends on the user’s purpose for confi-
guring the model. If he wants to create a variant that no longer
should serve as a configurable reference model, exclusions may not
remain in the variant derived. Otherwise they may stay in the variant
for further configuration.

Table 1: Relevance of the relationship types during the respective phases

5 CONTRIBUTION TO SUPPORT REFERENCE MODELING TOOLS

The H2-Toolset is a meta modeling tool for the construction of hierarchical models and the underlying
modeling methods enabling, disabling and adapting certain modeling techniques. Moreover it provides
a configurative reference modeling feature and therefore realizes the basic ideas of ontology functio-
nality analyzed in this paper.

Figure 3: Preselection of relevant Configuration Parameters

During the phase Project Aim Definition usually certain configuration parameters specifying the un-
derlying domain are chosen with respect to satisfy a given ontology. This can be implemented as
shown in Figure 3: The user checks the desired configuration parameters to mark them as selected for
the purpose present.

Figure 4: Just-in-time-validation of terms during their construction

For a selected configuration parameter the dependencies are instantly displayed. In a following valida-
tion step the set of selected configuration parameters will be checked against the underlying ontology.
In the Model Construction Phase both exclusion and implication rules come into effect. Certain confi-
guration parameters are put together and combined in logical terms. The terms can be built either by
using a comfortable interface to construct a syntax tree and selecting the parameters from a list or by
typing in the term’s formal expression (Figure 4, background). The combinations of referenced confi-
guration parameters are then validated against the ontology, and warning messages are generated ac-

cording to rule violations (Figure 4, foreground). During the Usage of a reference model, its adapta-
tion resulting in a new created (reference) model, the tool support may look quite similar to the selec-
tion of configuration parameters during Project Aim Definition, particularly with regard to validating
and responding to the user’s input: In a first step the user selects some parameters representing the
modeling purpose from the set of pre-selected configuration parameters.

In a second step the configuration parameters describing the precise circumstance are then validated
against the ontology’s implication rules. Figure 5 shows a case were some rule violations were de-
tected validating the configuration parameters: SelfService and SalesPerson have been selected, Visit-
ToStore not.

Figure 5: Incorrect choice of parameters

6 OUTLOOK

The approach presented in this paper simplifies the consistent structuring, attachment and usage of
parameters during the lifecycle of configurative reference models. In comparison to existing ap-
proaches of configurative reference modeling, not only the configuration itself can be automated, but
also the verification of the consistency of the set of parameters chosen by the user. However, only
three of the eight relevant phases of the configurative reference model lifecycle have been taken into
consideration. If and how the usage of the ontology effects and hopefully improves the execution of
the other phases is going to be the object of future research. Considering the ontology, only a very li-
mited set of relationship types has been used. It has to be analyzed whether extending the ontology
with additional relationship types and the supply of attributes like cardinalities is of any benefit. By
doing so, the necessity to—for instance—selecting at least two but no more than four parameters can
be modeled in a clearer and more intuitive way. Also that concerns the implication of at least one of
the three parameters Letter, Fax and Internet by Mail order—for logical reasons Letter and Fax may
still be bundled. Considering some business may operate both as a retailer and as a wholesaler, but
never with respect to the same customer order, the ontology needs to support a hierarchy of concepts
and relationships to allow rules being attached to entities of different conceptual levels. Furthermore,
the approach presented in this paper has been tested with eEPC- and Entity Relationship-Models by
extending the meta model of the respective modeling languages with the possibility to annotate addi-
tional information. Nevertheless, the adaptability to other modeling techniques, too, shall be proven.
Finally, the approach has not been tested yet in a day-to-day business environment. It would be bene-
ficial to prove its applicability with support of practitioners and by integrating it into other modeling
tools.

7 ACKNOWLEDGEMENTS

This paper was written within the context of the research projects FlexNet and ServPay, funded by the
Federal Ministry of Education and Research (BMBF), promotion signs 01FD0629 and 02PG1010.

References
Abramowicz, W.; Filipowska, A.; Kaczmarek, M.; Kaczmarek, T. (2007): Semantically enhanced

Business Process Modeling Notation. In: Workshop on Semantic Business Process and Product Li-
fecycle Management (SBPM 2007). Innsbruck, Austria, June 7, 2007, pp. 88–91.

Becker, J.; Delfmann, P.; Dreiling, A.; Knackstedt, R.; Kuropka, D. (2004): Configurative Process
Modeling – Outlining an Approach to Increased Business Process Model Usability. In: Proceedings
of the 2004 Information Resources Management Association Conference. New Orleans, 2004, pp.
615–619.

Becker, J.; Delfmann, P.; Knackstedt, R. (2007): Adaptive Reference Modeling. Integrating Configur-
ative and Generic Adaptation Techniques for Information Models. In Becker, J., Delfmann, P.
(ed.): Reference Modeling. Efficient Information Systems Design Through Reuse of Information
Models. Berlin et al. 2007, pp. 23–49.

Becker, J.; Schütte, R. (2007): Reference Model for Retail Enterprises. In Fettke, P., Loos, P. (ed.):
Reference Modeling for Business Systems Analysis, pp. 182–205.

vom Brocke, J. (2003): Referenzmodellierung. Gestaltung und Verteilung von Konstruktionsprozes-
sen. Logos-Verlag, Berlin.

Bunge, M. (1979): Treatise on Basic Philosophy: Volume 4. Ontology II: A World of Systems. Reidel,
Dordrecht, Holland 1979.

Fettke, P.; Loos, P. (2004): Referenzmodellierungsforschung. Wirtschaftsinformatik, 46, 5, pp. 331–
340.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge Ac-
quisition, 5(2), pp. 199–220.

Guarino, N., Formal Ontology in Information Systems, In N. Guarino (ed.): Formal Ontology in In-
formation Systems. Proceedings of FOIS'98, Trento, Italy, June 6–8, 1998. IOS Press, Amsterdam,
pp. 3–15.

van Maaren, H.; Franco, J. (2007): The international SAT Competitions web page. Retrieved March
28, 2008, from http://www.satcompetition.org/.

La Rosa, M.; Gottschalk, F.; Dumas, M.; van der Aalst, W. M. P. (2007): Linking Domain Models and
Process Models for reference model Configuration. In: Proceedings of the 10th International Work-
shop on reference modeling, QUT Brisbane, Australia, September 24th, 2007.

Rosemann, M.; van der Aalst, W. M. P. (2007): A Configurable Reference Modeling Language. In-
formation Systems 23 (2007) 1, pp. 1–23.

Schlagheck, B. (2000): Objektorientierte Referenzmodelle fuer das Prozess- und Projektcontrolling.
Grundlagen – Konstruktion – Anwendungsmöglichkeiten. Deutscher Universitäts-Verlag, Wiesba-
den.

Schütte, R.; Rotthow, T. (1998): The Guidelines of Modeling – An Approach to Enhance the Quality
in Information Models. In: Proceedings of the 17th International Conference on Conceptual Model-
ing 1998, pp. 240–254.

Soffer, P.; Golany, B.; Dori, D. (2003): ERP modeling: a comprehensive approach. Information Sys-
tems 28 (2003) 9, pp. 673–690.

Thomas, O.; Fellmann, M. (2007): Semantic Business Process Management: Ontology-Based Process
Modeling Using Event-Driven Process Chains. In: International Journal of Interoperability in Busi-
ness Information Systems 2, Nr. 1, pp. 29–44.

Wand, Y.; Weber, R. (1995): On the Deep Structure of Information Systems. Information Systems
Journal (5) 1995, pp. 203–223.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	Ontology Support for Configurative Reference Modeling
	Joerg Becker
	Stefan Fleischer
	Ralf Knackstedt
	Armin Stein
	Recommended Citation

	Microsoft Word - OntologySupport_ArSt0330.doc

