57 research outputs found

    Semantic Query Reformulation in Social PDMS

    Full text link
    We consider social peer-to-peer data management systems (PDMS), where each peer maintains both semantic mappings between its schema and some acquaintances, and social links with peer friends. In this context, reformulating a query from a peer's schema into other peer's schemas is a hard problem, as it may generate as many rewritings as the set of mappings from that peer to the outside and transitively on, by eventually traversing the entire network. However, not all the obtained rewritings are relevant to a given query. In this paper, we address this problem by inspecting semantic mappings and social links to find only relevant rewritings. We propose a new notion of 'relevance' of a query with respect to a mapping, and, based on this notion, a new semantic query reformulation approach for social PDMS, which achieves great accuracy and flexibility. To find rapidly the most interesting mappings, we combine several techniques: (i) social links are expressed as FOAF (Friend of a Friend) links to characterize peer's friendship and compact mapping summaries are used to obtain mapping descriptions; (ii) local semantic views are special views that contain information about external mappings; and (iii) gossiping techniques improve the search of relevant mappings. Our experimental evaluation, based on a prototype on top of PeerSim and a simulated network demonstrate that our solution yields greater recall, compared to traditional query translation approaches proposed in the literature.Comment: 29 pages, 8 figures, query rewriting in PDM

    Improving User Interaction on Ontology-based Peer Data Management Systems

    Get PDF
    The issue of user interaction for query formulation and execution has been investigated for distributed and dynamic environments, such as Peer Data Management System (PDMS). Many of these PDMS are semantic based and composed by data peers which export schemas that are represented by ontologies. In the literature we can find some proposed PDMS interfaces, but none of them addresses, in a general way, the needs of a PDMS for user interaction. In this work we propose a visual user query interface for ontology-based PDMS. It provides a simple and straightforward interaction with this type of system. It aims not only providing a natural visual query interface but also supporting a precise and direct manipulation of the data schemas for query generation

    GridVine: an Infrastructure for Peer Information Management

    Get PDF
    GridVine is a semantic overlay infrastructure based on a peer-to-peer (P2P) access structure. Built following the principle of data independence, it separates a logical layer — in which data, schemas, and schema mappings are managed — from a physical layer consisting of a structured P2P network supporting decentralized indexing, key load-balancing, and efficient routing. The system is decentralized, yet fosters semantic interoperability through pair-wise schema mappings and query reformulation. GridVine’s heterogeneous but semantically related information sources can be queried transparently using iterative query reformulation. The authors discuss a reference implementation of the system and several mechanisms for resolving queries collaboratively

    PicShark: mitigating metadata scarcity through large-scale P2P collaboration

    Get PDF
    With the commoditization of digital devices, personal information and media sharing is becoming a key application on the pervasive Web. In such a context, data annotation rather than data production is the main bottleneck. Metadata scarcity represents a major obstacle preventing efficient information processing in large and heterogeneous communities. However, social communities also open the door to new possibilities for addressing local metadata scarcity by taking advantage of global collections of resources. We propose to tackle the lack of metadata in large-scale distributed systems through a collaborative process leveraging on both content and metadata. We develop a community-based and self-organizing system called PicShark in which information entropy—in terms of missing metadata—is gradually alleviated through decentralized instance and schema matching. Our approach focuses on semi-structured metadata and confines computationally expensive operations to the edge of the network, while keeping distributed operations as simple as possible to ensure scalability. PicShark builds on structured Peer-to-Peer networks for distributed look-up operations, but extends the application of self-organization principles to the propagation of metadata and the creation of schema mappings. We demonstrate the practical applicability of our method in an image sharing scenario and provide experimental evidences illustrating the validity of our approac

    SomeRDFS in the Semantic Web

    Get PDF
    The Semantic Web envisions a world-wide distributed architecture where computational resources will easily inter-operate to coordinate complex tasks such as query answering. Semantic marking up of web resources using ontologies is expected to provide the necessary glue for making this vision work. Using ontology languages, (communities of) users will build their own ontologies in order to describe their own data. Adding semantic mappings between those ontologies, in order to semantically relate the data to share, gives rise to the Semantic Web: data on the web that are annotated by ontologies networked together by mappings. In this vision, the Semantic Web is a huge semantic peer data management system. In this paper, we describe the SomeRDFS peer data management systems that promote a "simple is beautiful" vision of the Semantic Web based on data annotated by RDFS ontologies

    Viewpoints on emergent semantics

    Get PDF
    Authors include:Philippe Cudr´e-Mauroux, and Karl Aberer (editors), Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani, Arantxa Illaramendi, Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De Tr´eWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio

    Processing Rank-Aware Queries in Schema-Based P2P Systems

    Get PDF
    Effiziente Anfragebearbeitung in Datenintegrationssystemen sowie in P2P-Systemen ist bereits seit einigen Jahren ein Aspekt aktueller Forschung. Konventionelle Datenintegrationssysteme bestehen aus mehreren Datenquellen mit ggf. unterschiedlichen Schemata, sind hierarchisch aufgebaut und besitzen eine zentrale Komponente: den Mediator, der ein globales Schema verwaltet. Anfragen an das System werden auf diesem globalen Schema formuliert und vom Mediator bearbeitet, indem relevante Daten von den Datenquellen transparent für den Benutzer angefragt werden. Aufbauend auf diesen Systemen entstanden schließlich Peer-Daten-Management-Systeme (PDMSs) bzw. schemabasierte P2P-Systeme. An einem PDMS teilnehmende Knoten (Peers) können einerseits als Mediatoren agieren andererseits jedoch ebenso als Datenquellen. Darüber hinaus sind diese Peers autonom und können das Netzwerk jederzeit verlassen bzw. betreten. Die potentiell riesige Datenmenge, die in einem derartigen Netzwerk verfügbar ist, führt zudem in der Regel zu sehr großen Anfrageergebnissen, die nur schwer zu bewältigen sind. Daher ist das Bestimmen einer vollständigen Ergebnismenge in vielen Fällen äußerst aufwändig oder sogar unmöglich. In diesen Fällen bietet sich die Anwendung von Top-N- und Skyline-Operatoren, ggf. in Verbindung mit Approximationstechniken, an, da diese Operatoren lediglich diejenigen Datensätze als Ergebnis ausgeben, die aufgrund nutzerdefinierter Ranking-Funktionen am relevantesten für den Benutzer sind. Da durch die Anwendung dieser Operatoren zumeist nur ein kleiner Teil des Ergebnisses tatsächlich dem Benutzer ausgegeben wird, muss nicht zwangsläufig die vollständige Ergebnismenge berechnet werden sondern nur der Teil, der tatsächlich relevant für das Endergebnis ist. Die Frage ist nun, wie man derartige Anfragen durch die Ausnutzung dieser Erkenntnis effizient in PDMSs bearbeiten kann. Die Beantwortung dieser Frage ist das Hauptanliegen dieser Dissertation. Zur Lösung dieser Problemstellung stellen wir effiziente Anfragebearbeitungsstrategien in PDMSs vor, die die charakteristischen Eigenschaften ranking-basierter Operatoren sowie Approximationstechniken ausnutzen. Peers werden dabei sowohl auf Schema- als auch auf Datenebene hinsichtlich der Relevanz ihrer Daten geprüft und dementsprechend in die Anfragebearbeitung einbezogen oder ausgeschlossen. Durch die Heterogenität der Peers werden Techniken zum Umschreiben einer Anfrage von einem Schema in ein anderes nötig. Da existierende Techniken zum Umschreiben von Anfragen zumeist nur konjunktive Anfragen betrachten, stellen wir eine Erweiterung dieser Techniken vor, die Anfragen mit ranking-basierten Anfrageoperatoren berücksichtigt. Da PDMSs dynamische Systeme sind und teilnehmende Peers jederzeit ihre Daten ändern können, betrachten wir in dieser Dissertation nicht nur wie Routing-Indexe verwendet werden, um die Relevanz eines Peers auf Datenebene zu bestimmen, sondern auch wie sie gepflegt werden können. Schließlich stellen wir SmurfPDMS (SiMUlating enviRonment For Peer Data Management Systems) vor, ein System, welches im Rahmen dieser Dissertation entwickelt wurde und alle vorgestellten Techniken implementiert.In recent years, there has been considerable research with respect to query processing in data integration and P2P systems. Conventional data integration systems consist of multiple sources with possibly different schemas, adhere to a hierarchical structure, and have a central component (mediator) that manages a global schema. Queries are formulated against this global schema and the mediator processes them by retrieving relevant data from the sources transparently to the user. Arising from these systems, eventually Peer Data Management Systems (PDMSs), or schema-based P2P systems respectively, have attracted attention. Peers participating in a PDMS can act both as a mediator and as a data source, are autonomous, and might leave or join the network at will. Due to these reasons peers often hold incomplete or erroneous data sets and mappings. The possibly huge amount of data available in such a network often results in large query result sets that are hard to manage. Due to these reasons, retrieving the complete result set is in most cases difficult or even impossible. Applying rank-aware query operators such as top-N and skyline, possibly in conjunction with approximation techniques, is a remedy to these problems as these operators select only those result records that are most relevant to the user. Being aware that in most cases only a small fraction of the complete result set is actually output to the user, retrieving the complete set before evaluating such operators is obviously inefficient. Therefore, the questions we want to answer in this dissertation are how to compute such queries in PDMSs and how to do that efficiently. We propose strategies for efficient query processing in PDMSs that exploit the characteristics of rank-aware queries and optionally apply approximation techniques. A peer's relevance is determined on two levels: on schema-level and on data-level. According to its relevance a peer is either considered for query processing or not. Because of heterogeneity queries need to be rewritten, enabling cooperation between peers that use different schemas. As existing query rewriting techniques mostly consider conjunctive queries only, we present an extension that allows for rewriting queries involving rank-aware query operators. As PDMSs are dynamic systems and peers might update their local data, this dissertation addresses not only the problem of considering such structures within a query processing strategy but also the problem of keeping them up-to-date. Finally, we provide a system-level evaluation by presenting SmurfPDMS (SiMUlating enviRonment For Peer Data Management Systems) -- a system created in the context of this dissertation implementing all presented techniques

    Emergent semantics in distributed knowledge management

    Get PDF
    Organizations and enterprises have developed complex data and information exchange systems that are now vital for their daily operations. Currently available systems, however, face a major challenge. On todays global information infrastructure, data semantics is more and more context- and time-dependent, and cannot be fixed once and for all at design time. Identifying emerging relationships among previously unrelated information items (e.g., during data interchange) may dramatically increase their business value. This chapter introduce and discuss the notion of Emergent Semantics (ES), where both the representation of semantics and the discovery of the proper interpretation of symbols are seen as the result of a selforganizing process performed by distributed agents, exchanging symbols and adaptively developing the proper interpretation via multi-party cooperation and conflict resolution. Emergent data semantics is dynamically dependent on the collective behaviour of large communities of agents, which may have different and even conflicting interests and agendas. This is a research paradigm interpreting semantics from a pragmatic prospective. The chapter introduce this notion providing a discussion on the principles, research area and current state of the art

    PicShark: Mitigating Metadata Scarcity Through Large-Scale P2P Collaboration

    Get PDF
    Abstract With the commoditization of digital devices, personal information and media sharing is becoming a key application on the pervasive Web. In such a context, data annotation rather than data production is the main bottleneck. Metadata scarcity represents a major obstacle preventing effcient information processing in large and heterogeneous communities. However, social communities also open the door to new possibilities for addressing local metadata scarcity by taking advantage of global collections of resources. We propose to tackle the lack of metadata in large-scale distributed systems through a collaborative process leveraging on both content and metadata. We develop a community-based and self-organizing system called PicShark in which information entropy in terms of missing metadata is gradually alleviated through decentralized instance and schema matching. Our approach focuses on semi- structured metadata and confines computationally expensive operations to the edge of the network, while keeping distributed operations as simple as possible to ensure scalability. PicShark builds on structured Peer-to-Peer networks for distributed look-up operations, but extends the application of self-organization principles to the propagation of metadata and the creation of schema mappings. We demonstrate the practical applicability of our method in an image sharing scenario and provide experimental evidences illustrating the validity of our approach
    • …
    corecore