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Abstract: The capabilities of autonomous mobile robotic systems have been steadily improving due
to recent advancements in computer science, engineering, and related disciplines such as cognitive
science. In controlled environments, robots have achieved relatively high levels of autonomy. In more
unstructured environments, however, the development of fully autonomous mobile robots remains
challenging due to the complexity of understanding these environments. Many autonomous mobile
robots use classical, learning-based or hybrid approaches for navigation. More recent learning-based
methods may replace the complete navigation pipeline or selected stages of the classical approach. For
effective deployment, autonomous robots must understand their external environments at a sophisti-
cated level according to their intended applications. Therefore, in addition to robot perception, scene
analysis and higher-level scene understanding (e.g., traversable/non-traversable, rough or smooth
terrain, etc.) are required for autonomous robot navigation in unstructured outdoor environments.
This paper provides a comprehensive review and critical analysis of these methods in the context
of their applications to the problems of robot perception and scene understanding in unstructured
environments and the related problems of localisation, environment mapping and path planning.
State-of-the-art sensor fusion methods and multimodal scene understanding approaches are also
discussed and evaluated within this context. The paper concludes with an in-depth discussion regard-
ing the current state of the autonomous ground robot navigation challenge in unstructured outdoor
environments and the most promising future research directions to overcome these challenges.

Keywords: unstructured environments; mobile robots; robot navigation; perception; scene understanding;
path planning

1. Introduction

The use of autonomous mobile robotic systems is rapidly expanding in many scientific
and commercial fields, and the capabilities of these robots have been growing due to con-
tinuous research and industrial efforts. The range of different research application areas in
autonomous mobile robotics is wide, including areas such as surveillance, space exploration,
defence, petrochemical, industrial automation, disaster management, construction, marine,
personal assistance, extreme environments, sports entertainment, agriculture, transporta-
tion logistics, and many other industrial and non-industrial applications [1]. Many different
types of robot platforms have been and continue to be developed for these applications, and
autonomous mobile robotics is a global and continuously evolving scientific field. Robots
that move in contact with ground surfaces are commonly referred to as mobile ground
robots, and these robots may be deployed in different working environments, including
indoor or outdoor, structured or unstructured, and in proximity to static or dynamic actors.
Each of these environments creates various challenges for robot applications. The overall
system configuration of a robot mostly depends on the relevant operating environment;
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for example, a robot designed for a static environment may not effectively adapt to dy-
namic situations that arise within the environment [2]. The development of ground robotic
systems is particularly challenging when the intended application area of autonomous
vehicles/robots falls into the unstructured off-road category, making this a very active
area of research. The difficulties mainly arise due to the weak scene understanding of
robots in these unstructured environment scenarios. Mobile ground robots have recently
shown increasingly sophisticated scene-understanding capabilities in indoor environments
(e.g., Amazon Robotics warehouse robots [3]). However, in outdoor robot navigation, the
environments are generally much less structured and more unpredictable (e.g., lighting,
shadows, occlusions and texture) than in indoor robot navigation application scenarios.
Due to these particular challenges and the more limited level of progress achieved to date
to address them, this work seeks to provide a thorough review of existing research works
in this field in order to provide directions for advancing robot navigation in unstructured
outdoor environments. The agriculture industry is one example of a relevant application
area to deploy scene understanding based on off-road autonomous robotic systems. In re-
cent times, the agriculture industry has shown a growing adoption of robotics technologies,
but in general, the involvement of novel technologies depends on economic sustainability.
Ground mobile robots and manipulators are already used in precision farming to pick fruits,
harvest vegetables, and remove undesirable vegetation, but their application areas are
generally fairly narrow due to limited scene understanding capability. In the past few years,
self-driving vehicles have gradually grown in technological capability and market size
within the automobile industry [3,4]. Despite these developments, autonomous driving is
still a very challenging problem, and in complex scenarios, the performance level remains
below that of an average human operator. This is particularly true when the intended appli-
cation area of autonomous vehicles/robots includes off-road areas. This low performance
mainly arises due to the weak external environment understanding of robots. In general,
application areas such as disaster management, environment exploration, defence, mining
and transportation are associated with complex and unstructured environments. Therefore,
these fields are also driving further research on mobile robot scene understanding as it
relates to the broader topic of autonomous robot navigation. The following challenges for
the classical autonomous robot navigation pipeline remain for current robotic systems:

• Perception;
• Localisation and mapping; and
• Scene understanding.

In robot perception, robots sense environments using different sensors and extract
actionable information via the sensor data. Perception plays an important role in the
realisation of autonomous robots. For robots to perform effectively in unstructured outdoor
environments in real time, it is essential that they possess accurate, reliable, and robust
perception capabilities. To achieve these characteristics, in general, autonomous robots
in complex scenarios are equipped with several sensor modalities (that can be exterocep-
tive or proprioceptive) [5,6]. Different modalities such as sound, pressure, temperature,
light, and contact have been used in robot environmental perception applications [7].
Sensor fusion (combining different sensor modalities) has been applied in many recent
autonomous mobile robot/self-driving applications [8]. Multimodal sensor fusion brings
the complementary properties of different sensors together to achieve better environment
perception across a range of conditions [9]. Many recent deep learning-based sensor fusion
methods have shown higher robustness in perception than conventional mono-sensor
methodologies [6,10]. Camera, Light Detection and Ranging (LiDAR), radar, ultrasonic,
Global Navigation Satellite System (GNSS), inertial measurement unit (IMU) and odometry
sensors are used in many mobile ground robot perception applications. The most frequently
used robot vision-based sensor fusion methods combine camera images with LiDAR point
clouds. Research into sensor fusion techniques remains an important component of achiev-
ing better sensing capabilities for unstructured outdoor environments.
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In the second stage of the autonomous robot navigation pipeline, the information
retrieved from perception sensors is used for robot localisation and to map their external
environments. Autonomous mobile robots require accurate and reliable environmental
mappings and localisation at a sophisticated level based on the application context. The
Simultaneous Localisation and Mapping (SLAM) approach is a commonly used technique
in autonomous mobile robot systems to represent the robot positions and the map of their
external environments when both the robot pose and environmental map are previously
unknown. Many SLAM systems use LiDAR sensors and vision-based sensors such as
Red-Green-Blue (RGB)/RGB-Depth (RGB-D) cameras that can retrieve visual or proximity
information, and the fusion of these sensors has achieved better robustness than using
either camera or LiDAR sensors alone [11]. LiDAR sensors use highly accurate Time-
of-Flight laser range finding for the detection of objects. An example of a lightweight
and low-cost semantic environment classification approach for indoor robot navigation
is introduced in [12]. Semantic classification becomes challenging with the variation of
the lighting, shadows, occlusions, texture and the number of unseen semantic classes.
Dynamic agents present another problem, [13] has proposed a LiDAR-based concept to
segment large areas with dynamic agents. It can use LiDAR range view representations and
further categorise objects in the images into semantic classes. Several research works have
incorporated the fusion of camera and LiDAR data for improving scene understanding of
outdoor environments [14].

A fundamental aim of robotic vision is to interpret the semantic information present in
a scene to provide scene understanding. Scene understanding goes beyond object detection
and requires analysis and elaboration of the data retrieved by the sensors [15]. This concept
is used in many practical applications, such as self-driving vehicles, surveillance, trans-
portation, mobile robot navigation, and activity recognition. Understanding scenes using
images or videos is a complex problem, however, and requires more steps than just record-
ing and extracting features [16]. Scene understanding can be aided by taking advantage of
multiple sensor modalities, which is usually termed multimodal scene understanding [17].
One of the requirements for autonomous robots operating in unstructured environments is
the capacity to understand the surrounding environment. Scene understanding comprises
subtasks such as depth estimation, scene categorisation, object detection, object tracking,
and event categorisation [18]. These scene-understanding sub-tasks can describe different
aspects of a scene acquired by perception sensors. In scene understanding, a representation
is given to a scene by carrying out some of the above tasks jointly to obtain a holistic under-
standing of the retrieved scene. To generate this overall representation, the information
observed from the above-mentioned scene understanding subtasks must be combined
meaningfully. Some of the early methods used to obtain scene understanding included
using a block world assumption [19] or bottom-up, top-down inference [20]. Many of these
early works depended on heuristics rather than learning-based methods and, thus, were not
suitable for generalisation to unstructured real-world scenarios [21]. The most used recent
methods try to acquire information from deep learning-based (i.e., convolutional neural
networks (CNNs), graph neural networks, vision transformers) approaches. Scene under-
standing in unstructured outdoor environments using multimodal scene understanding
concepts is a challenging task. Many modern scene understanding methods use feature-
based high-level representations of environments. In unstructured environments, however,
the detection of useful object features is challenging. Therefore, it is difficult to reliably
interpret visual information from unstructured or dynamic environments [22]. However,
to attain real-world effectiveness, robots should understand their operating environments
up to a level that is accurate enough to execute real-time and goal-oriented decisions.

One of the key capabilities required for autonomous robot operation is autonomous
path planning for robot navigation. Many ground robot navigation applications in un-
structured environments require traversal of uneven terrains. Some challenges in robot
unstructured environment navigation, including traversal of previously unseen unstruc-
tured grounds, can be addressed by adequately designing robot structure, path planning
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and control [23,24]. Path planning is generally separated into global and local planning. For
global planning, previous knowledge of the operating environment is necessary, and this
planning method is also identified as an off-line mode for robot path planning. Robot local
path planning, also known as online robot path planning, allows for real-time decisions to
be made by the robot in response to the perception of the local environment. Autonomous
robot local path planning for optimal terrain traversal in unstructured outdoor environ-
ments is an important challenge to solve for robots operating in off-road conditions. This is
due to the limitations of standard path planning algorithms, which are incapable of per-
forming the desired tasks in dynamic or unstructured environments where the system lacks
prior knowledge and/or already existing maps [25]. Artificial potential fields, simulated
annealing, fuzzy logic, artificial neural networks, and dynamic window [26] approaches
are some of the algorithms that have been used in robot local path planning [21]. An
optimal local path planning approach should enable robots to adaptably deal with their
environments, such as assisting in avoiding dynamic obstacles or identifying traversable
routes through varying terrain conditions. In unstructured environments, classical path
planning concepts such as Rapidly exploring Random Tree (RRT) variants, Batch Informed
Tree (BIT), D* algorithm variants, artificial potential field methods, A* algorithm variants
and learning-based path planning methods have been used [27]. Over the past years, deep
learning has been used to enhance the performance of sensor fusion [28], multimodal scene
understanding [29], and robot local path planning [30] techniques.

For autonomous navigation, a robot must have the ability to understand both its pose
and enough about the external environment to determine an optimal and traversable path
to safely reach a goal position without human assistance in the robot control loop. However,
fully autonomous navigation in unstructured environments has not yet been achieved
despite significant advancements in computing and engineering technology. Autonomous
vehicle navigation on urban roads has been of great interest due to its emerging commercial
applications around the world. As a result, autonomous perception technologies are
developing continuously due to the competitiveness of this industry [31]. Compared to
the level of development of methods for autonomous navigation in urban settings [32],
however, autonomous navigation in off-road scenarios has not been studied to the same
extent, meaning there are significant opportunities for new research in this area. A large
number of autonomous navigation techniques have been explored, and these can be broadly
divided into two subsections according to the approach used to execute control commands
following the processing of the input sensory data.

As shown in Figure 1, autonomous navigation methods can be categorised as the
classical modular pipeline or end-to-end learning-based approaches. The modular pipeline
architecture includes intermediate representations that humans can interpret and that can
provide information related to the failure modes of the approach. Furthermore, the system
development can be parallelised among several expert teams because of its modular nature.
Perception, localisation and mapping, path planning and robot control modules may con-
sist of classical, learning-based or hybrid methods [8,33]. Due to algorithmic and modelling
limitations, however, the modular approach may not be optimal for general autonomous
navigation applications. In addition, machine learning-based modules must be separately
trained and validated using auxiliary loss functions, which can create suboptimality across
the system as a whole. In contrast, end-to-end learning-based systems learn policies from
observations of the outcomes that result from the actions of autonomous systems [18,34]. In
these systems, Deep Reinforcement Learning (DRL) is used to refine the control algorithms
used to determine autonomous actions. However, commonly employed methods like imita-
tion learning can suffer from overfitting and cause problems with the poor generalisation of
the system behaviour when deploying in different environment scenarios [11]. In addition,
when errors occur in an end-to-end system, it can be complex to investigate because the
origin of these errors is hidden in the holistic neural network-based architectures [8,35]. It
is clear, however, that future development of autonomous robot navigation will rely on
further advancements in robot environmental perception and machine learning.
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Figure 1. Classical and end-to-end autonomous navigation approaches.

This paper provides a comprehensive review of the current state of research and
the most promising advancements relevant to the field of ground robot navigation in
unstructured environments, including perception and sensor fusion, scene understanding,
and path planning. The most promising state-of-the-art methods used in classical outdoor
robot navigation pipelines are discussed and evaluated, along with emerging learning-
based approaches; promising future research directions are then highlighted. Readers of
this paper will gain insights and knowledge regarding current state-of-the-art capabilities,
as well as trends and emerging opportunities in the autonomous robot outdoor scene
understanding and navigation research field. The remainder of this paper is structured in
the following manner. A discussion of robot vision and the types of active ranging sensors
that are used for robot environment perception is presented in Section 2. This section
also discusses deep learning-based camera and LiDAR sensor fusion methods for depth
estimation, object detection, and semantic and instance segmentation. Section 3 describes
modern mobile ground robot scene understanding techniques and scene representations
that are utilised in robot navigation. Robot path planning algorithms at the global and
local levels are discussed in Section 4. In Section 5, the details of robot vision and ranging
sensors, fusion methods, scene understanding concepts, and local navigation approaches
are summarised. Section 6 provides an overview of the research challenges related to
the topic. Additionally, it offers some potential future research directions. Finally, the
conclusion of the review can be found in Section 7.

2. Robot Environment Perception for Navigation

Robot external and internal environment sensing by extraction of raw sensor data and
their interpretation is the basic principle of robot perception. In the modular or end-to-end
robot navigation approach, sensors play a critical role in capturing the environment or
internal robot attributes for robot perception. Therefore, to achieve better perception, a
wide range of different sensor modalities have been investigated by researchers. A sensor
modality represents a sensor that inputs a particular form of energy and processes the
signal using similar methods. Modalities include raw input types for sensors like sound,
pressure, light (infrared, visible), or magnetic fields. Robot perception sensor modalities
commonly include cameras (infrared, RGB or depth), LiDAR, radar, sonar, GNSS, IMU,
and odometry sensors.

2.1. Vision and Ranging Sensors

Camera sensors are usually incorporated in vision applications by researchers to re-
trieve environmental information for the use of mobile robots. However, LiDAR sensors
have shown more reliability in low-light environmental conditions than cameras and pro-
duce highly accurate depth measurements. LiDAR sensors come with 2D or 3D mapping
capability [36], and these sensors can generate high-fidelity point clouds of outdoor envi-
ronments. However, these unstructured point clouds tend to become increasingly sparse as
the sensor range is increased.

• Vision-based Sensor Types
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Vision is crucial for a robot to navigate in unknown environments. Robots are equipped
with vision-based sensors like cameras to understand environmental information. Cameras
are generally cheaper than LiDAR sensors and are a type of passive sensor (although
some depth cameras use active sensing). The monocular configuration is highly used in
standard RGB cameras, for example, the GoPro Hero camera series. They are compact
passive sensors that consume low power, approximately 5 watts, depending on resolution
and mode settings. Monocular SLAM has been explored in the research literature due to
its simple hardware design [32,37]. However, the algorithms that are used for it are very
complex because depth measurements cannot be directly retrieved from static monocular
images. Monocular cameras also suffer from pose estimation problems [38]. The pose of
the camera is obtained by referencing previous poses. Hence, errors in pose estimation
propagate through the process, and this phenomenon is called scale drift [28,29,39].

Stereo cameras are inspired by human eyes and use two lenses and separate passive
image sensors to obtain two perspectives of the same scenes. They have been used in indoor
and outdoor SLAM applications. These camera types use the disparity of the two images
to calculate the depth information. Stereo camera vision does not suffer from scale drift.
Available popular stereo cameras are Bumblebee 2, Bumblebee XB3, Surveyor stereo vision
system, Capella, Minoru 3D Webcam, Ensenso N10, ZED 2, and PCI nDepth vision system.
Stereo camera power consumption is generally between 2 to 15 watts. The maximum range
of stereo cameras varies from 5 to 40 m at different depth resolution values. The accuracy of
these sensors varies from around a few millimetres to 5 cm at the maximum range [40]. The
cost of these sensors varies from one hundred to several thousand Australian dollars. RGB-
D camera sensors consist of monocular or stereo cameras coupled to infrared transmitters
and receivers. Kinect camera from Microsoft is a relatively inexpensive RGB-D sensor that
provides colour images and depth information of image pixels. The Kinect sensor is mainly
used for indoor robot applications due to the saturation of infrared receivers in outdoor
scenarios from sunlight [41]. The Kinect sensor has three major versions: Kinect 1, Kinect 2,
and Azure Kinect (the latest version). Kinect 1 uses structured light for depth measurement,
and the other models use Time-Of-Flight (TOF) as the depth measuring principle. The
newest Kinect model, Azure Kinect, also generates substantial noise in outdoor bright light
conditions with a practical measuring range below 1.5 m [42]. In general, RGB-D sensors
utilise three depth measurement principles: structured light, TOF, and active infrared stereo
techniques. The structured light RGB-D sensors underperform compared to TOF techniques
in measuring the range of distant objects. The structured light technique is vulnerable
to multi-device interference. The TOF methods suffer from multi-path interference and
motion artefacts. The active infrared stereo principle has drawbacks due to common stereo
matching problems such as occluded pixels and flying pixels near contour edges [43].
Active infrared stereo cameras are identified as an extension of passive stereo cameras.
They offer more reliable performance in indoor and some outdoor scenarios. However,
they require high computation capability. Table 1 shows the main depth measurement
methods that are used in RGB-D sensors.

Event cameras are asynchronous sensors that use different visual information acquisi-
tion principles than the standard frame-based image sensors. This camera type samples
light based on the changes in the scene dynamics (asynchronously measuring brightness
per pixel). These cameras currently cost several thousands of dollars. Event cameras have
advantages like very high temporal resolution, high dynamic range, low latency (in mi-
croseconds), and lower power consumption than standard cameras. However, this camera
type is not suitable for the detection of static objects. The main burden is the requirement of
new methods (algorithms and hardware, e.g., neuromorphic-based approaches or spiking
neural networks) to process event camera outputs to acquire data and information because
traditional image processing methods are not directly applicable [44].
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Table 1. Depth sensor modalities.

Techniques Typical Sensors Advantages Disadvantages

Structured
light

Kinect 1, Xtion
PROLive, RealSense

SR300 and F200

High accuracy and
precision in indoor

environments

Limited range, not suitable for
outdoor environment due to

noise from ambient light,
interference from reflections

and other light sources

TOF Kinect 2

Good for indoor
outdoor applications,
long range, robust to
illumination changes

Lower image resolution than
structured light cameras, high

power consumption, cost
varies with resolution, rain

fog can affect sensor
performance

Active
infrared stereo

RealSense R200,
RealSense D435,

D435i

Compact,
lightweight, dense

depth images

Stereo matching requires high
processing power, struggle at

high occlusions and
featureless environments,

relatively low range especially
outdoors

Omnidirectional cameras are utilised in robotic applications where more information
is needed about surrounding environments. These cameras provide a wider-angle view
than conventional cameras, which typically have a limited field of view. Due to the lens
configuration of omnidirectional cameras, the obtained images have distortions. Therefore,
these cameras require different mathematical models, like the unified projection model, to
correct image distortions. A summary of these different camera types and their advantages
and disadvantages is shown in Table 2.

Table 2. Camera configurations.

Configurations Advantages Disadvantages

Monocular Compactness, low hardware
requirements No direct depth measurements

Stereo Depth measurements, low occlusions
Fails in featureless environments, CPU
intensive, accuracy/range depends on

camera quality

RGB-D Colour and depth information per
pixel

Limited range, reflection problems on
transparent, shiny, or very matte and

absorbing objects

Event
High temporal resolution, suitable for

changing light intensities, low
latency [45]

No direct depth information, costly,
not suitable for static scenes, requires

non-traditional algorithms

Omni-
directional

Wide angle view (alternative to
rotating cameras)

Lower resolution, needs special
methods to compensate for image

distortions

• Active Ranging Sensors

Active sensors emit energy to the environment and measure the return signal from
the environment. There are several types of active-ranging sensors, such as reflectivity,
ultrasonic, laser rangefinder (e.g., LiDAR), optical triangulation (1D), and structured light
(2D). The commonly used LiDAR sensor is an active-ranging sensor that shows improved
performance compared to ultrasonic TOF sensors for perception in autonomous navigation
systems [46]. LiDAR imaging is one of the most studied topics in the optoelectronics field.
The TOF measurement principle is used by LiDAR sensors for obtaining depth measure-
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ments in different environments. Rotating LiDAR imagers were the first type to successfully
achieve acceptable performance using a rotating-mirror mechanical configuration with mul-
tiple stacked laser detectors [47]. New trends in LiDAR technology are in the development
of low-cost, compact, solid-state commercial LiDAR sensors [48,49]. The three most widely
used LiDAR techniques utilise pulsed, amplitude-modulated, and frequency-modulated
laser beams. The most common commercially available method is to use a pulsed laser
beam, which directly measures the time taken by the pulsed signal to return to the sensor.
In such sensors, time measurements require resolutions in picoseconds (high-speed photon
detectors). Therefore, the cost of pulsed LiDAR sensors is comparably higher than the other
two methods for equivalent range and resolution [50]. The range of a pulsed LiDAR is
limited by the signal-to-noise ratio (SNR) of the sensor. Pulsed LiDAR sensors are suitable
in indoor and outdoor environments due to their instantaneous higher peak pulse contrast
to ambient irradiance noise. However, Amplitude Modulated Continuous Wave (AMCW)
LiDAR sensors with the same average signal power have lower continuous wave peaks
and, hence, are vulnerable to solar irradiance. AMCW LiDAR sensors are popular in indoor
robot applications due to low SNR. In general, there is no significant depth resolution
difference between pulsed LiDAR and AMCW LiDAR, but pulsed LiDAR may outper-
form AMCW LiDAR accuracy at the same optical power levels because of higher SNR.
Increasing the modulation frequency of AMCW LiDAR sensors improves depth resolution
but reduces ambiguity distance. Thus, pulsed sensors have higher ranges compared to
AMCW sensors. AMCW sensors also have slow frame rates relative to pulsed sensors and
usually underperform in dynamic environments. Frequency Modulated Continuous Wave
(FMCW) sensors have higher depth resolution in comparison to pulsed and AMCW LiDAR
sensors. These sensors can measure the depth and velocity of targets simultaneously, a
highly advantageous feature for the autonomous vehicle industry. These sensors can also
avoid interference from other LiDAR sensors because of the frequency modulation. FMCW
sensors, however, require accurate frequency sweeps to generate emitter signals, which
is a challenging task. FMCW sensor technology has been in continuous development but
has not yet established itself at the commercial level. A summary of these three LiDAR
technologies is provided in Table 3.

Table 3. LiDAR sensor types.

Configurations Advantages Disadvantages

Pulsed High frame rate Low depth resolution, higher
inference from other LiDAR sensors

AMCW Not limited by low SNRs; however,
not effective at very low SNRs

Low accuracy than FMCW, lower
depth resolution than FMCW

FMCW
Velocity and range detection in a
single shot, higher accuracy than
AMCW, higher depth resolution

Currently at the research and
development stage

The concept of robotic perception pertains to various robotics applications that utilise
sensory information and modern deep learning methods. These applications include
identifying objects, creating representations of the environment, comprehending scenes,
detecting humans/pedestrians, recognising activities, categorising locations based on
meaning, scene reconstruction, and others. Towards the goal of fully autonomous robot
navigation, robust and accurate environmental perception is a necessity. Passive RGB
cameras are relatively low cost and can capture rich environment details. However, their
perception abilities are vulnerable to environmental illumination changes and occlusions.
Therefore, sensor fusion methods are important to gain robust perception.
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2.2. LiDAR and Camera Data Fusion

Achieving a reliable real-time understanding of external 3D environments is very im-
portant for safe robot navigation. Visual perception using cameras is commonly employed
in many mobile robotic systems. Camera images can be efficiently and often effectively
processed by CNN-based deep learning architectures. However, relying on one sensor
can lead to robustness challenges, particularly in applications like self-driving vehicles,
autonomous field robots, etc. Therefore, different sensor modalities are often combined to
achieve better reliability and robustness for autonomous systems. The fusion of LiDAR
and camera data is one of the most investigated sensor fusion areas in the multimodal per-
ception literature [51]. Camera and LiDAR fusion has been applied in various engineering
fields and has shown better robustness than camera-only robot navigation approaches [52].
This fusion strategy is more effective and popular than other sensor fusion approaches such
as radar-camera, LiDAR-radar, and LiDAR-thermal camera. Still, the technical challenges
and cost of sensors and processing power requirements have constrained the application
of these methods in more general human activities. Recent deep-learning algorithms
have significantly improved the performance of camera-LiDAR fusion methods [53], with
monocular and stereo cameras mainly used with LiDAR sensors to fuse images and point
cloud data [54].

Deep learning-based LiDAR and camera sensor fusion methods have been applied in
depth completion, object detection, and semantic and instance segmentation. Image and
point cloud scene representations include volumetric, 2D multi-view projection, graph-
based and point-based. In general, most of the early methods fuse LiDAR and camera image
semantics using 2D CNNs. Many 2D-based networks project LiDAR points onto respective
image planes to process feature maps through 2D convolutions [55–58]. Several works
have used point cloud processing techniques such as PointNet [59] to extract features or 3D
convolutions [60] to detect objects in volumetric representations [61]. Some other LiDAR
and image fusion methods use 2D LiDAR representations for feature fusion and then
cluster and segment 3D LiDAR points to generate 3D region proposals [62]. Voxel-based
representations and multi-view camera-LiDAR fusion approaches are utilised to generate
3D proposals in object detection. State-of-the-art camera-LiDAR semantic segmentation
methods employ feature fusion methods to obtain 2D and 3D voxel-based segmentation
results. Multi-view approaches map RGB camera images onto the LiDAR Bird’s-Eye-View
(BEV) plane to align respective features from the RGB image plane to the BEV plane [63–66],
and several other methods propose to combine LiDAR BEV features with RGB image
features directly [51,54]. These direct mapping methods use trained CNNs to align image
features with LiDAR BEV features from different viewpoints.

Computer vision has been a rapidly growing field in the past decade, and the devel-
opment of machine learning methods has only accelerated this. Recently, deep learning
strategies have influenced the rapid advancement of various computer vision algorithms.
Computer vision includes subtopics like object detection, depth estimation, semantic seg-
mentation, instance segmentation, scene reconstruction, motion estimation, object tracking,
scene understanding and end-to-end learning [41]. Computer vision methods have been
applied to a great extent in emerging autonomous navigation applications. However, these
vision techniques may be less effective in previously unseen or complex environments
and highly rely on the trained domain. Therefore, continuous improvements are being
made towards the development of fully autonomous systems. Several state-of-the-art
benchmarking datasets have been utilised to compare the performance of different au-
tonomous driving vision methods. KITTI [67], Waymo [68], A2D2 [69], nuScenes [70], and
Cityscapes [71] are some examples of these state-of-the-art autonomous driving datasets.

• Dense Depth Prediction

Dense depth completion is a technique that estimates dense depth images from sparse
depth measurements. Achieving depth perception is of significant importance in many
different engineering industries and research applications such as autonomous robotics, self-
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driving vehicles, augmented reality, and 3D map construction. LiDAR sensors, monocular
cameras, stereo cameras, and RGB-D cameras have been the most utilised in dense depth
estimation applications, but these sensors have specific limitations in the estimation process.
LiDAR sensors with high accuracies are costly to use in large-scale applications. Three
main challenges have been identified in LiDAR depth completion [72]. The first relates to
the fact that, in general, even expensive LiDAR sensors produce sparse measurements for
distant objects. In addition, LiDAR points are irregularly spaced compared to monocular
RGB images. Therefore, it is non-trivial to increase the depth prediction accuracy using
the corresponding colour image. Secondly, there are difficulties in combining multiple
sensor modalities. The third challenge is that depth estimation using deep learning-based
approaches has limitations with regard to the availability of pixel-level ground truth
depth labels for training networks. Another possible approach to depth estimation is by
using stereo cameras. Stereo cameras, however, require accurate calibration, demand high
computational requirements, and fail in featureless or uniformly patterned environments.
RGB-D cameras are capable of depth sensing but have a limited measuring range and poor
performance in outdoor environments. A technique called depth inpainting can be used as
a depth completion method for structured light sensors like the Microsoft Kinect 1, and
these sensors produce relatively dense depth measurements but are generally only usable
in indoor environments. Dense depth estimation techniques generally up-sample sparse
and irregular LiDAR depth measurements to dense and regular depth predictions. Depth
completion methods, however, still have a variety of problems that need to be overcome.
These challenges are primarily sensor-dependent, and solutions should overcome respective
difficulties at the algorithm development stage.

Many state-of-the-art dense depth prediction networks combine relatively dense depth
measurements or sparse depth maps with RGB images to assist the prediction process. In
general, retrieving dense depth detail from relatively dense depth measurements is easier
than from sparse depth maps. In relatively dense depth images, a higher percentage of
pixels (typically over 80%) have observed depth values. Therefore, in similar scenarios,
predicting dense depth is relatively less complex. However, in autonomous navigation
applications, 3D LiDAR sensors account for only approximately 4% of pixels when depth
measurements are mapped onto the camera image space, which creates challenges in
generating reliable dense depth images [72].

• Dense Depth from Monocular Camera and LiDAR Fusion

Depth estimation based solely on monocular images is not reliable or robust. Therefore,
to address these monocular camera limitations, the LiDAR-monocular camera fusion-based
depth estimation process has been proposed by researchers. Using monocular RGB images
and sparse LiDAR depth maps, a residual network learning-based autoencoder decoder
network was introduced by [73] to estimate dense maps. However, this method needs a
ground truth depth image when retrieving sparse depth images during the network training
process. In practice, obtaining such ground truth images is not simple or easily scalable [72].
To mitigate the requirement of a ground truth depth image, ref. [72] presented a self-
supervised model-based network that only requires a monocular RGB image sequence and
LiDAR sparse depth images in the network training step. This network consists of a deep
regression model to identify a one-to-one transformation from a sparse LiDAR depth map
to a dense map. This method achieved state-of-the-art performance on the KITTI dataset
and considers the pixel-level depth estimation as a deep regression problem in machine
learning. LiDAR sparse depth maps use per-pixel depth, and pixels without measured
depth are set to zero. The proposed network follows an encoder-decoder architecture.
The encoder has a sequence of convolutions, and the decoder has a set of transposed
convolutions to up sample feature spatial resolutions. Convolved sparse depth data and
colour images are concatenated into a single tensor and input to residual blocks of ResNet-
34 [74]. The self-supervised training framework requires only colour/intensity images from
monocular cameras and sparse depth images from LiDAR sensors. In the network training
step, a separate RGB supervision signal is used (a nearby frame). LiDAR sparse depth can
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be used as a supervision signal. However, this framework requires a static environment to
be able to warp the second RGB frame to the first one.

With this implementation, the root-mean-square of the depth prediction error reduces
as a power function with the increment of the resolution of the LiDAR sensor (i.e., the num-
ber of scan lines). One of the limitations of this approach is that the observed environment
needs to be stationary. If not, the network will not generate accurate results. Large moving
objects and surfaces that have specular reflectance can cause the process of training the
network to fail. These reasons reduce the applicability of this method in dynamic situations
that are often present in outdoor environments. In addition, this network training process
may become stuck in the local minimums of the photometric loss function due to improper
network weight initialisation. This effect may result in output depth images that are not
close enough to the ground truth because of the erroneous training process.

In [75], a real-time sparse-to-dense map is constructed by using a Convolutional
Spatial Propagation Network (CSPN). The propagation process preserves LiDAR sparse
depth input values in the final depth map. This network aims to extract the affinity
matrix for respective images. The introduced method learns the affinity matrix by using a
deep convolution neural network. The training process of the network model is achieved
by incorporating a stochastic gradient descent optimiser. This network implementation
showed memory paging cost as a dominant factor when larger images were fed into the
PyTorch-based network. The CSPN network has shown good performance in real-time and
thus is well-suited for applications such as robotics and autonomous driving. CSPN++ [76]
is an improved version of the CSPN network with adaptively learning convolutional kernel
sizes and numbers of iterations for propagation. The network training experiments were
carried out using four NVIDIA Tesla P40 Graphic Processing Units (GPUs) on the KITTI
dataset. This research shows that hyper-parameter learning from weighted assembling
can lead to significant accuracy improvements, and weighted selection could reduce the
computational resource with the same or better accuracy compared to the CSPN network.

• Dense Depth from Stereo Camera and LiDAR Fusion

Estimating depth using stereo cameras provides more reliable results compared to
monocular cameras. LiDAR sensors can produce depth measurements with improved
accuracy over increased ranges and varying lighting conditions. The fusion of LiDAR and
stereo camera sensors produces more accurate 3D mappings of environments than LiDAR-
monocular camera depth completion. However, stereo cameras commonly have shorter
detection ranges, and depth estimation becomes challenging in textureless environments
and high occlusion scenarios. One of the significant works in LiDAR-stereo camera fusion is
presented in [77]. This paper presents the first unsupervised LiDAR-stereo fusion network.
The network does not require dense ground truth maps, and training is done in an end-to-
end manner that shows a broad generalisation capability in various real-world scenarios.
The sparsity of LiDAR depth measurements can vary in real-world applications. One
advantage of the network proposed in this work is that it handles a high range of sparsity
up to the point where the LiDAR sensor has no depth measurements. A feedback loop has
been incorporated into the network to connect outputs with inputs to compensate for noisy
LiDAR depth measurements and misalignments between the LiDAR and stereo sensors.
This network is currently regarded as one of the state-of-the-art methods for LiDAR-stereo
camera fusion.

• Multimodal Object Detection

Reliable object detection is a vital part of the autonomous navigation of robots/vehicles.
Object detection in autonomous navigation is described as identifying and locating various
objects in an environment scene in the form of bounding boxes, including dynamic objects
and static objects. Object detection may become difficult due to sensor accuracy, lighting
conditions, occlusions, shadows, reflections, etc. One major challenge in object detection is
occlusion, which consists of different types. The main occlusion types are self-occlusion,
inter-object occlusion, and object-to-background occlusion [78]. Early image-based object
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detection algorithms commonly included two steps. The first stage was dividing the
image into multiple smaller sections. Then, these sections were conveyed into an image
classifier to identify whether the image section contained an object or not. If any object
was detected in an image section, the respective portion of the original image was marked
with the relevant object label. The sliding window approach is one way of achieving the
above-mentioned first step [79].

A different set of algorithms uses a technique in contrast to the sliding window
approach by grouping similar pixels of an image to form a region. These regions are
then fed to a classifier to identify semantic classes (with grouping done using image
segmentation methods). Further improved image segmentation can be achieved by using
the selective search algorithm [80]. The selective search algorithm emphasises a hierarchical
grouping-based segmentation algorithm. In this method, initially detected image regions
are merged in a stepwise manner by selecting the most similar segments until the whole
image represents a single region. These regions resulting from each step are added to
the region proposals and fed to a classifier. The classifier performance depends on the
used region proposal method. This object detection approach does not produce real-time
performance suitable for autonomous navigation applications. However, advances such as
SSPnet [81], Fast Regional-based Convolutional Neural Networks (R-CNNs) [82], and Faster
R-CNN [83] were introduced to address this issue. The Faster R-CNN network generates
a feature map by utilising the CNN layer output, and the region proposal generation is
achieved by sliding a window (comprising three different aspect ratios and sizes) over
the feature map. Each sliding window is mapped to a vector and fed to two parallel
classification and regression networks. The classification network calculates the probability
of region proposals containing objects, and the regression network indicates the coordinates
of each of the proposals.

Object detection research has been mainly employed in the autonomous vehicle industry
(for vehicle and pedestrian detection [84]) and mobile robotics. In contrast to camera-only
object detection, sensor fusion has been implemented in different real-world applications to
obtain more accurate and robust detection results. As previously discussed, LiDAR and cam-
era sensor fusion are some of the most used and highest-performing sensor fusion methods.
LiDAR and camera sensor fusion object detection approaches consist of two main techniques.
These are the sequential and one-step models [54]. Sequential models use 2D proposal-based
methods or direct 3D proposals to detect objects. In the sequential approach, 2D/3D regions
are proposed in the first stage, and then 3D bounding box regression is done in the second
stage. The 2D/3D region proposal stage incorporates fused image-point cloud regions that
may contain objects. In the bounding box regression stage, feature extraction from region
proposals and bounding box prediction is done. One-step models generate region proposals
and achieve bounding box regression in parallel in a single step. The 2D proposal-based
sequential approach uses 2D image semantics to generate a 2D proposal and point cloud
processing methods to detect dynamic objects. This approach utilises already developed
image processing models to identify 2D object proposals and then project these proposals to
LiDAR 3D point cloud space for object detection.

Two approaches are mainly used to manipulate image-based 2D object proposals
and irregular 3D LiDAR data. In the first method, image-based 2D bounding boxes are
projected to the LiDAR 3D point cloud to implement 3D point cloud object detection
algorithms. The second approach utilises point cloud projections on the 2D images and
applies 2D semantic segmentation techniques to achieve point-wise semantic labels of the
points within the semantic regions [54]. LiDAR-camera 2D sequential object detection
methods include result, feature, and multi-level fusion strategies. These 2D proposal-based
result-level fusion methods incorporate image object detection algorithms to retrieve 2D
region proposals. These retrieved 2D object bounding boxes are then mapped onto 3D
LiDAR point clouds. The enclosing points in frustum proposals are transferred into a point
cloud-based 3D object detection algorithm [57]. The overall performance of this object
detection approach depends on the modular behaviour of the 2D detection architecture.
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Sequential fusion may lose complementary data in LiDAR point clouds due to initial 2D
image object proposal detection. Two-dimensional proposal-based feature-level fusion
uses a mapping from 3D LiDAR point clouds onto the respective 2D images and employs
image-based techniques for image feature extraction and object detection. One of these
approaches appends per-point 2D semantic details as additional channels of LiDAR 3D
point clouds and uses an existing LiDAR-based object detection method [85]. However,
this approach is not optimal for identifying objects in a three-dimensional world because
3D details in the point clouds may be lost due to the projection.

Multi-level fusion combines 2D result-level fusion with feature-level fusion. This
approach uses already available 2D object detectors and generates 2D bounding boxes.
Then, points within these bounding boxes are detected. Subsequently, image and point
cloud features are combined within the bounding boxes to estimate 3D objects. LiDAR
and camera object detection using 3D proposal-based sequential models avoid 2D to 3D
proposal transformations and directly generate 3D proposals from 2D or 3D data. This
technique consists of two approaches, namely multi-view and voxel-based. MV3D [66] is a
multi-view object detection network that uses LiDAR and camera data to predict the full
3D envelope of objects in the 3D environment. A deep fusion scheme was proposed to fuse
features from multiple views in respective regions. The detection network comprises two
networks: the 3D proposal network and the region-based fusion network. As the inputs,
the LiDAR BEV, LiDAR front view and the RGB camera image are fed to the network.
The LiDAR BEV is fed to the 3D proposal network to retrieve 3D box proposals. These
proposals are used to extract features from the LiDAR front-view and camera RGB image
inputs. Then, using these extracted features, the deep fusion network predicts object
size, orientation, and location in the 3D space. The network was built on the 16-layer
VGGnet [86], and the KITTI dataset was used for the training process.

One of the drawbacks of the multi-level fusion method is the loss of small objects
in the detection stage due to feature map down-sampling. Combining image and point
cloud feature maps by RoI (Regions of Interest)-pooling decreases the fine-grained spatial
details. MVX-Net [65] introduces a method to fuse point cloud and image data voxel-wise
or point-wise. Two-dimensional CNNs are used for the image feature extraction process,
and a VoxelNet [87] based network detects 3D objects in the voxel representation. The
input 3D LiDAR point cloud is mapped to the 2D image for image feature extraction in the
point-wise fusion method, and then voxelisation and processing are done using VoxelNet.
In voxel-wise fusion, the point cloud is firstly voxelised and then projected onto the image-
based 2D feature representation to extract features. This sequential approach achieved
state-of-the-art performance for 3D object detection at the time of its publication. Object
detection utilising one-stage models performs object proposal retrieval and bounding box
prediction in a single process. These detection models are suitable for real-time autonomous
robot decision-making scenarios. State-of-the-art single-stage object detection methods,
such as [88], simultaneously process depth images and RGB images to fuse points with
image features, and then the generated feature map is used for bounding box prediction.
The introduced method [88] utilises, two CNN-based networks to parallelly process point
cloud and RGB front-view images. One CNN identifies LiDAR features, and the other
CNN extracts RGB image features. Then, these RGB image features are mapped into the
LiDAR range view. Finally, mapped RGB and LiDAR image features are concatenated and
fed into LaserNet [89] for object detection and semantic segmentation. This network has
been trained in an end-to-end manner. The network training was done for 300K iterations
with a batch size of 128, distributed over 32 GPUs. The image fusion, object detection, and
semantic segmentation process took 38 milliseconds on an Nvidia Titan Xp GPU.

• Multimodal Semantic Segmentation

Scene semantic segmentation assigns a semantic category label to each pixel in a scene
image, and it can be regarded as a refinement of object detection [90]. A scene can incorpo-
rate obstacles, free space, and living creatures (not necessarily limited to these categories).
The complete semantic segmentation of images applies these semantic categories to all
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pixels across an image. Many recent computer vision methods rely on CNN architectures.
These networks favour dense depth image data over sparse data. In general, LiDAR sensors
produce irregular, sparse depth measurements. Ref. [73] introduced a technique to utilise
LiDAR sparse data and RGB images to achieve depth completion and semantic segmen-
tation in a 2D view. This network can work with sparse depth measurement densities
as low as 0.8%, and at the time of its publication, this method showed state-of-the-art
performance on the KITTI benchmark dataset. The base network of this prior work was
adopted from NASNet [91], which has an encoder and decoder architecture. Using LiDAR
and RGB image feature fusion, ref. [92] proposed a novel method to achieve 2D semantic
segmentation in 2D images. This method introduced a self-supervised network that suits
different object categories, geometric locations, and environmental contexts. This self-
supervised network uses two sensor modality-specific encoder streams, which concatenate
to a single intermediate encoder and then connect into a decoder to fuse the complementary
features. The segmentation part is achieved with a network termed AdapNet++ [92] that
consists of an encoder-decoder architecture. All these network models were implemented
using the deep learning TensorFlow library. Another high-performing deep learning-based
LiDAR-Camera 2D semantic segmentation method was presented in [93]. In this method,
the generated 3D LiDAR point data is mapped to the 2D image and up-sampled to retrieve
a 2D image set that consists of spatial information. Then, fully convolutional networks are
used to segment the image using three approaches: signal level, feature, and cross-fusion.
In the cross-fusion method, the network was designed to learn directly from the input data.

The techniques discussed up to now have been 2D semantic segmentation methods.
In contrast to 2D methods, 3D semantic segmentation approaches provide a realistic 3D
inference of environments. An early approach for a 3D scene semantic segmentation
network is presented in [94] termed 3DMV. This method requires relatively dense depth
scans along with RGB images, and it was developed to map indoor scenarios. Voxelised
3D geometries are built by using LiDAR depth scans. Two-dimensional feature maps are
extracted from the RGB images using CNNs, and these image feature maps are mapped in
a voxel-wise manner with the 3D grid geometry. This fused 3D geometry is then fed into 3D
CNNs to obtain a per-voxel semantic prediction. The overall performance of the approach
depends on the voxel resolution, and real-time processing is challenging for higher voxel
resolutions. Therefore, this dense volumetric grid becomes impractical for high resolutions.
The system was implemented using PyTorch and utilised 2D and 3D convolution layers
already provided by the application programming interface. Semantic segmentation of
point clouds is challenging for structureless and featureless regions [95]. A point-based 3D
semantic segmentation framework has been introduced by [95]. This approach effectively
optimises geometric construction and pixel-level features of outdoor scenes. The network
projects features of detected RGB images into LiDAR space and learns 2D surface texture
and 3D geometric attributes. These multi-viewpoint features are extracted by implementing
a semantic segmentation network and then fused point-wise in the point cloud. Then, this
point data is passed to a PointNet++ [96] based network to identify per-point semantic
label predictions. A similar approach was followed by Multi-view Point-Net [97] to fuse
RGB semantics with 3D geometry to obtain per LiDAR point semantic labels.

Instead of localised or point cloud representations, ref. [98] have used a high dimen-
sional lattice representation for LiDAR and camera data processing. This representation
reduces memory usage and computational cost by utilising bilateral convolutional lay-
ers. Then, these layers employ convolutions for unoccupied sections in the generated
lattice representation. Firstly, the identified features of point clouds are mapped to a high-
dimensional lattice, and then convolutions are used. Following this, CNNs are applied
to detect image features from multi-view images, and these features are projected to the
lattice representation to combine with three-dimensional lattice features. The generated
lattice feature map was assessed by using 3D CNNs to obtain point-wise labels. A spatial-
aware and hierarchical learning strategy has been incorporated to learn 3D features. The
introduced network was capable of training in an end-to-end manner.
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• Multimodal Instance Segmentation

Instance segmentation identifies individual instances within a semantic category. It
is considered a more advanced semantic segmentation method. This method not only
provides per-pixel semantic categories but also distinguishes object instances, which is
more advantageous for robot scene understanding. However, instance segmentation in
autonomous navigation introduces more challenges than semantic segmentation. Instance
segmentation approaches based on fused LiDAR-camera sensor data show proposal-based
and proposal-free architectures. A voxel-wise 3D instance segmentation approach was
introduced by [99] that consists of two-stage 3D CNN networks. A feature map was
extracted from the low-resolution voxel grid by implementing 3D CNNs. Another feature
map was obtained from the RGB multi-view images using 2D CNNs and projected onto the
associated voxels in the volumetric grid to append with respective 3D geometry features.
Then, object classes and 3D bounding boxes are predicted by feeding these fused features
to a 3D CNN architecture. In the second phase, another 3D CNN estimates the per-pixel
object instances using already identified features, object classes and bounding boxes.

These voxel-based segmentation methods are constrained by the voxel resolution and
require increased computation capabilities with higher grid resolutions. The application
of instance segmentation in LiDAR-camera fusion for real-time systems is challenging.
Some research studies had limitations, such as the system developed in [100], which
does not support dynamic environments. A proposal-free deep learning framework that
jointly realises 3D semantic and instance segmentation is presented in [101]. This method
performs 3D instance segmentation in the BEV of point clouds. However, this approach
is less effective in identifying vertically oriented objects because of the BEV segmentation
approach. This method first extracts a 2D semantic and instance map from a 2D BEV
representation of the observed point cloud. Then, using the mean shift algorithm [102],
and semantic features of the 2D BEV, instance segmentation is achieved by propagating
3D features onto the point cloud. It should be noted that the instance segmentation
approaches discussed have been developed to segment 3D point clouds from static indoor
environments, and these methods have not shown any segmentation capabilities in dynamic
environments.

Overall, while significant progress has been made in the perception capabilities of
autonomous robots, particularly in regard to object detection and scene segmentation,
many of the existing approaches have only been tested in relatively structured indoor
environments, and substantial additional work may be required to adapt these techniques
to be used in unstructured outdoor environments. Nonetheless, some very useful research
directions have been identified that have the potential to significantly advance this field.

3. Robot Scene Understanding for Navigation Planning

For effective navigation at local and global scales, robots build maps to represent their
external environments and to assist with making safe and accurate decisions at local levels.
SLAM refers to the real-time combination of robot localisation and external environment
mapping. SLAM is highly focused on mapping techniques. Early mobile ground robot
map-building approaches comprised feature-based and photometric error-based methods.
Robots could efficiently localise their positions in sparse or dense maps by implementing
these mapping techniques. However, autonomous robots require more than basic 2D or
3D maps for effective task planning. Therefore, semantic SLAM techniques have been
developed and investigated. Topological maps represent the environment as abstract
graphs in contrast to classical metric maps. Classical metric maps are used in robotics
to visualise the environment as a two-dimensional grid of cells, and each of these cells
represents a specific location or area. The occupancy of a cell is typically represented by a
binary value. However, these maps have limitations, such as their assumption of a flat and
static environment and their inability to illustrate sensor data uncertainty.

To overcome these limitations, researchers have developed probabilistic mapping
techniques, such as occupancy grid mapping, which use probabilities to represent occu-
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pancy and can handle more complex and dynamic environments. The metric maps include
details such as visited locations by a robot, proximity to features and general arrangement
of external environments. One of the challenges in classical 3D geometric mapping is the
accumulation of position errors over time at the global map level. Topological maps are
not directly affected by these error-driven shifts in the geometrical maps, which means
that topological mapping is more adaptable to different environmental contexts than ge-
ometric mapping. Classical and topological mapping methods have their strengths and
weaknesses. Hybrid methods combine metric and topological mapping techniques to
leverage advantages of each method. Many hybrid representations have been utilised by
indoor robots to generate environmental mappings. Hybrid mapping representations from
recent research works generally consist of two or more layers in a hierarchy (e.g., places,
categories, ontology). The research work presented in [103] uses depth measurements, se-
mantic segmentation and scene flow to map a 3D environment. This concept can detect the
dynamic behaviour of objects. Neural implicit scalable encoding for SLAM [104] introduces
a SLAM framework that utilises a hierarchical feature representation. It uses a hierarchical
feature grid with encoder-decoder networks to predict occupancies. The geometric maps of
indoor environments are developed by using extracted coarse, mid, and fine-level feature
grids. The middle and fine-level feature grids represent observed scene geometry. The
feature grid in the coarse level detects indoor geometries such as the floor and walls. The
coarse level occupancy is used in the scene reconstruction of unobserved environment
regions. In the reconstruction process, coarse-level occupancy is optimised in the mid-level
feature grid and refined at the fine level.

Kimera [105] presents a dynamic scene graph that consults a five-layer hierarchical
representation. The method combines a metric semantic mesh with a topological spatial
representation. It is capable of segmenting indoor structures and is robust in overcrowded
environments. The five layers of the graph include metric-semantic mesh, objects and
agents, places and structures, rooms, and buildings. To effectively implement these hybrid
hierarchical maps in real-world applications, the representations need to be updated
as the environment changes and should accurately map the interconnections between
environment attributes. These hierarchical mapping techniques were implemented in
indoor environments where semantic information extraction is less complex, however, and
have not yet been applied to unstructured outdoor environments. Kimera-multi [106] is a
state-of-the-art metric semantic SLAM system for multi-robot systems. The method is an
extension of Kimera [105] and was tested in computer-simulated environments based on
SLAM datasets and outdoor datasets collected by ground robots. This concept creates a
3D mesh that labels outdoor environments using semantic labels to gain high-level scene
understanding. Kimera-multi outperforms the accuracy of Kimera [105] visual-inertial
odometry SLAM. Overall, Robot semantic understanding requires the classification of both
objects and places. To extract these predefined object models, conditional random field
models, CNN-based scene and place classification algorithms, and scene graphs (e.g., robot
scene graphs [107], dynamic scene graphs [105]) are utilised.

SLAM techniques can produce sparse or dense geometric or semantic maps of outdoor
environments. However, these maps may not have adequate detail for safe local robot
navigation where terrains consist of abrupt deviations and vegetation. Therefore, deep
learning and image-based scene understanding are necessary directions to identify terrain
properties and suitable environment regions for robot navigation in challenging outdoor
unstructured environments. Recent robot navigation trends have emerged to segment
camera egocentric images using computer vision approaches such as visual attention
mechanisms [108]. Ref. [109] presents a camera-only approach for segmenting egocentric
images to assist robot navigation. The segmentation procedure consists of soft labelling of
the images according to three levels of driveability. For every pixel, soft labels are mapped
by assessing original semantic classes. The SegNet [110] based deep convolutional encoder-
decoder architecture was used for the pixel classification. Another paper [111] introduces
an RGB-based method to classify terrains into navigability levels by extracting multi-
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scale features. This work achieved state-of-the-art performance on the RUGD [112] and
RELLIS-3D [113] datasets at the time of publication. A multi-head self-attention network
architecture was used to classify the terrain into smooth, rough, bumpy, forbidden, obstacle,
and background regions. This network requires further improvements to identify drastic
terrain geometry changes (i.e., slopes) to gain higher accuracy in navigability segmentation.

In general, 2D scene understanding can lose essential details from the mapping process
of 2D data to the 3D real world. Therefore, 3D scene understanding-based methods are
used with the most recent robot navigation applications. Ref. [114] presented a 3D semantic
segmentation method using a CNN encoder-decoder architecture. This approach inputs
RGB images and depth images for the fusion of feature maps, with the FuseNet [115] archi-
tecture taken as the base for the CNN. Visual dynamic object-aware SLAM [116] combines
SLAM with dynamic modelling of scenes, enabling robots to operate effectively in dynamic
environments. This work introduces instance segmentation of dynamic objects with the
camera trajectory. The model can identify and track stationary structures and dynamic
objects and integrate them into the traditional SLAM framework. This framework does not
need prior knowledge of objects and their shapes or models. The method uses monocular
depth estimation to achieve instance-level segmentation and optical flow. Then, static and
dynamic object features are tracked to trace the trajectories. The local map is updated in
each consecutive frame. Environmental scene understanding using only monocular cam-
eras can be challenging in mapping applications. As a result, semantic segmentation using
LiDAR, radar, and stereo cameras has been investigated. The development of deep learning
techniques has increased the usage of point cloud data in robot 3D scene understanding
applications. VoxNet [61] is a 3D CNN architecture that was designed to obtain voxel
grid representations of the environment using point cloud data. Although this network is
capable of detecting objects, object detection alone is not sufficient for scene understanding.
Ref. [117] used a LeNet [118] based architecture for semantic segmentation of point clouds.
This approach could segment outdoor scenes into seven object categories by voxelisation of
input point cloud data. Ref. [119] proposed a method for semantic segmentation of indoor
scenes using only depth images. This network jointly predicts the 3D occupancy grid and
semantic categories. However, some of the objects were missing during the inference due
to a lack of depth details for those objects. In general, point cloud data is irregular; there-
fore, only representing point cloud data using uniform voxel grids might not accurately
interpret real-world information. To address this adverse effect, ref. [120] proposed the
OctNet architecture to represent point cloud data in a hierarchical partitioning of space
using voxel representations. One of the problems of using voxel grid representations is
the requirement of high computational power for varying sparsity of irregular point cloud
data. Multi-view representations of 3D point clouds can be employed to reduce the adverse
effects of volumetric grid representations. Ref. [121] attempted to generate 2D views of
point cloud data, which were then utilised to analyse large urban point cloud data in 3D
scenes using deep CNNs. Then, “tangent convolutions” were applied to the point cloud
data to obtain an image by projecting local geometry to a 2D plane tangent to a point.

In general, 2D projective methods are more efficient and scalable than 3D volumetric
representations. However, there may be a degree of information loss in the final 3D
structure due to inaccuracies in those projections. Instead of converting point cloud data
into uniform volumetric representations, processing these point clouds as unstructured
data is also a feasible approach [122]. Ref. [59] proposed PointNet, one of the significant
point cloud semantic segmentation works. This work shows a degree of permutation
invariance to the input point cloud data. It can classify objects by allocating them to
categories (e.g., TV, table) and carry out semantic segmentation in scenes. To try to improve
on these point-level processing techniques, several works have been carried out that
use deep learning methods [123–127]. Computer memory requirements for 3D voxel
representations tend to vary according to the level of voxel resolution. In the presence
of sensor noise, the estimation of the occupancy of voxels might be challenging. Instead
of using 3D volumetric representations, graph and tree-based representations have been
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proposed to recover 3D structures from point cloud data. Ref. [128] introduces a 3D graph
neural network to semantically segment the environment using 2D RGB image and point
cloud data. This method uses both CNNs and graph neural networks to predict semantic
classes, with the CNN used to extract features from 2D RGB images. The Superpoints
graph method was introduced by [129] to learn scene contextual information and geometry.
Superpoints are interest points in a point cloud that are detected and described using a
neural network. They are densely sampled and designed to be efficient and robust for use
in SLAM applications. First, the input point cloud is separated into geometric elements
(named Superpoints), and then these Superpoints are combined considering their mutual
features. Finally, graph convolutions are implemented to generate contextual information
and semantic labels. This method was shown to be appropriate for the segmentation of
large point clouds. Another significant work that processes orderless point cloud data using
a permutation invariant deep learning architecture is So-Net [130]. This network extracts
features from point clouds hierarchically. The receptive field of the CNN is controlled
systematically by performing a point-to-node k-nearest neighbour search to retrieve the
point cloud spatial information. This network conserves the topology attributes of the
point representations.

Overall, a number of approaches show promise for improving the scene understand-
ing capabilities of autonomous robots, although questions remain regarding how effectively
they can be applied in outdoor unstructured environments, particularly with dense veg-
etation or other complex terrain features. Improvements in both sensor capabilities and
algorithms are likely to be necessary to achieve significant progress in this area, but some
promising research directions have been highlighted.

4. Mobile Robot Local Path Planning

Approaches for path planning of robots in local environments can be broadly classified
into either classical methods or learning-based methods that attempt to modify the path-
planning based on factors such as environmental conditions and prior experience [131,132].
The classical methods follow a modular architecture with environmental perception, plan-
ning of paths relative to generated global maps, and trajectory following. Many classical
techniques are applicable for robot navigation in static environments. However, their
suitability can substantially diminish in unstructured or dynamic environments [133]. In
general, these methods can be used effectively in indoor mobile robot applications but
may not be suitable for outdoor off-road navigation conditions (e.g., terrain with grass
might be traversable despite appearing blocked, and ground with mud or sand may not be
suitable for pathing, despite appearing clear), hence the requirement to investigate machine
learning-based navigation approaches. Several global and local motion planning methods
for ground robot navigation are compared in Tables 4 and 5.

The A* and Dijkstra algorithms have been well-researched in the past decades, and these
methods have shown their potential by extensively being applied with the Robot Operating
System (ROS) in many real-world robotics applications. Combining these two path-planning
methods with heuristic searching is effective in relatively low-complexity 2D environments.
However, these methods require heavy computational capabilities in high-dimensional envi-
ronments or may struggle in unstructured and dynamic working environments.

Random sampling-based path planning algorithms generally consist of BITs and
RRTs. Regionally Accelerated Batch Informed Trees (RABIT) are more widely used and
perform better in high dimensional and dynamic environments [134] in comparison to
graph search-based path planning algorithms. Bionic-based intelligent robot path planning
methods simulate the behaviours of insects to generate evolving paths. These evolutionary
methods include the ant colony, particle swarm optimisation, and genetic and artificial bee
colony algorithms. Many other optimised versions of these algorithms have been proposed
to improve calculation efficiency and avoid local minimum problems. A welding robot
system developed in [135] had a combination of genetic and particle swarm optimisation
algorithms to solve for the shortest route while avoiding obstacles. The artificial potential
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field method, ant colony optimisation, and geometry optimisation path methods were
combined in another research study [136] to search the globally optimal path in 2D scenarios
using computer simulations. This method showed fast solutions and reduced the risk of
trapping robots in local minimum points. A multi-objective hierarchical particle swarm
optimisation method has been proposed by [137] to plan global optimal path trajectories in
cluttered environments. This method utilises three layers to generate the robot navigation
trajectories. The triangular decomposition method [138] is applied in the first layer, the
Dijkstra algorithm is used in the second, and a modified particle swarm optimisation
algorithm is applied in the last layer.

Table 4. Global path planning algorithms.

Algorithms Advantages Disadvantages

Dijkstra The calculation strategy is not
complex and gives the shortest path

The increment of traversal nodes
complicates the calculations

A* In static environments, the
algorithm search efficiency is high

Not appropriate for dynamic
environments

D* Good for dynamic environment path
planning and more efficient than A*

Planning longer paths via D* creates
challenges

RRT Fast convergence, high search
capability

Algorithm efficiency is low in
unstructured environments

Genetic
Appropriate for complex

environments, good for finding
optimal paths

Low algorithm convergence speed,
low search ability in local paths

Ant colony

Appropriate for complex
environments, can be combined
with other heuristic-based path

planners

Slow convergence rate, easily
trapped in local minima

Particle swarm
optimisation

High convergence rate, good
robustness

Frequently, solutions converge into
local optimal solutions

Table 5. Local path planning algorithms.

Algorithms Advantages Disadvantages

Artificial potential field
Can be implemented for 3D

path planning, and can solve
the local minimum problem

Cannot guarantee the optimal
solution

Simulated annealing

Flexible and easy
implementation, can deal with

noisy data and non-linear
models

Can produce unstable results,
the trade-off between accuracy

and speed

Fuzzy logic
Strong robustness, decrease
the dependencies between

environmental data

Needs accurate prior
knowledge, poor learning

capabilities

Neural network
Strong robustness, and
learning ability from

experiences
Low path planning efficiency

Dynamic window Good self-adaptation to
environments

Not appropriate for
unstructured complex

environments

In general, the local path planning strategies that have been discussed use the available
sensor data of robots regarding their surroundings to map, understand, and generate
local paths while avoiding obstacles. These local path planning methods are effective
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in mobile robotic applications because the data captured by sensors varies in real-time
in response to the dynamics of environments. In comparison to global path planning
strategies, local path planning is more critical for practical robot operation and usually
serves as a bridge between global planning and the direct control of robots. However,
local path planners have one notable drawback in that they often lead robots to local
minimum points. Many classical local path planning algorithms can generate optimal
paths in the local environments while avoiding local minimum problems. These methods
include techniques such as the Fuzzy Logic algorithm, artificial potential field method,
and simulated annealing algorithm. In general, these methods do not evaluate the relative
velocities between robots and dynamic environment objects, however, which can lead to
difficulties. In many worst-case scenarios, even the velocity profiles of these obstacles
can be hard to acquire for the robots. Visual-inertial odometry methods show success in
outdoor environment navigation scenarios but are not suitable for navigating in off-road
conditions without pre-built maps or GPS assistance.

Machine learning methods have been applied for mobile robot navigation to learn
semantic information [139–141] and statistical patterns [142,143] of environments. Several
other research works [144–147] have used machine learning to achieve robustness in path
following. In recent years, many Reinforcement Learning (RL) and imitation learning
methods and approaches based on self-supervised learning [148–151] have been applied
in mobile robot navigation policy design and for training supervision. Many classical
modular and deep learning-based approaches have been utilised in the navigation modules
of outdoor mobile robots [152]. RL uses strategies to learn optimal robot decisions from
experiences. The interconnection between environments and robots is modelled as a
Markov Decision Process (MDP). Robots receive rewards as feedback signals for training
while traversing different environments. The basic RL process is illustrated in Figure 2.
RL methods can be separated into model-free and model-based learning scenarios. In
model-free RL, the robots are not required to evaluate the MDP model rewards or policies
directly and can obtain these directly through what the robot experiences. Model-free RL
approaches have several subcategories such as value-based, policy-based, and Actor-Critic
(improved versions of the policy-based algorithms) [153,154].

In value-based methods, optimal policies are obtained by iteratively updating the
value functions. Policy gradient-based methods directly approximate a policy network and
update the policy parameters to obtain an optimal policy that maximises the reward value.
Deep Q network (DQN) and Double DQN are the two main value-based DRL methods. A
DQN-based end-to-end navigation method has been introduced in [155]. In this work, a
feature-extracting network used an edge segmentation method to improve the efficiency
of the network training process. The simulated models were transferred to the real world
without significant performance loss. Discrete robot actions were implemented based on
a grid map. The robot exploration framework is divided into decision, planning, and
mapping modules. The learning-based decision module has shown good performance,
efficiency, and adaptability in novel environments. A graph-based technique has been
implemented for the mapping module. The applied path planning module includes the A*
algorithm as the global planner along with a timed elastic band [156] local planner.

Figure 2. Robot RL approach.

Value-based DRL methods produce discrete actions, meaning they are not appropriate
for the continuous robot action space. The policy-based DRL methods provide continuous
motion commands for robots. Combining the policy gradient with the value function creates
the Actor-Critic RL method. In general, Actor-Critic algorithms are well-suited for the
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continuous motion space of autonomous mobile robots. The Actor approximates the policy
used to generate actions in the environment. The Critic architecture is accountable for using
a reward function to evaluate robot actions iteratively and guides the Actor in successive
iterations. The Critic uses deep learning value functions such as DQN and Double DQN to
evaluate each iteration step. The Actor-Critic approach includes learning methods such as
Depth Deterministic Policy Gradient algorithm (DDPG), Trust Region Policy Optimisation
(TRPO), Proximal Policy Optimisation (PPO), Asynchronous Advantage Actor-Critic (A3C),
and Soft Actor-Critic (SAC) [21]. An extended Actor-Critic algorithm was proposed in [157].
The visual navigation module of the deep neural network consisted of depth map prediction
and semantic segmentation auxiliary tasks. The proposed learning network requires an
image of the target and an observed image as inputs. This network architecture was
proposed to obtain a visual navigation policy for indoor environments. A summary of DRL
motion planning methods is included in Table 6.

Table 6. DRL motion planning methods.

Algorithms Advantages Disadvantages

DQN Updates are done offline, are not
complex, and are reliable Only discrete motions

DDPG
High sample efficiency, less data

correlation and faster convergence
compared to DQN

The poor generalisation of novel
environments

TRPO Ensure stable convergence Too many assumptions, may create
large errors

PPO
Simplified solution process, good

performance and easier to implement
compared to TRPO

Low sampling efficiency

A3C
Asynchronous parallel network

training, fast convergence, suitable for
multi-robot systems

Require large training data, difficult to
migrate model to real world

SAC
Better robustness and sample

efficiency compared to the above
methods

Bulky model size

Model-based robot RL methods generate models of external environments using
supervised training and implement value functions to learn actions that maximise the
return. Model-based RL has faster convergence and high sample efficiency. Ref. [158]
presents a biped robot that learns on a rotating platform by combining model-based and
model-free machine-learning methods. This paper has addressed the overfitting problem of
model-based robots. The research has simulated the robot in a 2D scenario and has shown
a reduction in learning time compared to model-free RL algorithms. Imitation learning is
another related approach that uses demonstrations by experts operating robots for specific
tasks to obtain policy functions. Mobile robots learn mappings between observations
of these demonstrations and appropriate robot actions. Path trajectories can be rapidly
generated by manipulating learned policies from expert demonstrations. However, the
capacity of the robot to practically record these demonstration results from real-world
experiments can be challenging. Ref. [159] has introduced a method to acquire a mapping
from actions to states using ego-centric videos collected by a human demonstrator using a
mobile phone camera. The policy learning step was executed within a simulation platform;
then, the developed navigation policy was tested on a Clearpath Jackal wheeled robot in
an indoor environment. The robot and the trained videos had view-point mismatches, but
the model was robust to those changes. The system was successfully able to map camera
sensor inputs to actuator commands using the developed imitation learning policy.
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Inverse RL is another approach capable of learning reward functions from expert
demonstrations. However, inverse RL is more appropriate for exploring novel environ-
ments because imitation learning tries to directly follow a demonstrator rather than improve
beyond that knowledge level. The creation of an inverse RL network by employing a vision-
based imitation learning method was presented by [160]. This method approximates a
value function from one middle layer of a policy trained by imitation learning. The related
experiments were carried out on a real-world setup and using the ROS Gazebo simulation
platform. This proposed method has shown the capability of generalising the system for
unseen environments by producing usable cost maps. Traditional geometric-based SLAM
procedures lack the capacity to capture dynamic objects in external environments and are
thus only suitable for planning robot actions in static environments. RL-based techniques,
however, can learn policies by considering dynamic obstacles in outdoor environments,
although the sample efficiency is lower compared to imitation learning and model-based
learning. The implementation of learning-based maps and traditional path planners is one
way to improve sample efficiency. A mobile robot affordance map generation using the
RL policy-based method was introduced by [161]. This research used metric cost maps
(attaching semantics and geometry) for robot navigation. The A* classical path planner was
implemented for path generation. This learning-based SLAM approach was implemented
using simulation software. Semantic, dynamic, and behavioural attributes of unseen envi-
ronments have been learnt by the model using the simulation scheme. Local path planning
remains a highly challenging task, particularly in environments with dynamic actors or
challenging terrain features such as unpredictably varying topography or varying ground
conditions. Modern machine learning approaches, coupled with advanced SLAM tech-
niques, show promise for enabling effective navigation planning, but methods that can
effectively handle all of these challenges do not yet exist, and considerable further work
will be required to enable fully autonomous navigation in all conditions.

5. Summary of the Current State-of-the-Art Techniques

Autonomous navigation can be broadly categorised into the classical modular pipeline
methods and end-to-end learning approaches. The modular pipeline approach has lim-
itations due to the requirement for high levels of human intervention in designing the
modules, the loss of information through each module, and the overall lack of robustness
when conditions vary beyond anticipated limits. The end-to-end learning approach suffers
from problems such as over-fitting and poor generalisation. Both modular and end-to-end
robot navigation approaches rely on sensors to capture information about the environment
or internal robot attributes. Researchers have investigated different sensor modalities to
improve robot perception, including raw input types such as sound, pressure, light, and
magnetic fields, as well as common robot perception sensor modalities such as cameras,
LiDAR, radar, sonar, GNSS, IMU, and odometry sensors. It is crucial to have a reliable
real-time understanding of external 3D environments to ensure safe robot navigation.
While cameras are commonly used in mobile robotics, relying on a single sensor is not
always robust. Different sensor modalities are often combined in robotic applications
to improve perception reliability and robustness. Camera and LiDAR fusion has been
a popular approach in the robotics community. This fusion method has shown better
performance than other vision-based dual sensor fusion approaches, and recent advances
in deep learning algorithms have further improved its performance. Monocular and stereo
cameras are commonly used with LiDAR sensors to fuse images and point cloud data.
However, the technical challenges and cost of sensors and processing power requirements
still limit the widespread application of these methods for regular use. Computer vision
has experienced rapid growth in the past decade, with deep learning methods accelerating
its development. Object detection, depth estimation, semantic segmentation, instance seg-
mentation, scene reconstruction, motion estimation, object tracking, scene understanding,
and end-to-end learning are among the subtopics of computer vision. These methods have
been widely applied in autonomous navigation, but their accuracy and reliability can be
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limited, prompting ongoing efforts to improve their quality. Benchmarking datasets, such
as KITTI, Waymo, A2D2, nuScenes, Cityscapes, RELLIS-3D, RUGD, Freiburg [29], and
WildDash [162], have been used to compare the performance of different vision methods in
autonomous urban driving and off-road driving applications.

Semantic SLAM techniques provide geometric and semantic details of external envi-
ronments. However, existing semantic SLAM techniques may not be adequate for the safe
navigation of robots in outdoor unstructured environments due to challenges in feature
detection, uneven terrain conditions (which can lead to robot localisation errors, detection
errors, etc.) and effects of wind on vegetation, which can lead to sensor noise and ambigu-
ous results. Therefore, terrain traversability analysis and improved scene understanding
using deep learning methods have been developed that are showing promise in assisting
robot navigation in outdoor unstructured environments.

Many classical robot path-planning approaches are used for navigation in local environ-
ments. These classical approaches rely on a modular architecture to perceive the environment,
plan paths relative to generated maps, and follow trajectories. However, these classical meth-
ods are often challenged in dynamic or deformable environments and are not well-suited
for off-road navigation conditions where terrains may be unpredictable. Learning-based
methods have been developed to improve robot path-planning abilities under different envi-
ronmental conditions and have shown promise in addressing these challenges. In particular,
learning-based navigation methods have been shown to be better suited for off-road naviga-
tion conditions, where terrains can be highly variable and unpredictable.

6. Research Challenges and Future Directions in Unstructured Outdoor
Environment Navigation

Despite the significant progress that has been made in improving the abilities of
robots to perceive their environment, localise themselves within it, and plan paths to
navigate through it; significant challenges remain with the application of these methods
to unstructured outdoor environments. Many limitations exist with respect to perception
capability, particularly when sensor and computation costs are a factor, and effective
methods for robust scene understanding within such environments have not yet been
demonstrated, substantially hindering the ability to deploy fully autonomous robots into
such environments. This section of the paper explores the current state of these significant
research challenges and provides suggestions for the most promising directions for future
research efforts to overcome them.

6.1. Research Challenges

SLAM methods have been extensively used for robot navigation applications in indoor
environments. Urban autonomous navigation systems also implement SLAM algorithms
successfully for sophisticated motion planning. Only a few applications have demonstrated
the use of SLAM for dirt roads and off-road uneven terrain navigation. Many visual SLAM
techniques are unstable in off-road environments with trees, bushes, uneven terrain and
cluttered objects. Application of classical SLAM approaches in off-road environments with
vegetation is challenging because of the irregular and dynamically varying structure of the
natural environment. LiDAR-based methods may detect traversable regions as geometric
obstacles. Therefore, existing SLAM research on robot navigation in off-road unstructured
environments is limited. Several feature-based SLAM algorithms fail due to reasons such
as the absence of specific features or the loss of detected features caused by the dynamic
movement of vegetation due to wind. In general, mobile robots in off-road environments in
the presence of vegetation use GNSS with IMUs to estimate the real-time position of robots.
In relatively open tree canopies, GNSS sensors can establish a consistent communication
link with satellites. The GNSS positioning accuracy in sparse tree canopy environments
can be decimeter level [163]. However, under dense tree canopies, GNSS may lose location
data due to potential signal interruptions.
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Visual SLAM (VSLAM) uses features or pixel intensity in images to generate informa-
tion about environments. Many visual SLAM methods employ feature-based (e.g., points,
lines, corners, planes) algorithms for detecting objects or developing a higher-level under-
standing of environments. In general, monocular, stereo and RGB-D cameras are used in
VSLAM. RGB-D camera SLAM is restricted to indoor applications because of its sensitivity
to ambient light conditions. SLAM approaches that use event cameras are still not well
established. Many point-feature-based SLAM methods are not robust in low-textured
scenes such as plane surfaces and are vulnerable to illumination changes. Line features are
less sensitive to changes in lighting conditions than point features. Plane features are often
found in the artificial environment but are not regularly present in natural environments.

Using pixel intensities instead of features in SLAM is more robust to changes in lighting
conditions and results in more scene information. Modern semantic VSLAM methods are
mostly restricted to specific environments such as indoor or urban driving. Many VSLAM
approaches focus on feature-based techniques to generate maps and localise robots. In
an off-road environment with vegetation, feature extraction is challenging. The number
of distinguishable features in these environments might be low due to the unstructured
nature of natural environments. The presence of occlusions, shadows and illumination
variation in off-road unstructured environments can obstruct useful feature detection in
VSLAM. Therefore, obtaining a higher level of semantic understanding is more complex
than understanding urban driving scenarios. In order to improve VSLAM performance in
vegetated, outdoor, and unstructured environments, one can train deep learning models to
understand features using a large dataset. However, there are difficulties in adapting these
networks to unseen environments [164].

LiDAR SLAM is more robust than VSLAM in varying illumination conditions and
under shadows. Point cloud registration and feature-based methods are the most common
LiDAR SLAM approaches [165]. The LiDAR SLAM point cloud registration approach is
more robust in vegetated natural environment mapping than the feature-based method.
An adverse effect of LiDAR SLAM is the loss of semantic details in the environment.
Researchers have introduced camera and LiDAR sensor fusion-based SLAM concepts to
compensate for these issues. There are two separate LiDAR-camera fused SLAM directions,
loosely coupled and tightly coupled. In loosely coupled SLAM systems, the modalities use
two independent approaches for extracting features and high-level information to combine
the two information streams. Computations in loosely coupled systems are less complex
and generate faster results than in tightly coupled systems. However, these systems may
produce low accuracies due to complementary information losses in independent sensor
data processing steps. Tightly-coupled models fuse the two forms of sensor data into one
framework to generate feature detection or higher-level semantic understanding. Therefore,
this approach is more robust in challenging environments. However, these methods are
more complex and need high computer memory and GPU requirements.

In unstructured outdoor environments, robots require perception, scene understand-
ing and identification of terrain regions suitable for robot navigation. If robot working
environments are dynamic, achieving these tasks will be more challenging. Robot scene
understanding requires a robot to be able to perceive, analyse, and interpret its working
environment. Scene understanding relies on subtopics such as object recognition, seman-
tic segmentation, instance segmentation and scene representations of images or videos.
Robot scene understanding is a continuous process, and robots need to be able to learn
and adapt to new environments and situations over time. Implementation of machine
learning algorithms in scene understanding has increased the possibilities of generating
more sophisticated learning-based architectures. However, in general, these methods have
high computational requirements. Object recognition in unstructured environments is chal-
lenging due to the higher frequency of object occlusions, similar features in different objects,
indistinct object boundaries and varying lighting conditions. Semantic segmentation of
an unstructured environment is another essential part of understanding the environment,
and it is more complex than segmentation in urban environment scenarios due to the



Appl. Sci. 2023, 13, 9877 25 of 33

variation of different semantic classes. It is challenging to extract fine-grained semantic
details from unstructured outdoor environments. These environments have wide semantic
diversity, and training robots using large, annotated datasets is challenging due to the
limited availability and difficulty of creating such datasets.

Researchers use instance segmentation algorithms to acquire a semantically rich under-
standing of environments, relationships between objects, and contexts. However, limited
research has been conducted on robot instance segmentation of urban road environments,
and these methods require high computational requirements and are not robust in off-road
scenarios. Robots should learn how to robustly interpret environments over time using
scene-understanding information to overcome these limitations. Point-based, graph-based,
tree-based, multi-view projections, image-based, and volumetric representations have been
developed to achieve scene understanding beyond basic perception. These techniques
can comprehend environments beyond what can be inferred from a single image. Further
investigation of the above-mentioned scene representations is necessary to learn and evolve
scene interpretations over time. Novel concepts need to be developed and investigated to
extract information from scenes at the object and semantic levels.

Robot domain identification and adaptation are valuable for real-world applications
to improve performance and achieve more sophisticated navigation capability. In general,
robots require the adaptability of learning-based navigation models. Therefore, networks
that are trained on one domain (e.g., simulated environment [166], urban city environment)
need to identify and adapt to changes in the application domain (e.g., real world, rural
off-road environment). These domain gaps can be expressed as one challenge for robot nav-
igation in unstructured environments. The domain gap refers to the significant deviations
in environment attributes of the known or trained domains relative to the actual operating
domains of the robot. These differences in application domain can occur due to variations
in weather, texture, previously unseen terrain conditions, environment context changes
(e.g., static to dynamic) or different factors in the robot operating environments. Deep
learning architectures such as reinforcement learning can generate robust performance
in one target domain but may subsequently fail due to an unforeseen drastic change in
that environment.

Robots can be designed to be more adaptable if they are trained on large and diverse
real-world data. However, the collection of real-world data to achieve such diversity
can be challenging. Thus, there is a requirement for the development of more efficient
data collection and data augmentation techniques. One option to address this is to train
robots in computer simulators using data collected synthetically instead of training on
real-world data. This method has benefits such as a reduction of the number of real-world
experiments and a more economical and safer deployment in comparison to real-world
systems. However, the trained models might have low adaptation to the real world due to
overfitting to the simulation environment conditions. If the physics and the environments
of simulators are significantly different from the target domain, the learned policies and
loss functions in the simulator domains might not be directly applicable to the real world,
thus leading to low performance. Novel techniques are needed to ensure that learning-
based models, policies, and loss functions are transferable to the application domain to
bridge this gap. Real-time performance is a critical aspect of robots working effectively
in unstructured environments. The models trained in simulators might be unnecessarily
complex for application in the real world. Therefore, techniques of domain adaptation
must be transferable, economically sustainable, and computationally efficient in making
decisions. In safety-critical applications, domain adaptation must be performed while
ensuring safety, which requires careful validation and testing to ensure that the adapted
model behaves safely in the real world.

6.2. Future Research Directions

Multimodal sensor fusion for robot vision provides more robust and reliable environ-
ment perception and scene understanding results than mono-sensor robot vision strategies
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in unstructured environments. Cameras and LiDARs are usually employed to retrieve RGB
and depth data of external environments, respectively. However, high-resolution LiDAR
sensors are costly, and their depth data sparsity increases when the observation range
is increased. In contrast to mechanical LiDARs, solid-state LiDARS can provide highly
accurate and higher-resolution depth data. Their costs are also likely to be significantly
lower than mechanical spinning LiDARs, but these sensors are still at the research stage.
The development and commercialisation of solid-state LiDARs will likely be pivotal for
future advancements in robotic unstructured environment perception.

In robot navigation, domain change can involve training a model on simulated data
and then fine-tuning it on real-world data to improve its performance in the real world.
Robot domain adaptability can be enhanced by using techniques such as transfer learning,
adversarial training, or domain adversarial neural networks. Researchers have proposed
techniques such as data augmentation, feature alignment, or domain adaptation loss
functions to address the domain gap. However, domain adaptation remains an active area
of research in robotics, and there is still much to be done to improve the performance of
machine-learning models in real-world settings. End-to-end learning architectures for robot
navigation are appropriate for understanding robot tasks in the local motion planning
context. For long-range navigation and in different environment domains, learning-based
methods in combination with the classical hierarchical navigation pipeline show promise
to produce more robust and safe results.

Robot environment perception, analysis and scene understanding are critical for robots
to generate useful maps and make intelligent decisions. Recent research works such as
Kimera [105] and Kimera-multi [106] are able to generate high-level geometric and hier-
archical semantic environment understanding for robots. Robot systems that consist of
geometric and hierarchical scene representations combined with incremental scene under-
standing will be advantageous in future robot outdoor unstructured navigation applications.
However, the degree of scalability and adaptability of these approaches in unstructured en-
vironments with vegetation remains an open research question. In vegetated unstructured
environments, obtaining feature-based scene understanding is challenging. Many SLAM
methods provide rich geometric data but may incorrectly identify grass-covered terrains
as not being traversable and muddy areas as traversable. Therefore, the combination of
LiDAR-based geometric/semantic maps with the assistance of reinforcement learning
of ego-centric images for robot local path planning could be a promising direction for
more robust outdoor unstructured environment navigation. This approach will combine
robot SLAM with image-based scene understanding to generate higher levels of spatial
understanding of local environments for robots to be able to generate more accurate and
safe movements. Overall, our comprehensive review of the literature has indicated that
further research into multimodal sensor fusion techniques and deep learning-based scene
understanding and task planning methods provides the most promise towards achieving
the goal of fully autonomous navigation in outdoor unstructured environments.

7. Conclusions

This paper has provided a comprehensive review of the current state-of-the-art in
autonomous mobile ground robot navigation, identified research gaps and challenges, and
suggested promising future research directions for improved autonomous navigation in
outdoor unstructured terrains. A broad review of robot sensing, camera-LiDAR sensor
fusion, robot scene understanding, and local path planning techniques has been provided to
deliver a comprehensive discussion of their essential methodologies and current capabilities
and limitations. The use of deep learning, multimodal sensor fusion, incremental scene
understanding concepts, scene representations that preserve input data topology and
spatial geometry, and learning-based hierarchical path planning concepts are identified as
promising research domains to investigate in order to realise fully autonomous navigation
in unstructured outdoor environments. Our review has indicated that applying these



Appl. Sci. 2023, 13, 9877 27 of 33

techniques to outdoor unstructured terrain robot navigation research can likely improve
robot domain adaptability, scene understanding and conscious decision-making abilities.
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