2,660 research outputs found

    Semantic Techniques for Multi-Cloud Applications Portability and Interoperability

    Get PDF
    The composition of Cloud Services to satisfy customer requirements is a complex task, owing to the huge number of services that arecurrentlyavailable. TheadventofBigDataandInternetofThings(IoT),whichrelyonCloudresourcesforbetterperformances and scalability, is pushing researchers to find new solutions to the Cloud Services composition problem. In this paper a semanticbased representation of Application Patterns and Cloud Services is presented, with an example of its use in a typical distributed application, which shows how the proposed approach can be successfully employed for the discovery and composition of Cloud Services.

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Service broker based on cloud service description language

    Get PDF

    Cloud resource orchestration in the multi-cloud landscape: a systematic review of existing frameworks

    Get PDF
    The number of both service providers operating in the cloud market and customers consuming cloud-based services is constantly increasing, proving that the cloud computing paradigm has successfully delivered its potential. Nevertheless, the unceasing growth of the cloud market is posing hard challenges on its participants. On the provider side, the capability of orchestrating resources in order to maximise profits without failing customers’ expectations is a matter of concern. On the customer side, the efficient resource selection from a plethora of similar services advertised by a multitude of providers is an open question. In such a multi-cloud landscape, several research initiatives advocate the employment of software frameworks (namely, cloud resource orchestration frameworks - CROFs) capable of orchestrating the heterogeneous resources offered by a multitude of cloud providers in a way that best suits the customer’s need. The objective of this paper is to provide the reader with a systematic review and comparison of the most relevant CROFs found in the literature, as well as to highlight the multi-cloud computing open issues that need to be addressed by the research community in the near future

    Ontology-Based Resolution of Cloud Data Lock-in Problem

    Get PDF
    Cloud computing is nowadays becoming a popular paradigm for the provision of computing infrastructure that enables organizations to achieve financial savings. On the other hand, there are some known obstacles, among which vendor lock-in stands out. Furthermore, due to missing standards and heterogeneities of cloud storage systems, the migration of data to alternative cloud providers is expensive and time-consuming. We propose an approach based on Semantic Web services and AI planning to tackle cloud vendor data lock-in problem. To complete the mentioned task, data structures and data type mapping rules between different types of cloud storage systems are defined. The migration of data among different providers of platform as a service is presented in order to prove the practical applicability of the proposed approach. Additionally, this concept was also applied to software as a service model of cloud computing to perform one-shot data migration from Zoho CRM to Salesforce CRM

    FIPA-based reference architecture for efficient discovery and selection of appropriate cloud service using cloud ontology

    Full text link
    [EN] Cloud computing is considered the latest emerging computing paradigm and has brought revolutionary changes in computing technology. With the advancement in this field, the number of cloud users and service providers is increasing continuously with more diversified services. Consequently, the selection of appropriate cloud service has become a difficult task for a new cloud customer. In case of inappropriate selection of a cloud services, a cloud customer may face the vendor locked-in issue and data portability and interoperability problems. These are the major obstacles in the adoption of cloud services. To avoid these complexities, a cloud customer needs to select an appropriate cloud service at the initial stage of the migration to the cloud. Many researches have been proposed to overcome the issues, but problems still exist in intercommunication standards among clouds and vendor locked-in issues. This research proposed an IEEE multiagent Foundation for Intelligent Physical Agent (FIPA) compliance multiagent reference architecture for cloud discovery and selection using cloud ontology. The proposed approach will mitigate the prevailing vendor locked-in issue and also alleviate the portability and interoperability problems in cloud computing. To evaluate the proposed reference architecture and compare it with the state-of-the-art approaches, several experiments have been performed by utilizing the commonly used performance measures. Analysis indicates that the proposed approach enables significant improvements in cloud service discovery and selection in terms of search efficiency, execution, and response timeAbbas, G.; Mehmood, A.; Lloret, J.; Raza, MS.; Ibrahim, M. (2020). FIPA-based reference architecture for efficient discovery and selection of appropriate cloud service using cloud ontology. International Journal of Communication Systems. 33(14):1-14. https://doi.org/10.1002/dac.4504114331

    definitions, concepts, approaches, requirements, characteristics and evaluation models

    Get PDF
    FAPESP (processes 2012/24487-3 and 2012/04549-4) and Brazil-Europe Erasmus Mundus project (process BM13DM0002) partially funded this researchAmong research opportunities in software engineering for cloud computing model, interoperability stands out. We found that the dynamic nature of cloud technologies and the battle for market domination make cloud applications locked-id, i.e, proprietary, non-portable and non-interoperable. In general context of cloud computing, interoperability goes beyond communication between systems like in other fields, it goes in direction of more dynamic, heterogeneous, complex and composed applications that take advantage of best features from different providers and services simultaneously. Interoperability in cloud constitutes a great challenge that must be overcome for that, in the future, software be more dynamic and improved.publishersversionpublishe
    corecore