7 research outputs found

    Graphical interaction managment

    Get PDF

    An Object-oriented methodology for modern user interface development.

    Get PDF
    by Lam Siu Hong.Thesis (M.Phil.)--Chinese University of Hong Kong, 1991.Includes bibliographical references.Chapter Chapter1 --- Introduction --- p.1Chapter 1.1 --- Software Development Crisis of User Interface --- p.1Chapter 1.2 --- Objectives and Scope of Interests --- p.1Chapter 1.3 --- Overview of the Thesis --- p.2Chapter Chapter2 --- Background and Problems --- p.4Chapter 2.1 --- Categories of User Interfaces --- p.4Chapter 2.2 --- Trends of User Interfaces --- p.6Chapter 2.3 --- Some other Desirable Features and Problems of UI Development --- p.7Chapter 2.3.1 --- Separating UI from Application --- p.7Chapter 2.3.1.1 --- Benefits of Separable UIs and Applications --- p.7Chapter 2.3.1.2 --- Requirements of Complete Separation --- p.10Chapter 2.3.2 --- Instant Continuous Feedback --- p.12Chapter 2.3.2.1 --- Problems of Linguistic Model on World Model Type UIs --- p.12Chapter 2.3.3 --- Undo and Recovery --- p.15Chapter 2.3.4 --- Iterative Design through Rapid Protyping --- p.16Chapter Chapter3 --- An Object-Oriented Model for Model World User Interfaces Development --- p.18Chapter 3.1 --- Features of UIs to be supported by the Model --- p.18Chapter 3.2 --- A Linkage Model for Separating UI from Application --- p.19Chapter 3.2.1 --- Communication Messages Modeled using an Object Oriented Approach --- p.20Chapter 3.2.2 --- A Sample Message --- p.22Chapter 3.2.3 --- Linkage in a Distributed Heterogenous Environment --- p.24Chapter 3.2.4 --- Comparing the Linkage Model with the Application Interface Model in Seeheim's UI Model --- p.25Chapter 3.3 --- An Object-Oriented Model for Supporting Multiple Feedbacks and Multi-thread dialogue --- p.26Chapter 3.3.1 --- An Overview of the Model --- p.27Chapter 3.3.2 --- Objects on the Lexical Layer --- p.28Chapter 3.3.3 --- Roles of Presentation Objects --- p.29Chapter 3.3.4 --- Syntactic Objects --- p.31Chapter 3.3.5 --- Interaction Objects --- p.32Chapter 3.3.6 --- Interaction between objetcs and Linkage Component --- p.33Chapter 3.3.7 --- Multiple U-tubes Ladder for Supporting Multiple Feedbacks --- p.33Chapter 3.3.8 --- Recovery through a Generic UNDO stack --- p.35Chapter 3.3.9 --- Dialogue Control in an Object --- p.37Chapter 3.3.10 --- Interactive Objects --- p.39Chapter 3.3.11 --- An Architecture for Supporting Multi-thread Dialogue --- p.40Chapter 3.4 --- Basic Object Structure --- p.42Chapter 3.4.1 --- An Event Model for Dialogue Control --- p.43Chapter 3.4.2 --- Maintain Consistency through ε-rules --- p.45Chapter 3.4.3 --- An Example of an Inner Object Specification --- p.47Chapter 3.4.4 --- Pre and Post Condition of Action --- p.49Chapter 3.4.5 --- Automatic Message Routing --- p.49Chapter 3.5 --- Systematic Approach to UI Specification --- p.50Chapter Chapter4 --- User Interface Framework Design --- p.52Chapter 4.1 --- A Framework for UI Development --- p.52Chapter 4.1.1 --- Abstract Base Class for Each Object Type --- p.54Chapter 4.1.2 --- A Kernel for Message Routing --- p.60Chapter 4.1.3 --- Interaction Knowledge Base --- p.63Chapter 4.1.4 --- A Dynamic View of UI Objects --- p.64Chapter 4.1.5 --- Switch Box Mechanism for Dialogue Switching --- p.66Chapter 4.1.6 --- Software IC Construction --- p.68Chapter 4.2 --- Summaries of Object-Object UI Model and UI Framework --- p.70Chapter 4.2.1 --- A New Approach to User Interface Development 、 --- p.70Chapter 4.2.2 --- Feautures of UI Development provided by the Object-Object UI Model and UI Framework --- p.71Chapter Chapter5 --- Implementation --- p.73Chapter 5.1 --- Implementation of Framework in Microsoft Window Environment --- p.73Chapter 5.1.1 --- Implementation of automatic message routing through dynamic binding --- p.73Chapter 5.1.2 --- A generic message structure --- p.75Chapter 5.1.3 --- A meta class for object communication --- p.76Chapter 5.1.4 --- Software component of UI framework in Microsoft Window environment --- p.76Chapter 5.2 --- A Simple Stock Market Decision Support System (SSMDSS) --- p.77Chapter 5.2.1 --- UI Specification --- p.81Chapter 5.2.2 --- UI features supported by SSMDSS --- p.87Chapter Chapter6 --- Results --- p.89Chapter 6.1 --- Facts discovered --- p.89Chapter 6.1.1 --- Asynchronous and synchronous communication among objects --- p.89Chapter 6.1.2 --- Flexibility of the C+ + language --- p.90Chapter 6.2 --- Technical Problems Encountered --- p.91Chapter 6.2.1 --- Problems from Implementation Platform --- p.91Chapter 6.2.2 --- Problems due to Object Decomposition in an Interactive Object in SSMDSS --- p.92Chapter 6.3 --- Objectives accomplished by the Object-Oriented UI Model indicated by SSMDSS --- p.93Chapter Chapter7 --- Conclusion --- p.95Chapter 7.1 --- Thesis Summary --- p.95Chapter 7.2 --- Merits and Demerit of the Object-Oriented UI Model --- p.96Chapter 7.3 --- Cost of the Object-Oriented UI Model --- p.96Chapter 7.4 --- Future work --- p.97AppendixChapter A1 --- An Alogrithm for Converting Transition Network Diagram to Event Response Language --- p.A1Chapter A2 --- An Object-Oriented Software Development --- p.A4Chapter A2.1 --- Traditional Non Object-Oriented Software Development --- p.A4Chapter A2.2 --- An Object-Oriented Software Development --- p.A6Chapter A3 --- Vienna Development Method (VDM) --- p.A8Chapter A3.1 --- An Overview of VDM --- p.A8Chapter A3.2 --- Apply VDM to Object-Oriented UI model --- p.A10Chapter A4 --- Glossaries and Terms --- p.A12Referenc

    Surface interaction : separating direct manipulation interfaces from their applications.

    Get PDF
    To promote both quality and economy in the production of applications and their interactive interfaces, it is desirable to delay their mutual binding. The later the binding, the more separable the interface from its application. An ideally separated interface can factor tasks from a range of applications, can provide a level of independence from hardware I/O devices, and can be responsive to end-user requirements. Current interface systems base their separation on two different abstractions. In linguistic architectures, for example User Interface Management Systems in the Seeheim model, the dialogue or syntax of interaction is abstracted in a separate notation. In agent architectures like Toolkits, interactive devices, at various levels of complexity, are abstracted into a class or call hierarchy. This Thesis identifies an essential feature of the popular notion of direct manipulation: directness requires that the same object be used both for output and input. In practice this compromises the separation of both dialogue and devices. In addition, dialogue cannot usefully be abstracted from its application functionality, while device abstraction reduces the designer's expressive control by binding presentation style to application semantics. This Thesis proposes an alternative separation, based on the abstraction of the medium of interaction, together with a dedicated user agent which allows direct manipulation of the medium. This interactive medium is called the surface. The Thesis proposes two new models for the surface, the first of which has been implemented as Presenter, the second of which is an ideal design permitting document quality interfaces. The major contribution of the Thesis is a precise specification of an architecture (UMA), whereby a separated surface can preserve directness without binding in application semantics, and at the same time an application can express its semantics on the surface without needing to manage all the details of interaction. Thus UMA partitions interaction into Surface Interaction, and deep interaction. Surface Interaction factors a large portion of the task of maintaining a highly manipulable interface, and brings the roles of user and application designer closer
    corecore