2,230 research outputs found

    Semantic Segmentation of Road Profiles for Efficient Sensing in Autonomous Driving

    Get PDF
    In vision-based autonomous driving, understanding spatial layout of road and traffic is required at each moment. This involves the detection of road, vehicle, pedestrian, etc. in images. In driving video, the spatial positions of various patterns are further tracked for their motion. This spatial-to-temporal approach inherently demands a large computational resource. In this work, however, we take a temporal-to-spatial approach to cope with fast moving vehicles in autonomous navigation. We sample one-pixel line at each frame in driving video, and the temporal congregation of lines from consecutive frames forms a road profile image. The temporal connection of lines also provides layout information of road and surrounding environment. This method reduces the processing data to a fraction of video in order to catch up vehicle moving speed. The key issue now is to know different regions in the road profile; the road profile is divided in real time to road, roadside, lane mark, vehicle, etc. as well as motion events such as stopping and turning of ego-vehicle. We show in this paper that the road profile can be learned through Semantic Segmentation. We use RGB-F images of the road profile to implement Semantic Segmentation to grasp both individual regions and their spatial relations on road effectively. We have tested our method on naturalistic driving video and the results are promising

    Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review

    Get PDF
    The capabilities of autonomous mobile robotic systems have been steadily improving due to recent advancements in computer science, engineering, and related disciplines such as cognitive science. In controlled environments, robots have achieved relatively high levels of autonomy. In more unstructured environments, however, the development of fully autonomous mobile robots remains challenging due to the complexity of understanding these environments. Many autonomous mobile robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based methods may replace the complete navigation pipeline or selected stages of the classical approach. For effective deployment, autonomous robots must understand their external environments at a sophisticated level according to their intended applications. Therefore, in addition to robot perception, scene analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments. This paper provides a comprehensive review and critical analysis of these methods in the context of their applications to the problems of robot perception and scene understanding in unstructured environments and the related problems of localisation, environment mapping and path planning. State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also discussed and evaluated within this context. The paper concludes with an in-depth discussion regarding the current state of the autonomous ground robot navigation challenge in unstructured outdoor environments and the most promising future research directions to overcome these challenges

    DEEP LEARNING TO SUPPORT 3D MAPPING CAPABILITIES OF A PORTABLE VSLAM-BASED SYSTEM

    Get PDF
    The use of vision-based localization and mapping techniques, such as visual odometry and SLAM, has become increasingly prevalent in the field of Geomatics, particularly in mobile mapping systems. These methods provide real-time estimation of the 3D scene as well as sensor's position and orientation using images or LiDAR sensors mounted on a moving platform. While visual odometry primarily focuses on the camera's position, SLAM also creates a 3D reconstruction of the environment. Conventional (geometric) and learning-based approaches are used in visual SLAM, with deep learning networks being integrated to perform semantic segmentation, object detection and depth prediction. The goal of this work is to report ongoing developments to extend the GuPho stereo-vision SLAM-based system with deep learning networks for tasks such as crack detection, obstacle detection and depth estimation. Our findings show how a neural network can be coupled to SLAM sequences in order to support 3D mapping application with semantic information

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    A Simulation Environment with Reduced Reality Gap for Testing Autonomous Vehicles

    Get PDF
    In order to facilitate acceptance and ensure safety, autonomous vehicles must be tested not only in typical and relatively safe scenarios but also in dangerous and less frequent scenarios. Recent pedestrian fatalities caused by test vehicles of the front-running giants like Google and Tesla suffice the fact that Autonomous Vehicle technology is not yet mature enough and still needs rigorous exposure to a wide range of traffic, landscape, and natural conditions on which the Autonomous Vehicles can be trained on to perform as expected in real traffic conditions. Simulation Environments have been considered as an efficient, safe, flexible and cost-effective option for the training, testing, and validation of Autonomous Vehicle technology. While ad-hoc task-specific use of simulation in Autonomous Driving research is widespread, simulation platforms that bridge the gap between simulation and reality are limited. This research proposes to set up a highly realistic simulation environment (using CARLA driving simulator) to generate realistic data to be used for Autonomous Driving research. Our system is able to recreate the original traffic scenarios based on prior information about the traffic scene. Furthermore, the system will allow to make changes to the original scenarios and create various desired testing scenarios by varying the parameters of traffic actors, such as location, trajectory, speed, motion states, etc. and hence collect more data with ease

    Understanding a Dynamic World: Dynamic Motion Estimation for Autonomous Driving Using LIDAR

    Full text link
    In a society that is heavily reliant on personal transportation, autonomous vehicles present an increasingly intriguing technology. They have the potential to save lives, promote efficiency, and enable mobility. However, before this vision becomes a reality, there are a number of challenges that must be solved. One key challenge involves problems in dynamic motion estimation, as it is critical for an autonomous vehicle to have an understanding of the dynamics in its environment for it to operate safely on the road. Accordingly, this thesis presents several algorithms for dynamic motion estimation for autonomous vehicles. We focus on methods using light detection and ranging (LIDAR), a prevalent sensing modality used by autonomous vehicle platforms, due to its advantages over other sensors, such as cameras, including lighting invariance and fidelity of 3D geometric data. First, we propose a dynamic object tracking algorithm. The proposed method takes as input a stream of LIDAR data from a moving object collected by a multi-sensor platform. It generates an estimate of its trajectory over time and a point cloud model of its shape. We formulate the problem similarly to simultaneous localization and mapping (SLAM), allowing us to leverage existing techniques. Unlike prior work, we properly handle a stream of sensor measurements observed over time by deriving our algorithm using a continuous-time estimation framework. We evaluate our proposed method on a real-world dataset that we collect. Second, we present a method for scene flow estimation from a stream of LIDAR data. Inspired by optical flow and scene flow from the computer vision community, our framework can estimate dynamic motion in the scene without relying on segmentation and data association while still rivaling the results of state-of-the-art object tracking methods. We design our algorithms to exploit a graphics processing unit (GPU), enabling real-time performance. Third, we leverage deep learning tools to build a feature learning framework that allows us to train an encoding network to estimate features from a LIDAR occupancy grid. The learned feature space describes the geometric and semantic structure of any location observed by the LIDAR data. We formulate the training process so that distances in this learned feature space are meaningful in comparing the similarity of different locations. Accordingly, we demonstrate that using this feature space improves our estimate of the dynamic motion in the environment over time. In summary, this thesis presents three methods to aid in understanding a dynamic world for autonomous vehicle applications with LIDAR. These methods include a novel object tracking algorithm, a real-time scene flow estimation method, and a feature learning framework to aid in dynamic motion estimation. Furthermore, we demonstrate the performance of all our proposed methods on a collection of real-world datasets.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147587/1/aushani_1.pd

    Milestones in Autonomous Driving and Intelligent Vehicles Part II: Perception and Planning

    Full text link
    Growing interest in autonomous driving (AD) and intelligent vehicles (IVs) is fueled by their promise for enhanced safety, efficiency, and economic benefits. While previous surveys have captured progress in this field, a comprehensive and forward-looking summary is needed. Our work fills this gap through three distinct articles. The first part, a "Survey of Surveys" (SoS), outlines the history, surveys, ethics, and future directions of AD and IV technologies. The second part, "Milestones in Autonomous Driving and Intelligent Vehicles Part I: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors" delves into the development of control, computing system, communication, HD map, testing, and human behaviors in IVs. This part, the third part, reviews perception and planning in the context of IVs. Aiming to provide a comprehensive overview of the latest advancements in AD and IVs, this work caters to both newcomers and seasoned researchers. By integrating the SoS and Part I, we offer unique insights and strive to serve as a bridge between past achievements and future possibilities in this dynamic field.Comment: 17pages, 6figures. IEEE Transactions on Systems, Man, and Cybernetics: System
    • …
    corecore