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ABSTRACT: 

The use of vision-based localization and mapping techniques, such as visual odometry and SLAM, has become increasingly prevalent 

in the field of Geomatics, particularly in mobile mapping systems. These methods provide real-time estimation of the 3D scene as well 

as sensor's position and orientation using images or LiDAR sensors mounted on a moving platform. While visual odometry primarily 

focuses on the camera's position, SLAM also creates a 3D reconstruction of the environment. Conventional (geometric) and learning-

based approaches are used in visual SLAM, with deep learning networks being integrated to perform semantic segmentation, object 

detection and depth prediction. The goal of this work is to report ongoing developments to extend the GuPho stereo-vision SLAM-

based system with deep learning networks for tasks such as crack detection, obstacle detection and depth estimation. Our findings 

show how a neural network can be coupled to SLAM sequences in order to support 3D mapping application with semantic information. 

 

 

1. INTRODUCTION 

Vision-based localization techniques, such as visual odometry 

(VO) and Simultaneous Localization And Mapping (SLAM), are 

getting more and more common in Geomatics and a key 

component in many mobile mapping systems, especially portable 

ones (Torresani et al., 2021a; Otero et al., 2020; Nocerino et al., 

2019a; Blaser et al., 2018; Schöps et al., 2017; Nüchter et al., 

2015). VO and SLAM provide real-time estimation of the 

position and orientation of the sensor moving in an environment 

based solely on a sequence of images or LiDAR profiles captured 

by one or more sensors rigidly mounted on a platform. They are 

often combined with other positioning systems such as GNSS 

and IMU to provide a seamless and more robust navigation and 

mapping solution. While VO primarily focuses on the camera's 

position, reconstructing sensor trajectories, SLAM also creates a 

3D sparse, semi-dense or dense reconstruction of the 

environment (Yang et al. 2022; Taketomi et al., 2017; 

Scaramuzza and Fraundorfer, 2011).  

SLAM-based 3D surveyinng is nowadays used in multiple 

applications and field: underwater mapping (Nocerino et al., 

2018), rail tunnel inspection (Panella et al., 2020), exploration 

(Steenbeek and Nex, 2022), autonomous driving (Singandhupe 

and La, 2019), Augmented Reality (Torresani et al., 2021b), etc. 

The aim of the work is to introduce the on-going developments 

to extend our stereo-vision, SLAM-based, lightweight and 

modular system, called GuPho (Menna et al., 2022; Torresani et 

al., 2021) with deep learning neural networks in order to perform: 

• Semantic segmentation, e.g., for crack detection: the system is 

used in monitoring or inspect tasks and it identifies in real-time 

cracks in structures; leveraging on the stereo-vision, metric 

information can be retrieved; 

• Object detection, such as rocks: when GuPho is used to 

automatically guide a moving robot, the detection of obstacle 

is a fundamental task for avoidance and re-routing; 

• Monocular Depth Estimation (MDE): depth prediction is useful 

to improve scene understanding, support autonomous 

navigation and complement conventional MVS methods in 

textureless areas.  

The paper is organized as follows: Section 2 briefly recall the 

low-cost, lightweight and portable modular prototype system, 

GuPho. Section 3 reports single, stereo or multi-sensor SLAM 

solutions for 3D mapping purposes. Deep learning solutions are 

mentioned in Section 4. Data preparation is discussed in Section 

5 whereas experiments, evaluations and results are presented in 

Section 6. Finally Section 7 concludes the paper. 

 

  

Figure 1: The GuPho stereo-vision system for real-time 3D 

mapping in its handheld (a) and robotic (b) version. 

 

 

2. THE GUPHO SYSTEM 

GuPho (Guided Photogrammetry system) is a low-cost, 

lightweight and portable modular prototype system based on 

stereo vision and vSLAM method (Menna et al., 2022; Torresani 

et al., 2021a; Di Stefano et al, 2021). GuPho is equipped with a 

Raspberry Pi 4 model B, with a roadcom BCM2711, Quad core 

Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz and 8gb RAM. It 

was developed to provide real-time guidance to the surveyor 

during the image capturing phase, ensuring a more reliable and 

effective photogrammetric data acquisition and processing. 

GuPho can use rectilinear or fisheye lenses to survey indoor or 

outdoor scenarios, including underwater environments. Real-

time 3D mapping capabilities are provided through 

OpenVSLAM (Sumikura et al., 2019) which builds upon ORB-

SLAM2 (Mur-Artal and Tardós, 2017). Real-time computation 

and visualisation capabilities are used to introduce visual 

feedbacks to users, including camera-to-object distance warnings 

to guarantee the expected ground sample distance (GSD) or 

speed warnings to avoid motion blur. Also, it uses a novel 

automatic exposure algorithm that exploits 3D information of the 

observed scene. Figure 1 shows the realized GuPho system, 
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either in its handheld version or coupled to a ground robot (Leo 

Rover1) for autonomous navigation and 3D mapping. 

 

 

3. SLAM SOLUTIONS 

The literature is populated by single, stereo or multi-camera 

photogrammetric systems designed for portable mobile mapping 

applications and SLAM processing (Perfetti and Fassi, 2022; 

Torresani et al., 2021; Ortiz-Coder and Sánchez-Ríos, 2020; 

Meyer et al., 2020; Menna et al., 2019; Nocerino et al., 2019b; 

Koehl et al., 2016; Teo et al., 2015; Shortis et al., 2007). For 

mobile mapping applications, real-time processing is mandatory 

and performed with SLAM approaches (Lai, 2022). In particular, 

vSLAM can be divided into two categories: traditional and 

learning-based vSLAM (Chen et al., 2022). Traditional vSLAM 

uses geometric features, such as points and lines extracted from 

the images, or the pixel intensity values to understand and map 

the environment. Learning-based vSLAM methods rely on deep 

learning-based feature descriptors (Bruno and Colombini, 2021), 

hybrid methods (Tang et al., 2019) or complete end-to-end 

approaches (Wang et al., 2017). Convolutional Neural Networks 

(CNN) have been also integrated into SLAM pipeline (Tateno et 

al., 2017): the estimation of camera pose is performed by 

minimizing photometric error whereas learning is used to 

compute depth information. Steenbeek and Nex (2022) proposed 

a similar concept applied to UAV video sequences. 

Novel approaches are also integrating Neural Radiance Fields 

(NeRF - Mildenhall et al. 2021) into SLAM pipeline in order to 

offer novel geometric and photometric 3D mapping solutions for 

accurate and real-time scene reconstruction from monocular 

images (Rosinol et al., 2022). Sucar et al. (2021) introduced 

iMAP, the first real-time NeRF-based dense online SLAM model 

that optimizes camera pose and the implicit scene representation 

in a hand-held RGB-D camera system. The iMAP system 

employs an iterative two-step approach of tracking and mapping 

and utilizes keyframe selection. Zhu et al. (2022) introduced 

NICE-SLAM, a dense RGB-D SLAM system that uses a 

hierarchical scene representation incorporating information at 

multiple levels and pre-trained geometric priors, resulting in 

detailed reconstructions of large indoor scenes that are more 

scalable, efficient, and robust than other recent SLAM systems 

using neural networks. The successive NICER-SLAM (Zhu et 

al., 2023) is a dense RGB SLAM system that optimizes for 

camera poses and a hierarchical neural implicit map 

representation, which allows for high-quality novel view 

synthesis. The system incorporates additional supervision 

signals, including monocular geometric cues and optical flow, 

and a simple warping loss to enforce geometry consistency.  

SLAM algorithms have been also coupled to neural networks to 

enhance recognition capability in images or classification 

algorithms in 3D space (Pillai and Leonard, 2015; Zhag et al., 

2018; Duan et al., 2019). 

 

 

4. DEEP LEARNING SOLUTIONS 

In recent years, machine learning techniques have been applied 

to images or point clouds with promising results. Convolutional 

neural networks (CNNs) and other deep learning models can 

provide high accuracy, recall and prediction speed, allowing for 

real-time application in SLAM-based applications. 

Our developments focused on coupling deep learning methods to 

image sequences acquired by the GuPho system for semantic 

 
1 https://www.leorover.tech/ 

segmentation and objected detection as well as monocular depth 

estimation (Section 4.3). 

• Deep Learning for semantic segmentation and object 

detection: we rely on Yolov8 (Ultralytics, 2023), designed to 

detect and localize objects within images or video frames. It 

can be re-trained to detect a wide range of (new) objects, 

ensuring real-time performances at 30 fps or higher on 

medium GPU. Yolov8 is based on multiple layers of 

convolutional and pooling operations, followed by several 

fully connected layers. The network takes an input image and 

processes it through the layers, gradually learning to 

recognize and locate objects within the image. We have 

retrained and generalized the method to our scenarios. 

• Deep Learning for MDE: we build upon MiDaS (Ranftl et al., 

2022) which demonstrated to clearly outperform competing 

methods across diverse datasets. It includes a flexible loss 

function and a robust training objective invariant to changes 

in depth range and scale, advocating the use of principled 

multi-objective learning to combine data from different 

sources.  

 

4.1. Instance segmentation and object detection 

The primary objective of object detection is to identify the 

(precise) location of various objects present in a given scene and 

assign relevant labels to the bounding boxes of these objects. On 

the other hand, instance segmentation is a technique that 

identifies and labels individual objects in an image and their 

components at pixel level. This allows for a more precise 

understanding of objects and their relationships. The state-of-the-

art neural network for object detection in images is YOLO. The 

YOLO (You Only Look Once) algorithm (Redmon et al., 2016) 

was a cutting-edge object detection method that could achieve 

both high precision and speed. YOLO differs from traditional 

classifiers as it examines the image just once and can identify 

objects within it. YOLO gained rapid popularity due to its high 

speed and accuracy in object detection and image segmentation. 

As a one-stage object detectors, YOLO directly predicts the 

bounding boxes and class probabilities of objects in a single pass 

through the network. These models are known for their speed and 

efficiency, making them well-suited for real-time applications. 

Different variants of YOLO (Redmon and Farhadi, 2017; 

Bochkovskiy at al., 2020; Wang et al., 2022; Ultralytics, 2023) 

were released throughout the years (Figure 2), with successive 

improvements in terms of speed, accuracy, efficiency and 

generalization. Tiny implementation of YOLO on single-board 

devices (e.g. Raspberry Pi, Jetson, etc.) were also proposed 

(Ayoub and Schneider-Kamp, 2021; Chan et al., 2022). 

With respect to the latest version, YOLOv8 (Ultralytics, 2023), 

there are five models (YOLOv8n, YOLOv8s, YOLOv8m, 

YOLOv8l, and YOLOv8x) for detection, segmentation and 

classification. YOLOv8n is the fastest and smallest, while 

YOLOv8x is the most accurate yet the slowest among them. 

 
 
Figure 2: Timeline of You Only Look Once (YOLO) variants (Zhang, 

2023). 

 

Beside identification and tracking of people or animals (Kajabad 

and Ivanov, 2019; Tang et al., 2023), the YOLO network has 

been used to detect pavement or side-walk cracks (Yang et al., 
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2019; Liu et al., 2020; Qui and Lau, 2023; Wang et al, 2023), 

rocks in mining areas (Loncomilla et al., 2022) and concrete 

bridge defects (Zhang et al. 2019). It has been shown that YOLO 

is faster than other object detector methods that use a two-stage 

deep learning approach like Faster R-CNN (Yin et al., 2019). 

 

4.2. Monocular depth estimation 

Although humans find it easy to estimate the depth of a scene 

from a single image, it is a challenging task for computational 

models due to the ill-posed problem and high resource 

requirements. Monocular Depth Estimation (MDE) refers to the 

process of estimating depth from a single RGB image (Ming et 

al., 2021). Being able to estimate depth from a single image has 

several benefits, such as aiding in scene comprehension, 3D 

modelling, robotics, autonomous driving, etc. The recovery of 

depth information is particularly important in these applications 

when other information such as stereo images, optical flow or 

point clouds are not available. Real-time depth estimation has 

traditionally been performed using stereo images or video 

sequences, as evidenced by the research in (Ha et al., 2016; Kong 

and Black, 2015; Cheng and Huang, 2015; Karsch. et al., 2015). 

However, these methods are resource-intensive and require more 

data compared to monocular depth estimation. Therefore, MDE 

has become increasingly popular, leading to the development of 

several deep learning methods. These methods do not rely on 

hand-crafted features and utilize deep convolutional neural 

networks. Among different tested networks, we have chosen 

Zero-shot Transfer by Combining Relative and Metric Depth 

(ZoeDepth) framework (Bhat et al., 2023): it combines both 

monocular depth estimation (MDE) and relative depth estimation 

(RDE) approaches in a two-stage framework (Figure 3). In the 

first stage, an encoder-decoder structure is trained to estimate 

relative depths from the input image. This model is trained on a 

large variety of datasets, which improves its generalization to 

different scenes and environments. It builds upon the MiDaS 

(Ranftl et al., 2020) training strategy for relative depth prediction 

which uses a loss that is invariant to scale and shift. In the second 

stage, components responsible for estimating metric depth are 

added as an additional head. This stage helps to refine the depth 

estimates by incorporating metric depth information, which is the 

absolute distance between objects in the scene. 

 

 
Figure 3: The ZoeDepth architecture. An RGB image is fed 

into the MiDaS depth estimation framework to predict a depth 

(after Bhat et al., 2023). 

 

 

5. DATA PREPARATION FOR OBJECT DETECTION 

The datasets utilized to evaluate neural networks were acquired 

via GuPho using rectilinear or fisheye lenses. The image 

sequences have a resolution of 1280 x1024 pixels and feature 

cracks in asphalt or cement surfaces or sidewalks or building 

walls, off-road paths with rocks, tunnels with fall obstacles, etc.  

Given our objects of interest, a manual process of image 

annotation to improve detection performances was necessary. 

Stones were annotated using bounding boxes (Figure 4a-b) 

whereas cracks were annotated using polygons (Figure 4c-d). 

This latter type of annotation is useful for detecting irregularly 

shaped objects and provides more precise information about the 

object's shape. In order to boost the model’s performance, some 

augmentation techniques were applied, such as rotation (90 deg 

clockwise and counter-clockwise), brightness (+/-15%), blurring 

(up to 2.5px), shearing (±5 deg horizontal, ±5 deg vertical), 

cropping (0% minimum zoom, 25% maximum zoom).  

 

a)  c)  

b)  d)  

Figure 4: Annotated images: stones in a tunnel (a-b), cracks in 

tiles (c) or on asphalt (captured by fisheye lens). 

 

6. EXPERIMENTAL EVALUATION AND RESULTS 

YOLOv8 was chose due to its accuracy and speed in comparison 

with other versions. For computational limitations, the learning-

based functionalities are applied to monocular images of GuPho. 

The extracted semantic information, coupled to the stereo-vision 

capabilities of GuPho, allows to retrieve metric information and 

deliver added-value 3D mapping results. 

For these initial tests, the processing and analyses were 

performed “offline”, using an 12th Gen Intel® Core™ i9-

12950HX 2.30 GHz with 32 GB RAM and NVIDIA RTX A3000 

12GB GPU. 

To evaluate detection results, metrics like Recall R and mean 

Average Precision are used: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
, 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
, 

 

where 𝑡𝑝 is the true positive, 𝑓𝑛 is the false negative and 𝑓𝑝 is 

the false positive; 

 

𝐴𝑃 =  ∑ (𝑟𝑒𝑐𝑎𝑙𝑙𝑛 − 𝑟𝑒𝑐𝑎𝑙𝑙𝑛)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛𝑛 . 

 

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁
𝑖=1 , 

 

where N is the number of classes and i is the corresponding class. 

Some of the prediction/detection results on test images are shown 

in Figure 5. Each predicted stone is recognised by a bounding box 

and a confidence score which shows how likely the box contains 

an object of interest and how confident the classifier is about it. 

Predicted cracks are shown with a bounding box, a polygon mask 

and also confidence score. The confidence threshold was set to 

0.25, i.e., the minimum score for which the model considers the 

prediction to be a true prediction. 

For stone detection, various iterations of the YOLOv8 model 

were tested (Table 1), leading to the conclusion that YOLOv8s 

performed optimally for detecting the stones. Specifically, the 

highest level of detection accuracy was achieved after conducting 

150 epochs, with a Recall of 0.70 and mAP of 0.64. Besides, the 

processing and inference time are important and Yolov8s 
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performed better (0.3 ms for processing and 8 ms for inference 

time). Results indicated that there was no significant 

improvement in detection accuracy beyond 150 epochs.  

 

Model Epochs Processing 

Time (ms) 

Inference 

Time(ms) 

R mAP 

YOLOV8S 70 4.3 3.6 0.65 0.64 

YOLOV8S 100 4.2 18.2 0.69 0.65 

YOLOV8S 150 0.3 8.0 0.70 0.64 

YOLOV8m 100 4.6 18.4 0.69 0.65 

Table 1: Object detection evaluation of YOLOv8. 

 

For crack detection, YOLOv8x model was found to be the fastest 

(0.2 ms for processing) and the most accurate one (R of 0.73) 

after 100 epochs (Table 2). Figure 5 reports some detection 

results on GuPho frames extracted from sequences in the field. 

 

Model Epochs Processing 

Time (ms) 

Inference 

Time (ms) 

R mAP 

YOLOV8m 50 0.2 13 0.66 0.61 

YOLOV8m 100 3.2 35.7 0.62 0.59 

YOLOV8S 150 13.2 0.62 0.56 0.59 

YOLOV8X 100 0.2 14.4 0.73 0.69 

YOLOV8S 100 4.2 18.7 0.65 0.65 

YOLOV8n 200 0.0 7.1 0.16 0.17 

Table 2: Instance segmentation evaluation of YOLOv8. 

 

For monocular depth estimation, a single camera sequence from 

GuPho was considered. We chose the two-stage framework that 

combined MDE and RDE, named ZoeDepth. As shown in Figure 

6, the learning-based approach have a good performance on our 

dataset (for rectilinear or fisheye lenses) and could be coupled to 

conventional photogrammetric approaches for depth estimation. 

 

 

7. CONCLUSIONS 

The paper introduced an extension of stereo-vision, SLAM-

based, lightweight and modular GuPho system with deep 

learning neural networks in order to perform semantic 

segmentation, object detection and depth estimation. We focused 

on rock detection (to aid autonomous navigation and obstacle 

avoidance in robotics applications), crack detection (to support 

structural monitoring and inspection) and depth prediction (to 

complement conventional stereo-vision methods in areas with 

non-collaborative surfaces). Our findings show how a neural 

network can be couple to SLAM sequences in order to support 

3D mapping application with semantic information. 

In order to achieve on-board real-time processing of both SLAM 

and deep learning tasks, we plan to extend GuPho with a more 

powerful board (e.g., NVIDIA Jetson Nano, equipped with an 

NVIDIA GPU with 128 CUDA cores) to allow computationally 

intensive tasks on the GPU. 

The final aim in the long run is to transform GuPho into an 

intelligent system that can automatically and swiftly identify 

objects and obstacles in real-time. GuPho can be operated 

manually to identify damages on man-made structures or can 

navigate a robotic platform in challenging environments, like 

forests or tunnels. Incorporating deep learning methods, GuPho 

will obtain a profound and intelligent understanding of its 

surroundings for application and deployment in various fields. 

 

 

    
 

    

Figure 5: Results of rocks (above) and cracks (below) detection in some images of a GuPho sequence (b). 

 

ACKNOWLEDGEMENTS 

This study was carried out within the Interconnected Nord-Est 

Innovation Ecosystem (iNEST) and received funding from the 

European Union Next-GenerationEU (Piano Nazionale Di 

Ripresa e Resilienza (PNRR) – Missione 4, Componente 2, 

Investimento 1.5 – D.D. 1058 23/06/2022, ECS00000043). This 

manuscript reflects only the authors’ views and opinions, neither 

the European Union nor the European Commission can be 

considered responsible for them. 

 

REFERENCES 

Ayoub, N., Schneider-Kamp, P., 2021. Real-Time On-Board 

Deep Learning Fault Detection for Autonomous UAV 

Inspections. Electronics, Vol. 10(9):1091. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-363-2023 | © Author(s) 2023. CC BY 4.0 License.

 
366



 

 

a)  b)  

c)  

d)  

Figure 6: Results of two GuPho’s SLAM processes in a WWI tunnel (a) and indoor building (b). Monocular depth estimations for 

some images of the sequences: tunnel (c) and indoor building (d). 

 

 

Bhat, S.F., Birkl, R., Wofk, D., Wonka, P. and Müller, M., 2023. 

Zoedepth: Zero-shot transfer by combining relative and metric 

depth. arXiv preprint arXiv:2302.12288. 

 

Bhat, S.F., Birkl, R., Wofk, D., Wonka, P. and Müller, M., 2023. 

Zoedepth: Zero-shot transfer by combining relative and metric 

depth. arXiv preprint arXiv:2302.12288. 

 

Blaser, S., Cavegn, S., Nebiker, S., 2018. Development of a 

portable high performance mobile mapping system using the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1/W1-2023 
12th International Symposium on Mobile Mapping Technology (MMT 2023), 24–26 May 2023, Padua, Italy

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-W1-2023-363-2023 | © Author(s) 2023. CC BY 4.0 License.

 
367



 

robot operating system. ISPRS Annals of Photogrammetry, 

Remote Sensing and Spatial Information Sciences, vol. IV-1, pp. 

13-20. 

 

Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M., 2020. Yolov4: 

Optimal speed and accuracy of object detection. arXiv preprint 

arXiv:2004.10934. 

 

Bruno, H.M.S. and Colombini, E.L., 2021. LIFT-SLAM: a deep-

learning feature-based monocular visual SLAM method. 

arXiv:2104.00099v2 
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