316 research outputs found

    Human inference beyond syllogisms: an approach using external graphical representations.

    Get PDF
    Research in psychology about reasoning has often been restricted to relatively inexpressive statements involving quantifiers (e.g. syllogisms). This is limited to situations that typically do not arise in practical settings, like ontology engineering. In order to provide an analysis of inference, we focus on reasoning tasks presented in external graphic representations where statements correspond to those involving multiple quantifiers and unary and binary relations. Our experiment measured participants' performance when reasoning with two notations. The first notation used topological constraints to convey information via node-link diagrams (i.e. graphs). The second used topological and spatial constraints to convey information (Euler diagrams with additional graph-like syntax). We found that topo-spatial representations were more effective for inferences than topological representations alone. Reasoning with statements involving multiple quantifiers was harder than reasoning with single quantifiers in topological representations, but not in topo-spatial representations. These findings are compared to those in sentential reasoning tasks

    Fuzzy Natural Logic in IFSA-EUSFLAT 2021

    Get PDF
    The present book contains five papers accepted and published in the Special Issue, “Fuzzy Natural Logic in IFSA-EUSFLAT 2021”, of the journal Mathematics (MDPI). These papers are extended versions of the contributions presented in the conference “The 19th World Congress of the International Fuzzy Systems Association and the 12th Conference of the European Society for Fuzzy Logic and Technology jointly with the AGOP, IJCRS, and FQAS conferences”, which took place in Bratislava (Slovakia) from September 19 to September 24, 2021. Fuzzy Natural Logic (FNL) is a system of mathematical fuzzy logic theories that enables us to model natural language terms and rules while accounting for their inherent vagueness and allows us to reason and argue using the tools developed in them. FNL includes, among others, the theory of evaluative linguistic expressions (e.g., small, very large, etc.), the theory of fuzzy and intermediate quantifiers (e.g., most, few, many, etc.), and the theory of fuzzy/linguistic IF–THEN rules and logical inference. The papers in this Special Issue use the various aspects and concepts of FNL mentioned above and apply them to a wide range of problems both theoretically and practically oriented. This book will be of interest for researchers working in the areas of fuzzy logic, applied linguistics, generalized quantifiers, and their applications

    Deductive reasoning about expressive statements using external graphical representations

    Get PDF
    Research in psychology on reasoning has often been restricted to relatively inexpressive statements involving quantifiers. This is limited to situations that typically do not arise in practical settings, such as ontology engineering. In order to provide an analysis of inference, we focus on reasoning tasks presented in external graphic representations where statements correspond to those involving multiple quantifiers and unary and binary relations. Our experiment measured participants’ performance when reasoning with two notations. The first used topology to convey information via node-link diagrams (i.e. graphs). The second used topological and spatial constraints to convey information (Euler diagrams with additional graph-like syntax). We found that topological- spatial representations were more effective than topological representations. Unlike topological-spatial representations, reasoning with topological representations was harder when involving multiple quantifiers and binary relations than single quantifiers and unary relations. These findings are compared to those for sentential reasoning tasks

    How to Deduce the Other 91 Valid Aristotelian Modal Syllogisms from the Syllogism IAI-3

    Get PDF
    This paper firstly formalizes Aristotelian modal syllogisms by taking advantage of the trisection structure of (modal) categorical propositions. And then making full use of the truth value definition of (modal) categorical propositions, the transformable relations between an Aristotelian quantifier and its three negative quantifiers, the reasoning rules of classical propositional logic, and the symmetry of the two Aristotelian quantifiers (i.e. some and no), this paper shows that at least 91 valid Aristotelian modal syllogisms can be deduced from IAI-3 on the basis of possible world semantics and set theory. The reason why these valid Aristotelian modal syllogisms can be reduced is that any Aristotelian quantifier can be defined by the other three Aristotelian quantifiers, and the necessary modality ( ) and possible modality ( ) can also be defined mutually. This research method is universal. This innovative study not only provides a unified mathematical research paradigm for the study of generalized modal syllogistic and other kinds of syllogistic, but also makes contributions to knowledge representation and knowledge reasoning in computer science

    Syllogisms with fractional quantifiers

    Get PDF
    Includes bibliographical references (page 422).Aristotle's syllogistic is extended to include denumerably many quantifiers such as more than 2/3' and exactly 2/3'. Syntactic and semantic decision procedures determine the validity, or invalidity, of syllogisms with any finite number of premises. One of the syntactic procedures uses a natural deduction account of deducibility, which is sound and complete. The semantics for the system is non-classical since sentences may be assigned a value other than true or false. Results about symmetric systems are given. And reasons are given for claiming that syllogistic validity is relevant validity

    Toward probabilistic natural logic for syllogistic reasoning

    Get PDF

    Approximate syllogistic reasoning: a contribution to inference patterns and use cases

    Get PDF
    In this thesis two models of syllogistic reasoning for dealing with arguments that involve fuzzy quantified statements and approximate chaining are proposed. The modeling of quantified statements is based on the Theory of Generalized Quantifiers, which allows us to manage different kind of quantifiers simultaneously, and the inference process is interpreted in terms of a mathematical optimization problem, which allows us to deal with more arguments that standard deductive ones. For the case of approximate chaining, we propose to use synonymy, as used in a thesaurus, for calculating the degree of confidence of the argument according to the degree of similarity between chaining terms. As use cases, different types of Bayesian reasoning (Generalized Bayes' Theorem, Bayesian networks and probabilistic reasoning in legal argumentation) are analysed for being expressed through syllogisms

    Mental representations underlying syllogistic reasoning

    Get PDF
    • 

    corecore