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Abstract With the commoditization of digital devices,
personal information and media sharing is becoming a key
application on the pervasive Web. In such a context, data
annotation rather than data production is the main bottleneck.
Metadata scarcity represents a major obstacle preventing effi-
cient information processing in large and heterogeneous com-
munities. However, social communities also open the door
to new possibilities for addressing local metadata scarcity
by taking advantage of global collections of resources. We
propose to tackle the lack of metadata in large-scale distrib-
uted systems through a collaborative process leveraging on
both content and metadata. We develop a community-based
and self-organizing system called PicShark in which infor-
mation entropy—in terms of missing metadata—is gradu-
ally alleviated through decentralized instance and schema
matching. Our approach focuses on semi-structured meta-
data and confines computationally expensive operations to
the edge of the network, while keeping distributed operations
as simple as possible to ensure scalability. PicShark builds
on structured Peer-to-Peer networks for distributed look-up
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operations, but extends the application of self-organization
principles to the propagation of metadata and the creation
of schema mappings. We demonstrate the practical applica-
bility of our method in an image sharing scenario and pro-
vide experimental evidences illustrating the validity of our
approach.

Keywords Metadata scarcity · Metadata heterogeneity ·
Metadata entropy · Peer-to-Peer collaboration ·
Peer data management

1 Introduction

Until recently, the creation of digital artifacts—such as elec-
tronic documents, images, or videos—was constrained by
the limited availability of devices capable of capturing and
handling information in binary form. Today, the situation
has radically changed with the commoditization of digital
devices. Typewriters have now totally disappeared from the
office space, whereas email has become one of the main com-
munication channels. Mobile phones can handle information
written as bidimensional bar-codes, while personal comput-
ers casually store and process gigabytes of personal images.
In this new context, we argue that the lack of metadata, rather
than the lack of data, has become the main bottleneck.

The problem became apparent a few years ago when end-
users suddenly had to resort to third-party tools to find rel-
evant pieces of information on their own computer. At that
time, several projects proposed to index information based on
metadata to enhance the search process. Microsoft’s Stuff I’ve
Seen [14], for instance, relies on time-stamp metadata like
Last Time Modified or Last Time Opened to display search
results, while Google Desktop1 indexes documents based

1 http://desktop.google.com/.
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on metadata extracted from the files payload. Local search
based on indexed metadata is considered as a common feature
nowadays and has been integrated in most operating systems.

The lack of metadata resurfaces today as a new prob-
lem in distributed settings. More and more platforms allow
end-users to share their digital content in large communities:
Flickr, YouTube, and MySpace are well-known examples of
that trend. In distributed environments, however, automati-
cally generated metadata such as Last Time Opened, File-
name, or Size often cannot be exploited in a meaningful way
by arbitrary users searching for a specific file. In a distributed
setting, users typically have never encountered the file they
are searching for and are thus unaware of its technical details.
Higher-level, more meaningful metadata like Description,
Event, or Location are much more relevant in distributed
environments, but still often require human attention, one
of the scarcest resources in our digital society. As a result,
the majority of digital content on current collaborative plat-
forms simply cannot be retrieved by third-parties because of
the lack of adequate metadata.

In the following, we tackle the problem of metadata
scarcity in large-scale collaborative environments. We focus
on semi-structured metadata formats and propose a radically
new approach to foster global search capabilities from incom-
plete, local, and heterogeneous metadata. Our approach is
based on a new metric for metadata scarcity and on Peer-to-
Peer (P2P) interactions. The main contributions of our work
are:

– the formalization of the problem of sharing semi-
structured metadata in distributed settings, explicitly tak-
ing into account metadata incompleteness and metadata
heterogeneity

– the definition of a new metric—called metadata
entropy—to capture the degree of incompleteness or
uncertainty related to semi-structured metadata

– the description of a bottom-up and recursive process based
on instance and schema matching to infer metadata in col-
laborative P2P contexts

– the presentation of a system architecture supporting meta-
data inference in distributed environments

– the experimental evaluation of our metadata inference
process on a large set of several hundreds of annotated
images.

We start with a general description of the problems related to
the sharing of semi-structured metadata in Sect. 2 and formal-
ize our problem in Sect. 3. Our metadata sharing approach is
presented in detail in Sect. 4. We describe the architecture of
our prototype and the results of our experimental evaluation
in Sect. 5. Finally, we give a survey of related work in Sect. 6
before presenting our conclusions.

2 Sharing semi-structured metadata

2.1 On semi-structured metadata

While the use of unstructured metadata drew considerable
attention on the Web in recent years—e.g., through keyword
annotation of images or HTML pages—the focus recently
shifted back to more structured metadata formats. Unstruc-
tured metadata such as tags are ambiguous by nature and lack
precise semantics, making it very difficult to support struc-
tured searches à la SQL. Structured representations such as
relational tables are much easier to process automatically, as
they constrain the representation of data through complex
data structures and schemas.

In the following, we focus on recent formats that let end-
users freely define and extend their own schemas according
to their needs. We qualify those formats as semi-structured
formats since they tend to blur the separation between the
data and schemas and to impose looser constraints than the
relational model to the data. Such formats are today sprout-
ing from various contexts and encompass a large variety of
data models. The Extensible Markup Language (XML) [6],
for example, relies on hierarchies of elements to organize
data or metadata. Ontological metadata tie metadata to for-
mal descriptions where classes of resources (and properties)
are defined and interrelated. This class of metadata standards
is currently drawing a lot of attention with the advent of the
Semantic Web and its associated languages (e.g., RDF/S [24],
Adobe’s XMP2 or OWL [25]). Semi-structured formats are
gaining momentum. They are flexible enough to allow easy
definition and extension of schemas, while sufficiently struc-
tured to support automated processing and complex searches
(e.g., through languages such as XQuery [5] or SPARQL
[27]).

2.2 On the difficulty of sharing semi-structured metadata

Our goal is to enable global search capabilities for shared
resources based on semi-structured metadata in large-scale,
heterogeneous and distributed settings. Although semi-
structured metadata formats are getting increasingly popular,
support for meaningfully sharing semi-structured metadata
outside of their original context or community of interest
is often lacking. Semi-structured metadata are intrinsically
difficult to share, since their values only make sense in a
given context—as opposed to keyword metadata or textual
tags, which supposedly convey predefined, global seman-
tics. Hence, large-scale collaborative applications typically
disregard semi-structured metadata or treat them as simple
unstructured keywords ignoring their intrinsic structure.

2 http://www.adobe.com/products/xmp/.
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A straightforward solution to our problem would be to use
a common language, like RDF, for all metadata. Though nec-
essary, we argue that this syntactical alignment step only rep-
resents the tip of the iceberg in our case. Even with a global,
common language, fundamental problems remain: systems
would still be unable to retrieve all relevant resources given a
query, as metadata can still be incomplete and unrelated one
to another because of the various schemas introduced by the
users.

In the end, two fundamental hurdles prevent semi-
structured metadata from being shared meaningfully:

Metadata incompleteness: Though more and more tools rely
on some semi-automatic annotation schemes to add meta-
data to resources, fully-automated solutions remain
impractical. Most of the time, human attention is still
required for producing high-quality, meaningful meta-
data. Realistically, a (potentially large) fraction of the
shared resources will not be annotated by the user, leav-
ing some (most) of the related semi-structured metadata
incomplete. This incompleteness severely hampers any
system relying on user-generated metadata.

Metadata heterogeneity: Some of the vocabulary terms
introduced by end-users to annotate content locally
may not make sense on a larger scale. New vocabulary
terms—new attributes or properties used locally by some
community—should be related to equivalent vocabulary
terms coming from different communities to guarantee
interoperability. This is a semantic heterogeneity issue
requiring a decentralized integration paradigm, as we
have to deal with large and distributed communities of
users, which develop without any central authority that
could enforce vocabulary terms globally. A similar issue
arises when a user makes an explicit reference to a local
resource in the collaborative setting: the reference can be
totally irrelevant to most of the other users who are not
aware of the resource in question.

These two problems are the main reasons why semi-
structured metadata are scarce in distributed settings: either
metadata are incomplete or they cannot be properly inter-
preted and are thus simply discarded. An RDF document
exhibiting concrete examples of those two problems is shown
in Fig. 1.

2.3 Opportunities for reducing metadata scarcity
collaboratively

In the rest of this contribution, we gradually alleviate meta-
data scarcity by tackling the two aforementioned problems in
a large-scale resource-sharing context. Hence, we focus on
methods to solve both metadata incompleteness and meta-
data heterogeneity for semi-structured metadata attached to

<rdf:RDF xmlns="http://japancastles.org/jpcastle/1.0/"
     xmlns  = "http://www.castles.org/myCastles#"
     xmlns:dc="http://purl.org/dc/elements/1.1/"

<Castle rdf:about="http://japancastles.org/Himeji23.jpg">
  <dc:description>  Himeji-Jo  </dc:description>
<castle_city>   Himeji </castle_city>

 <dc:type>  image  </dc:type>
  <dc:creator rdf:resource="#Photographer23" />
  <dc:date>  2002-12-4  </dc:date>
  <dc:publisher> </dc:publisher>
  …

Local Voca-
bulary Term

Local
Resource

Incomplete
Metadata

Fig. 1 The two fundamental problems behind semi-structured meta-
data scarcity in distributed settings: metadata incompleteness caused by
missing values, and metadata heterogeneity attributable to local vocab-
ulary terms and local resources
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Fig. 2 Sharing semi-structured metadata: metadata incompleteness is
mitigated by imputing additional metadata for sets of similar resources
inside a community of interest, while metadata heterogeneity is gradu-
ally alleviated through pairwise schema mappings

the shared resources. Even if sharing semi-structured meta-
data is intrinsically difficult, we argue that simultaneously
sharing both the resources and their associated metadata in
large-scale communities opens the door to new opportunities
for supporting global search on the shared resources.

Assuming that we can relate shared resources semantically
inside a given community of users, e.g., by a low-level analy-
sis of their content or by a semantic analysis of their metadata,
metadata can be propagated within the community to reduce
metadata scarcity. By taking into account sets of resources
shared in a given community, we can thus augment individual
metadata by combining local metadata attached to a resource
with other metadata originating from similar resources. We
call this process metadata imputation in Fig. 2. Data impu-
tation is a field aiming at replacing missing values in a data
set by some plausible values (see Farhangfar et al. [16] for a
recent survey of the field).
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By relating resources and metadata coming from differ-
ent communities of users, we can further enhance the process
by creating schema mappings between semantically related
communities of users. Schema mappings associate vocabu-
lary terms of one community to related terms coming from
another community. They allow the reformulation of a query
posed against a given schema into a semantically similar
query written in terms of another schema. We refer to this
process as query propagation in Fig. 2, where straight arrows
represent mappings between the schemas of two given com-
munities. Schema mappings can reduce semantic hetero-
geneity by enabling the propagation of a local query across
the whole network of communities by following series of
mapping links iteratively.

In this article, we additionally take advantage of schema
mappings to propagate existing metadata across semanti-
cally heterogeneous communities, and thus to reduce meta-
data scarcity even further. Metadata imputation is this time
contingent on the availability of schema mappings relating
the schemas of heterogeneous communities. We refer to this
process as metadata propagation in Fig. 2.

In turn, metadata that have been propagated through
schema mappings can be exploited in order to infer new
mappings or verify existing mappings and to increase the
accuracy of metadata propagation. This shows a clear inter-
relation between metadata incompleteness and metadata het-
erogeneity, as minimizing metadata incompleteness through
metadata propagation takes advantage of schema mappings
used to minimize semantic heterogeneity, and vice-versa.

In the following, we propose a distributed process to
reduce the overall scarcity and heterogeneity of the meta-
data in an autocatalytic process, where both metadata and
mappings get reinforced recursively by putting local meta-
data into a global community-based context. Taking a global
view on the system, we observe that the global semantics
are not fixed a priori, but evolve as users interact with the
system and guide the metadata sharing process by exporting
new resources, by adding new metadata, or by providing pos-
itive or negative feedback based on the results retrieved for
their queries. The way the semantics of the system dynami-
cally evolves is typical of an emergent semantics system [8],
where no global semantics is defined a priori and where the
discovery of the proper interpretation of symbols results from
a self-organizing process guided by local interactions.

3 Formal model

The problem we want to tackle can be formally introduced
as follows: a large set of autonomous information parties we
name peers p ∈ P store resources (e.g., calendar entries,
pictures, or video files) r ∈ Rp locally. Peers take advantage
of schemas S ∈ S to describe their resources with semi-
structured metadata.

Peers using the same schema to describe resources form
a community of interest. Communities of interest develop
independently of our system through social interactions or
schema enforcement. They typically result from best practice
or standardization efforts, or from communities of users using
specialized tools imposing a custom schema (see for example
the W3C Incubator Group Report [15] for recent examples of
specialized schemas related to the image annotation domain).

Schemas consist of a finite set of vocabulary terms t ∈ T .
We focus on vocabulary terms representing attributes (a.k.a.
properties), which invariably exist in one way or another in
all the semi-structured metadata formats we have encoun-
tered, but classes of resources can be taken into account by
our approach as well. In the setting we consider, we assume
that the number of shared resources is typically significantly
higher than the number of peers, which is itself significantly
higher than the number of schemas: |R| >> |P| >> |S|.

Peers store the semi-structured metadata attached to their
resources as attribute-value pairs. By taking into account the
resource each attribute-value pair describes, semi-structured
metadata can be seen as ternary relations. We call such rela-
tions metadata statements (r, t, v). A statement (r, t, v) asso-
ciates a value v to a local resource r through a vocabulary
term (attribute) t . Values v appearing in the statements can
either represent literals l ∈ L or local resources. For instance,
the dc:description statement related to the resource whose
metadata are shown in Fig. 1 can be written as follows:

(http : //japancastles.org/Himeji23. j pg,

dc : description, Himeji − Jo).

We say that a statement evaluates to true if it exists in one of
the databases of the peers, to false otherwise. We suppose at
this stage that all annotations are complete, in the sense that
for each annotated resource, all vocabulary terms defined in
the annotation schemas are associated with a certain value.
This also constraints the number of statements attached to
each resource based on schemas.

Peers can pose queries locally in order to retrieve specific
resources based on vocabulary terms, literals, and other local
resources. Queries take the form of conjunctions of triple
patterns [31]:

r? : (r1, t1, v1), . . . , (rn, tn, vn)

where rk, tk, vk represent variables or (respectively) a local
resource, vocabulary term, or value, and r? is a distinguished
resource variable appearing in at least one of the triple pat-
tern (rk, tk, vk). Note that joins can be expressed by multiple
occurrences of the same variable in that notation. We say
that a resource r0 ∈ R is an answer to the query q, and write
q |� r0, if, when substituted for the distinguished variable,
there exists a valuation (i.e., a value assignment) for all other
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variables in the conjunction of triple patterns such that the
resulting statements all evaluate to true.

Now, let us assume that some of the statements are incom-
plete and that the peers have a means to export resources
through some common infrastructure (e.g., the World
Wide Web or a Distributed Hash Table). Our goal is to
recontextualize the local statements in the common
infrastructure to support global search capabilities. We cre-
ate additional statements in such a way that any peer posing
a query q against its local schema can retrieve a maximal
number of relevant resources r | q |� r from the global set
of shared resources R while minimizing false positives and
user’s involvement under the following restrictions:

Metadata incompleteness: Some values vk appearing in the
statements are replaced by null-values ⊥k introducing
incomplete statements (rk, tk,⊥k). Null-values are for-
mally considered as being equivalent to the values they
stand for but cannot be distinguished by the peers, which
basically consider the values as unknown. For instance,
supposing that the dc:description from Fig. 1 is left
incomplete, the statement can be written as:

(http : //Himeji23. j pg, dc : description,⊥dc:desc).

Metadata heterogeneity: Each local resource and vocabu-
lary term is assigned a set of fixed interpretations r I from
a global domain of interpretations �I with r I ⊆ �I .
These interpretations are used to interrelate semantically
similar resources. Arbitrary peers are not aware of such
assignments, i.e., they are not aware of the global seman-
tics of the system. We define two resources ri and r j as
equivalent, expressed by ri ≡ r j , if and only if r I

i = r I
j .

We define that a resource ri subsumes another resource
r j , expressed by r j � ri , if and only if r I

j ⊆ r I
i . Trueness

of statements is relative to the equivalence and subsump-
tion relations, in the sense that if a statement (r, t, v)

evaluates to true, then all statements (r ′, t ′, v′) | r ′ �
r, t ′ � t, v′ � v also evaluate to true. For instance, the
following statement:

(http : //Himeji23. j pg, located_in_City, Himeji)

evaluates to true if

(http : //Himeji23. j pg, castle_ci ty, Himeji)

and

castle_ci ty ≡ located_in_City .

Taking advantage of those definitions, we can introduce
the notions of metadata completeness and soundness. We say

that a set of N statements {(r, t1, v1), . . . , (r, tN , vN )} per-
taining to a resource r is complete when vi �= ⊥ ∀ vi . A
set of statements is sound if all the statements evaluate to
true. We generally assume that our process starts with sets
of statements that are sound but incomplete. Our recontextu-
alization process then tries to complete the statements while
minimizing the number of unsound statements generated.

3.1 Metadata entropy

We introduce in the following a new metric for capturing
metadata scarcity. We call this metric metadata entropy as it
is similar in nature to the notion of entropy defined in infor-
mation theory. In our context, metadata entropy either relates
to the incompleteness of the metadata statements or to the
uncertainty of inferred statements. Keeping track of metadata
entropy is important to detect the resources requiring further
recontextualization (too many incomplete statements), and
to propagate metadata in a meaningful way by associating
uncertainty to the metadata that are inferred automatically.

We extend our model to write statement as quadruples
(r, t, v,p) where v is a list of possible values vk ∈ v for
the statement and pk ∈ p stands for the probability of the
statement (r, t, vk) evaluating to true. Using this notation,
we can for example write the following:

(http : //Himeji23. j pg, castle_ci ty,

(Himeji, K yoto), (0.9, 0.1))

to express that two different cities were related to a given
picture.

The entropy H(r, t, v,p) of a statement measures the
degree of uncertainty related to its set of possible values v.

We wish metadata entropy H(·) to satisfy the following
desirable properties:

1. Metadata entropy H(·) should be a continuous function
based on the various probabilities p attached to the values
of a statement. It should not, however, depend on the
order in which the probabilities or the values are given.

2. Metadata entropy H(·) should evaluate to zero for sound
statements.

3. Metadata entropy H(·) should be maximal and evalu-
ate to one when all values attached to a statement are
equiprobable, i.e., when no value is more probable than
any other.

4. H(p(X, Y )) should be equal to H(p(X))H(p(y)) for
two independent random variables X and Y .

The only function satisfying these four properties [21] is:

H(r, t, v,p) = −
K∑

k=1

pklogK (pk)
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where K is the number of possible values in v. The entropy
of all complete statements initially exported by the peers is
zero, as they consider a single possible value with a prob-
ability of 1 of evaluating to true (i.e., we consider that all
statements stored locally at the peers are correct; if some
of these statements are created semi-automatically, we can
alternatively start with a smaller value 0 < p < 1). Incom-
plete statements (r, t,⊥) start with an entropy of one ini-
tially, representing an unknown (and potentially infinite) set
of identically distributed values. Their entropy will decrease
over the course of our recontextualization process as plau-
sible values get discovered trough metadata imputation and
propagation.

We define the entropy of a resource as the arithmetic mean
of the entropy of its N associated metadata statements:

H(r) =
N∑

n=1

H(r, tn, vn,pn)N−1.

A resource with half of its metadata statements left incom-
plete will thus start with an entropy of 0.5.

4 Recontextualizing semi-structured metadata

We present our general approach for generating additional
data to recontextualize shared metadata in large-scale dis-
tributed settings below. A specific implementation of this
approach is described in Sect. 5 in the context of an image
sharing scenario.

The heterogeneity, autonomy, and large number of peers
we consider precludes the use of centralized techniques. Tra-
ditional integration techniques (e.g., the mediator architec-
ture [34]) are impractical in our context as no global schema
can be enforced in heterogeneous and decentralized com-
munities. Classical metadata management techniques (e.g.,
tableaux reasoning) are not applicable either, due to the lack
of shared information (resources, vocabulary terms) and the
sheer size of the problem which excludes methods scaling
exponentially—or even linearly—with the size of the data
[13].

Instead, we propose local, probabilistic heuristics aim-
ing at recontextualizing metadata extracted from a specific
source to a decentralized collaborative context. Following a
long tradition of providing scalable application-level services
on top of an existing physical network, we push the “intelli-
gence” of the approach towards the edge of the network, i.e.,
perform all complex operations locally at the peers, while
only considering simple in-network operations on a shared
hash-table. In the following, we suppose that all resources and
peers are identified by globally unique identifiers. Our heuris-
tics are based on decentralized data indexing, data imputa-
tion, and data integration techniques. We detail below how

Metadata
Extraction

Features
Extraction

Metadata
Propagation

Data Indexing 
(shared hash-table)

Schema
Matching

Metadata
Imputation

Export
Resources

   User

Fig. 3 The metadata recontextualization process: users start by sharing
resources, which are indexed in a hash-table along with metadata and
content features. Features are used to match resources and impute new
metadata, while existing metadata are used to create schema mappings,
which in turn are used to propagate metadata from one community to
the others

metadata are exported, how statements are imputed inside a
community of interest, how pairwise schema mappings are
created to alleviate metadata heterogeneity, how metadata are
propagated across communities, and finally how user queries
are handled. A high-level illustration of the recontextualiza-
tion process is given in Fig. 3.

4.1 Exporting local metadata through data indexing

Our recontextualization process starts with the export and
proper indexing of the shared resources and their associated
metadata. We index the location p0 of each resource r0 a
peer wants to share in a shared hash-table. We then index all
metadata statements (r0, t, v, 1) pertaining to the resource
that has just been indexed. The indexing process continues
recursively by indexing all resources r ′ appearing as values
v in the already indexed metadata, and their respective state-
ments (r ′, t ′, v′, 1). Figure 4 shows an example of the index-
ing process on a simple RDF graph with recursion depths
limited to zero and one. All statements are exported using
a common representation (e.g., XML serialization of RDF
triples) and are indexed in such a way that they can be effi-
ciently retrieved based on their resource r , term t , or value
v. Higher recursion values lead to sharing more information,
which can then be used in the rest of the recontextualiza-
tion process to relate semantically similar resources. On the
other hand, higher recursion values also impose higher net-
work traffic and higher load on the shared hash-table.

4.2 Dealing with metadata incompleteness through
intra-community metadata imputation

Our objective turns now to determining plausible values for
incomplete statements based on sets of related statements.
This can be regarded as a data imputation problem [16] where
values are missing within a given community of interest. In
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Mulhouse

Himeji23.jpg

Image

Photographer23 Photographer

Type

Creator

Eric.bmp
Picture

BirthLocation

Type

07/01/1972

BirthDate

Fig. 4 Indexing resources and statements from an RDF/S graph; the
inner and outer boxes correspond to a recursion depth limited to respec-
tively zero and one and starting from the Himeji23.jpg resource

our context, metadata are incomplete due to the users’ unwill-
ingness to fully annotate the resources. Hence, metadata can
be incomplete irrespective of the resource they are attached
to or of their actual value (values are missing completely
at random [16]). We base our imputation process on a
K -Nearest Neighbor imputation, which has been shown as
being very effective for contexts such as ours [4] and has
two distinctive advantages in the present situation: (i) it does
not require building a predictive model for each predicate for
which a value is missing and (ii) it can be based on a simple
index lookup in a shared hash-table [18].

K -Nearest Neighbor imputation is based on a notion of
distance between the objects it considers. Capitalizing on
several decades of research on content analysis, we generate
feature values for each resource we have to index. Feature
values represent the content of the resource and/or its meta-
data. Feature values can for example be based on a low-level
analysis of the resource (e.g., image analysis) or on an analy-
sis of machine-generated metadata (see next section for some
concrete examples). Features should be extracted in such a
way that similar resources get closely related feature values,
which might or might not be verified in practice and which
naturally impacts on the effectiveness of our approach (see
Sect. 5.2). Feature extractors might be different for different
types of resources (e.g., pictures, text files, etc.). We index
each resource r based on its feature value FV (r) in the shared
hash-table to be able to retrieve resources with similar feature
values. We define the distance used by the imputation process
based on those values: D(r, r ′) = |FV (r ′) − FV (r)| (see
Sect. 5.1 for concrete examples of features and distances).

Algorithm 1 gives a list of the operations undertaken dur-
ing an imputation round. The imputation can be broken down
into three main operations: neighbor selection, value inspec-
tion, and value aggregation.
Neighbor selection: For each resource r associated with at
least one incomplete statement (r, t,⊥), we search for K
similar resources (neighbors) r ′ in the hash-table, such that
r and r ′ are annotated using the same schema, D(r, r ′) is

Algorithm 1 Imputation process operations
for all resource r to index do

incompleteStatements = r.get I ncompleteStatements()
if incompleteStatements.count () > 0 then

/*Neighbor Selection*/
neighbors = get Nearest Neighbors(r, K , τ )

for all incompleteStatement in incompleteStatements do
for all neighbor in neighbors do

/*Value Inspection*/
plausibleV alues = getV alues From Neighbor(

neighbor, incompleteStatement)
likelihoods = assessLikelihoods(neighbor,

incompleteStatement, r)

list O f V alues.add(plausibleV alues)
list O f Likelihoods.add(likelihoods)

end for
/*Value Aggregation*/
aggregate(incompleteStatement,

list O f V alues, list O f Likelihoods)
end for

end if
end for

minimal—and below a similarity threshold τ—and H(r ′)
as low as possible. That is, we search for resources coming
from the same community of interest that are most similar
according to our feature value metric and whose statements
are as sound and complete as possible. The exact value of K
depends on the context and is typically determined by cross-
validation [36] using a sample validation set. When fewer
than K similar resources exist in the radius of the similarity
threshold τ , abstract resources with incomplete statements
(r⊥, t,⊥) with D(r, r⊥) = τ are considered. We introduce
abstract resources to explicitly preserve null values when
few plausible values are available from the neighborhood of
a given resource.
Value inspection: For each incomplete statement (r, t,⊥),
we consider the I values v′

ki appearing in the correspond-
ing statement (r ′

k, t, v′
k, p′

k) attached to the kth neighbors
as a possible value. We set the likelihood l ′ki of this value
being sound for the incomplete statement under considera-
tion as being proportional to the probability p′

ki of the value
being itself sound, and inversely proportional to the distance
between the two resources:

l ′ki = p′
ki D(r, r ′

k)
−1.

Thus, sound statements or statements coming from very sim-
ilar instances are systematically preferred.

Value aggregation: Finally, we aggregate the values v′
ki and

likelihoods l ′ki coming from the k chosen neighbors into D
distinct values vd and probabilities pd , with

pd =
∑

∀k,i |v′
ki =vd

l ′ki
∑K

k=1
∑I

i=1 l ′ki

.
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r
(Himeji23.jpg)

r'1
(HimejiJo.gif)

r'2
(OsakaJo.jpg)

D(r,r'1) = 2

D(r,r'2) = 4

 = 8 r'

Title = "Himeji-Jo" (p = 1)

Metadata Statements

for resource r'1:

Title = "Osaka-Jo"     (p = 0.7)
Title = "Himeji-Jo"     (p = 0.3)

for resource r'2:

Title = "Himeji-Jo"   (p = 0.66)
Title = "Osaka-Jo"   (p = 0.20)
Title =      (p = 0.14)

for resource r:

Fig. 5 An example of data imputation: statements coming from two
nearby candidate resources r ′

1 and r ′
2 and an abstract instance r⊥ are

combined to complete the statements attached to resource r whose Title
is missing

Figure 5 shows an example of the imputation process for
an incompletely annotated image file r , combining the state-
ments of its two nearest neighbors r ′ and r ′′.

Note that a similar imputation process can again take place
later on, once the statements have already been recontextu-
alized but new resources have been indexed, for example
periodically every T period of time for resources with a high
entropy. In a dynamic context and for high values of K , one
should additionally avoid storing too many unlikely values
by eliminating all values with low probabilities (pd < pmin).

4.3 Dealing with metadata heterogeneity through pairwise
schema mappings

So far, metadata imputation was limited to a given commu-
nity of interest. To take advantage of all statements shared
by peers outside of a given community, we extend the appli-
cation of self-organization principles to the creation of map-
pings relating similar communities of interests. We create
mappings between pairs of schemas to link semantically
related vocabulary terms. Mappings are used to identify
equivalent terms in the data propagation process (see below
Sect. 4.4), and to reformulate queries iteratively as in a peer
data management system [2,32].

To create schema mappings relating communities, we first
have to identify equivalent terms t ′ ≡ t ′′ from different
schemas S′ and S′′. Various methods can be used to dis-
cover those equivalences automatically. Schema matching is
an active area of research [28] but is not however the focus of
this work. In our large-scale, decentralized context, retriev-
ing all data from the shared hash-table—for instance for the
purpose of creating a corpus [23]—would be prohibitively
expensive. Methods focusing on selective search queries and
piggybacking on other operations should instead be used in
order to minimize the overhead on the shared infrastructure.

Fundamentally, we base the semantics of a mapping relat-
ing two terms t ′ and t ′′ on the likelihood of a statement

(r, t ′, v) being sound, knowing that a similar statement on
t ′′ (r, t ′′, v) is indeed sound:

P(t ′ ≡ t ′′) = P((r, t ′, v) evaluates to true

| (r, t ′′, v) evaluates to true) ∀r, v.

More pragmatically, we use a simple instance-based schema
matching approach piggybacking on the imputation process
to approximate this value. We create a new mapping (t ′,≡,

t ′′, p≡) whenever two statements (r ′, t ′, v′, p′) and
(r ′′, t ′′, v′′, p′′) on two similar resources r ′ and r ′′ with
D(r ′, r ′′) < τ with equivalent values v′ ≡ v′′ are discovered
during the neighbors selection phase. The process of decid-
ing whether or not two values are equivalent can be based
on lexicographical and linguistic analyses (e.g., edit distance
between strings, equivalence based on synonyms appearing
in a thesaurus). Note that the distance defined by the feature
values is here instrumental in creating the mappings, since
failing to recognize two resources as being similar invalidates
the whole process.

The probability p≡ that this relation holds is derived by
retrieving analogous statements (r j , t ′, v j , p j ) (rk, t ′′, vk,

pk) from the shared hash-table:

p≡ =
∑

p j ∀(r j ,t ′,v j ,p j ),(rk ,t ′′,vk ,pk )|D(r j ,rk )<τ∧v j ≡vk∑
p j ∀(r j ,t ′,v j ,p j ),(rk ,t ′′,vk ,pk )|D(r j ,rk )<τ

.

The probability is thus computed by counting the number
of equivalent values appearing in the instances considered
as being similar for the two terms. For instance, indexing
two similar images r1 and r2 with D(r1, r2) < τ with two
statements sharing the same value

(r1, located_in_City, Himeji)

and

(r2, castle_ci ty, Himeji)

would trigger the creation of a mapping between
located_in_City and castle_ci ty by retrieving the set of
similar resources annotated with either of the two terms and
by comparing the values of their statements. The creation of
mappings for the other terms appearing in the schemas can
be conducted simultaneously.

Incomplete statements (i.e., statements with v = ⊥) are
not taken into account in these computations. Unsound state-
ments (i.e., statements with p < 1) are taken into account in
this process by weighting their importance with their likeli-
ness (i.e., less likely values vi with probabilities pi close to
zero will have less impact than more probable values). Note
that subsumption mappings can be exported and discovered
in an identical manner by taking into account subsumption
relations � in place of the equivalence relations above.

In highly dynamic environments where new statements are
inserted on a continuous basis, recomputing p≡ each time a
new pair of potentially related terms is discovered would be
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expensive. In such situations, the decision to recompute p≡
can be based on the number of times the triggering condition
is observed by a particular peer, or on an analysis of the graph
of schemas and mappings determining whether or not more
mappings would be useful for reformulation purposes [9].

4.4 Dealing with metadata incompleteness through
inter-community metadata propagation

We can now extend the imputation process by propagating
metadata across different communities of interest follow-
ing schema mappings. The process is similar to the imputa-
tion process confined to a single community of interest (see
Sect. 4.2), but takes this time into consideration all neigh-
bors annotated with equivalent schemas related through map-
pings.

For a resource r and given an incomplete statement
(r, t,⊥), K neighbors r ′

k are considered such that D(r, r ′
k)

is minimal and below τ , H(r ′
k) is as low as possible, and

based on the existence of statements (r ′
k, t ′k, v′

k, p′
k) such that

t and t ′k are either identical or related through a mapping
(t,≡, t ′k, pk≡). The likelihoods l ′ki attached to the values is
then weighted with pk≡ to account for the fact that the map-
ping is in itself uncertain:

l ′ki = p′
ki D(r, r ′

k)
−1 pk≡.

As an example, suppose that the resource r ′
1 in Fig. 5 is anno-

tated with a different schema considering an attribute legend
similar to t i tle, with (ti tle, ≡, legend, 0.5). The uncertain
mapping would then reduce the significance of r1’s contri-
bution, lowering the likelihood of Himeji − Jo to 0.52.

Note that a value can be propagated iteratively across
series of communities of interest in that manner, and that
propagated values can in turn bootstrap the creation of new
schema mappings.

4.5 Possible answers and user feedback

User queries r? : (r1, t1, v1), . . . , (rn, tn, vn) can be resolved
by iterative lookup on the shared hash-table: for each triple
pattern in the query, candidate triples are retrieved by looking-
up one of the constant terms of the triple pattern in the shared
hash-table [10]. Answers to the query are then obtained by
combining the candidate triples. In addition to the certain
answers obtained in that way, possible answers [11] are gen-
erated by reformulating queries following (probabilistic)
schema mappings to query distant communities of interest:

r ′? : (r1, t ′1, v1), . . . , (rn, t ′n, vn)

| (∃S j | t ′1, . . . , t ′n ∈ S j ) ∧ t ′1 ≡ t1, . . . , t ′n ≡ tn

and by taking into account the probabilities attached to the
values of the entropic statements generated by the metadata

imputation and propagation processes. The resulting answers
can be ranked with respect to their likelihood to present the
most likely results first to the user. Optionally, resources
with a high entropy (i.e., resources with many incomplete
or unsound statements) can at this stage be proposed to the
user in order to take advantage of his feedback to classify
those highly uncertain resources and to bootstrap a new data
imputation round.

5 PicShark: sharing annotated pictures in the large

To demonstrate the viability of our metadata recontextual-
ization strategies, we developed a system called PicShark.
PicShark is an application built on top of a semantic overlay
network allowing global searches on shared pictures anno-
tated with incomplete, local and semi-structured metadata.
We consider PicShark as a concrete instantiation of the impu-
tation principles described above. PicShark concentrates on
the image annotation domain, but it would be straightfor-
ward to extend our application to other resources (e.g., tex-
tual documents, videos, or music files) by taking advantage
of different feature domains and defining new distances.

Our approach extends the principle of data independence
[19] by separating a logical layer—a semantic overlay man-
aging structured metadata and schemas—from a networking
layer consisting of a structured Peer-to-Peer overlay used for
efficient routing of messages (see Fig. 6). The networking
layer is used to implement various functions at the logical
layer, including query resolution, information imputation,
and information integration.

We use P-Grid [1] as a substrate for storing all shared
information in a Distributed Hash-Table (DHT). Indexing of
statements is handled by GridVine [10]. GridVine provides
efficient mechanisms for storing triples (or quadruples in our
case) in a decentralized way, and facilitates efficient resolu-

P-Grid (P2P Network)

GridVine (Semantic Overlay Network)

PicShark

Retrieve(key)Insert(key, value) Return(Value)

Export(pics)

Return(pic)

Insert(RDF) SearchFor(Query) Return(RDF)

In
se

rt
(k

ey
, p

ic
) R

eturn(pic)

R
et

rie
ve

(k
ey

)

Return(thumbs)

Select(thumb)Search(query)

Fig. 6 The PicShark architecture: PicShark uses P-Grid to store shared
resources and GridVine to share semi-structured metadata
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P-Grid

Core

Network

GridVine

RDF

OWL

RDFS

Extractors

Features
Extractor

Color + 
Textures

Time +
Space

Metadata
Extractor

XMP
Extractor

PSA
Extractor

Information
Aligner

Attribute
Aligner

PicShark

Query Resolver
Reformulator

Fig. 7 The PicShark components: PicShark uses metadata extractors
to syntactically export all metadata using a common format in the shared
hash-table, aligners to align schemas on a semantic level, and feature
extractors to extract low-level features representing the images

tion of conjunctive queries in O(log(n)) messages, where n
is the number of peers in the system.

On top of this architecture, PicShark takes care of fostering
global semantic interoperability by recontextualizing local
statements exported to the P2P network. Users can export
sets of local pictures through the Export(pics) method and
search for pictures by specifying conjunctive queries against
their local schemas.

Figure 7 gives an overview of the various components
used in PicShark. Data indexing takes advantage of metadata
extractors (see below) to syntactically align the statements
before sharing them through GridVine. Creation of mappings
is handled by aligners, while feature extractors are used to
extract the feature vectors used to relate similar images.

5.1 Information extraction in PicShark

PicShark uses metadata extractors to extract local metadata
from the images and to syntactically align the metadata to a
common representation. PicShark uses RDF/S as a common
syntax, and converts all supported metadata formats to this
representation. The application currently supports two very
different semi-structured metadata formats: PSA, which is a
hierarchical, proprietary format used by Photoshop Album3

and XMP, which is a standard based on RDF/S. Both stan-
dards are extensible and let users define new vocabulary
terms to annotate their pictures. The PSA Extractor extracts
semi-structured statements and vocabulary terms from the
local relational database used by Photoshop Album to store
all metadata, while its XMP counterpart extracts statements
and vocabulary terms from the payload of the pictures. The
extractors generate all missing GUIDs (for local vocabulary
terms and pictures), index statements using GridVine and
images using P-Grid directly. All statement values are stored

3 http://www.adobe.com/products/photoshopalbum/starter.html.

as strings. The system directly compares stemmed versions
of the strings to determine whether or not two values are
equivalent.

Features can be extracted from the images either by a low-
level analysis based on sixty texture and color moments, or
by the extraction of spatial and temporal metadata from the
images. With time-stamps directly embedded into most dig-
ital images and with the proliferation of GPS devices and
localization services (such as ZoneTag4), we believe that
the combination of both temporal and spatial information
represents a new and computationally inexpensive way of
identifying related images (see also below Sect. 5.2 for a
discussion on that topic). Based on the extracted features,
similarity search retrieving closely related resources during
the imputation process can be implemented efficiently in our
setting by using locality-sensitive hashing [18] at the net-
working layer. Distances for both feature spaces are defined
as standard Euclidian distances (respectively for sixty and
two dimensions).

5.2 Performance evaluation

Evaluating the performance of a system like PicShark is
intrinsically difficult for several reasons. PicShark is (to the
best of our knowledge) the first application taking advantage
of semi-structured, heterogeneous, and incomplete metadata
statements. As semi-structured statements from popular
image organization applications such as Photoshop Album
or Extensis Portfolio5 are kept in local databases and are not
searchable on the Web, constituting a realistic and sufficiently
large data set is currently difficult. Using tag collections from
popular tagging portals such as Flickr is impossible as well,
as the tags are very noisy and totally unstructured. Moreover,
recontextualization is a highly recursive, distributed and par-
allel process, such that getting a clear idea of the ins and outs
of the operation is difficult for large data sets or numerous
peers.

In the following, we describe a set of controlled experi-
ments pertaining to a set of three hundred photos6, which
were manually annotated using Adobe Photoshop Album
Starter Edition 3. The set of photos is divided into three
subsets, each taken by a different individual during a com-
mon trip to Japan. All sets were annotated using Photoshop
Album. The first two subsets use the same schema, while the
third subset was annotated using a different—but semanti-
cally related—schema. Schemas were designed by the pho-
tographers and consist of about ten attributes each. Temporal
information was directly taken from the time-stamp embed-

4 http://research.yahoo.com/zonetag/.
5 http://www.extensis.com/.
6 both photos and semi-structured metadata are available for download
at http://lsirwww.epfl.ch/PicShark/.
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ded by the cameras, while spatial information (i.e., GPS coor-
dinates) was added manually to each picture.

5.2.1 Intra-community imputation

This first experiment focuses on analyzing results pertain-
ing to metadata imputation in a given community of interest.
We start by exporting the first two subsets of 100 images
each, along with their metadata. We randomly drop each
statement—except spatial and temporal information, which
are always preserved—with a probability pMissing to simu-
late metadata scarcity. We then recontextualize the 100
images from the first subset one by one using images and
statements from the second subset to simulate intra-
community recontextualization (remember that both subsets
use the same schema). We alternatively base the imputation
process on either low-level features or spatial and temporal
metadata. As our image set is pretty homogeneous, we set
τ = ∞ and K = 2, i.e., we always take the two nearest
neighbors to recontextualize a given picture.

Figure 8 shows the evolution of the total metadata entropy
pertaining to the first subset of photos during the recontex-
tualization process, for various values of pMissing ranging
from 20% to 80%. The figure gives a normalized value of
the total entropy (the absolute entropies start at 82, 166, and
329 for pMissing = 20, 40, and 80% respectively). Total
entropy offers in our context a finer granularity to analyze the
process than, say, a standard recall metric, which would be
inadequate to capture the distribution of values attached to the
propagated statements. The curves depicted on Fig. 8 repre-
sent average results obtained over 10 consecutive runs. Note
that the results are pretty stable: the standard deviation never
exceeds 10% of the absolute value. The entropy—and thus,
the uncertainty on the set of images—decreases as more and

Fig. 8 Normalized total entropy pertaining to the first subset of images,
for metadata missing with various probabilities pMissing; at each step,
we recontextualize one of the 100 images from the first subset with its
two nearest neighbors from the second subset, using either low-level
features (L L) or spatial and temporal information (S + T )

more pictures get recontextualized. The imputation process
based on spatial and temporal values (S+T ) is slightly better
than the process based on low-level features (L L) at finding
images with very related statements. For high pMissing val-
ues, many values are missing and fewer metadata statements
get propagated.

The impact of the nearest-neighbor search is best illus-
trated by Figs. 9 and 10, which respectively depict the aggre-
gated probability for the sound and unsound metadata gen-
erated by the system. We call aggregated probability the sum
of the probabilities attached to propagated metadata (prop-
agated metadata with ⊥ values are not taken into account).
Note that propagating metadata usually decreases the total
entropy of the system, except when highly uncertain meta-
data are generated (e.g., when a ⊥ value is replaced by two

Fig. 9 Aggregated probability of the sound statements generated by
the system, for metadata missing with various probabilities pMissing;
at each step, we recontextualize one of the 100 images from the first
subset with its two nearest neighbors from the second subset, using
either low-level features (L L) or spatial and temporal information
(S + T )
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Fig. 10 Aggregated probability of the unsound statements gener-
ated by the system, for metadata missing with various probabilities
pMissing; at each step, we recontextualize one of the 100 images from
the first subset with its two nearest neighbors from the second subset,
using either low-level features (L L) or spatial and temporal information
(S + T )
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generated values with 50% probability each). S + T is sys-
tematically better than L L at finding good neighbors, as it
always generates more sound and less unsound statements
than L L . This is not surprising, as finding similar photos
based on color and texture moments only is known to be a
challenging problem in general. S+T generates high-quality
metadata that are sound more than 80% of the time. On the
other hand, S + T is often wrong when propagating meta-
data about people appearing on the pictures: here, spatial and
temporal information is typically not sufficient and a com-
bination of both S + T and L L would probably be more
effective.

In absolute terms, more statements are propagated for
pMissing = 40%. For pMissing = 20%, few metadata are
propagated (few values are missing), while for pMissing =
80%, few values are available for propagation initially.

5.2.2 Inter-community propagation

In the second part of the experiment, we continue the recon-
textualization process started above and further recontextu-
alize the 100 photos coming from the first subset with 100
photos coming from the third subset annotated with a differ-
ent schema. In that way, we simulate the creation of mappings
and the propagation of metadata across different communi-
ties of interest.

First, the third set of images and their related metadata
are exported. We do not drop metadata in the third set, thus
simulating a large set of metadata encoded according to dif-
ferent schemas. Schema mappings are created between the
two schemas using the instance-based method described in
the preceding section. Once the mappings are created, we
further recontextualize each of the 100 images of the first set
with their two closest-neighbors from the third set. We only
use S + T this time, as L L systematically yields inferior
results as for the intra-community recontextualization step
described above. Figure 11 gives the evolution of the nor-
malized entropy for the first set of images. More uncertain
metadata are propagated than for the previous case due to the
mappings, which were generated totally automatically based
on the values of the statements and are uncertain in this case.
Images with a high entropy (e.g., for pMissing = 80%),
however, benefit a lot from this second recontextualization
round, since their statements were still largely incomplete
after the first recontextualization round and since all state-
ments from the third set are complete.

Figure 12 shows the aggregated probability of the sound
statements generated during this second round of recontex-
tualization. Unsound statements follow a similar trend, but
never represent more than 20% of the generated statements.
At the end of our recontextualization process and depending
on the value of pMissing, 60% to 75% of the initial entropy

Fig. 11 Normalized total entropy pertaining to the first subset of
images, for metadata missing with various probabilities pMissing; at
each step, we recontextualize an image from the first subset of images
with its two nearest neighbors from the third subset, based on spatial
and temporal information (S + T )

Fig. 12 Aggregated probability of the sound statements generated by
the system, for metadata missing with various probabilities pMissing;
at each step, we recontextualize an image from the first subset of images
with its two nearest neighbors from the third subset, based on spatial
and temporal information (S + T )

of the system induced by incomplete metadata has been alle-
viated. Most statements contain now entropic metadata that
are sound in their majority (less than 20% of the propagated
statement are unsound on average with S +T ). Also, schema
mappings relating the two communities of interest have been
created automatically. Thus, we are now able to query the
system and retrieve relevant images from both communities,
while this was totally impossible before the recontextualiza-
tion process because of the heterogeneity and the lack of
metadata.

6 Related work

To the best of our knowledge, our approach is the first one
to tackle metadata scarcity in distributed settings. We place
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our work at the confines of decentralized data integration,
tagging systems, personal information management, and data
imputation techniques.

The way we propagate queries in PicShark is typical of a
new type of large-scale data integration infrastructures named
Peer Data Management Systems (PDMSs). PDMSs integrate
data by replacing the centralized mediator by an unstructured
network of pairwise schema mappings and by reformulating
the queries iteratively from one schema to the others. The
complexity of query reformulation in PDMSs is investigated
in the context of the Piazza [32] project, while the Hyper-
ion [2] system proposes to use mappings at both the instance
and at the schema levels to reformulate queries. PicShark is
the first PDMS taking into account probabilistic tuples and
supporting the propagation of instances from one database
to the others through schema mappings.

Tagging systems, allowing communities of users to add
unstructured text labels to resources shared online, are very
popular today. While they represent an effective method for
gathering large amounts of metadata, the tags they take advan-
tage of represent unstructured information and therefore are
difficult to process automatically. Thus, several recent
research efforts concentrate on extracting additional struc-
tured information from unstructured tags. Rattenbury et al.
[29] apply burst-analysis techniques to extract event and
place semantics from image tags based on their usage pat-
terns. Schmitz et al. [30] use a subsumption-based model
to extract ontologies from Flickr tags, while the ELSABer
system [22] organizes tags in hierarchies in order to enable
semantic browsing. Wu et al. [35] study the emergence of
semantics from tags, resources, and users co-occurrences. In
a similar context, Aurnhammer et al. [3] proposed an emer-
gent semantics approach to retrieve images based on collabo-
rative tagging. All these initiatives recognize the importance
of semi-structured metadata to improve search in large-scale
settings, but non of them tackles scarcity or heterogeneity of
metadata.

Similar to PicShark, personal information management
systems try to organize data originating from user desktops.
Haystack [20] is an information management system, which
uses extractors and lets non-technical users teach the appli-
cation how to extract Semantic Web content to generate RDF
triples from various sources. Gnowsis [17] is a semantic desk-
top where semantic information is collected from different
applications on the desktop and integrated with informa-
tion coming from external tagging portals. Semantic anno-
tations are either extracted or derived from user interaction.
The Semex System [12] is a platform for personal informa-
tion management that reconciles heterogeneous references
to the same real-world object using context information and
similarity values computed from related entities. The sys-
tem leverages on previous mappings provided by the users
and on object and association databases to foster interoper-

ability. Reconciliation of data was also recently revisited in
the context of the ORCHESTRA [33] project. In ORCHES-
TRA, participants publish their data on an ad hoc basis and
simultaneously reconcile updates with those published by
others. P-Tag [7] is a system which automatically generates
personalized tags for annotating web pages, based on the
data residing on the user’s personal desktop. Closer to our
work, Naaman et al. [26] add identity tags to photos in local
photo collections, based on time and location of photographs
and co-occurrence of people. Contrary to PicShark, none of
these approaches addresses data scarcity or takes advantage
of communities of users to collaboratively augment the data
that is shared.

Data imputation, finally, denotes techniques aiming at
replacing missing values in a data set by some plausible val-
ues (see Farhangfar et al. [16] for a recent survey of the field).

7 Conclusions

With the rapid emergence of socially driven applications
on the Web, self-organization principles have once again
proven their practicability and scalability: through Techno-
rati Ranking7, Flickr Interestingness8 or del.icio.us recom-
mendations9, an ever-increasing portion of the Web self-
organizes around end-user input. While most efforts concen-
trate on unstructured metadata (i.e., keyword) management,
we proposed in the article to tackle the problem of organizing
structured, heterogeneous metadata in large-scale settings.
We advocated a decentralized, community-based and imper-
fect (in terms of soundness and completeness) way of aug-
menting semi-structured metadata through self-organizing
assertions. Our PicShark system aims at creating metadata
automatically by using intra and inter-domain propagation
of entropic statements and schema alignment through decen-
tralized instance-based schema matching.

PicShark represents a first proof-of-concept of the applica-
bility of self-organization principles to the organization of
semi-structured, heterogeneous and partially annotated con-
tent in large-scale settings. We showed in our experiments
how incomplete metadata could be enhanced collaboratively
using our approach. To the best of our knowledge, PicShark
is currently the only system capable of using incomplete
and heterogeneous data sets such as the one we used to fos-
ter global, structured search capabilities automatically. This
first implementation effort opens the door to many techni-
cal refinements. As future work, we plan to improve our
imputation process to include personalized and fuzzy classi-
fication rules to relate semantically similar content. Also, we

7 http://www.technorati.com/.
8 http://www.flickr.com/.
9 http://del.icio.us/.
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intend to analyze the system churn—in terms of total entropy,
user feedback, and recently indexed information—in order to
determine the optimal scheduling of recontextualization and
schema matching rounds. Finally, we want to improve the
deployability of our application in order to test our approach
in situ on large and heterogeneous communities of real users,
and are currently launching an initiative jointly with an art
center in that context.
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