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Abstract

The composition of Cloud Services to satisfy customer requirements is a complex task, owing to the huge number of services that

are currently available. The advent of Big Data and Internet of Things (IoT), which rely on Cloud resources for better performances

and scalability, is pushing researchers to find new solutions to the Cloud Services composition problem. In this paper a semantic-

based representation of Application Patterns and Cloud Services is presented, with an example of its use in a typical distributed

application, which shows how the proposed approach can be successfully employed for the discovery and composition of Cloud

Services..
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

Cloud Computing is a fast evolving and spreading resource sharing paradigm, which is being adopted by a growing

number of companies to provide competitive services and functionalities, and at the same time to reduce upfront

investments and management costs. The rapid adoption of Cloud solutions has pushed Cloud providers to continuously

enhance and update their offers, releasing into the market a huge set of services. While this variety positively affects

the market, in terms of services’ costs and quality, it can however represent a hindrance for customers who have to

select the right services suiting their exact needs and then compose them to obtain the desired functionality. In many

cases, owing to the lack of a shared standard for services’ interfaces description and incompatibilities between the

adopted data formats, it can be difficult to effectively compose Cloud Services and exploit their full functionality. To

provide a guide to service composition and application deployment on Cloud platforms, Patterns have been described

by private companies, such as Amazon1 and Microsoft2, or have been defined as a result of research efforts3 4. In this

paper we show how, exploiting a Cloud Pattern or a composition thereof, it is possible to guide a customer in building
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her own Cloud application, regardless of her actual knowledge of the Cloud domain. In particular, we will show that,

through a semantic representation of Application and Cloud Patterns, it is possible to support the development and

deployment of Big Data, IoT and generally distributed applications.

The remainder of this paper is organized as follows: section 2 reports some existing approaches to Pattern description

and a comparison with the Topology and Orchestration Specification for Cloud Applications (TOSCA) approach;

section 3 introduces the Case Study used to describe our semantic approach; section 4 describes the semantic approach

and how it is applied to the case study; section 5 draws conclusions and provides directions for future works.

2. State of the Art

A Design Pattern is defined as a general and reusable solution to a common and recurrent problem, within a given

context in software design. The objective of a Design Pattern is to support developers in building their applications,

suggesting fully functional solutions that are less error and bug prone than completely new implementations. Design

Patterns provide both a static view of the architecture of the software, including its components (or participants) and

their relationships, and a dynamic view of the interactions among such participants. The most famous Design Pattern

catalogue is represented by5, in which a set of 23 patterns has been introduced and deeply discussed. As of today,

a number of Design Patterns catalogues exists for several purposes, like ontology creation6 7 and definition of SOA-

oriented applications8 9. Cloud Patterns can be considered as a particular Pattern category, focusing on the description

of problems and solutions related to Cloud Computing. Cloud Patterns describe common aspects of cloud computing

environments and of application design for cloud computing. They can be useful in understanding the changes to

apply to an application, in terms of source code and architecture, in order to successfully migrate it from an in-house

environment to the Cloud10. The use of Cloud Patterns for the design, implementation and management of Cloud

Applications has been widely discussed11 12 13.

Several online catalogues of Cloud Patterns have been published, and they are continuously updated. Vendor specific

patterns, such as those published by Microsoft for their platform Azure14 and by Amazon for Amazon Web Services
(AWS)1, are tailored for a target environment and provide optimized solutions for it. They provide many useful details

regarding the actual Cloud components and services to use in order to deploy an application on the target platform,

thus actively supporting developers in their work. Patterns have also been defined as a result of independent research

efforts, such as those reported in the online catalogues accessible at3 and4. Such patterns provide generic solutions,

which are not bound to a specific platform and are therefore more flexible and seamlessly applicable to different

targets. In the remainder we will refer to such patterns as Agnostic Patterns, because they are not related to a specific

Cloud Platform and can virtually be applied to any target environment.

2.1. Orchestration and Composition of Cloud Services

In the past few years the orchestration and composition of cloud services has been the topic of several initiatives

and research efforts. The mOSAic Fp7 project15 explicitly addressed the issues related to Cloud Services discovery

and composition, by exploiting ontologies and semantic-web technologies to describe and annotate Cloud resources

and then compose them through adapters and connectors. A similar approach to services composition is proposed

in16, where Cloud services’ interfaces are described in terms of their inputs and outputs and a similarity function is

applied to identify corresponding parameters and determine possible concatenations of services. These approaches

do not refer to a Pattern collection, and require users to develop and compose their applications manually. By using a

Pattern based approach, as in ours, users can leverage pre-defined solutions which already offer info on the services’

composition.

Non-academical research efforts have produced user oriented solutions, with immediate applications to real-world

situations. For an instance, orchestration and composition of Cloud Services is also the focus of the OpensStack Heat
project17, which has developed an interesting template-based formalism going under the name of HOT. While being

compliant with the AWS CloudFormation18 template format, HOT is still limited as regards the supported services

and general expressivity. TOSCA19, is an OASIS standard language used to describe both a topology of Cloud based

web services, consisting in their components, relationships, and the processes that manage them, and the orchestration

of such services, that is their complex behaviour in relation to other described services. The combination of topology
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and orchestration, in what the standard defines as Service Template, accurately describes all the essential elements

needed by each service to provide its functionalities, in order to ease deployments in different environments and to

enable interoperability. However, the support to existing Cloud Patterns is not natively provided, and the lack of

semantic description does not allow the automatic service discovery, which is instead one of the main features we

intend to provide with our representation.

3. Case Study

Clustering consists in an unsupervised classification that categorizes a set of objects into groups, which then con-

tain similar entities. The use of non-hierarchical clustering techniques is well documented, in particular to build a

simplified data representation of large data-sets. In this Section, we have chosen to analyse, through the proposed se-

mantic model, the Batch K-Means algorithm and, in particular, its distributed version. The Batch K-Means algorithm

belongs to the class of alternating optimization algorithms, as it alternates two optimization phases iteratively. The

first phase, called the assignment phase, takes as input a dataset and a given set of prototype clusters, and assigns

each element in the dataset to the nearest one. The algorithm is very generic, as it does not imply the use of a specific

data structure for the representation of elements (or points) in the dataset. The developer can choose to represent the

data in the way she prefers, as long as she chooses the distance criteria accordingly. The second phase, referred to

as the recalculation phase, is run after the assignment phase has been completed. During this second phase, each

prototype is recomputed as the average of all the points in the data set that has been assigned to it. Once the second

phase has been completed, phase 1 is run again, and phase 1 and 2 are run iteratively until a stopping criterion is

met. The distributed version known as Distributed Batch K-Means (DBK) follows exactly the same procedure, but

it divides the initial data-set in blocks (again, there is no restriction on the data structure to use) and distributes it to

several processing units, while information on the initial clusters are stored in a shared memory. The processing units

execute the assignment phase and update the clusters. The recalculation phase is then executed by either a subset of

the processing units employed for the assignment phase, or by dedicated processors. The results of the recalculation

phase are stored in the same shared memory. While better algorithms exist for clustering, the Batch K-Means has very

interesting and useful characteristics:

• It is a powerful pre-processing technique, as it allows for the classification of very large sets of data into smaller

groups (prototypes).

• It has a low processing cost, proportional to the data size and the number of clusters.

• The Distributed Batch K-Means has the same results of the sequential version and is an embarrassingly parallel

algorithm.

• Since no prescriptions are made on the employed data structures, the developer can select the one best suiting

her needs. Obviously the processing code should be implemented accordingly.

Figure 1(a) reports the pseudocode of the algorithm, as it is described in20.

In the following sections the semantic approach for the description of Patterns will be presented and applied to the

DBK algorithm.

4. The semantic-based approach

In this Section we present the integrated representation of Cloud Services, appliances and Cloud Patterns we have

devised. We use a number of terms (like agnostic Cloud Pattern, vendor-dependent Cloud Pattern, agnostic Cloud

Service and vendor-dependent Cloud Service) that we are defining in the following. An agnostic Cloud Pattern is an

architectural cloud solution to certain problems that does not rely on specific vendor services or platform characteris-

tics. A Vendor-Dependent Cloud Pattern is a vendor defined solution to a cloud problem provided by the provider

itself, that relies on specific services offered by the specific cloud platform. A vendor-dependent Cloud Service
is basically a service offered by a cloud vendor that can be effectively used to utilize a cloud platform functionality.

A Vendor-Agnostic Cloud Service is an abstraction of a vendor-dependent Cloud Service and represents a generic
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Fig. 1: (a) Pseudocode of the DBK algorithm; (b) The Conceptual Layers

functionality offered by a Cloud Service. The overall model is a graph based representation, structured into five con-

ceptual layers. The graph represents concepts (graph nodes) and relationship (graph edges) at different levels. In each

level relationships among concepts of the same level are represented in addition to inter-level relationships. The five

conceptual levels are the following (Figure 1(b)):

• The Parameters Level represents the description of the data type exchanged among services as input and output

of the operations.

• The Operations Level represents the syntactic description of the operation and functionalities exposed by the

Cloud Services (described through WSDL); it provides a machine-readable description of how the service can

be called, what parameters it expects, and what data structures it returns.

• The Services Level represents the semantic annotation of the vendor-dependent Cloud Services (exposed

through OWL-S) and the supporting ontologies needed to identify the cloud provider supported operation,

input and output parameters. This level presents details of the cloud provider platform architecture, the func-

tionality exposed and the underlining details. This level contains also the semantic description of the agnostic

Cloud Services exposed through an ontology that expose in vendor neutral terms cloud resources, operations

and exchanged parameters.

• The Cloud Patterns Level represents the semantic description of agnostic and vendor-dependent Cloud Patterns

realized through an OWL representation. It contains patterns at infrastructural level and at platform level.

• The Application Patterns Level represents the description of patterns describing the application to be ported.

An Application Pattern is a composition of application components embodying application domain function-

alities, services at PaaS and SaaS level, platform Cloud Patterns and resource configuration patterns.

Each level n of our conceptual model is realized by elements of one level below (n-1) through the composition of

elements of two levels below (n-2). Direct edges among nodes belonging to levels distant more than two levels do not

exist. In particular: the concept of application pattern is realized through the composition of elements of the Cloud

Patterns level that are composed together using concepts of the Cloud Service level; the concept of Cloud Pattern is a

composition of Cloud Services that are orchestrated using concepts of the operation levels; a Cloud Service is a set of

operations exposed that are built using concepts of the parameters level.
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Fig. 2: (a) Semantic description of an Application Pattern; (b) Semantic description of a Cloud Pattern

4.1. Application Pattern Representation

The root element of this representation is the Application Pattern. The main classes and relations describing this

concept are reported in (Figure 2a): the class Cloud Component template and the relationship participant that

represent the application components, that means the conceptual building blocks of the application’s workflow; the

class Pattern and the relationship includes that represent the platform Cloud Pattern and the resource configuration

pattern that are included in the overall architecture of the application; each pattern is composed of a number of

Roles that can be embodied by the Cloud Component Templates. Each Role and Cloud Component template can

be equivalent to a Cloud Service and a Cloud Pattern can be built through the composition of the Cloud Service

components.

An Application Pattern has been created to represent the DBK, with the following participants:

• Assigner is the processing component that takes care of assigning data to the first prototype groups. Several

instances of such a component can exist.

• Re-calculator is the processing component that runs the optimization phase, by recalculating the prototypes.

Several instances of such a component can run simultaneously.

• Shared Memory represents the shared memory used by the different processing units to communicate infor-

mation on the clusters and on data.

All such participants are represented as individuals of the ApplicationComponent Owl Class defined in our se-

mantic model, and are connected to a participant of the agnostic Map-Reduce pattern.

4.2. Cloud Pattern Representation

A Cloud Pattern is a subgraph including concepts of levels 3, 2 and 1 (Figure 2b). The concept of Pattern is

realized through a number of Participants that are represented in the concept of Role. A particular subconcept of the

concept Role is the class Cloud Component Template that embodies the role of a participant represented by a Cloud

Service. Each Cloud Service holds its own methods and by means of the composition of them the realization of a Cloud

Pattern takes place. In particular, as the DBK algorithm can be easily parallelized via an Iterated Map-Reduce, the

selected Cloud Pattern is represented by Map-Reduce. Please refer to Figure 3 for a graphical representation of such

relations. Indeed, the DBK Application Pattern includes the agnostic Map-Reduce Pattern, and the correspondences

among their participants are highlighted by the equivalent property. In the same way, equivalences between the Map-

Reduce components and agnostic Cloud Services, as shown in Figure 3, are modelled. Please note that the user who

wants to add a new Application Pattern, such as the DBK algorithmic Pattern used in this example, to the knowledge

base only has to provide connection between the Application Pattern itself and one or more agnostic Cloud Patterns.

If no connection is possible (that is, no known pattern can be used to cloudify the application), or if one or more
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component of the original application cannot be mapped to some pattern participants, then a direct link to an agnostic

Cloud Service is needed.

Fig. 3: Semantic representation of the Distributed Batch K-Means algorithm

4.3. The Entity level

To support the semantic description of services and patterns the representation is flanked by an Entity Level
containing also a classification ontology that represents the upper level to classify Cloud Services based on the service

category they belong to, concepts representing the operation and parameters exchanged. In particular this Entity Level

contains the Cloud Provider Ontology and the Cloud Service Ontology. The Cloud Provider Ontology describes

the concepts related to the cloud provider offering with classes and relationships, that means all the resources offered

by the cloud provider and all the operations available on them, including the parameters used as input and output of

the operations. This cloud vendor-dependent description is annotated semantically with cloud provider-independent

concepts, thus making the representation agnostic. The Cloud Service Ontology (Figure 4) defines a classification of

services offered by different Cloud providers and identifies the most common service categories currently provided.

The structure of the Cloud Services ontology consists of different OWL classes, among which the following ones

are particularly interesting:

• The Service Category class, used to specify the typology of the described services and better categorize them.

• The Cloud Service class, whose individuals represent specific Cloud Services.

• The Virtual Appliance class, representing ready-to-use software solutions, offered by a specific company, that

can be also classified alongside the described Cloud Services in this same ontology.

The main object property present in the Cloud Services ontology is the aKindOf property, that connects Cloud

Service individuals with Service Category instances. Other object properties allow to specify, for each Cloud Service

individual, the API language supported, the provider offering that specific service and the reference service model, in

terms of Infrastructure, Platform or Software as a Service layers. Particularly relevant are data properties that expose

Virtual Appliances architectural aspects, specifying the minimum resources necessary to instantiate a particular ap-

pliance. These properties can be utilized to match a Virtual Appliance and its minimum requirements with the default

resource configurations offered by a single or multiple Cloud providers. Further information about the Cloud Service

ontology can be found in21, where all of its classes, individuals and properties have been discussed in detail. This

cross layer is used to enrich the five levels with semantic information. In particular it is used to annotate semantically

the Cloud Services. There are two ways to represent functionalities of a Cloud Service: the first way provides an

extensive ontology of functions where each class in the ontology corresponds to a class of homogeneous function-

alities; the second way is to provide a generic description of a function in terms of the state transformation that it

produces (outputs from inputs). OWL-S supports both as the Service Profile module provides a high level description

of services as a transformation to one state to another but also enables to describe a specific class of capabilities for the

service. More precisely, a Service Profile provides two types of information: the first one is a functional description of
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Fig. 4: The Cloud Services Ontology

the service in terms of the transformation that the service produces, the second one is a set of non-functional properties

that specify constraints on the service provided. For our representation we exploit both functional and non-functional

properties. The functional properties link the services elements to concepts of the Cloud Provider Ontology while the

non-functional properties link the service to concepts described in our Cloud Service Ontology or other ontologies.

Fig. 5: Entities to Enrich the Semantic Description
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SELECT ? agnos t i cComponen t
WHERE { p a t t e r n O n t o l o g y :DBK p a t t e r n O n t o l o g y : p a r t i c i p a n t ?DBKComponent .

?DBKComponent p a t t e r n O n t o l o g y : e q u i v a l e n t ? agnos t i cComponen t }

Fig. 6: SPARQL query to retrieve DBK equivalent agnostic cloud components

SELECT ? azureComponent
WHERE { p a t t e r n O n t o l o g y : R e C a l c u l a t o r p a t t e r n O n t o l o g y : e q u i v a l e n t ? agnos t i cComponen t .

? agnos t i cComponen t p a t t e r n O n t o l o g y : implementedBy ? azureComponent .
? azureComponent p a t t e r n O n t o l o g y : hasVendor p a t t e r n O n t o l o g y : Azure
}

Fig. 7: SPARQL query to retrieve DBK equivalent cloud component having Azure as a target

Table 1: List of actual services that can be used to deploy the ReCalculator component of the DBK pattern

Agnostic Service Vendor Specific Service Vendor Name

Virtual Machine

EC2 Amazon

Nova OpenStack

VirtualMachines Azure

Oracle Compute Oracle

Using such ontologies it is possible to annotate the participants of the Cloud Patterns in order to retrieve the services

which can be used to implement them. As an instance, in figure 3 the Map agnostic participant of the Map-Reduce

Pattern is connected to the Computation category, which is specialized by agnostic Cloud Services, among which we

find VM (Virtual Machine).

In order to retrieve the agnostic components corresponding to the DBK algorithm, it is possible to query the

semantic representation via a simple SPARQL query, as reported in Figure 6.

Whilst the retrieval of agnostic components can be useful to have a generic representation of the algorithm that

can then be adapted to the actual target platform, it is necessary to provide more links among the agnostic and vendor

specific services. Since the knowledge base already contains information on the equivalences occurring between the

agnostic services and the vendor specific ones, the only task left to the user is to select the desired target platform.

When a user has selected the target platform, it is possible to retrieve vendor specific components to implement the

original algorithm. As an instance, the SPARQL query reported in Figure 7 determines the Azure components needed

to implement the Re-Calculator participant.

Whilst the query reported in 7 is specific for Azure services, there are a number of other available vendors that

offer similar/compatible components. Table 1 reports all the services compatible with the ReCalculator component,

limited to the Virtual Machine agnostic service, with the providing vendor.

Since equivalences among the operations exposed by the agnostic components and the vendor specific one are

encoded in the knowledge base, together with information on the parameters they exchange, it is possible to suggest to

the user how the selected services can interoperate. In particular, via the equivalences among the parameters needed to

call the operations exposed by the Cloud Services, the system can suggest the user how the services can be composed.

Some providers actually offer integration services to connect their own services with components running on external

platforms or private systems (Hybrid Cloud). As an instance, the IBM Bluemix platform exposes the Secure Gateway
service22. When such services are available and their use is needed to guarantee the compliance of the proposed

composition to some non-functional requirement expressed by the user, the knowledge base provides directions on

how to configure them. Again, simple SPARQL queries can be used to retrieve the necessary information. The

considerations made so far imply that the developer decides to implement the Application Pattern by composing

services from different providers or published by a vendor for that a specific Cloud Pattern has not been defined.

Conversely, if a vendor specific Cloud Pattern corresponding to the original Application Pattern exists, and it employs

the target platform selected by the user, then the service composition is already encoded in the knowledge base. In

the example described in Figure 3, an Azure implementation of the Map-Reduce pattern exists, so the user could use

it to deploy the application on the Microsoft platform. Since equivalences among the vendor specific components

described in the pattern and agnostic concepts are always encoded in the knowledge base (such equivalences are not
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Fig. 8: (a) OWL-S description of the DKMS Pattern; (b) Number of services and patterns supported by Cloud Composer

reported in figure to avoid confusion due to links overlapping), the user can decide to substitute one or more of the

original services by selecting equivalent ones, by using a variation of the query in Listing 7.

4.4. Pattern Workflow

For the behavioural representation of patterns we use an OWL-S document describing the overall workflow of the

pattern, thus defining how the different participants communicate and relate to each other dynamically. Every OWL-S

document defines a Composite Process, that refers to a particular individual in the ontology if we are describing

its internal behaviour, or to the behaviour of the whole pattern. The Composite Process formalizes the element’s

behaviour by introducing a series of simple atomic services and a composition of these services using language native

flow control structures. Every service can declare a connection to the reference ontology, using tags contained in its

profile description. In particular, we can exploit the property serviceCategory and its attributes. Participants’ methods

are necessary to define the pattern behaviour, since they describe how its different elements communicate and interact

to change the system state. Every method represents a possible interaction between participants and their composition

follows a specific order, defined by the particular behaviour of the owner, and is enforced by conditions imposed on

their execution. A specific service is defined for every method of every participant in the pattern. All atomic services

correspond to a profile and an atomic process description. The profile is then used to connect the specific service to

the individual whose method is being described. Preconditions can be stated for every single atomic process, thus

indicating the assumptions under that the corresponding method can be called and executed in the pattern.

Figure 8a shows the behaviour of the DBK pattern described through OWL-S constructs. The whole Pattern is

an instance of a Composite Process, while its participants are instantiated as Atomic Processes. A Sequence control

structure is used to represent the consecutive execution of the methods exposed by the Patterns’ participants, while a

Iterate component represents the iterative execution of the Assignment and Re-calculation phases.

5. Conclusions

The Cloud Computing scenario is steady evolving, with new Cloud services being launched onto the market con-

tinuously. Furthermore, each provider tends to use its own terminology in order to differentiate from others and try

to gain new pieces of the market. Due to this complex scenery, a categorization of services to support the choice

of the right solution, as well as a computable description of services and patterns that enables the comparison and

the mapping between different providers’ services, proves to be extremely appealing. The application of semantic

web technology to cloud computing can bring advantages at different levels, within and across cloud platform. The

approach we have presented consists in the creation of a machine readable and queryable Knowledge base, consisting

of a set of interrelated OWL ontologies, that describe Cloud Services and APIs/methods used to invoke them (together
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with their relative parameters), Cloud Patterns, and finally application patterns. This semantic representation of Cloud

Patterns, Cloud Services and Virtual Appliances supports the development of portable and potentially interoperable

Cloud solutions and the porting of existing applications to multiple Clouds. This formalization enables the compar-

ison of solutions provided by different vendors, despite possible differences in their semantics, as long as they refer

to a common shared representation. While the number of services currently described through our representation is

quite satisfactory, the number of patterns actually represented is still limited and needs to be improved. Also, new

definitions of agnostic patterns are needed. Table 8b reports the number of services and patterns currently represented,

organized by provider. In the near future we will provide further pattern definitions and will also support the automatic

deployment of the supported pattern, which is still not possible as of now. In order to ease the developing of appli-

cations through the use of our representation, a user-friendly GUI is being implemented and a prototype version of it

has already been described in papers submitted to other conferences. By using the prototype, the user is supported in

the design and composition of patterns and in retrieving the information needed to actually deploying them, without

the need to actually write and execute SPARQL queries manually.

The prototype will also be used to properly evaluate the approach, and to test if the information provided by the

formal description of Patterns, Services and their composition are is sufficient for their actual deployment in a real

world scenario, or if further improvement is needed.
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