
36 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

Se
m

an
ti

c
K

no
w

le
dg

e
M

an
ag

em
en

t

Philippe Cudré-Mauroux,
Suchit Agarwal,
and Karl Aberer
Ecole Polytechnique Fédérale
de Lausanne

GridVine is a semantic overlay infrastructure based on a peer-to-peer (P2P) access

structure. Built following the principle of data independence, it separates a logical

layer — in which data, schemas, and schema mappings are managed — from a

physical layer consisting of a structured P2P network supporting decentralized

indexing, key load-balancing, and efficient routing. The system is decentralized, yet

fosters semantic interoperability through pair-wise schema mappings and query

reformulation. GridVine’s heterogeneous but semantically related information

sources can be queried transparently using iterative query reformulation. The

authors discuss a reference implementation of the system and several mechanisms

for resolving queries collaboratively.

S emantic Web technologies are rapid-
ly gaining popularity as a way to
organize large amounts of digital

assets. Today, mainstream information-
management applications ranging from
database systems (such as Oracle’s
Semantic Technology Center; www.oracle.
com/database/Enterprise_Edition.html) to
creative asset managers (Extensis’ Portfo-
lio; www.extensis.com/en/products/
asset_management/) let users create both
data and schemas to customize how they
organize their information. Contrary to
the initial vision of the Semantic Web,

however, these solutions typically oper-
ate in confined environments, such as
intranets or predefined communities, and
remain impractical for sharing data. Two
issues prevent data sharing: lack of scal-
ability resulting from the infrastructure’s
inability to evolve with the storage, net-
work, or processing load; and semantic
heterogeneity, which hinders the query-
ing of data originating from different
communities. Several recent research
efforts, such as RDF Peers1 or the Seman-
tic Web and Peer-to-peer (SWAP) project2

recently proposed efficient architectures

36 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

GridVine: An Infrastructure
for Peer Information
Management

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147931463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for handling structured information in a scalable
manner. Other projects have focused on seman-
tic heterogeneity and proposed decentralized
information-integration architectures (see the “Peer
Data Management” sidebar).

In this article, we describe GridVine, the first
system that simultaneously addresses both scala-
bility and semantic heterogeneity. Built following
the peer-to-peer (P2P) paradigm, it eliminates cen-
tral components and concentrates instead on
bottom-up and decentralized processes. Rather
than requesting services from centralized servers,
participating peers collaboratively contribute
resources to support higher-level semantic appli-
cations. This ensures graceful scalability, as new
clients entering the system can in turn provide
resources and act as servers. The self-organizing

and decentralized P2P access structure supports
several higher-level semantic services, such as dis-
tributed search, persistent storage, and semantic
integration. Such services recursively use the
underlying P2P access structure to locate relevant
information and dynamically distribute the
machines’ load.

GridVine: A Three-Tier
Semantic Overlay Network
A key aspect of our approach is to apply the prin-
ciple of data independence by separating a logical
layer from a physical one. This principle is well-
known from its use in databases and has largely
contributed to the success of modern database sys-
tems by opening the door to optimizing logical
higher-level primitives at the physical layer. In this

SEPTEMBER • OCTOBER 2007 37

GridVine

Peer Data Management

D ata integration has a long tradition of
pursuing the design of systems and

methods that allow transparent access to
disparate and heterogeneous systems
through a single interface. Federated databas-
es were developed toward that goal to allow
the retrieval of data from multiple noncon-
tiguous databases with a single query, even
when the constituent databases are hetero-
geneous. Thus, federated databases provide
a solution for integrating data coming from
heterogeneous databases interconnected via
a computer network. They come in differ-
ent flavors (see Amit P. Sheth and James Lar-
son1 for a taxonomy) but often revolve
around a central mediator2 component that
stores a global schema and is responsible for
reformulating queries in terms of all the
other schemas the individual databases use.

With the explosion and decentraliza-
tion of information production, however, it
rapidly became clear that this centralized
approach — requiring the definition of a
central, global schema — could not be
enforced on a large scale. The way Grid-
Vine disseminates the queries from one
schema to another is typical of a new gen-
eration of data integration systems called
peer data management systems (PDMSs).
PDMSs emerged as an attempt to decen-
tralize the mediator architecture and let
the systems scale gracefully with the num-

ber of heterogeneous sources. They don’t
require the definition of a global schema
because they consider loosely structured
networks of mappings between pairs of
schemas to iteratively disseminate a query
from one database to all related databases.

Research on PDMSs is developing in
several compelling directions. The com-
plexity of iteratively reformulating queries
to reach distant and heterogeneous data-
bases in a PDMS is studied in the context
of the Piazza3 project. Hyperion4 is a sys-
tem inspired by the Local Relational Model5

mapping data at both the instance and
schema levels to enable global search capa-
bilities in decentralized environments.
SomeWhere6 is a PDMS offering reasoning
services through a distributed consequence
finding algorithm. SQPeer7 proposes a
publish–subscribe mechanism and several
compile and runtime optimization tech-
niques to execute query plans in decentral-
ized Semantic Web environments.

Our own efforts in GridVine focus on
scalability and efficiency through the use of
a structured overlay layer and on query dif-
fusion based on probabilistic analyses of the
mappings to determine the correctness of
the semantic routes in the network.8

References
1. A.P. Sheth and J.A. Larson, “Federated Data-

base Systems for Managing Distributed, Het-

erogeneous, and Autonomous Databases,”

ACM Computing Surveys, vol. 22, no. 3, 1990, pp.

183–236.

2. G. Wiederhold, “Mediators in the Architecture of

Future Information Systems,” Computer, vol. 25,

no. 3, 1992, pp. 38–49.

3. A.Y. Halevy et al., “Piazza: Data Management Infra-

structure for Semantic Web Applications,” Proc.

Int’l World Wide Web Conf. (WWW 03), 2003, ACM

Press, pp. 556–567.

4. M. Arenas et al., “The Hyperion Project: From

Data Integration to Data Coordination,” SIGMOD

Record, special issue on peer-to-peer data manage-

ment, vol. 32, no. 3, 2003 pp. 53–58.

5. P. Bernstein et al., “Data Management for Peer-to-

Peer Computing: A Vision,” Proc. Int’l Workshop on

the Web and Databases (WebDB 02), 2002, pp.

89–94.

6. P. Adjiman et al., “Distributed Reasoning in a Peer-

to-Peer Setting: Application to the Semantic Web,”

J. Artificial Intelligence Research, vol. 25, 2006, pp.

269–314.

7. G. Kokkinidis and V. Christophides, “Semantic

Query Routing and Processing in P2P Database

Systems: The ICS-FORTH SQPeer Middleware,”

Proc. Int’l Conf. Current Trends in Database Technology,

2004, Springer-Verlag, pp. 486–495.

8. P. Cudré-Mauroux, K. Aberer, and A. Feher, “Prob-

abilistic Message Passing in Peer Data Management

Systems,” Proc. Int’l Conf. Data Engineering (ICDE

06), 2006, IEEE CS Press, pp. 41–50.

case, we generalize the notion of data independ-
ence to networked environments beyond storage
systems3 by separating a logical semantic layer —
responsible for structured data storage, integration,
and query resolution — from a self-organizing P2P
infrastructure that’s liable for indexing, load-
balancing, and efficient routing.

Figure 1 gives a conceptual overview of our
architecture. The base layer, called the Internet
layer in the figure, represents the various machines
connected to the Internet that share structured
information throughout our infrastructure. These
machines self-organize into a structured P2P over-
lay layer for efficient message routing and index
load-balancing. We use P-Grid (which we describe
in more detail in the next section) to arrange the
peers into a virtual binary search tree at the over-
lay layer. Finally, the semantic mediation layer sits
on top of this architecture and exploits the over-
lay layer to efficiently share and integrate struc-
tured information across the network.

Structured information (data, schemas, and
mappings) is managed and stored through a data-
base at the semantic mediation layer, but indexed
and load-balanced by the overlay layer. Distin-
guishing the semantic layer from the overlay layer
lets us offer higher-level primitives at the upper-
most layer, while benefiting from an efficient,
decentralized, and load-balanced access structure
that the P2P overlay maintains. Note that the three
layers are uncorrelated: the organization of the
machines at the Internet layer is independent of
the organization of the peers at the overlay layer,
which is itself dissociated from the information’s
structure at the semantic layer. We describe both
the overlay and the semantic mediation layer in
more detail in the following sections.

The Overlay Layer
GridVine takes advantage of the P-Grid P2P
access structure (www.p-grid.org) at the interme-
diate overlay layer. P-Grid is a self-organizing,
distributed access structure, which associates log-
ical peers representing the machines in the net-
work with keys from a key space representing the
underlying data structure. Each peer is responsi-
ble for some part of the overall key space and
maintains additional routing information to for-
ward queries to neighboring peers. As the num-
ber of machines taking part in the network and
the amount of shared information evolve, peers
opportunistically organize their routing tables

according to a dynamic and distributed binary
search tree.

Each peer p � P is associated with a leaf of the
binary tree, and each leaf corresponds to a binary
string � � �. Thus, each peer p is associated with
a path � (p). For each tree level, each peer stores ref-
erences to other peers that don’t pertain to the
peer’s subtree at that level, thus enabling the imple-
mentation of prefix routing for efficient search.
Keys index all shared data items in the system. The
key key(d) of a data item d is generated using an
order-preserving hash function Hash(). Each peer
is responsible for storing the keys that fall under its
current key space key � � (p). The partition of the
key space is load-balanced4 in such a way that all
peers are responsible for the same amount of data,
irrespective of the keys’ actual distribution. In addi-
tion, peers also maintain references � (p) to peers
with the same path; that is, they’re replicas that
duplicate their content to ensure persistent storage
and resilience to network churn.

P-Grid supports two basic operations:
Retrieve(key) for searching for a certain key and
retrieving the associated data value, and
Update(key, value) for inserting, updating, or delet-
ing keys. Depending on the application, different
values can be associated with the keys. In the con-
text of GridVine, key values either point to
unstructured content (such as images) that the
overlay layer manages, or to structured data man-
aged by a database at the semantic layer. Because
P-Grid uses a binary tree, Retrieve(key) is intuitive-
ly efficient — for example, O(log(|�|)) — measured
in terms of how many messages are required to
resolve a search request in a balanced tree. For
skewed distributions, other work has shown5 that
due to P-Grid’s probabilistic nature, the expected
search cost remains logarithmic, independently of
how the P-Grid is structured. As a result, we can
view P-Grid as a persistent and load-balanced
index layer that supports efficient key look-ups in
a totally decentralized manner.

Semantic Mediation Layer
GridVine takes advantage of the efficient and dis-
tributed index structure maintained at the overlay
layer to globally manage semantic information at
the semantic mediation layer. We support various
operations to maintain the semantic layer, includ-
ing instance, schema, and schema-mapping inser-
tion. Capitalizing on the popularity of Semantic
Web standards, we provide those mechanisms

38 www.computer.org/internet/ IEEE INTERNET COMPUTING

Semantic Knowledge Management

within the standard syntactic framework of RDF
and the Web Ontology Language (OWL). This
requires mapping semantic data and operations to
the two operations provided at the overlay layer,
and hence, mapping semantic information to
routable keys.

RDF stores information as triples t represent-
ing various statements; triples always take the fol-
lowing form:

ti = tsubject, tpredicate, tobject

where tsubject (the subject) is the resource about
which the statement is made, tpredicate (the predi-
cate) represents a specific property in the state-
ment, and tobject (the object) is the value (resource
or literal) of the predicate in the statement. All
resources in our system are identifiable through
URIs, which the system creates on-the-fly upon
insertion when missing. A structured overlay net-
work lets developers implement application-spe-

cific addressing spaces. In our case, we introduce
the specific URI schemes pgrid, for elements that
the overlay layer manages (index keys and
unstructured content), and pgrids, for structured
elements that the semantic layer manages
(instances, schemas, and schema mappings). This
doesn’t exclude the use of other URI schemes in
conjunction with P-Grid’s specific ones.

We map each triple at the semantic layer to
routable keys at the overlay layer to enable effi-
cient and load-balanced information indexing. The
index’s granularity, as well as the exact mechanism
used for mapping information at the semantic
layer to keys at the overlay layer, are of utmost
importance because they directly influence the sys-
tem’s query-processing capabilities. We want to
support searches on individual statements and thus
must index each triple separately. Most RDF query
languages are based on constraint searches on the
triples’ subject, predicate, or object; as such, we
have to reference each individual triple three times,

SEPTEMBER • OCTOBER 2007 39

GridVine

Figure 1. The GridVine semantic overlay network. In our architecture, the machines self-organize into a
structured overlay network of peers (blue dots). This P2P network is then used to index semantic
information such as schemas (brown dots) or mappings in a totally decentralized way.

127.143

127.144
Subnet

127.145

34.109 35.142 38.143
45.123

109.144

112.144
117.122

125.98

0001

0100

0011
0010

0101

0101

0110

0111

Schema A Schema C

Schema D

Schema H

Schema Z

Mapping

SearchFor (query)
Update (data)
Update (schema)
Update (mapping)

Internet
layer

Structured
overlay
layer

Semantic
mediation
layer

Retrieve (key)
Update (key, value)

IP network

generating separate keys based on their subject,
predicate, and object values. Thus, the system
inserts each triple t as follows:

Update(t) � Update(Hash(tsubject), t),
Update(Hash(tpredicate), t), Update(Hash(tobject), t).

In this way, each triple is associated with three
keys at the overlay layer. The system processes
update and delete operations using the same mech-
anism, which explains the generic name (Update)
we give to this primitive. Each peer p maintains a
local database DBp at the semantic layer to store
the triples whose keys fall under its key space.
Because RDFS statements can be written as terna-
ry relations, local databases’ physical schemas can
all be identical and consist of three attributes SDB =
(subject, predicate, object). The local databases sup-
port three standard relational algebra operators:
projection �, selection �, and (self) join.

GridVine also supports the sharing of schemas
that define classes of resources and their related
properties. Each schema is associated with a
unique key and indexed in an atomic operation:

Update(RDF_Schema) � Update(�(p):
Hash(Schema_Name), Schema_Definition),

where the logical address � (p) of the peer p posting
the schema is concatenated to a hash of the
schema name to create a unique key for the
schema whenever necessary. As class and proper-
ty definitions can also be written as triples in
RDFS, we use the same database to store both
triples and schemas.

Integrating Data
at the Semantic Mediation Layer
GridVine’s semantic layer lets peers efficiently
share knowledge in a global manner. They can
query for any information at the semantic layer by
issuing series of Retrieve(key) operations on the
corresponding keys at the overlay layer (we’ll
explore this more in the next section). However,
sharing information that’s syntactically aligned as
RDF triples in the network doesn’t ensure global
interoperability. On the contrary, because GridVine
is totally decentralized, any peer in the network is
free to come up with new schemas to structure its
own information.

To integrate all semantically related but syn-
tactically heterogeneous information that peers

share, GridVine supports the definition of pair-
wise schema mappings. A mapping allows the
reformulation of a query posed against a given
schema into a new query posed against a seman-
tically similar schema. By iterating this process
over several mappings, a query can traverse a
sequence of schemas at the mediation layer and
retrieve all relevant results, irrespective of their
schemas. Given the provision of a sufficient
number of mappings, GridVine fosters global
semantic interoperability in a totally decentral-
ized fashion.

We encode schema mappings using simple OWL
statements relating semantically similar classes and
properties from two different schemas using
owl:equivalentClass and owl:equivalentProperty
properties. Schema mappings are indexed at the key
space corresponding to the source schema at the
overlay layer — or at the key spaces corresponding
to both schemas if the mapping is bidirectional:

Update(Schema_Mapping) �
Update(Source_Schema_key, Schema_Mapping).

Figure 2 shows a simplified example of query
reformulation in GridVine; a peer issues a query to
retrieve a book annotated with a given schema
(EPFL schema), reformulates the query thanks to a
schema mapping, finds a relevant resource anno-
tated with the second schema, and, finally,
retrieves the relevant resource by querying the
structured overlay layer.

Resolving Queries in GridVine
Indexing each triple based on three keys at the
overlay layer lets us resolve complex higher-level
queries at the semantic layer. A triple pattern6 is
an expression of the form (s, p, o), where s and p
are URIs or variables, and o is a URI, a literal, or a
variable. The simplest semantic queries that Grid-
Vine supports retrieve information based on a sin-
gle triple pattern:

SearchFor(x? : (s, p, o)),

where x?, the distinguished variable the query has
to return, also appears in the triple pattern (s, p, o).

For instance, the following triple pattern query:

SearchFor(x2? : (x1?, pgrids : //0100:EPFL#Title),
x2?))
retrieves the title of all the images annotated with

40 www.computer.org/internet/ IEEE INTERNET COMPUTING

Semantic Knowledge Management

the pgrids://0100:EPFL schema. We call such a
query atomic because it contains only one triple
pattern.

In GridVine, atomic queries are resolved by first
locating relevant peers, thanks to the index pro-
vided at the overlay layer, and then by processing
structured data those peers handle at the semantic
layer. A peer issuing an atomic query q first has to
determine the key space key where it can find the
answers. The peer can determine this key space by
taking a hash of one of the constant terms const in
the triple pattern:

key = Hash(const).

In our example, key = Hash(pgrids://
0100:EPFL#Title). When two constant terms appear
in the triple pattern, both can retrieve the results.
Once the key space is discovered, the peer simply
forwards the query to the peers responsible for that
space using Retrieve(key, q). As all triples are
indexed on their subject, predicate, and object in
GridVine, the query can be directly answered by
the peers responsible for this key space, which
stores the corresponding triples in its database.
Thus, atomic query resolution boils down to a
standard P-Grid look-up generating O(log(|�|))
messages. Once arrived at its final destination key,
the query is resolved with a local relational query
on the local database DBdest. Defining pos(term) as

the position of a term (variable or constant) in a
triple pattern, pos(term) either takes subject, pred-
icate, or object as value, and produces a set of
results Results as follows:

Results =�pos(x) �pos(const)=const (DBdest).

In our example, the query is forwarded to the
peers responsible for Hash(pgrids://0100:EPFL#
Title), which can retrieve the results by issuing a
query =�object�predicate=pgrids://0100:EPFL#Title on its local
database. Once the destination peer retrieves them,
the results are sent to the query’s original issuer.
Conjunctive and disjunctive queries can be
resolved in a similar manner,7 by iteratively resolv-
ing each triple pattern contained in the query and
aggregating the sets of results through local join
operations.8 GridVine also supports queries on
value ranges, as our overlay network can natively
process them.

Performance Evaluation
We carried out several large-scale experiments in
various settings to validate our infrastructure’s
design. We details the experiments in the next
section. Figure 3a shows the distribution of query
processing time in several large-scale networks
of 50 to 340 peers scattered around the world.
Each peer ran on a distinct machine on the
PlanetLab network (www.planet-lab.org). We

SEPTEMBER • OCTOBER 2007 41

GridVine

Figure 2. A simple example of query reformulation using a schema mapping. In the figure, a peer issues a query to
retrieve a book annotated with a given schema (EPFL schema) (1), reformulates the query using a schema mapping (2),
finds a relevant resource annotated with the second schema (3), and finally retrieves the relevant resource by querying the
structured overlay layer (4).

4 3

21
...
<rdfs:Class rdf:ID="Book">
 <rdfs:subClassOf rdf:resource="#EPFLResource"/>
</rdfs:Class>
<rdfs:Property rdf:ID="Title">
 <rdfs:domain rdf:resource="#EPFLResource"/>
...

EPFL schema

...
<rdf:Description rdf:about="pgrids://0100.EPFL#Book">
 <owl:equivalentClass rdf:ID="map1" rdf:resource="DC:Text"/>
</rdf:Description>
<rdf:Description rdf:about="#map1">
 <pgrids://map/CycleAnalysis> 0.8 </pgrids://map/CycleAnalysis>
...

P-Grid

Reformulated query (DC schema)

SELECT ?book
WHERE (?book <rdf:type> <DC:Text>)
 (?book <DC:title> ?title)
AND ?title =~ /Databases/

pgrid://110011 annotations

...
<rdf:Description rdf:about="pgrid://110011">
 <rdf:type rdf:resource="DC:Text"/>
 <DC:Title> Foundations of Databases </DC:Title>
...

Query (EPFL schema)

SELECT ?book
WHERE (?book <rdf:type> <EPFL:Book>)
 (?book <EPFL:Title> ?title)
AND ?title =~ /Databases/

Schema mapping (EPFL → DC)

Foundation
of databases

pgrid://110011

inserted between 4000 and 80,000 triples
(depending on the network size) in the system
and monitored the resolution of thousands of
atomic queries that each peer issued over sever-
al hours. For the largest network consisting of
340 peers, 43 percent of the queries were
answered within one second, and 75 percent
within five seconds. Note that the machines used
for the experiment were heavily loaded due to the
processes inherent to the PlanetLab infrastructure
and to several other experiments running concur-
rently. Despite the heavily skewed distribution of
the keys generated when indexing the triples, the
partition of the key space at the overlay layer and
thus the storage load at the semantic layer
remained balanced thanks to P-Grid’s proactive
load-balancing mechanisms. Although several
peers went offline during the test, all queries were
answered properly due to the dynamic index
replication triggered at the overlay layer.

Figure 3b illustrates a network-intensive
deployment focusing on data integration, where
GridVine was deployed over 40 peers running on
20 cores in a local-area cluster. The peers were
interconnected through a realistic network setting
(ModelNet; http://modelnet.ucsd.edu) based on a
client-stub topology, with 5 millisecond delays and
200 Kbyte-per-second links. Each peer was set up
to be responsible for a distinct schema. The
schemas were related through a random graph of
schema mappings to create a fully-connected
semantic mediation layer. Each peer issued sever-
al thousands of atomic queries in various points of
this network to disseminate them throughout the

semantic layer. The figure shows the successive
reformulation steps, with confidence intervals set
to 95 percent and a maximum of 14 reformula-
tions for each query. We tested two approaches: in
iterative gossiping, the peer issuing the original
query is responsible for retrieving all mappings
and reformulating all queries by itself iteratively.
In recursive gossiping, the reformulation process
is iteratively delegated to those peers receiving
reformulated queries. Recursive gossiping performs
systematically better because it distributes the
reformulation load more evenly among peers.

Building Large-Scale
Collaborative Applications
with GridVine
Originally developed as a simple file-sharing appli-
cation supporting RDF annotations,7 GridVine has
evolved into a general-purpose semantic infra-
structure over the past two years. Today, it sup-
ports efficient search in very large-scale networks
and offers persistent storage, load-balancing, iden-
tity management, RDF entailment, and semantic
query diffusion to higher-level applications. We
describe our experiences using GridVine for two
applications: a large-scale photo sharing platform
and a distributed semantic desktop.

PicShark:
Sharing Partially Annotated Content
PicShark (http://lsirwww.epfl.ch/PicShark) is a dis-
tributed application for sharing annotated photos.
Our goal with PicShark is to let a potentially very
large population of users upload both photos and

42 www.computer.org/internet/ IEEE INTERNET COMPUTING

Semantic Knowledge Management

Figure 3. Two GridVine deployments. (a) The cumulative distribution of query resolution time for networks ranging from 50
to 340 peers distributed globally. (b) The reformulation steps for up to 14 query reformulations in a network with 40
schemas stored on 40 different peers.

Q
ue

ri
es

 r
es

ol
ve

d
(%

)

R
ef

or
m

ul
at

io
ns

100

90

80

70

60

50

40

14

12

10

8

6

4

Query processing time (sec) Query reformulation time (sec)
0 5 10 15 20 25 0 5 10 15 20 2530 35 40

(a) (b)

50 peers
100 peers
200 peers
340 peers

Recursive gossiping
Iterative gossiping

arbitrary metadata pertaining to the photos.
Because annotating photos is a time-consuming
task that’s difficult to automate, we assume that
much of the metadata are missing, but take advan-
tage of similar metadata and photos in the network
to complete missing metadata with plausible val-
ues whenever possible.

As the application called for both scalable stor-
age and efficient query resolution mechanisms, we
decided to use GridVine as the underlying infra-
structure. After having developed wrappers to
export various annotation formats into RDF
schemas and statements, we could let GridVine
take care of all the indexing, load-balancing, stor-
age, and query-resolution operations and concen-
trate on algorithms to elicit information for the
missing metadata. Being able to efficiently query
the whole network for some specific information
— such as a name appearing in the annotations —
lets us find related photos or schemas on a global
level. To improve the process, we additionally im-
plemented fuzzy search in GridVine based on lex-
icographical distances, which allows simultaneous
retrieval of information related to both John Doe
and Jonn Doe, for example. Finally, we took
advantage of GridVine’s data integration capabil-
ities to not only search for similar annotations in a
given community of interest, but to expand our
searches to related communities by reformulating
the queries through mappings interconnecting the
schemas defined by the various communities.

Nepomuk:
The Distributed Semantic Desktop
Nepomuk (http://nepomuk.semanticdesktop.org/) is
a large-scale effort aimed at enriching normal desk-
top environments with semantics and information
sharing capabilities to foster knowledge reuse,
social interactions, and global collaboration. In this
context also, the project consortium chose GridVine
to support higher-layer information processes. In
Nepomuk, GridVine is used to share semantic infor-
mation globally and to integrate heterogeneous
annotations that the users provided.

One of the project’s key objectives is to auto-
matically discover social communities and dynam-
ically organize the users into meaningful groups.
Logging some of the user interactions in GridVine
lets us globally detect similar behaviors and discov-
er related sets of users using fuzzy searches. Once
related users are clustered in groups, we analyze the
structured information (such as address books and

annotated files) they share. To foster interoperabil-
ity among all the users belonging to a given social
group, we automatically create mappings between
the schemas they use to encode their data. Hence,
GridVine can help to automatically discover social
trends emerging from the users, to cluster socially
similar users, and finally, to promote knowledge
exchange by ensuring data interoperability between
users belonging to the same group. The whole
process scales gracefully with the number of users,
as all queries still only take O(log(|�|)) messages —
where ||�|| is the number of users in the network —
to reach their final destination.

T o the best of our knowledge, GridVine is the
first infrastructure supporting both scalable

storage and structured query processing while pro-
moting global semantic interoperability through
purely decentralized and self-organizing process-
es. Mapping structured information at the seman-
tic layer to routable keys at the overlay layer lets
us exploit a scalable, efficient, and totally decen-
tralized index structure to resolve operations at the
higher layers. Following the principle of data inde-
pendence, our approach separates the logical and
physical aspects such that it can be generalized to
any physical infrastructure that provides function-
alities that are similar to our P-Grid P2P system.
GridVine is both efficient and stable, as demon-
strated in our tests on several hundreds of
machines. Also, it provides a convenient abstrac-
tion to build higher-layer semantic applications,
as we described for two concrete case-studies relat-
ed to large-scale knowledge sharing applications.

The past decade saw the rise of various mecha-
nisms for organizing minimally-structured,
human-processable data in the large. Today, we
believe that a new revolution targeting declarative,
semistructured and machine-processable informa-
tion is on its way. End users, who used to be
restricted to passively consuming manually curat-
ed digital information, are today evolving into
industrious supervisors of semiautomatic process-
es, creating digital artifacts on a continuous basis.
As more and more structured information is today
generated in automated and decentralized ways,
it’s increasingly important to support incremental
interoperability mechanisms to meaningfully
process data on a large scale. In that context, we
see the self-organizing and decentralized architec-
ture we propose as not only complementing the

SEPTEMBER • OCTOBER 2007 43

GridVine

traditional approaches that organize information
through top-down consensus creation but also as
the only scalable resort for organizing data in the
distributed, autonomous, and complex data spaces
currently emerging.

Acknowledgments
The Swiss NSF National Competence Center in Research on

Mobile Information and Communication Systems (NCCR MICS,

grant number 5005-67322) and the EPFL Center for Global

Computing, as part of the European project NEPOMUK No. FP6-

027705, supported this work.

References

1. M. Cai and M. Frank, “RDFPeers: A Scalable Distributed

RDF Repository based on a Structured Peer-to-Peer Net-

work,” Proc. Int’l World Wide Web Conf. (WWW 04), ACM

Press, 2004, pp. 650–657.

2. P. Haase and R. Siebes, “Peer Selection in Peer-to-Peer Net-

works with Semantic Topologies,” Proc. Int’l Conf. Seman-

tics in a Networked World (ICSNW 04), Springer-Verlag,

2004, pp. 108–125.

3. J.M. Hellerstein, “Toward Network Data Independence,”

SIGMOD Record, vol. 32, no. 3, 2003, pp. 34–40.

4. K. Aberer et al., “Indexing Data-Oriented Overlay Net-

works,” Proc. Int’l Conf. Very Large Databases (VLDB 05),

2005, ACM Press, pp. 685–696.

5. K. Aberer, Efficient Search in Unbalanced, Randomized

Peer-To-Peer Search Trees, tech. report IC/2002/79, Swiss

Federal Inst. Technology, Lausanne (EPFL), 2002; www.p

-grid.org/Papers/TR-IC-2002-79.pdf.

6. A. Seaborne, “RDQL — A Query Language for RDF,” W3C

Member Submission, 2004; www.w3.org/Submission/RDQL/.

7. K. Aberer et al., “GridVine: Building Internet-Scale Seman-

tic Overlay Networks,” Proc. Int’l Semantic Web Conf.

(ISWC 04), Springer-Verlag, 2004, pp. 107–121.

8. E. Liarou, S. Idreos, and M. Koubarakis, “Evaluating Con-

junctive Triple Pattern Queries over Large Structured Over-

lay Networks,” Proc. Int’l Semantic Web Conf. (ISWC 06),

Springer-Verlag, 2006, pp. 399–413.

Philippe Cudré-Mauroux is a senior researcher and lecturer at

Ecole Polythechnique Fédérale de Lausanne (EPFL) in

Switzerland. His current research interests are in informa-

tion management for large-scale settings, with an empha-

sis on semantic overlay networks and peer data

management systems. Cudré-Mauroux has a PhD in dis-

tributed information systems from EPFL. He is a member

of the IEEE and the ACM. Contact him at philippe.cudre

-mauroux@epfl.ch.

Suchit Agarwal is a research assistant at EPFL, currently work-

ing on the GridVine project. He has a B.Tech. degree (with

honors) in information technology from IIIT-Allahabad,

India. His current interests involve large-scale distributed

information systems and structural analysis of large

graphs. Contact him at suchit.agarwal@epfl.ch.

Karl Aberer is a professor at EPFL. His particular interests are

in decentralized system architectures, self-organization

mechanisms, and emergent structures in information sys-

tems. He also serves as the director of the Swiss National

Research Center for Mobile Information and Communica-

tion Systems (NCCR-MICS). Aberer has a PhD in mathe-

matics from Eidgenössische Technische Hochschule in

Zürich. He is a member of the IEEE and the ACM. Contact

him at karl.aberer@epfl.ch.

44 www.computer.org/internet/ IEEE INTERNET COMPUTING

Semantic Knowledge Management

IEEE Computer Society presents

ee--lleeaarrnniinngg ccaammppuuss
Further your

career or just
increase your

knowledge

The e-Learning
campus provides

easy access to online
learning materials to

IEEE Computer Society
members. These

resources are
either included

in your membership
or offered at a
special discount

price to members.

Online Courses
Over 1,300 technical courses available
online for Computer Society members.

IEEE Computer Society Digital Library
The Digital Library provides decades of
authoritative peer-reviewed research at your
fingertips: Have online access to 25 society
magazines and transactions, and more than
1,700 selected conference proceedings.

Books/Technical Papers
Members can access over 500 quality online
books and technical papers anytime they
want them.

IEEE ReadyNotes are guidebooks and tuto-
rials that serve as a quick-start reference for
busy computing professionals. They are avail-
able as an immediate PDF download.

Certifications
The CSDP (Certified Software Development
Professional) is a professional certification
meant for experienced software professionals.

Brainbench exams available free for
Computer Society members, provide solid
measurements of skills commonly requested
by employers. Official Brainbench certificates
are also available at a discounted price.

http://computer.org/elearning

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

