
Service broker based on cloud service description language

Razaq, Abdul; Tianfield, Huaglory; Barrie, Peter; Yue, Hong

Published in:
15th International Symposium on Parallel and Distributed Computing (ISPDC), 2016

DOI:
10.1109/ISPDC.2016.34

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Razaq, A, Tianfield, H, Barrie, P & Yue, H 2017, Service broker based on cloud service description language. in
15th International Symposium on Parallel and Distributed Computing (ISPDC), 2016 . IEEE.
https://doi.org/10.1109/ISPDC.2016.34

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293882653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ISPDC.2016.34
https://researchonline.gcu.ac.uk/en/publications/30727627-a9e9-4247-b203-93516b9ea99c
https://doi.org/10.1109/ISPDC.2016.34

Service Broker for Cloud Service Description
Language

Abdul Razaq, Huaglory Tianfield, Peter Barrie
School of Engineering and Built Environment,
Glasgow Caledonian University, Glasgow, UK

{ abdul.razaq, h.tianfield, peter.barrie } @gcu.ac.uk

Hong Yue
Dept. of Electronic and Electrical Engineering

University of Strathclyde, Glasgow, UK
hong.yue@strath.ac.uk

Abstract- Cloud Service Description Language (CSDL),
initiative and discourse, is concentrated to deploy applications
on various cloud platforms without modifying source-code.
Semantic topology and orchestration of applications provides
practical advantage for service providers with ability of
interoperability, portability and unified interfaces. However,
this has also resulted problems for consumers to identify the
appropriate services spread over swarm platforms. The
advantage, with common CSDL such as Topology and
Orchestration Specification for Cloud Applications (TOSCA),
becomes problematic for consumers. Service providers will have
different technical and business details such as: discovery,
pricing, licensing or composition depending upon deployed
platform; therefore, selection of service becomes challenging and
requires human effort. Service Broker design is presented for
TOSCA framework only; however, the suggested scheme is
generic and adaptable to accommodate similar standards of
CSDL.

Index Terms— Cloud Services, TOSCA, Service
Management, Service Broker, Cloud Description Language

I. INTRODUCTION

An independent application, on an isolated machine
serving certain functionality, did not require any non-
functional description except technical usage details such as
data type and size with its timing constrains. Then, evolved
distributed architectures running, multiple applications which
undoubtedly required more than technical usage including IP,
connecting ports and send/receive methods. Now, with these
distributed systems evolving into next abstracted world where
a single machine can be either visualized as a unit or
dispersed devices. Cloud computing has introduced a method,

to virtualize and interoperate, a single application on different
systems that are different by definition with comparable
execution environment. Evolving applications must adopt
virtualization where technical details serve no significance
but cost, quality and availability matters.

A service is: “function of input or output originating to or
from either hardware or software”. Historically, services have
been described through technical details only (Figure 1.) with
Remote Procedure Calls (RPC) as beginning of distributed
computing era. The business aspect of these services have
been ignored and left upon the users to compare, search and
select appropriate service that fulfilled the business
requirements. Moreover, the technical descriptions have been
focused on specific platforms or execution environments
only. As a result, the gap between technical and business
requirements is focused in on-going research. There is a
global push to standardize Cloud Based Web Services that
has lead various consortiums including OMG, W3C, ISO,
NIST and Eurocloud resulting into CSDL standards such as
USDL, CCRA, OCCI and TOSCA [1].

TOSCA enabled services become 1) Marketable Entities
that can be listed in catalogues via service templates, 2) it also
ensures that IT services defined as Service Templates are
portable, 3) And finally instance of a service can be
composed from different components provided by different
providers and hosted on different architectures.

TOSCA initiative describes a service component with two
directives. 1) A service 'Topology' is a directive to describe
the service and its relationship with other components. 2)
Orchestration provides management description in terms of
service creation and modification. This combination allows
application providers to deploy across various alternative
cloud environments that are compatible with TOSCA
containers. TOSCA serves three domains: 1) Design Tools
for applications as services 2) Service market places to
service brokers that can utilize the provided/designed
application and 3) Cloud providers that can manage their
resources to host provided application [2] [3] [4].

The idea behind text based description technologies is to
provide human readable but machine usable documents to
describe offered applications and related services, Cloud
platforms have further pushed this direction to allow such
technologies to include ways to combine these services and
make it deployment independent in terms of underlying
platforms. This has resulted into Service Template what
serves as blue print to deploy a piece of software across
different but similar executions. The major focus lies in
management of this transition with minimal overhead of
services transformation for targeted execution platform.

The TOSCA description documents refer to applications
in terms of Service Topology Templates and Service Plans.

Fig. 1. Evolution of Application Services Technologies from standalone
systems to distributed networks and Cloud platforms.

TOSCA grammar provides a mechanism that allows adding
new descriptions that are application or deployment specific.
Process Execution Language Version (BPEL), Business
Process Model and Notation (BPMN), XML Path Language
(XPath) and Open Virtualization Format Specification (OVF)
are similar initiative as TOSCA but with different governing
bodies.

The remainder of the paper is organized as follows.
Section 2 reviews the literature on Cloud service description
techniques and management. Section 3 presents our proposed
TOSCA Service Broker scheme with detailed design and
workflow. Section 4 provides directions to future work
followed by conclusion in last section.

II. LITERATURE REVIEW

 TOACA meta-model consists of two structures that are
Topology Template (aka topology model of a service) and
Plans. Topology is a way to refer modeling of service as a
node with or without association, whereas Plans describe
lifecycle of these templates. Life cycle includes creation,
runtime, auditing and management. TOSCA relies on BPMN
or BPEL to define Plans but any process model language can
be used. A template node has interfaces, these are the means
to classify the functionally in semantic or ontology in
orchestrations. A Topology Template further consists on
Node Templates and Relationship Templates to describe the
topology model of a service.

Relationship Templates describes semantic and
relationship of properties between nodes in a Topology
Template. A deployed service is an instance of a Service
Template. More precisely, the instance is derived by
instantiating the Topology Template of its Service Template,
most often by running a special plan defined for the Service
Template, often referred as build plan. Service instance is
derived from Topology Template of its Service Template
according to its build plan. Service templates can be shared in
catalogs of service providers.

An artifact in TOSCA is content of executable (database,
executable, image, library etc.). These artifacts are further
divided into two categories: implementation and deployment.
Implementation artifact is actually content and deployment
refers to its runtime environment. QoS, service auditing and
non-functional behaviors in TOSCA are referred as Policy
Template based on Policy Node. A Policy is able to perform
auditing, monitoring or payment conditions. A single or set of
polices can be attached to a Node template. An archive
format CSAR (Cloud Service Archive) is used to encapsulate
all the applications that can be deployed to TOSCA container.
CSAR file can be considered as compressed TOSCA
container description file.

Ghijsen et al. [5] proposed Infrastructure and Network
Description Language (INDL) to decouple connectivity,
functionality and virtualization of resources with semantic
prospective. This modularized approach allows adding new

resources without effecting existing resources. Their solution
is project specific which present challenges how this can be
adopted on large scale.

Baker et al. [6] proposed Intention Description Language
(IDL) focused on non-functional requirements of
applications. They suggested to modify business models with
zero offline elasticity capabilities. This approach lacked
standardization and suggested description samples included
obsolete rather relative paths.

Binz et al. [7] summarized and analyzed TOSCA
containers and how these can expedite application
development which can offer services on wider hosting
platforms. It has been concluded that widely used echo
systems of TOSCA containers is key to broader acceptability.
Sun et al. [8] surveyed description techniques for general and
basic service scope - SOA with both sides on agreed
architecture for system design and virtualization that presents
host and client in abstraction. The discussion is further
expanded in details such as coverage, representation, users
and features. It has been suggested that Unified Service
Description Language (USDL) can offer to bridge the gap
between technical, operational and fiscal challenges.
However, this survey didn't include TOSCA or BEPL4XL.

Cardoso et al. [9] went into great details elaborating gap
between technical and business requirements. The focus of
their effort is to streamline a description language that can be
adopted to run the SAP based products. The emphasis of their
effort is based on USDL only and relevant echo-systems. It
fails how non SOA based applications can leverage Cloud
resources. Similar work conducted by Charfi et al. [10] based
on Jorge Cardoes et al. introduced an Eclipsed-based Editor
for USDL that enables creation of such models.

Cardoso et al. [1] investigated how USDL and TOSCA
can be integrated for management of cloud services.
Although, both of these standards serve a common purpose
but each has its focused domain in Clouding Computing.
USDL is focused on description of services and how they can
be used in terms of delivery, discovery and composition.
Whereas, TOSCA is more focused on deployment platforms
for such services and the requirements of container to host
these services. An opensource SugarCRM project has been
selected to integrate USDL and TOSCA.

Brogi et at. [11] made a similar effort to summarize the
TOCSA with three main prospects (1) automatic deployment
and management of applications, (2) portability across
different cloud environments, and (O3) interoperability with
reusability. Gonçalves et al. [12] proposed XML-based Cloud
Modeling Language which can describe distributed resource ,
services, and requests in an integrated way. The experiments
were conducted on virtual environments that might differ
when deployed on actual platforms. Moreover, it lacks to
describe scalability.

Schaffrath et al. [13] proposed a description language that
allows to combine and describe topology and requirements
abstracted services. The proposed idea was emulated on a
testbed and it further requires validations for different

providers. Silva et al. [14] investigated migration process of
services across different platforms. The proposed cloud
migration supporting description techniques is at early stages
with integration in TOSCA. Cardoso et al. [15] surveyed
linked data enabled USDL and its distinctive features.
Pedrinaci et al. [16] also investigated linked USDL's
vocabulary to support trading services with scalability and
automation over multiple cross-domain providers. This work
further requires achieving composition of services and a
broker mechanism that can provide a common interface for
service provider and users.

 George et at. [17] proposed description framework based
on OWL for publication and discovery mechanism that would
allow automated means between providers and brokers. The
architecture is based on REST and sematic data source. It
requires further optimization and compatibility with other
container providers. Lenk et al. [18] investigated conceptual
description approach for application run-time requirements in
federated clouds. Hoberg et al. [19] investigated service
descriptions technologies from customer's perspective. They
have identified the information required by service users that
can automate search and feature comparison. It has been
suggested that USDL can be enhanced to integrate with
greater user perspective.

III. PROPOSED ARCHITECTURE

Challenges for Service Consumers:

The initiative of TOSCA standardization has addressed
the problems for service providers to deploy the applications
on various cloud providers. However, this has also resulted
problems for consumers to identify the suitable service. The
advantage of TOSCA portability becomes problem for users
as different cloud providers will have different technical and
business details such as discovery, pricing, licensing or
composition; therefore service consumers have to have
knowledge of these details.

Figure 2 illustrates this problem with a single TOSCA
compatible application capable to be deployed on various
cloud providers. Single application can be commissioned to
many platforms, type A) platform which is classical machine

with fabric and operating system, B) underlying cloud
platform can be a composition of type ‘A’ with addition of
Virtual Machine Manager (VM Manager) which would allow
installing guest operating systems. Another C) type of cloud
can be constructed with hypervisor model which allows
sharing kernel space for different users, hypervisor is typical
use case of different users on single machine with unique
identity. Finally, a cloud provider can select a mixture of
these topologies D) to offer cloud platform.

On one hand TOSCA provides automation for service
providers but on other hand it creates challenges for service
consumers. The anonymity of platforms and installed
software present challenges for consumer as 1) technical
details such as operating system, available applications for
given platform, network bandwidth or discovery and
composition mechanism and 2) business details such as
pricing, licensing, ethical policies or geographical constrains
can vary from platform to platform. Another problem is
selecting the right service as multiple services can exist for
same functionality which presents a selection challenge for
consumers.

Some of the challenges are inherited by the TOSCA itself
as it does not specify the hardware type (i.g. CPU
virtualization, availability of GPU), network bandwidth and
typical WSDL problems as it relies on this standard for
technical details. On business side, the burden is left on
consumer to identify the right service.

Proposed Workflow:

We propose a broker that serves as middleware between
service provider and consumer to address the challenges
described above. TOSCA Service Broker (TSB) digests the
TOSCA description document and produces a leaflet that is
an entry in services’ catalogue. Aggregated catalogue provide
a detailed selection capability to users to select the precise
service. A Broker would be able to weight similar services
based on their technical and business details.

Figure 3. presents the work flow of proposed TSB. TSB
acts as a middleware and gathers all TOSCA documents from
different service provider regardless of underlying cloud
platform. All TOSCA documents are parsed and information
is stored in database for further presentation and analytics.
Users interact with TSB for service selection and are served
with a catalogue of services based on criteria and best match.
Users’ applications can be automated to select the right
service as soon as new competent services are added in
catalogue. In essence, TSB collects applications’ description
and arranges these details in catalogue format. Furthermore,
this catalogue consisting on various leaflets (TOSCA
Documents) is available in singular format with unified
accessibility interface. Broker is divided into three logical
blocks depending upon its functional scope. The first blocks
with dotted line on top is service provider, followed by core
TSB marked in solid line and ending with users in dotted line
at the bottom. The workflow is from Provider to Users with
TSB in between. This pivotal placement of TSB is a key to
address the challenges of service consumers.

Fig. 2. TOSCA Application deployment on various cloud platforms.

The crucial component of TSB is its DB schema (Figure 4.)

which holds metadata derived from TOSCA definitions.
Three tables are designed to hold the details of services that
include ‘Service Provider’, ‘Service Usage’ and ‘Service
Types’. Primary key is placed into ‘Service Provider’ which
is further mapped as a secondary key in rest of the tables.
This key is unique index for each service provider. Index

represents documentation, service, artifact and policy
templates. 1) Service Templates are used to deploy the
application on cloud platforms. A single service template can
define an application or it can be used to compose service
form other applications. The structure of Cloud applications
is described in Service template that defines plans to manage
the offered services. Node templates and node types can be
defined in the Service template scope which actually presents
offered service. 2) Artifact Template describes application
payload and its software components. It is presented as a
compressed data including binaries, scripts and static files.
Payload can be part of artifact or it can be fetched from web.
And finally, 3) Policy Template holds details of polices that

are non-functional behavioural properties of provided service
and stored in ‘Service Usage’ table. These include
Monitoring, Payment, Conditions, Scalability and
Availability.

TSB Design:

TSB is designed on modular basis where set of functionality
are dedicated to modules as presented in Figure 5. The
modularized approach is adopted to achieve software
extensibility and efficient debugging. Beside advantages of
modularized software development, the proposed architecture
manages the implementation with logical construction of the
TSB as below:

A. Connectivity Module:

Connectivity Module is designed to meet the requirements

of different service providers and users. It provides separation
between the connectivity and functionally modules such as
TOSCA Document Parser, DB Module and Scheduler
Module. The Connectivity Module delivers special features
which limit control of certain networking functions from the
module itself. The module supports both Client and Server
connectivity for service providers and users interfaces
respectively.

B. TOSCA Document Parser:

Document parser is relatively passive component as it

relies on connectivity module to fetch descriptions from
sources and DB Module to make commits. This module
defaults to XML format which is standard to TOSCA,
however, any other text based formats such as
JASON/YAML etc. can be added without any architectural
changes.

Fig. 3. TOSCA Service Broker Workflow

Fig. 5. TOSCA Service Broker Design – Breakdown into modules with
respect to functionality.

Fig. 4. TOSCA Service Broker Database Schema

C. DB Module:

The DB Module enables XML Parser and User Interface

modules to connect with database. This module consists of
stored procedures and also allows executing custom database
quires including Select, Insert, Update or Delete. All the
metadata parsed from documents and stored in DB is only
accessed via this module.

D. Scheduler Module:

Scheduler Module is responsible for synchronization, event

handling and scheduling various tasks. It is further divided
into three sub-modules.

1) Discovery: sub-module is responsible to listen to

available services that comply with WSDL. Once
the WSDL discovery event is raised then
Discovery component will initialize service
provider interface and document parser module to
update the database for that specific provider.

2) Crawler: service discovery depends upon
implementation and it is not a mandatory even in
TOSCA/WSDL. A service crawler is a component
that would systematically search for service
providers for offered service and update or add
service index that do not implement discovery
mechanism.

3) Locking: sub-module ensures that there are no
deadlocks in the broker. If discovery or crawler is
updating database then service search module or
parser module should wait unless the updates are
committed. It provides system level locks for each
module.

E. Service Search Module:

This module plays vital role in the broker to provide best

service from the catalogue. It accepts user input criteria and
scans the catalogue’s leaflets for most efficient solution in
terms of usage and price. It is important to note that various
services can exit with similar functionality, so it is vital role
of Search Module to analytically search the best solution.

F. Configuration and Management:

Configuration and Management module provides various

supporting functionality to all other modules. For example,
timer settings for crawler, DB settings, Parser keys, service
search algorithm. It also provides system level auditing,
logging, performances details etc.

IV. FUTURE WORK

Proposed TSB strictly relies on mandatory metadata fields
in TOSCA document and makes use of fewer optional
elements. Although, optional elements are function of
implementation but TSB should extend DB schema to
accommodate these fields. These optional elements -
provided in TOSCA document - can increase the throughput
of Service Search Module. However, Service Search Module
itself requires improved examination capability other than
simple match and report mechanism against user input. The
consequences of such a short coming can lead to incorrect
selection in presence of more capable and cost-effective
service. Components of Scheduler Module depend on
Configuration and Management Module which results in
dependency on human interaction. For example, discovery
component or crawler has no means to keep the record and
update the previous status of existing services in the system.

V. CONCLUSION

Cloud services are omnipresent in these days. The
standardization to describe these services is focused on
deployment and management. This is leading to challenges
for service consumers to select the most competent solution.
Current solution is to utilize regular web search engines and
individually compare all the detail. Manual search and
selection is not only time consuming but also makes it
impossible to automate user application. This lack of
automation - results to source level changes in applications to
find superior services. A service broker not only provides
ability to automate user application but also to select the most
cost effective service providers with greater QoS.

On lines of economics in services echo-system, middleman
design would ensure fair competition and encourage service
provider to describe their packages in lengths and compare
with benchmarks and market trends. Service providers can
customize their services as per market trends and quickly
disperse updates across huge consumer base without updating
every single consumer.

REFERENCES

[1] J. Cardoso, T. Binz, U. Breitenbücher, O. Kopp, and F.
Leymann, “Cloud computing automation: Integrating usdl
and tosca,” in Advanced Information Systems Engineering,
2013, pp. 1–16.

[2] OASIS Committee, “Topology and Orchestration
Specification for Cloud Applications (TOSCA)--Committee
Specification 01,” 2013.

[3] S. Qanbari, F. Li, and S. Dustdar, “Toward Portable Cloud

Manufacturing Services,” Internet Comput. IEEE, vol. 18,
no. 6, pp. 77–80, Nov. 2014.

[4] M. Guzek, A. Gniewek, P. Bouvry, J. Musial, and J.
Blazewicz, “Cloud Brokering: Current Practices and
Upcoming Challenges,” Cloud Comput. IEEE, vol. 2, no. 2,
pp. 40–47, Mar. 2015.

[5] M. Ghijsen, J. der Ham, P. Grosso, and C. De Laat,
“Towards an infrastructure description language for
modeling computing infrastructures,” in Parallel and
Distributed Processing with Applications (ISPA), 2012
IEEE 10th International Symposium on, 2012, pp. 207–214.

[6] T. Baker, A. Hussien, M. Randles, and A. Taleb-Bendiab,
“Supporting elastic cloud computation with intention
description language,” in PGNet2010: The 11th Annual
Conference on the Convergence of Telecommunications,
Networking & Broadcasting, 2010.

[7] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable
Cloud Services Using TOSCA,” Internet Comput. IEEE,
vol. 16, no. 3, pp. 80–85, May 2012.

[8] L. Sun, H. Dong, and J. Ashraf, “Survey of service
description languages and their issues in cloud computing,”
in Semantics, Knowledge and Grids (SKG), 2012 Eighth
International Conference on, 2012, pp. 128–135.

[9] J. Cardoso, A. Barros, N. May, and U. Kylau, “Towards a
unified service description language for the internet of
services: Requirements and first developments,” in Services
Computing (SCC), 2010 IEEE International Conference on,
2010, pp. 602–609.

[10] A. Charfi, B. Schmeling, F. Novelli, H. Witteborg, and U.
Kylau, “An overview of the unified service description
language,” in Web Services (ECOWS), 2010 IEEE 8th
European Conference on, 2010, pp. 173–180.

[11] A. Brogi, J. Soldani, and P. Wang, “TOSCA in a Nutshell:
Promises and perspectives,” in Service-Oriented and Cloud
Computing, Springer, 2014, pp. 171–186.

[12] G. Gonçalves, P. Endo, M. Santos, D. Sadok, J. Kelner, B.
Melander, and J.-E. Mångs, “Cloudml: An integrated
language for resource, service and request description for d-
clouds,” in Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference
on, 2011, pp. 399–406.

[13] G. Schaffrath, S. Schmid, I. Vaishnavi, A. Khan, and A.
Feldmann, “A resource description language with
vagueness support for multi-provider cloud networks,” in
Computer Communications and Networks (ICCCN), 2012
21st International Conference on, 2012, pp. 1–7.

[14] G. C. Silva, L. M. Rose, and R. Calinescu, “Cloud DSL: A
Language for Supporting Cloud Portability by Describing
Cloud Entities,” CloudMDE 2014, p. 36, 2014.

[15] J. Cardoso and C. Pedrinaci, “Evolution and overview of
Linked USDL,” in Exploring Services Science, Springer,
2015, pp. 50–64.

[16] C. Pedrinaci, J. Cardoso, and T. Leidig, “Linked USDL: a
vocabulary for web-scale service trading,” in The Semantic
Web: Trends and Challenges, Springer, 2014, pp. 68–82.

[17] J. George, F. Belqasmi, R. H. Glitho, and N. Kara, “A
Substrate Description Framework and Semantic Repository
for Publication and Discovery in Cloud Based

Conferencing.,” in CSWS, 2013, pp. 41–44.

[18] A. Lenk, C. Dänschel, M. Klems, D. Bermbach, and T.
Kurze, “Requirements for an IaaS deployment language in
federated Clouds,” in Service-Oriented Computing and
Applications (SOCA), 2011 IEEE International Conference
on, 2011, pp. 1–4.

[19] P. Hoberg, J. Wollersheim, and H. Krcmar, “Service
Descriptions for Cloud Services-The Customer’s
Perspective,” in Proceedings of ConLife Academic
Conference, 2012.

