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Abstract—In vision-based autonomous driving, understanding 
spatial layout of road and traffic is required at each moment. This 
involves the detection of road, vehicle, pedestrian, etc. in images. 
In driving video, the spatial positions of various patterns are 
further tracked for their motion. This spatial-to-temporal 
approach inherently demands a large computational resource. In 
this work, however, we take a temporal-to-spatial approach to 
cope with fast moving vehicles in autonomous navigation. We 
sample one-pixel line at each frame in driving video, and the 
temporal congregation of lines from consecutive frames forms a 
road profile image. The temporal connection of lines also provides 
layout information of road and surrounding environment. This 
method reduces the processing data to a fraction of video in order 
to catch up vehicle moving speed. The key issue now is to know 
different regions in the road profile; the road profile is divided in 
real time to road, roadside, lane mark, vehicle, etc. as well as 
motion events such as stopping and turning of ego-vehicle. We 
show in this paper that the road profile can be learned through 
Semantic Segmentation. We use RGB-F images of the road profile 
to implement Semantic Segmentation to grasp both individual 
regions and their spatial relations on road effectively. We have 
tested our method on naturalistic driving video and the results are 
promising.  

Keywords— autonomous driving, road profile, temporal-to-
spatial, semantic segmentation. 

I. INTRODUCTION

Real time autonomous driving requires fast processing of 
sensor-fused data from all kinds of devices embedded in the 
vehicle. For example, if we have been driving a car for one hour 
with our sensor updating, LiDAR sends approximately 72GB 
data points, and a camera produces 2.6GB HD driving video. 
This brings a huge challenge to scene understanding and 
recognition with high accuracy and efficiency. The execution 
time in the road scene evaluation directly influences the 
subsequent decision making and path planning.  

Reducing burden in computation while ensuring the 
accuracy of vision tasks is essential in real-time autonomous 
driving. There have been many researches aiming at solving this 
problem. In this paper, we replace spatial-to-temporal approach 
in traditional framework of frame recognition followed with 
tracking with a novel temporal-to-spatial approach. At the same 
position of 2D frames in driving video, we sample a 1D line of 
pixels, these consecutive lines piled along time axis in the video 
volume form a spatial-temporal image so that a driving video is 
reduced into a road profile image temporally.  

The main vision sensing tasks for autonomous driving are 
identifying road area to follow and locating traffic to avoid 
collision. To achieve these goals using a single scanning line, we 
have to identify segments on the line occupied by lane, road, off-
road, moving traffic, vertical objects, etc. Although one-pixel 
line does not provide sufficient spatial information of road and 
objects, the consecutive collection of lines as a spatial-temporal 
image [1] provides intrinsic spatial layout because of the 
continuous observation and smooth vehicle motion. There is an 
effort made to detect road edge in road profile [10]. 

Now the key is to divide different regions in the road profile 
to extract drivable area for the vehicle. This paper tackles this 
problem by using the semantic segmentation [3], which yields 
the direction of drivable road and between surrounding vehicles, 
but not influenced by visual appearances such as shadow, snow, 
highlight reflection, poor illumination, and shape deformation 
caused by ego-vehicle motion. The semantic segmentation not 
only identify unique patterns based on local features, but also 
constrains structural relation of different regions through 
maximum pooling and linear combination of local information. 
We will show that road profile is learnable with semantic 
segmentation. We also use RGB-F channel of road profile like 
RGBD image, where F is a channel describing features around 
the sampling line and is pre-computed as the sampling line is 
collected from video.  

A. Related Works on Semantic Segmentation

Segmentation is a difficult task in the field of autonomous
driving, which requires fast and accurate scene understanding. 
To implement pixel-wise classification, many methods of deep 
learning have pitched in and achieved compelling results. Long 
et al [4] replaced fully connected layer (FCN) in convolutional 
neural networks (CNN) with an architecture of fully convolution 
in an end-to-end and pixel-to-pixel model. In order to improve 
the learning performance in deep neural network, they also 
added skip layers as complementation. Since then, many novel 
neural networks have been put forward,  He et al. [5] proposed 
ResNets by replacing the optimization objective with residuals 
blocks through shortcuts so that a network can converge easily 
with less computation. Zhao et al. [6] used a pyramid 
hierarchical architecture (PSPNet) with aggregated context from 
different regions to reinforce learning of global information. 
Pohlen et al. [7] enhanced the design of ResNets by separating 
the forward learning process in CNN into two streams: the 
pooling stream proceeds as basic FCN [4], while the residual 
stream functions are similar as residual blocks in ResNets [5]. 
The wave of deep learning comes along with the availability of 
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datasets such as KITTI and Cityscapes [8, 9], which brings a 
great stride toward the pixel-level visual understanding in 
driving environment.  

B. Temporal-to-Spatial Semantic Segmentation

In this work, we implement the semantic segmentation in our 
temporal-to-spatial approach. There are two challenges we are 
facing: First, since our road profile temporally consists of lines 
from each frame of driving video, the spatial relations among 
different regions suffer from a certain degree of distortion due 
to unstable vehicle motion and projection. Second, low-level 
features learned in first several layers of a deep network are 
easily dismissed as network goes deeper. However, these 
features are important in identifying road edge, grass texture on 
roadside, etc. To solve the challenges above, we put forward a 
fully pyramid residual neural network, in which we adopt a 
pooling stream and a residual stream in a fully convolutional 
Encoder-Decoder model. By inserting a pyramid block into 
pooling stream to reduce context information loss among 
different temporal-spatial segmentations, the capability of 
networks to sense lower level features are much improved. 
Moreover, residual stream transmits low-level features back 
from previous layers so that the problem of degradation and 
gradient vanishing in very deep neural networks are eased.  

In the following, we address the framework of sensing one-
line for autonomous driving in Section II. Section III introduces 
the semantic segmentation applied to the road profiles. Section 
IV shows experiments of segmented road profiles in different 
weather and illumination conditions, and then a conclusion. 

II. ROAD PROFILE FOR NAVIGATION

A. Road Profile from Driving Video for Data Reduction

In autonomous driving, both a high accuracy of scene
understanding and a fast speed of calculation in real time are 
required. The spatial-to-temporal strategy from 2D calculation 
of video frames to temporal tracking is time-consuming under 
resource constraints. This encourages us to explore an 
alternative approach to achieve a more efficient strategy in real-
time sensing and driving. 

Figure 1: The plane of sight through the sampling line in the frame captures road 
information for driving. The space below the current rays is previously scanned. 
The degraded shading in red denotes the past observation space.

A forward dashboard camera mounted on windshield 
captures driving scenes. As the vehicle is moving, the video has 
frame rate of 30 fps capturing road surface. A sampling line is 
fixed under the horizon in the video frame. The plane of sight 
reaches 15m ahead on the ground or scans vertical objects on 
roadside and on moving vehicles (Fig. 1).  The moving plane of 
sight covers the entire space below the current plane of sight 
without redundancy as the vehicle moves forward. 

To facilitate video processing, we first convert long driving 
videos to congregate images called road profile [2] for 
visualization and data reduction. From each frame as Fig. 2, we 
sample a line l with a fixed distance from the horizon in the 

image to capture temporal road scenes 15m ahead, according to 
its coverage of lanes and road, as well as the vehicle responding 
time to danger. This is also a proper distance to plan short range 
driving path. The lane width is calibrated from this setting; the 
total width of the frame covers about four lanes by the sampling 
line. If we can sense vehicle and lane on the current sampling 
line (Fig. 2a), we can estimate the vehicle occupied region using 
the lane information (Fig. 2b). The vehicle moving direction can 
be planned instantly (Fig. 2c). The depth and TTC to vehicles 
and vertical obstacles can also be calculated by tracking their 
widths and changes [17]. 

Fig. 2: Using a scanning line to plan vehicle moving direction. (a) the horizontal 
sampling line l in driving view, capturing the road surface and possible vehicles. 
It covers the road side, road for driving area and obstacles to avoid. (b) Vehicle 
occupied region projected from the sampling line. (c) the plane of sight of the 
sampling line. The colors have semantic meaning as: grey-roadside, purple-
vehicle, pink-road. 

Figure 3: Projection of road profile. (a) Helicopter view in the perspective 
projection of a road segment. The scanning line is about 15m ahead vehicle 
camera. (b) Road profile in parallel-perspective projection, where the ground is 
similar to the road of bird-eye view, but the vertical features such as building 
rims and poles appearing as hyperbolas. Dynamic vehicle traces are added as 
smooth trajectories. The time length of road profile is vehicle speed-adjusted.  

By copying pixels on line l into another image, sampled lines 
from consecutive frames are piled in the image along the time 
axis such that a road profile is created [2]. A five-minute HD 
video yields a road profile of 1280×9000 pixels, which reduces 
video to 1/720th in size but keeps all the road and roadside colors 
over four-lane width.  

Although the road profile is sampled in one-line per frame, 
which contains spatial information in x direction (latitudinal), 
the consecutive collection of lines also reveals spatial 
information longitudinally. As shown in Figure 3, the scanning 



line captures road surface at the interaction with the plane of 
sight through the line. In addition, the scenes under this plane 
have been scanned in previous frames. The temporal contexture 
of road is recorded already in the road profile.  

B. Spatial and Temporal Appearance in Road Profile 

Ideally, if the ego-vehicle/camera moves at a constant speed 
straight forward, the road profile employs a parallel-perspective 
projection; parallel for those planes of sight, and perspective on 
the plane of sight. The ground with the same height from the 
camera has the same shape layout as in a perspective projection 
of a helicopter view (Fig. 3). Despite of minor waves of road and 
lanes due to limited vehicle rolling and pitching, the road profile 
records lane, road, and off-road regions along road. 

Unlike horizontal features on the ground, vertical features in 
the 3D space such as trees, poles, and vehicle rims are repeatedly 
scanned by the plane of sight. Their traces are hyperbola curves 
if the vehicle moves straight in a constant speed and being 
further adjusted by ego-vehicle speed. By locating these objects 
and calculating their tangent, we can identify whether they are 
approaching to the camera (zero-flow) during the vehicle motion 
[10]. For an identified vehicle boundary, its location with respect 
to the camera can be briefly estimated as Fig. 3 illustrated. 

Temporally, if the ego-vehicle has a yaw change (turning), 
all the road structures move inversely in the opposite direction 
in  the road profile. If the vehicle stops, background scenes 
appear as purely parallel lines along the time axis. Passing 
vehicles on side lanes leave short trajectories inward, while 
passed vehicles by the camera has short traces outward. A front 
vehicle has its trace appearing in the road profile for while if it 
is closer than 15m, and its trace width is squeezed and expanded 
according to the headway space ahead. This can also yield TTC 
and allow the vehicle to adjust the distance to front car or avoid 
collision. In order to avoid collision, we should stay alert when 
a front vehicle stops at the traffic lights and gets closer. Figure 4 
shows examples when vehicles appear in the road profile. We 
can find that the direction of a vehicle trace implies its relative 
speed with the camera, i.e., a passing or passed vehicle. 

If the road profile is classified to road, roadside, and other 
vehicles, short-range path planning (road following and speed 
control) be done in road profile. In principle, if the vehicle ego-
motion is known from its control, two consecutive lines in the 
road profile can be mapped toward the road space. The road 
portion cut off by road edges or vehicle rims provides a drivable 
area for keeping the vehicle on road. High vertical objects such 
as vehicles, poles, and trees are always captured by the sampling 
line if they come closer than 15m. Their latest positions in the 
road profile can be used for avoidance directly. Only an obstacle 
much lower than the camera height (mostly in a vehicle prohibit 
area) can be under the current plane of sight if the vehicle moves 
close to it. To avoid collision onto it, the path planning uses its 
previously detected positions in earlier frames.  

For the path planning and autonomous driving on normal 
roads, we classify pixels on the latest lines in the road profile 
into six semantic regions according to surface materials and 
vehicle motion styles. The pixels are labeled with RGB values: 

 Road (128,64,128): the road surface in temporal space. 
 Roadsides (128,128,128): adjacent to the road on two 

sides, including the sidewalk, grass, buildings area, etc.  
 Vehicles (64,0,128): moving or stopped vehicle seen 

from the driving view. 
 Lane marks (255,255,255): include either yellow solid 

line or white dashed line on the road. 
 Vertical obstacles (0,128,64): vertical objects on road 

side, including buildings, telegraph poles and so forth. 
 Stopping period (192,128,64): the whole period in road 

profile while ego-vehicle is stopping temporally.  

Road Profile  Label 
Figure 4: Road profile and labels. The time axis is upward. The horizontal axes 
are the x axis in the image. Vehicle traces are marked with V signs. (a) Vehicle 
traces in motion and stopping are visible in the road profile. (b) We labeld six 
semantic classes from materials and motion styles for road profile. 

The road appearance in the images is determined from the 
surface material reflectance both on-road and off-road. Under 
different illuminations, the color changes dramatically in the 
road profile [2]. The semantic segmentation is trying to detect 
drivable area such as road, and obstacles with semantic meaning, 
but not influenced from visual appearances such as shadow and 
highlight on road.  

III. SEMANTIC SEGMENTATION ON ROAD PROFILE 

A. Training Dataset and Pre-Processing 

We use naturalistic driving video to generate road profiles. 



A 5-min driving clip generates 9000 frame road profile. Across 
five different weather categories, 25 videos are selected for 
training and additional 5 videos are used for testing. We 
manually label the road profiles with original resolution into 
regions with the color defined in previous section, and then 
spatially scaled to the width of 256 pixels by selecting maximum 
value in the scaled regions. Similar to the RGB-D dataset 
NYUDv2 [11], we add an additional F channel for each RGB 
road profile. Channel F is pre-calculated features around 
sampling line in driving video, and here is the edge linearity [10] 
to include local structural information. We know the linearity 
provides a strong cue in finding lane marks according to our 
previous study. Our input dataset is a collection of RGB-F road 
profiles. The information in F channel is a compensation to the 
temporal space, and it helps detecting lane marks.  

Semantic segmentation [3,18] not only learns local features, 
but also memorizes the global relation of features through linear 
combination of local features and pooling. One-line contains 
latitudinal spatial relation, but not longitudinal relation and 
temporal. However, our semantic segmentation uses a short 
history patch to provides correct layout of segments. 
 Even if the road profile lacks height information of objects 

in frames, it contains both spatial layout (e.g., road, 
roadside, cars, pedestrians) and temporal event (e.g., 
camera turning, stopping, changing lane, traces of 
surrounding vehicles).  

 Our temporal events have continuity due to a smooth 
motion of vehicles and camera, rather than arbitrary 
appearing/disappearing. Therefore, the earlier information 
provides cues for current region recognition. This temporal 
continuity is preserved by semantic segmentation. 

Therefore, we use small patches with time length T to 
perform semantic segmentation. To generate instant output for 
vehicle control, this patch window shifts t lines along the road 
profile to predict latest segments. We can thus generate results 
at a short time interval t (1 frame). On the other hand, a short 
T requires less computing time in deep learning and overlaps in 
temporal shifting but may miss necessary longitudinal layout of 
road. We first resize input road profile of 1280 pixels in width 
to 256 pixels horizontally for using an existing software. Then, 
we carry out two experiments to observe the learnability of road 
profiles: (1) T is set to 256 frames and t shifts 9 lines along time 
axis, causing adjacent patches overlapping 256-9 lines; (2) T is 
set as 2 lines including t as one line, which is the extreme 
condition in semantic segmentation that obtains knowledge of 

the last line. Though it accelerates training process, the testing 
accuracy may decrease due to less temporal information.  

B. Architcture of Road Profile Semantic Segmentation 

A general concern in road profile semantic segmentation is 
the accuracy in learning road edges and other region boundaries, 
as those curves along the time axis reflect vehicle motion. Based 
on their precise location detected, we can plan an accurate path 
and avoid vehicle collision. The pooling operation in down-
sampling (encoding) can enlarge the receptive field and reduce 
the risk of over-fitting. But it also performs at expense of 
resolution loss significantly each time. By adopting the 
architecture as displayed in Fig. 5, we made the following 
improvements in the semantic segmentation:  

The residual stream [5] carries residual information of 
feature maps in full image resolution, making precise 
segmentation at boundaries and edges. In road profile semantic 
segmentation, we parallelly calculate the convolutional and 
pooling results inside the residual block and then concatenate 
with the pooling stream at each layer. The residual stream can 
be presented as 

              𝑥 𝑥 𝐹 𝑥 ; 𝜔                                       1  

where 𝑥  denotes the output of residual block at 𝑚  layer, 
𝐹 𝑥 ; 𝜔  is the residual with parameters 𝜔  learned in the 
backpropagation of network training. 

      The pooling stream [7] is responsible for learning global 
relationship of image elements, which results in correct 
segmentation of different regions. By utilizing residual and 
pooling streams together, the learned spatial and temporal 
features are more enriched along the boundary; this is significant 
to road profile semantic segmentation, since the ego-vehicle will  
be controlled according to the boundaries of road and other 
vehicle in the road profile. 

      A pyramid pooling module [6] consists of four small 
pooling filters of 1×1, 2×2, 3×3, and 6×6 pixels. Each filter 
forms a different feature map after pooling. Thereby, such a 
hierarchical architecture contains information in different scales. 
By up-sampling each feature map into identical map size via 
bilinear interpolation, they can be concatenated to form a 
multiple-layer feature representation. This carries both global 
and local context information.  

      Fully convolutional layer [4] replaces fully-connected 

 
Figure 5: Architecture of Road Profile Semantic Segmantation. The input image goes through an 11-layer fully convolutional nueral network. The pyramid pooling 
modules (green) are inserted into the pooling stream; the results of residual stream with residual blocks (red) are concatenated with pooling stream in each layer. 
In the down-sampling/up-sampling process, the image size is reduced/enlarged by half while the image depth is increased/decreased. 



layer in the end of neural network, such an Encoder-to-Decoder 
architecture breaks restriction of fixed input image size and 
achieves classification at pixel level. 

By combing above models, our model becomes a deep fully 
convolutional network with high resolution. As displayed in Fig. 
5, every input patch will be calculated in pooling and residual 
streams. Residual stream enables hierarchical features to be 
transmitted as residual, and the pyramid pooling module in 
pooling stream re-concatenates the hierarchical features after the 
convolution. The results of two streams will be merged after up-
sampling. Finally, a pixel-wise classification is generated 
through Softmax in the fully convolutional layer. 

IV. EXPERIMENTS 

Our work implemented temporal-to-spatial approach and 
achieved nice results on road profile semantic segmentation in 
two experiments as described in Table I. 

Table I Patch size and moving steps in experiments of segmenting road profiles 
 Patch size for 

training and testing 
Out patch size 
in testing 

Training 
moving step 

Patch 
width 

Ex. 1 256 lines Last 9 lines 9 lines 256 
Ex. 2 2 lines Last 1 lines 1 lines 256 

       Augmentation To avoid risk of destroying temporal 
information and distorting vehicle motion records, we do not 
perform data augmentation.   

       Filter Size: our neural networks adopt small kernel size as 
pooling filters: 1×1, 2×2, 3×3, and 5×5 pixels. It has been 
proved to be a good choice in ResNet [5] that the pooling 
performance by using smaller filters multiple times is better 
than using a large filter once. As receptive filed increases, 
image resolution decreases and the loss is unrecoverble, a larger 
pooling filter introduces more resolution loss. 

Number of layers: we fine-tune all layers by 
backpropagation through the whole network. Take Ex. 1 as 
example, the down-sampling process reduces the input image 
size from 256×256 to 16×16; the up-sampling process increases 
the size of feature map from 16×16 to 256×256, followed by a 
fully convolutional layer. In the semantic segmentation of road 
profiles, there are six layers for encoder, and five layers for 
decoder.  

Implementation All models are trained and tested with 
Tensorflow [13] on a single NVIDIA GTX 780Ti. For Ex.1, the 
training time is 18hr using 970 patches × 25 road profiles. The 
testing time is 0.3 second to generate a patch of 9 lines in the 
road profile. It is approximately a real-time sensing with three-
time prediction of road scenes per second. For Ex. 2, it takes 
0.8s to finish one second video (30lines), but temporal 
resolution of prediction is detailed to frame level. The vehicle 
can make an instant response to the input data for path planning.  

Optimization In this experiment, we also use RMS in 
Tenserflow optimizer to minimize the loss function, and set a 
decayed learning rate started from 0.0001. 

We carry out the experiment on road profile dataset, which 
contains five weather categories, and the semantic labeling with 
six classes. In this end-to-end neural network, we trained data all 
from scratch; for each weather category, we select one road 
profile for testing, the testing results are presented in Fig 6. 

To evaluate the testing results, there are many standard 
semantic segmentation metrics in benchmark datasets KITTI 
and Cityscapes for autonomous driving [13], such as 
Intersection-over-Union (IoU),  Pixel Accuracy (PA), Mean 
Pixel Accuracy (MPA), Mean Intersection over Union (MIoU) 
and Frequency Weighted Intersection over Union (FWIoU) 
[14]. In our experiments, we adopt two metrics, PA and IoU, as 

                           𝑃𝐴
𝑇𝑃 𝑇𝑁

𝑇𝑃 𝑇𝑁 𝐹𝑃 𝐹𝑁
                        2  

𝐼𝑜𝑈
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝑈𝑛𝑖𝑜𝑛
𝑇𝑃

𝑇𝑃 𝐹𝑃 𝐹𝑁
                        3  

Where TP/TN denotes true positive/negative pixels, FP/FN 
denotes false positive/negative pixels for each semantic class. 
Per-class PA and IoU of semantic classes are tested on 5 videos 
and shown in Table I. Though in a small set of one video clip 
(9000 frames), weather category-based mIoU are also tested and 
summarized in Table II.  

Table I Pixel Accuracy  of semantic segmentation across semantic classes 
PA 
IoU 

Road Road-
side 

Vehicle Lane 
Mark 

Stopping 
Period 

Vertical 
Objects 

Ex1-PA 
IoU 

0.947 
0.889 

0.949 
0.905 

0.995 
0.441 

0.996 
0.609 

0.976 
0.122 

0.9726 
0.593 

Ex2-PA 
IoU 

0.921 
0.842 

0.932 
0.872 

0.993 
0.246 

0.995 
0.568 

0.967 
0.223 

0.962 
0.550 

Table II Pixel Accuracy  of semantic segmentation across weathers 
PA 

(mIoU) 
Sunny 

facing sun 
Sunny back 

to sun 
Rainy Shadow Cloudy 

Ex1 mPA 
mIoU 

0.991 
0.8054 

0.975 
0.6768 

0.9734 
0.4709 

0.9868 
0.7500 

0.933 
0.4684 

Ex2 mPA 
mIoU 

0.9882 
0.6153 

0.9725 
0.5524 

0.9664 
0.4890 

0.9827 
0.5827 

0.893 
0.3950 

The experiment results displayed in Fig. 6 is an intuitive way 
to evaluate the accuracy of segmentation. First, road profile 
semantic segmentation has stunning performances in reducing 
the influence of shadow, highlight and other illumination 
changes across different weather. For example, semantic 
segmentation removed wiper traces in the road profile in a 
raining day, and leaved no imprints of rain drops from vehicle 
glass. Second, the testing accuracy in Ex. 2 is lower than Ex. 1 
either on semantic classes or weather categories, mainly because 
the smaller input patch contains less related temporal-spatial 
information. However, by reducing the height of patch into two 
pixels in Ex. 2, we find road profile is still learnable, this has 
great significance in real time prediction of driving scene by just 
scanning the latest line in the road profile. 

       In the future work, we will continue segmenting sub-classes 
on road profile. For example, we will add pedestrian in our 
labeling work, because the detection of pedestrian is helpful to 
avoid traffic accident in autonomous driving. Furthermore, in 
the training dataset, we can change the temporal overlapping 
pixels between consecutive patches, which has an influence on 
the learning of some local consecutive curves. Third, there are 
still space between Ex. 1 and 2 on the selection of patch length, 
we will try other time lengths between 2 and 256 pixels as a 
tradeoff. Fourth, in addition to the experiments on those weather 
above, we can try on some extreme weather categories such as 
night and dark lit. Last, to enhance the spatial relation of pixels 
by embedding   some post-processing steps such as CRF-based 
refinement into the end-to-end streaming of networks [15, 16]. 



V. CONCLUSION 

      We apply a temporal-to-spatial approach for real-time 
autonomous driving with to pixel-wised semantic segmentation. 
The experimental results are convincing while the cost in 
calculation is much less than that of frame by frame. Semantic 
segmentation can be implemented on driving scenes if a spatial 
2D view is reduced into a temporal 1D view. In the reduced 
temporal-spatial space, an accurate and fast semantic 
segmentation will avoid vehicle collision at a close range. 
Through the training of road profiles under all kinds of weather 
and illumination, our model can filter the disturbance of shadow, 
highlight, rainy drops, and sunny to find drivable regions and 
objects with collision danger. 
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Figure 6: The road profile semantic segmentation on five weather categories in Ex. 1. The time axes are upward.  


