
Incremental Attribute Evaluation
for Multi-User Semantics-Based Editors

Josephine Micallef

Columbia University
Department of Computer Science

New York, NY 10027

May 1991

CUCS-023-91

Incremental Attribute Evaluation
for Multi-User Semantics-Based Editors

Josephine Micallef

Submitted in panial fulfillment of the
requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences.

Columbia University
1991

Copyright © 1991 Josephine Micallef

ALL RIGHTS RESERVED

Abstract

Incremental Attribute Evaluation
for Multi-User Semantics-Based Editors

Josephine Micallef

This thesis addresses two fundamental problems associated with perfonning

incremental attribute evaluation in multi-user editors based on the attribute grammar

formalism: (1) multiple asynchronous modifications of the attributed derivation tree,

and (2) segmentation of the tree into separate modular units. Solutions to these

problems make it possible to construct semantics-based editors for use by teams of

programmers developing or maintaining large software systems. Multi-user semantics

based editors improve software productivity by reducing communication costs and

snafus.

The objectives of an incremental attribute evaluation algorithm for multiple

asynchronous changes are that (a) all attributes of the derivation tree have correct values

when evaluation terminates, and (b) the cost of evaluating attributes necessary to

reestablish a correctly attributed derivation tree is minimized. We present a family of

algorithms that differ in how they balance the tradeoff between algorithm efficiency and

expressiveness of the attribute grammar. This is important because multi-user editors

seem a practical basis for many areas of computer-supported cooperative work, not just

programming. Different application areas may have distinct definitions of efficiency,

and may impose different requirements on the expressiveness of the attribute grammar.

The characteristics of the application domain can then be used to select the most

efficient strategy for each particular editor.

To address the second problem, we define an extension of classical attribute grammars

that allows the specification of interface consistency checking for programs composed

of many modules. Classical attribute grammars can specify the static semantics of

monolithic programs or modules, but not inter-module semantics; the latter was done in

the past using ad hoc techniques. Extended attribute grammars support programming-

in-the-Iarge constructs found in real prograrrurung languages, including textual

inclusion, multiple kinds of modular units and nested modular units. We discuss

attribute evaluation in the context of prograrnrning-in-the-Iarge, particularly the

separation of concerns between the local evaluator for each modular unit and the global

evaluator that propagates attribute flows across module boundaries. The result is a

unifOIUl approach to formal specification of both intra-module and inter-module static

semantic properties, with the ability to use attribute evaluation algorithms to carry out a

complete static semantic analysis of a multi-module program.

Table of Contents

1. Introduction 1
1.1. Motivation 1
1.2. Thesis Problem 2
1.3. Application Scenarios 3

1.3.1. Smod 3
1.3.2. Calendar 7

1.4. Overview of Technical Results 12
1.4.1. Multiple Asynchronous Modifications 12
1.4.2. Segmentation of Derivation Tree 17

1.5. Related Work 19
1.6. Organization of Thesis 22

2. Background 24
2.1. Attribute Grammars 24
2.2. Incremental Attribute Evaluation 29

3. Incremental Attribute Evaluation for Multiple Asynchronous 36
Subtree Replacements

3.1. Problem Formulation 37
3.2. A Naive Algorithm for Multiple Updates 38
3.3. Collision-Merging Algorithm for Multiple Updates 39
3.4. Terminology 42
3.5. Multiple Cursors and Characteristic Graphs 44

3.5.1. Effect of Cursor Moyement on Characteristic Graphs 4S
3.5.2. Updating Characteristic Graphs after Subtree Replacement 48

3.6. Detecting Collisions 53
3.7. Merging Colliding Models 55

3.7.1. Merging Models after Expansion Collision 62
3.7.2. Merging Models after Initialization Collision 6S

3.8. Analysis of Collision-Merging Algorithm 68
3.9. Related Work 70

4. Static Evaluators for Incremental Attribute Evaluation of 73
Multiple Subtree Replacements

4.1. Overview of Static Evaluators 7S
4.1.1. Non-Incremental Driver for Static Evaluator 77
4.1.2. Incremental Driver for Static Evaluator 79

4.2. Static Incremental Evaluator for Multiple Asynchronous 81
Subtree Replacements
4.2.1. Determining Relative Order Among Plan Instructions 89
4.2.2. Analysis of Multiple Subtree Replacement Static Evaluator 90
4.2.3. Improvements 91

4.3. Pairwise Ordered Attribute Grammars 94
4.3.1. Algorithm to Compute Plans for POAGs 94
4.3.2. Computation of Relative Order Among Plans 97

4.4. Related Work 100
5. Extending Attribute Grammars to Support Static Semantic 102

Analysis for Programming-in-the-Large
5.1. Introduction 102
5.2. Segmentable Context-Free Grammars 106

5.2.1. Example 1: Ada 107
5.2.2. Example 2: C 109
5.2.3. Example 3: Pascal 109

5.3. Transforming the Segment Organization of a Program 112
5.3.1. List Segment Transformation 112
5.3.2. Optional Segment Transformation 11S

6. Segmentable Attribute Grammars 118
6.1. Attribute Evaluation for Segmented Derivation Trees 122
6.2. Segment Linkage 124

6.2.1. Constraints on Segment Linkage Attributes 126
6.2.2. Built-in Operators Related to Segment Linkage 129

6.3. Representation and Attribute Evaluation of Shared Segments 131
6.4. Conglomerate Attributes 136

6.4.1. Definition of Conglomerate Attributes 137
6.4.2. Selective Propagation 139

6.4.2.1. Updating a Segment's Uses Set 141
6.4.2.2. Change to Component's Used-by Set 143
6.4.2.3. Propagation after Change to Conglomerate Attribute 144

6.4.3. The isUnique Operator 146
7. Summarizable Attribute Grammars 149

7.1. Transformation involving Direct Dependencies 151
7.1.1. Case 1: Direct Dependency from an Inherited to a Synthesized IS4

Attribute.
7.1.2. Case 2: Direct dependency from a synthesized to an inherited ISS

attribute.
7.2. Transformation involving Transitive Dependencies 156

7.2.1. Removing Transitive Dependency from an Inherited to a 159
Synthesized Attribute

7.2.2. Removing Transitive Dependency for AG with Nested 161
Segments

7.3. Related Work 162
8. Conclusion 166

ii

8.1. Contributions 166
8.2. Future Work 167

Bibliography 170
Appendix A. The MERCURY System 178

A.t. Overview 178
A.2. The Editor Generator 179
A.3. Run-Time Support: The Attribute Propagation Layer 180
A.4. Kernel Algorithms 183
A.5. Conclusion 185

Appendix B. Attribute Grammar for Distributed Calendar 186
Application

iii

List of Figures

Figure 1-1: Two Smod modules before Interface Change 4
Figure 1-2: Two Smod modules after Interface Change 6
Figure 1-3: Two Calendar Schedules before Meeting Request 8
Figure 1-4: Two Calendar Schedules after Meeting Request 9
Figure 1-5: Two Calendar Schedules after Original User Confirms 10
Figure 1-6: Two Calendar Schedules after Other User Confirms 11
Figure 2-1: An Attribute Grammar Example 26
Figure 2-2: A String Derivedfrom the Grammar of Figure 2-1 28
Figure 2-3: Reps' Incremental Attribute Evaluation Algorithm 33
Figure 2-4: Expanding a Model 34
Figure 3-1: Startup Algorithm 40
Figure 3-2: Propagate Algorithm for Asynchronous Subtree 41

Replacements
Figure 3-3: Characteristic Graphs Requiredfor Multiple Editing 45

Cursors
Figure 3-4: Reestablishing Prepared for Propagation Invariantfor 49

Multiple Cursors
Figure 3-5: Changing Transitive Dependencies 50
Figure 3-6: Algorithm to Update Incorrect Characteristic Graphs 51
Figure 3-7: Characteristic Graph Update (cont.) 52
Figure 3-8: Scenario for Collisions during Model Expansion 54
Figure 3-9: Algorithm to Expand Model and Detect Collisions 56
Figure 3-10: Clearing in-model Field when Evaluation Process 57

Terminates
Figure 3-11: A Downward Collision due to a Downward Expansion 57
Figure 3-12: Search for Attributes to be Reinserted into a Colliding 59

Model
Figure 3-13: Antifreeze Algorithm 62
Figure 3-14: Algorithm to Expand Model, Detect Collisions, and 63

Merge Models
Figure 3-15: Replace Subtree Operation 66
Figure 3-16: Startup Algorithm (revisited) 67
Figure 4-1: Non-Incremental Driver 78
Figure 4-2: Incremental Driver 80
Figure 4-3: StartUp Algorithm 84

IV

Figure 4-4: Schedule Algorithm 85
Figure 4-5: Evaluate Algorithm 86
Figure 4-6: Algorithm to Check if a Pending Evaluation has been 87

Reached
Figure 4-7: Regions of the Computation Sequence 87
Figure 4-8: Attribute Grammar that is not Pairwise Ordered 92
Figure 4-9: Attribution Algorithms for Attribute Grammar of 93

Figure 4-8
Figure 4-10: Two Semantic Trees 93
Figure 4-11: Algorithm to Compute TDP 96
Figure 4-12: Algorithm to Compute ANCESTOR Relation 98
Figure 4-13: Computation of MapVisitParentToPlanlndex 99
Figure 5-1: Segmented Derivation Tree 103
Figure 5-2: Segmented Attribute Evaluation 105
Figure 5-3: Extended CFGfor Definition and Interconnection of 107

Segments in Ada
Figure 5-4: Extended CFG for Definition and Interconnection of 109

Segments in C
Figure 5-5: Extended CFG for Definition and Interconnection of 110

Segments in Pascal
Figure 5-6: Other Segmentation Structures for Pascal 111
Figure 5-7: Transformation of Segment Organization of a Program 113
Figure 6-1: Specification of a Simple Modular Language 121
Figure 6-2: Attribute Grammar for Matching Segments in Ada 125
Figure 6-3: A Noncircular Attribute Grammar 128
Figure 6-4: Dependency Graphs of Trees Derivedfrom AG of 129

Figure 6-3
Figure 6-5: Checking for Duplicate or Missing Subunits in Ada 131
Figure 6-6: Example Showing Why Replication is Neededfor 132

Shared Segments
Figure 6-7: Evaluation Algorithm for Conglomerate Attributes 142
Figure 6-8: Subtree Deletion Algorithm for Conglomerate 143

Attributes
Figure 6-9: Checking for Library Units with Duplicate Names in 147

Ada
Figure 7-1: Attribute Evaluation Anomaly in Segmented Derivation 150

Tree
Figure 7-2: AG with Direct Dependencies across Segments 152
Figure 7-3: AG of Figure 7-2 without Direct Dependencies across 153

Segments
Figure 7-4: AG with Transitive Dependencies across Segments 157
Figure 7-5: AG of Figure 7-4 without Transitive Dependencies 158

across Segments
Figure 7-6: AG with Nested Segments of the Same Type 162

v

Figure A-I: The MERCURY Editor Generator 181

vi

Acknowledgements

I would like to thank my advisor, Gail Kaiser. She introduced me to this research area,

provided thoughtful guidance throughout the development of this work, and pointed out

the broader context for applying my research. I wish to thank Dan Yellin for his

insightful readings of my work. Yechiam Yemini deserves special credit for his support

during the years. I am also grateful to Terry Boult and Barbara Ryder for serving on my

committee, and to Stu Feldman for encouraging my research during my summer at

Bellcore.

I wish to thank the many people who have contributed to the MERCURY project, in

particular, Travis Winfrey, Yael Cycowicz, and Wen-wey Hseush. I also thank Naser

Barghouti, Mark Gisi and other Frodo group members for useful comments about my

research, and to Chris Maio for providing assistance with our computer systems.

My years at Columbia would not have been as enjoyable if it were not for the many

friends I found there. Besides being a wonderful friend, Dannie Durand lent her support

over the years. My two office mates and friends, Monnett Hanvey and Doree

Seligmann, made our office a much more pleasant environment to work in.

I am grateful for the financial support provided by the American Association of

University Women during my last year at Columbia.

Finally, I would like to acknowledge the love and support I received from my husband

George and my son David throughout the sometimes trying years I have been in

graduate school. I also am grateful for my baby Michelle who provided welcome

interruptions from writing during the last two months. I am indebted to my mother for

coming from Malta to help out while I completed the thesis.

vii

To George, David, and Michelle

viii

1.1. Motivation

Chapter 1

Introduction

1

The problem of incremental attribute evaluation has been the focus of much research in

the last few years. Incremental attribute evaluation algorithms are of practical

imponance in semantics-based editors - also known as language-based editors - that

are based on the attribute grammar formalism [Knuth 68]. With semantics-based

editors, users construct or modify their programs by selecting from a menu of legal

templates, entering by hand identifiers, strings, integers, etc. The editor guarantees

syntactic correctness and aids the user in writing semantically correct programs by

incrementally checking for static semantic errors after every editing command, and

highlighting any inconsistencies so the user can immediately locate and understand the

problem while still in context.

Semantics-based editors are well-understood tools for educating student programmers

and reminding casual programmers of the programming language rules [Garlan

84, Chandhok 85]. To date, however, semantics-based editors have rarely been used by

advanced students or industry programmers, due to two basic inadequacies. First, the

template-based user interface is deemed unacceptable by many experienced

programmers. Second, the editors available prior to this work suppon only an

individual programmer working on a small program or a single module of a large

system, and do not help at all with detecting inconsistencies among modules wrinen by

different programmers [Perry 85, Perry 87]. There has been much work on solving the

first problem, with conventional text editing user interfaces tied to the structure editor

through incremental parsing technology (e.g., [Wegman 80, Morris 81]) and

customization of the user interface based on user modeling (e.g., [Neal 87]). This thesis

addresses the second problem.

2

The new results developed in this thesis advance the attribute grammar technology to

support multi-user semantics-based editors [Kaplan 86]. Multi-user editors would

enable collaboration among mUltiple student programmers working together on a group

project, and more significantly, support for programming-in-the-many for commercial

software development. Further, multi-user semantics-based editors could promote

collaboration on other kinds of structured documents, besides programs, and thus

provide a practical basis for many areas of computer-supported cooperative work [Greif

88].

1.2. Thesis Problem

The focus of the thesis is on the algorithms and facilities needed to make multi-user

semantics-based editors work. We extend the basic technology commonly employed

for single-user semantics-based editors: representation of the program (or other

structured document) as an attributed derivation tree, modeling of edits as subtree

replacements in this tree, specification of the syntactic and semantic properties of the

programming language (or other application domain) with an attribute grammar, and

immediate propagation of changes introduced by an edit through incremental evaluation

of the attributes affected by the edit (e.g., [Johnson 82, Reps 84a]).

We address two fundamental problems associated with performing incremental

evaluation of attribute grammars in multi-user editors:

1. Multiple asynchronous modifications to the attributed derivation tree.

2. Segmentation of the derivation tree into separate modular units.

In the first problem, we are concerned with how to correctly and efficiently carry out

incremental attribute evaluation in response to asynchronous changes made by multiple

users. Previous algorithms for updating attributes in response to single or multiple

synchronous edits [Reps 83, Yeh 83, Reps 86, Yeh 88] are not effective for multi-user

edits, either requiring the users to "take turns", or to wait until several changes have

been made before receiving feedback about their change.

In the second problem, the question is how to extend the attribute grammar formalism

3

and attribute evaluation techniques to support programming-in-the-large constructs

found in real programming languages, such as multiple kinds of compilation units,

nested compilation units, and textual inclusion.

1.3. Application Scenarios

The technology developed in this thesis is applicable to a wide variety of applications

that are based on attribute grammars. Potential applications have the following

characteristics:

• The representation of the central data objects of the application is an

attributed tree.

• The tree can be modified by multiple asynchronous subtree replacements
initiated by external agents (humans or automated transformations) .

• The tree is partitioned into segments according to the granularity of access

rights with respect to these agents.

Below we describe two distinct application scenarios for incremental attribute

evaluation algorithms supporting multiple users, one for programming-in-the-many in

the Modula-2 programming language [Wirth 82] and the other a distributed calendar

system for scheduling meetings among groups of people. Both of these applications

have been implemented in the MERCURY system, which generates distributed multi

user semantics-based editors from attribute grammar specifications. (The MERCURY

system is described in appendix A.) Examples in the rest of the thesis are drawn from

the programming application domain.

1.3.1. Smod

The Smod environment, for Small Modula-2, supports teams of programmers writing

programs in a subset of Modula-2. Smod includes only that portion of Modula-2

necessary to demonstrate consistency checking across module interfaces: import and

export statements; the elementary data types INTEGER, REAL, BOOLEAN and CHAR;

procedure declarations, restricted to only allow value parameters, and procedure calls;

assignment, conditional and repetitive (while and repeat) statements; and expressions.

t~ ., for $0IIIIe st"tisllcs s~le-s
t\!PO b tu begin .1 ... 1.,100 ..00.,
t\P' C to clear tho lilt I)f u.rrent events
t\!PO C to .'- coche InforMlloo
t~ d to cbtp the r~ ,tat'S to tho tor",noi
t!:PG D to print the eu-rent U"'" ¥ld date
t~ e to end ,1MJlatlOfl ..ode
ttl'<! E to pr ant Clrrent events
t~ f to aM fIll' df"SCrll,turs for hosts whit h tJrf'! up

Re~dPosHwqber;

IfA)"'-lI"ftl< 11 ... t: (t~Pt"»;

<t~p~»;

PrlntLlst(11st: <t~p~»:

o

5

Figure 1-1 shows two windows, each representing a different programmer working on a

separate module. The two windows are shown on the same screen for illustrative

purposes, but each is connected to a different user process on a different machine (york,

a Sun 3/60, and douglass, a Sun 3/280). At this point, the second programmer's mcxiule

sort is correctly using the interface exported by the first programmer's mcxiule

input.

Figure 1-2 shows the same two windows, but after the fIrst programmer has modified

the interface to change the Read?osNumber facility exported by input and

imported by the second programmer into sort. The change results in the appearance

of two error indications in the second programmer's window, each informing him or her

of an inconsistency (where ReadPosNumber is used within Initialize),

immediately after the fIrst programmer completes the keystroke necessary to edit the

interface. Thus each programmer is automatically and immediately kept up to date

about all program changes made by others that affect him or her.

This is important for programming-in-the-many, where a large program is divided into

modules, each assigned to a different programmer. In theory, the module interfaces are

set in advance, are "correct" and should not change, but in practice module interface

errors and their repairs account for a large portion of changes [Perry 85, Perry 87]. In

most software development efforts, programmers rely on electronic mail, meetings, and

other human-directed mechanisms for informing each other about interface changes, but

these are often tardy, incomplete, or misleading - so there may be long pericxis where

programmers make out-of-date or incorrect assumptions about interfaces, resulting in

much wasted effort based on these assumptions.

Based on the results of this thesis, MERCURY makes it possible to automate propagation

of all interface changes to all affected programmers, and to only those programmers

actually affected (to avoid overloading programmers with irrelevant information about

interface changes that do not affect them). The goal is to increase programmer

productivity and software quality by making sure that programmers always have all the

(static semantic) information they need about the other modules that their own work

depends on.

Ip:
t\flfJ II fOl" SOM St4ttSttcs ,........"...les
t_ b to begtn .t""l.tton ..00.
t~ C to clear the list of Clrrent (WMlts
t,.."e c to show coehe lnfol"flAtlon
tUjle d to c:bIp the raw Il",U to the In.-lila)
t~ D to print the ClIront tt., ond dote
t_ • to end .t l.tlon ..00.
t\jpe E to pr 1 nt etrr~nt rovenl s t_ f to s ... fli. do,cr

real);

Re.."dPosUUIIlber <@l4iMi¥'U;

(t~p~»;

RettdPo~tiurnber <14111,,+ Hi jjftil_;'I§;rolll:UDlJ:lljiIDT;l!KII>;
WHILE nurn <> 999 00

<variable> := num;
R~.dPost~umb~r (nurn /- (--TYPE MISMATCH WITH FORMAL ./
)

END

<tup<» ;

(lClP<»;

rl

7

1.3.2. Calendar

The Calendar system is our first significant attempt at a non-programming computer

supponed cooperative work application. Although not a full calendar system, it

provides most of the automatic scheduling functionality recommended in a study of

electronic calendars in office systems [Kincaid 85].

Each user of our system maintains his or her own personal calendar on-line, and enters

personal appointments. When one user desires to set up a meeting involving several

people, he or she enters a request indicating the constraints for the meeting: who should

attend, the expected length of the meeting, the earliest and latest dates for the meeting,

and some indication of its purpose. Calendar checks the schedules of all the users

expected to attend the meeting, deteITI1ines the first time period when all of the people

are free (according to the contents of their personal calendars) between 9am and 6pm,

and tentatively schedules the meeting. If there is no possible time for the meeting given

the constraints, Calendar immediately informs the user who initiated the meeting

request; this user can then relax the constraints or negotiate directly with other users to

open up some time slots.

If a tentative meeting is scheduled, it appears on all the relevant users' personal

calendars in a special section that indicates it is pending. Each user must conflml the

meeting by entering the meeting into his or her regular appointment section. If some

user cannot attend, he or she enters his or her conflicting appointment into the system,

and Calendar automatically withdraws the previously scheduled rime and tentatively

schedules the meeting again in the next available time slot. The meeting remains

pending until all users have confirmed for the same time period. The original user can

later retract (or cancel) the meeting by deleting the corresponding request from his or

her history of commands, which are saved by Calendar.

Figure 1-3 shows two windows, each representing a different user's personal calendar,

Josephine on york and Gail on douglass. Figure 1-4 shows what happens after

Josephine requests a meeting involving both of them. The automatically selected time

appears tentatively on each user's personal calendar. Figure 1-5 shows what happens

00

t!j)e a for SC*e ~t tutlcs '~I'"
tl*'" b to begin """I.tlon IOOdo
t!;PO (to clo.- the II,t of c"renl events
t~ c to show cache lnforMtlon
t~ d to t:btip the raw st"u to the ler .. lnal
tl*'" D to print tho CU"ront lI ond date
tp e to end ,1....,I"tlon IIOde
t~ E to print clFrcnt event,
t~ f to sea flit'! deterlplan for hosts whtGh l'JI r"

Gr-oup rroda

Appo!ntment Manaier for Josephlne

9 - 12: "Tt".'Ich D4t& Structures"

9 - 12: "Teach Data Structures"

9 - 12: "Tc-<1ch Data Structures"

9 - 12 : "T~,~ch O&ta Str·uctures"

9 - 12 : "T~(lch D5t5 Structures"

- 18: "Sl~phn conference"

10: "Slwphn conference"

9 - 13: "Sliphn conference end~"

8 -

9 -

9

8

9 -

\

~5f '" ~
S-
IU
~

~ '-... IU
IU
~
-<
::.J
l...

ApPolntm",nt t-1,,,n"'lIte r for G&11 S;
IU

18: "191 -C

'" 17: "SET' ~

17: 'SE1 ~
IU

18: " 1El1" .:;::
(.)

18: "Slk:pltlfl tutorial .. "
VJ
l...

19: "Slipl~n tut.o'·lol-." ~
18: "5. ~pl:m conf~1 ~rlce" IU --(::;

U
'-'

~
~ ,
CJ
L.
:::I
eli

~

o

Pendin" Meetlna Requests:
(Josephine. G .. 11). 6/15. '3 - 11: "IJI+IS-p .. per"

9 - 12: "Teach Data Structures"

9 - 12: "Teach Ddlt~ Structures"

'3 - 12: "Te"ch D"t" Structures"

'.l 12: ··Te .. ch Detta Structures"

12: ··Te .. ch o ... ti\ Structures"

18: "SiiP1.on conference"

18: ·'SiiPl .. n conference"

13: "Siipl"n conFe"ence ends"

Rppointment s:
6111. '3 12:
6113. '3 12:
6118. '3 12:
6120. '.l 18:
6121. '3 18:
6122. '3 13:
6125. '3 12:
6127. '3 12:

"Teach Data Structures"
"Teach Data Structures"
"Teach Data Structures"
"SliP!,.,n conference"
"Slipllln conFerence"
"Slaplen conference ends"
"Teach Data Structures"
"Teach Data Structures"

Ie (Josephine. Gail) for 2 hr. sometime between 6111
.. nd 6115 re: "IJI+IS-p .. per"

meetini scheduled for 6115. '3 - 11

Appolntment t'ltlln4i:er for Gall

Pendlna: Meetlni Requests:
(Joseph.ne. Gail). 6115. '3 - 11: "IJ~t1S-p .. per"

8 - 18: "IBM"

'3 - 17: "SE1"

'3 - 17: "SEI"

'3 - 18: "Sl1/;pl"n

'3 - 18: "Sl~pl"n

18: "Si\:pl"n

tutorials"

tu tor 1 <!ll s"

conference"

.' '. ,

r--

Sf
''')

:;;!
)....

'S,
<;:)

\.)
)....
;,;
"....,

~
......
Cl
:;:: '-0{)

',=
a

)....
I:.,)

b Cl
"....,

~
~
~

...:;::
~

V)
)....

Cl
"I;::l

~ --~
\.)

<;::>

~
II) . -(IJ
L.
::l
ell
~

I~ln

rodo

Appal ntment Manl.lllel' for

9 - 12: "r""ch n"t. Structures"

'3 - 12: "r""ch n"t" Structurl!!'s"

9 - 12: "Teach Data Structures"

12: "Teach n"t" Structures"

12: "Teach Data Structures"

18: "SI,pl"n conFerence'"

18: "SI&pl"n conference"

13: "Sl11tP13n conference ends"

ApPointments:
6/11. '3 12: "r""ch not" Structure,"
6/13. '3 - 12: "re"ch n"ta Structures"
6/18. 9 12: "Te"ch n.t" Structure.'
6/20. 9 18: "Slipl.n conference"
6/21. '3 18: "Slipl"n conference"

Jo~ephlne

6/22_ ':I 13: "Slaplan conference end~"
6/25. 9 12: "Teach nat" Structure,"
6/27. 9 12: "Te"ch n"ta Structur","

(JosephIne, Gatl) for 2 hrs ~ametlme between 6/11
and 6/15 re: "IJI11S-"""er"

meet!n. scheduled for 6/15. 9 - 11

8 18: "18W

'3 - 17: "SE1"

'3 - 17: "SE1'

B 18: "IBM"

'3 - 19: "SI.:pl"n

':j - lB: H51"pllJln

'3 - 18: "SI."hn

Appal ntPlents:
6/11. 8 - 18: .. IIJ1"
6/12. '3 - 17: "5[1 "
6/13. 9 17: "5[1'
6/14. 8 - 18: " IIJ1"

- -

6/18. 9 - 18: "SlKplari
6/19. 9 - 18: "SliPl"n
6/20. 9 - 18: "SIIlP!..n

r-~-

tlJtor.lllll~·'

tutor 1 ",1 $"

conference"

- tutorl..,l:".."
tutocl411s"
conference"

12

when Josephine confirms the meeting. Note that Gail has not yet confinned, and the

meeting time is still regarded as pending. Figure 1-6 shows what happens after Gail

confirms.

The full attribute grammar specification of the calendar application is given in appendix

B. The basic MERCURY facilities provide all the support needed to propagate

information among multiple users whose calendars reside on their personal

workstations. A prototype of an application can be implemented very quickly 1 by

specifying the structure of the document involved (the set of personal calendars in this

case), the semantic dependencies among the components of the document segments

(e.g., the constraints for scheduling meetings among busy users), and the semantic

dependencies within each component (e.g., multiple meetings involving the same user

cannot be overlapping).

1.4. Overview of Technical Results

This thesis describes a framework based on the attribute grammar formalism, and

supporting algorithms, necessary to make multi-user semantics-based editors work for

both programming and non-programming computer-supported cooperative work

scenarios, such as those described. In particular, we present algorithms that propagate

changes among the multiple users of an application and update any other components of

the application dependent on the changed component(s).

1.4.1. Multiple Asynchronous Modifications

The dependencies among multiple components of the program (or other structured

document)2 and the computations that take place when components are changed - to

update their dependent components accordingly - are expressed in an attribute

iTbe initial implementation of the Calendar functionality took only two days, although more time was
spent working on the user interface.

2Throughout the rest of this thesis, the term "program" should be understood to mean any kind of
structured document segmented among multiple users according to the requirements of the application,
such as the distributed calendar above.

13

grammar (AG), extended as described in subsection 1.4.2 to support multi-module

programs. We consider only the general class of noncircular AGs and its subclasses,

where an attribute of a component cannot depend (even indirectly) on itself. The

program is represented internally as an attributed derivation tree. Each entry or change

to the program is treated as the replacement of a subtree in the derivation tree. When

there are multiple users, the subtree replacements are asynchronous.

After a subtree replacement occurs in the attributed derivation tree, the values of

attributes in the unchanged part of the tree may be inconsistent with respect to the new

subtree, and similarly, attributes in the new subtree may be inconsistent with respect to

the rest of the tree. One way to reestablish attribute consistency in the derivation tree is

by an exhaustive recomputation of all the attributes in the entire tree after every change.

However, this would result in unacceptable response time for the users, especially for

the multi-user case, and would often do much more work than necessary. Instead,

incremental evaluation is employed, whose goal is to compute only those attributes

actually affected by the change.

An optimal incremental evaluation algorithm for single subtree replacements, applicable

to arbitrary noncircular AGs, was developed by Reps, Teitelbaum and Demers [Reps

83]. Their algorithm employs a scheduling graph, called a model, to keep track of

attributes that need to be evaluated, and direct and transitive dependency edges among

them. The model orders the evaluation of attributes to ensure that an attribute is

evaluated only after all the attributes it depends on have been assigned their final values

(Le., final until the next subtree replacement). The algorithm performs the minimal

amount of work necessary to reestablish attribute consistency in the derivation tree

following a single subtree replacement. That is, both the number of attribute

evaluations and the bookkeeping costs of the algorithm are proportional to the size of

AFFECTED, the set of attributes in the updated tree whose values changed.

A naive approach to handling k asynchronous subtree replacements is to perform k

sequential applications of the single-edit algorithm of Reps et a/., where new changes

and thus new evaluation processes are blocked until the previous one has completed.

However, if the sets of attributes affected by multiple subtree replacements are not

14

disjoint, this approach would always evaluate attributes in the intersection more than

once, even though information might have been available to prevent unnecessary

evaluations. In contrast to the naive approach, the algorithms for multiple asynchronous

subtree replacements presented in this thesis initiate an evaluation process immediately

following a subtree replacement, and "combine" the evaluation processes of multiple

subtree replacements to avoid evaluating attributes in the intersection more than once.

Consider k asynchronous edits whose corresponding evaluation processes have been

initiated but have not yet terminated. We define the set ASYNC-AFFECTED to be the

minimal set of attributes that must be evaluated to restore consistency in the attributed

derivation tree modified by the k edits. The size of ASYNC-AFFECTED depends on

the timing of the subtree replacements. When the k subtree replacements occur "almost

sequentially", that is, the attributes affected by the i th subtree replacement have almost

all been evaluated before the (i + l)st subtree replacement occurs, then
k.

I A SYNC-AFFECTED SEQ I = L IAFFECTEDil
i=!

where AFFECTED j is the set of attributes affected by the i th subtree replacement. In

this case, attributes affected by j subtree replacements, j ~ k, are necessarily evaluated j

times.

When the k subtree replacements occur "almost simultaneously", ASYNC-AFFECTED

contains the set of attributes with different values in the two trees T and Tic, where Tis

the consistently attributed derivation tree before the k subtree replacements occurred,

and Tk. is the updated tree after the evaluation of all k subtree replacements has

completed. The size of ASYNC-AFFECTED for k "almost simultaneous" edits may be

less than the cardinality of the union of the k affected sets, since an attribute's value

may have been changed as a result of one edit, only to be changed back to its original

value because of a subsequent edit. That is,

I ASYNC-AFFECTEDs1M I ~ I UNION-AFFECTED I, where

UNION-AFFECTED = AFFECTED! u AFFECTED2 U ... U AFFECTEDIc •

When the timing of the k subtree replacements is in between these two boundary cases,

reestablishing attribute consistency in the modified tree may require additional attribute

15

evaluations than if the k edits were "almost sequential", but may avoid some attribute

evaluations that would have been performed had the the edits been "almost

simultaneous". That is, the size of the set ASYNC-AFFECTED is

I ASYNC-AFFECTEDs/M I ~ I ASYNC-AFFECTED I ~ IASYNC-AFFECTEDsEQI

We state that an incremental attribute evaluation algorithm for multiple asynchronous

subtree replacements is semi-optimal if the number of attribute evaluations perfonned to

reestablish attribute consistency is proportional to the size of ASYNC-AFFECTED. In

other words, for any k > 1 modifications affecting the same attribute a, where the k

evaluation processes are still in progress and none have yet evaluated a, the algorithm

evaluates a at most once. The algorithm is optimal if the total work perfonned to

update the tree after k asynchronous edits is proportional to the size of

ASYNC-AFFECTED.

We have developed a number of semi-optimal incremental evaluation algorithms for

multiple asynchronous subtree replacements, which are applicable to different classes of

attribute grammars. We do not have an optimal solution, however, and it remains an

open question whether an optimal algorithm for multiple asynchronous edits can be

designed.

Our Collision-Merging algorithm, applicable to arbitrary noncircular AGs, allows the k

evaluation processes corresponding to the k subtree replacements to proceed

independently while they cover disjoint parts of the derivation tree. A model is

maintained for each independent evaluation process in progress. As a model expands to

include attributes dependent on other attributes that have changed in value, it may

expand to cover a derivation tree node that is already included in another model arising

from a different subtree replacement that is being evaluated concurrently. When this

happens, the two models are merged into one, thereby combining the corresponding

evaluation processes that had been proceeding independently previously, and evaluation

continues with the merged model.

This merging is useful because an attribute that appears in multiple models may be

scheduled and thus evaluated multiple times. If all the models in which it appears are

16

merged, however, then it will be evaluated at most once, as desired. This optimization

of course requires that the attribute is still in both models at the time of the merge. If an

attribute was previously in one model, but scheduled, evaluated and removed before the

two models were merged, then it will have to be evaluated a second time for the second

model. However, if there are some other attributes still in the first model that depend on

the removed attribute, they will be evaluated only once.

Our solution for arbitrary noncircular grammars attempts to find a balance between the

number of attributes evaluated and the bookkeeping overhead of the algorithm.

Separate evaluation processes, represented by their models, are merged as soon as they

cover the same node in the derivation tree, and thus most unnecessary attribute

evaluations are avoided. However, this algorithm may evaluate attributes that are not in

ASYNC-AFFECJED (although it will never evaluate attributes that are not in

A FFECTED j, for 1 $ i $ k). The bookkeeping costs of the algorithm for k

asynchronous subtree replacements are O(I~1 IAFFECTEDjl· i) in the worst case.

The Collision-Merging algorithm uses a dynamic evaluation strategy, that is, it employs

scheduling graphs that are computed at run-time from the dependencies in the attributed

tree. Static evaluation algorithms, in contrast, use precomputed plans that specify the

order of evaluation of attributes for each production in the grammar. Static evaluators

are more efficient, in both time and space, than dynamic evaluators for both incremental

and exhaustive attribute evaluation, but they can only be constructed for subclasses of

the noncircular attribute grammars.

We have also developed a new static incremental attribute evaluation algorithm for

multiple asynchronous edits, applicable to ordered attribute grammars (OAGs). OAGs,

originally defined by Kastens [Kastens 80], form a proper subclass of noncircular AGs.

Our algorithm for OAGs minimizes the number of attributes evaluated by interleaving

the plans activated by the k subtree replacements. The overhead of the algorithm results

from the cost of scheduling plans activated by different subtree replacements according

to which one should be executed first. The worst-case bookkeeping costs of this

algorithm for k subtree replacements is 0(1 ASYNC-AFFECTED I· n· k), where n is the

size of the derivation tree.

17

The factor n in the cost of the GAG evaluator arises from traversing the derivation tree

to detennine the interleaving order of plans associated with nodes in different parts of

the tree. In practice, this is not as bad as it seems - experiments using the GAG

system, an AG-based compiler generator, showed that the total amount of time required

by the evaluator to move from node to node is insignificant compared with the time

needed for attribute evaluation [Kastens 82]. Furthermore, the conditions causing the

worst-case behavior of the algorithm is pathological and not expected to arise in

practice.

We define a subclass of GAGs, called the pairwise ordered attribute granunars, where

the interleaving order for each pair of plans in the grammar is always the same,

independent of the derivation tree. Thus, a table can be constructed from an analysis of

the grammar containing the scheduling order for plans of the grammar, and a table

lookup operation replaces the tree traversal needed for GAGs during attribute

evaluation. The overhead of the evaluation algorithm for the pairwise ordered AGs is

reduced to O(jASYNC-AFFECTEDI·log n·k).

We now outline our results for the second problem addressed in this thesis - the

extension of the attribute grammar formalism to support segmentation of the program

into modular units.

1.4.2. Segmentation of Derivation Tree

Prior to this work, the attribute grammar formalism was primarily used to specify the

static semantics of languages for programming-in-the-small, where the entire program

is contained in a single file. Attribute grammars for languages with programming-in

the-large facilities define only the intra-module semantics since the formalism cannot

directly express inter-module semantics. We extend the attribute grammar formalism to

express programrning-in-the-Iarge constructs found in real programming languages,

including textual inclusion, multiple kinds of compilation units, and nested compilation

units, thus unifying inter-module and intra-module static semantics.

We define segmentable context-free grammars, the underlying substrate of extended

18

attribute grammars. Certain nontenninal symbols in segmentable context-free

grammars are declared to be distributable, indicating that they derive a separate

modular unit, generically called a segment. A segment may interface to exactly one

other segment (to represent nested program units) or to several other segments (to

represent textually included units).

Productions in a segmentable context-free grammar can derive an unordered collection

of segments. Standard context-free grammars can define only ordered collections (lists)

by a skewed tree using a left- or right-recursive pair of context-free productions. The

ability to express an unordered collection of segments is necessary to eliminate the cost

of synchronizing the addition of new segments to the program by multiple users.

We define the class of segmentable attribute grammars by extending the defmitions of

attributes, and the built-in operators available for use in their semantic equations, to

employ segmentable context-free grammars. We describe how existing attribute

evaluation algorithms can be extended to local segment evaluators for attribute

evaluation within segments, and combined with a global evaluator for intersegment

linkage and propagation of attribute values across interface nodes. Such a segmented

attribute evaluator can be used for detecting interface errors of a segmented derivation

tree.

We identify a panicular anomaly that arises when attributes are propagated from one

segment into another and then back to the first segment, potentially causing the first

segment to remain inconsistently attributed for a considerable amount of time when the

segments reside on different machines. We describe a technique for swnmarizing

attributes in such a way that evaluation is not delayed in the first segment due to the

propagation through the second segment. Our summarizing technique involves the

transfonnation of an attribute grammar into an equivalent one, and is only applicable to

a subclass of the segmentable attribute grammars.

Our result is a uniform approach to fonnal specification of both intra-module and inter

module static semantic properties, that is, both within and between segments, with the

ability to use attribute evaluation algorithms to carry out a complete static semantic

analysis of a multi-module program.

19

1.5. Related Work

Reps, Teitelbaum and Demers [Reps 83] developed the fust optimal algorithm for

incremental evaluation of attribute grammars, optimal in the sense that the complexity

is proportional to the number of attributes whose value is changed by the subtree

replacement, 0(1 AFFECTED I). Their algorithm allows only a single editing cursor

(i.e., a user-controlled pointer to the displayed text that represents a derivation tree node

where a subtree replacement can occur), with all cursor movements restricted to be from

a child node to its parent or vice versa, and was intended to support single-user

semantics-based editors. The user makes a subtree replacement, "waits" during the

subsequent evaluation process (the delay is generally unnoticeable since the program is

small), and then can move the cursor and make another change.

An algorithm for multiple synchronous subtree replacements was developed by Reps,

Marceau and Teitelbaum [Reps 86]. Synchronous changes support commands, such as

program transfonnations, that do not map nicely to single subtree replacements. The

idea is that all the subtree replacements are made fIrst and collected - and then a single

process is employed for overall incremental evaluation. This algorithm is not effective

when changes occur asynchronously, and thus is not suitable for multiple users.

Kaplan and Kaiser were the fIrst to describe a (distributed) attribute evaluation

algorithm to handle multiple asynchronous edits on program modules that are

distributed across a number of workstations connected by a local area network [Kaplan

86]. Their algorithm, for arbitrary noncircular AGs, was later expanded for parallel

evaluation on a centralized or decentralized tree in response to multiple asynchronous

edits [Kaiser 90]. Their initial work left open the problems addressed in this thesis.

Their updated algorithms assume the merging and other support algorithms described in

this thesis.

A number of other algorithms for handling multiple asynchronous subtree replacements

have been developed in the same time frame as the work reported in this thesis, but all

except one of the others are applicable only to semantic dependencies that are

expressible in some restricted subclass of the noncircular attribute grammars - while

20

we have designed algorithms for both the general class and subclasses of it. The

restrictions may not be a problem for semantics-based editors for programming, since

many programming languages fit within the restrictions, but the requirements of other

application domains may be different.

Geitz [Geitz 87] describes an algorithm that minimizes the number of attributes

evaluated by maintaining transitive dependency edges between attributes in one model

that depend on attributes in another model. This algorithm is applicable only to a subset

of what is called the partitioned attribute grammars, for which the transitive dependency

information required by the algorithm can be computed statically from the AG. (The

algorithm for multiple synchronous changes by Reps, Marceau and Teitelbaum cited

above also works only for this class).

Peckham [Peckham 90] developed static incremental evaluators for multiple

synchronous or asynchronous subtree replacements, which are applicable to a subset of

the partitioned AGs called the globally partitionable attribute grammars. Peckham's

algorithms evaluate the minimal number of attributes, with worst-case bookkeeping

costs of 0(1 ASYNC-AFFECTED I· log n·k) and O(IASYNC-AFFECTEDI·n·k) for the

synchronous and asynchronous versions, respectively.

Hoover [Hoover 87] is primarily concerned with incremental graph evaluation, to

support modifications of dependency graphs and evaluation of what he calls influenced

vertices of the graph (influenced vertices correspond approximately to affected

attributes). He discusses incremental attribute evaluation for arbitrary noncircular

attribute grammars in this framework, which also applies to a range of other incremental

computation problems. Most of his results are based on the paradigm where

modification and evaluation alternate, and both are done sequentially. However,

Hoover relaxes this assumption and briefly addresses the problems of allowing

dependency graph updates while evaluation is in progress and of parallel evaluation on

a dependency graph. Hoover's solution to these problems employs an approximate

rather than exact topological order, and therefore it is possible that his algorithm will

unnecessarily evaluate the same attribute multiple times even for a single dependency

graph modification.

21

Boehm and Zwaenepoel describe a non-incremental distributed/parallel evaluation

technique for use in compilers that divides the derivation tree into non-nested bottom

subtrees and a remaining top tree [Boehm 87]. In their implementation, these subtrees

are evaluated on different workstations connected by a high-speed network using a

combined static/dynamic evaluation strategy. The bottom subtrees are evaluated entirely

statically using the ordered attribute evaluation strategy, while the top tree is evaluated

dynamically by a topological sort of its dependency graph. The combination of these

evaluation strategies arose from their observation that dynamic evaluators are easy to

parallelize but require a lot of storage while static evaluators are inherently sequential

but utilize memory efficiently. Boehm and Zwaenepoel's work can be used to speed up

the compilation of small programs or individual modules of a large program, but must

be combined with our segmentable attribute grammars to compile (with inter-module

static semantic analysis) programs with multiple modules.

Alblas describes a parallel incremental evaluator that is an incremental version of the

combined static/dynamic evaluator of Boehm and Zwaenepoel [Alblas 90]. The goal of

his work is to support asynchronous subtree replacements caused by transformations in

different regions of the derivation tree. The application of a particular transformation

depends on attribute values in the tree. Alblas' evaluation algorithm allows the tree to

have inconsistent attributes as long as "safety criteria" are met. The safety criteria

ensure that a transformation of an inconsistent tree is enabled only if it would have been

enabled had the tree been consistent. Thus, calling the evaluator is delayed when

determined to be safe, allowing the evaluation processes of several transformations to

proceed concurrently. An evaluation algorithm that allows inconsistent attributes is

inappropriate for semantics-b.ased editors, since the attribute values inform the user

about the program's consistency.

All of the above efforts are concerned with semantics-based editors for programming,

and have not addressed other applications. However, Hudson and King have applied

incremental attribute evaluation to user interface updates [Hudson 88] and more general

database applications [Hudson 89] in their Cactis system. They do not support multiple

users or asynchronous subtree replacements. We anticipate that combining their results

22

with ours will dramatically expand the range of opportunities for computer-supported

cooperative work.

1.6. Organization of Thesis

The thesis is organized as follows. We give a brief introduction to attribute grammars

in section 2. In this chapter we also describe in detail the optimal attribute evaluation

algorithm due to Reps, Demers, and Teitelbaum [Reps 83] for single subtree

replacements, which is the basis for our general algorithm for mUltiple asynchronous

subtree replacements for noncircular AGs.

The problem of incremental attribute evaluation for multiple asynchronous subtree

replacements is the topic of chapters 3 and 4. The evaluation strategy of chapter 3 is

dynamic, while that of chapter 4 is static.

The algorithms described in chapter 3 are applicable to the general class of noncircular

attribute grammars. In this chapter, we are concerned with two issues. First, we discuss

how to correctly maintain the underlying data structures used by the evaluation

algorithm to determine the dependencies among attributes of the derivation tree, since

an edit may change the (indirect) dependencies among attributes affected by other

asynchronous edits. Second, we present algorithms to merge the scheduling graphs

used by each attribute evaluation process in progress, to avoid unnecessary repeated

evaluations of the same attribute.

A new incremental evaluation algorithm for ordered attribute grammars that minimizes

the number of attributes reevaluated when there are asynchronous program

modifications is described in chapter 4. We define pairwise ordered attribute grammars,

a subclass of OAGs for which the scheduling information necessary for asynchronous

subtree replacements can be precomputed during construction of the evaluator.

Chapters 5, 6, and 7 deal with the problem of extending the attribute grammar

formalism to handle separate modular units. Segmentable context-free grammars are

introduced in chapter 5. Using these grammars, one can represent multi-module

programs by segmented derivation trees. Such a representation is essential for multi-

23

user semantics-based editors, where the program being developed is decomposed into

modules and assigned to individual members of the development team.

Segmentable context-free grammars provide the underlying substrate for segmentable

attribute grammars, which are the topic of chapter 6. Besides defining this class of

attribute grammars, in this chapter we also discuss the issues of attribute evaluation in

the context of programming-in-the-Iarge, particularly the separation of concerns

between the local evaluator for each segment and the global evaluator that propagates

attributes across segment boundaries.

Chapter 7 defines the conditions that cause a delay in evaluating attributes in one

segment because of attribute dependencies through a different segment. We describe

how some segmentable AGs can be transformed to avoid this situation.

We conclude in chapter 8 by summarizing the contributions of the research reported in

this thesis. We list a number of problems that are natural extensions of this work, and

also discuss some interesting open problems for future work.

In appendix A we describe the MERCURY system, which generates multi-user

semantics-based editors from attribute grammar specifications. In our prototype

implementation, a program (or other structured document) consists of a collection of

segments; that is, MERCURY supports only a flat segment organization. The attribute

evaluation algorithm used in MERCURY for multiple asynchronous subtree replacements

is the one described in chapter 3. The attribute grammar specification for the Calendar

application is given in appendix B.

2.1. Attribute Grammars

Chapter 2

Background

24

Attribute grammars were first introduced by Knuth to describe the context-sensitive

propenies (static semantics) of programming languages [Knuth 68]. An attribute

grammar (AG) is based on a context-free grammar (CFG) that describes the language's

syntax. A context-free grammar is denoted as G = (N, T, P, S), where N and T are

finite sets of nonterminal and terminal symbols respectively, P is a finite set of

productions, and S is the start symbol of the grammar. Productions in a context-free

grammar are of the form X -t a, where X is a nonterminal and a is a string of symbols

from (N u T)·.

An AG extends a context-free grammar G by associating a set A(X) of attributes with

each symbol X in G. Each attribute represents a specific property of the symbol, and

can take on any of a specified set of values. The notation X.a indicates that attribute a is

an element of A(X). Semantic equations defining these attributes are associated with

productions of the grammar G. A semantic equation defines an attribute, ao' as the

value of a semantic function applied to other attributes of that production, ai' ... , a;:

The attribute on the left-hand side of the equation, ao' is functionally dependent on the

attributes on the right-hand side, ai' ... , aIr:

Attributes are divided into two disjoint classes: inherited and synthesized. The inherited

and synthesized attributes of a symbol X are denoted by 1(X) and SeX) respectively;

leX) u seX) = A(X) and 1(X) (J SeX) = (0. A semantic equation defines a synthesized

attribute of the left-hand symbol of a production, or an inherited attribute of one of the

right-hand side symbols. The start symbol of the grammar, S, has no inherited

25

attributes; that is, I(S) = 0. In Knuth's original formulation of AGs, terminal symbols

could have inherited attributes but no synthesized ones. We follow the approach of

later work on AGs and make no distinction between terminal and nonterminal symbols.

The output attributes of a production p: Xo -4 Xl '" Xfl are those attributes defined

by semantic equations associated with p. These are the synthesized attributes of the

left-hand side symbol of p (i.e., S(Xo» and the inherited attributes of the right-hand side

symbols of p (i.e., I(X I) u ... u I(XfI»' The input attributes of p are those attributes

which appear on the right hand side of the semantic equations of p.

An AG is in Bachmann normal form if for any production p. the input attributes of p

consist of the inherited attributes of the left-hand symbol of p (i.e .. I(Xo», and the

synthesized attributes of the right-hand side symbols of p (i.e .. S(X l) U ... u S(X fI»

[Bochmann 76]; that is, no attribute defined in p can be used to define another attribute

in p. In this thesis, we assume that attribute grammars are in Bochmann normal form.

Any attribute grammar can be converted to Bochmann normal form [Bochmann 76], so

this is not a limiting assumption.3

Figure 2-1 gives an example of an attribute grammar fragment for declarations in a

Pascal-like programming language. There are four productions in the context-free

grammar, pI through p4. Each symbol in a production has associated attribute instances

(declared in figure 2-1 (a», and each production has associated semantic equations that

define the values of the attribute instances (shown in figure 2-1 (b». Occurrences of the

same symbol within one production are distinguished by the use of a numerical suffix;

for example, in production p3, there are two occurrences of Decls, denoted by Decls$l

and Decls$2 for the first and second occurrence, respectively.

The AG of figure 2-1 builds a symbol table for all declared identifiers, and also marks

identifiers that are declared more than once as erroneous. The functions Member and

3This conversion may require duplication of semantic functions. For example, if the semantic
equations associated with the production p: Xo ~ XI X2 are XI.a =/(XO.a),X2.a = XI.a, the
equivalent normal form version would require two invocations of the semantic function/, resulting in the
semantic equations X l.a = /(Xo.a) , X2·a = /eXo.a).

Dccls: { synthesized attributes: SyrnTabOut;
inherited attributes: SyrnTabln; }

Decl: { synthesized anributes: SyrnTabOut, error;
inherited anributes: SyrnTabIn; }

Id: { synthesized attributes: Name;
inherited anributes: 0; }

Type: { synthesized attributes: TpKind;
inherited attributes: 0; }

(a): Contextjree Symbols of the Attribute Grammar and their Attributes

pI: Program ::= ... Decls ...
{ Decls.SyrnTabIn = NullTbIO; }

p2: Dccls ::= /* empty rule */
{ Decls.SyrnTabOut = Decls.SyrnTabln; }

p3: Decls$l ::= Decl Decls$2
{ Decl.SymTabln = Decls$l.SymTabIn;

Decls$2.SyrnTabln = Decl.SymTabOut;
Decls$I.SyrnTabOut = Decls$2.SyrnTabOut: }

p4: Decl ::= Id ':' Type ';'
(Decl.error = Member(Decl.SyrnTabln, Id.Name)

? "<-- Variable already declared"
• III!. . .

Decl.SyrnTabOut = Insert(Decl.SyrnTabln, Id.Name, Type.TpKind); }

(b): Productions of the Attribute Grammar Fragment and their Semantic Equations

Figure 2-1: An Attribute Grammar Example

26

Insert, used in the semantic equations associated with production p4, are defined as part

of the AG specifications; the definitions of these functions are omitted from figure 2-l.

AG functions are pure functions, that is, they have no side effects. Their only

arguments are constants or other attribute occurrences of the production. The

expression language for writing semantic equations used in this thesis is self

explanatory except where noted. It includes conditional expressions written with the

27

ternary operator "? :"; see, for example, the semantic equation defIning Decl.error in

production p4.

The value of an attribute instance is computed according to its defining semantic

equation. Before an attribute can be evaluated, all other attributes that it is functionally

dependent on must have already received values. The functional dependencies among

the attributes in the tree create a partial ordering on the attribute instances in the tree.

Any attribute evaluation algorithm must obey this panial order, but since the ordering is

partial, there may be more than one order of evaluating the attribute instances of the

tree.

We illustrate these concepts by an example. Consider the following string derived from

the CFG of fIgure 2-1:

a: integer;
b: boolean;

Figure 2-2 (a) shows the derivation tree for this string;4 the nodes in the tree are labeled

with symbols of the context-free grammar. Figure 2-2 (b) is the semantic tree for the

same declarations.S A semantic tree is a derivation tree where each tree node

additionally contains fields corresponding to the attributes of its labeling grammar

symbol. The dependency graph of a semantic tree T, denoted by D(T), represents

functional dependencies among the attribute instances of T, and is defined as follows:

D(T) is a directed graph, (V, E), where

• V = { attribute instances of T }, and

• E = { (a,b) I a, b E V, and a is an argument of b }.

The dependency graph for our running example is shown in figure 2-2 (c).

Knuth describes a simple algorithm for evaluating all the attributes in a semantic tree

[Knuth 68]. The algorithm makes use of the dependency graph of the semantic tree.

The vertices of the dependency graph, which correspond to attribute instances in the

4We are imprecise here, since this string cannot be matched from the start symbol of the grammar, but
it should be clear what is meant.

5The error attribute is not shown in the figure for clarity.

a integer b boolean

(a) A Derivation Tree

a

(c) A Dependency Graph

integer b boolean

(b) A Semantic Tree

o

•
LEGE:\D

derivation tree node:
nonterminaloccurrence

attribute field in semanlic tree
node: attribute instance

Figure 2-2: A String Derivedfrom the Grammar of Figure 2-1

28

29

semantic tree, are ftrst topologically sorted. Then, the attribute instances are evaluated

according to their topological order. This algorithm only works if the dependency

graph is acyclic [Knuth 71]. Many attribute evaluators assume that the AG is

noncircuiar, that is, that the dependency graph for any string derived by the grammar is

acyclic. However, it is hard to verify this assumption since to do so requires

exponential time [Jazayeri 75]. In this thesis, we only consider noncircular AGs. (The

class of noncircular attribute grammars is also referred to as the well-defined AGs.)

Although the algorithm described above is simple and works for any noncircular AG, its

performance is poor for both time and space: all decisions are made at run-time, and the

dependency graph must be built and stored. More efficient algorithms for performing

attribute evaluation have been developed for use in practical compiler-compilers

[Farrow 84, Kastens 82, Ganzinger 77]. These algorithms perform most of the work at

grammar-analysis time, once for each AG, thus improving the performance of the

evaluator. The disadvantage of these evaluators, which are called static or semi-static

evaluators depending on how much work is done at run-time, is that they do not work

for all noncircular AGs but only for subclasses of them.

2.2. Incremental Attribute Evaluation

The use of attribute grammars in semantics-based editors was originated by Demers,

Reps and Teitelbaum [Demers 81]. A program is represented internally by its semantic

tree. The program is modifted by a sequence of pruning and grafting operations on the

tree; these operations are collectively called subtree replacement operations. At all

times during editing, an editing cursor points to an interior node of the semantic tree. A

subtree replacement operation can be performed at the position in the tree indicated by

the editing cursor. The cursor can be moved from a node to its parent, or from a node to

its child, by cursor movement operations.

After a subtree replacement, some attributes may become inconsistent. An attribute is

inconsistent if its value is not equal to its semantic function applied to the current values

of its arguments. An incremental attribute evaluator reevaluates the inconsistent

attributes, thus reestablishing consistency among the attributes in the tree.

30

Continuing with the example from the previous subsection, suppose that a programmer,

Joe, was editing a program containing the two declarations of a and b. If he were to add

the following line to his program:

a: character;

then, after attribute reevaluation, the value of the error attribute associated with this

declaration would be "<-- Variable already declared". Such attributes can be displayed

by the editor as part of the program text to notify the programmer of inconsistencies in

the program. So Joe would see the following on his display after making the change:

a: character; <-- Variable already declared

This illustrates how change analysis and change propagation are accomplished by

means of attribute evaluation. It is desirable that the evaluation strategy be incremental,

that is, it does not perform an exhaustive evaluation of all the attributes in the semantic

tree, but only reevaluates those that are affected by the change.

The problem of incremental attribute evaluation for single subtree replacements can be

stated as follows. Starting from a consistently attributed tree T, a subtree 5 of T is

replaced by another tree, 5 I, which is also consistently attributed. The root node of the

two subtrees, 5 and 5', must be labeled with the same nonterminal gramrrill.r symbol.

Let T' be the tree T with 5 replaced by 5'. The problem is to evaluate the minimum

number of attributes in T' so that attribute consistency is reestablished. An optimal

solution to this problem for the general class of noncircular AGs was devised by Reps,

Teitelbaum and Demers [Reps 83].

Before describing this optimal algorithm, we defin~ some terminology and state the

assumptions used. We assume that the AG is in Bochmann normal form.6 A

replacement of subtree 5 with root node r by a subtree 5' with root node r' consists of

pruning the subtree 5 from the tree, assigning the inherited attributes of r' to the

inherited attributes of r, and grafting the subtree 5 I onto r.7 Thus, initially, the only

inconsistent attributes are those associated with the root of the replaced subtree.

6ntis assumption is made only to simplify the exposition, and the algorithm to be described can be
easily extended to deal with grammars that are not in normal form.

7RecaU that nodes rand r' must be labeled with the same nonterminal symbol.

31

After a subtree replacement at node r, the algorithm starts by evaluating the attributes

associated with r. The problem is to determine in what order the attributes of r should

be evaluated. It is not sufficient to consider just the direct dependencies among the

attributes of r in the two production instances where the node r appears. The reason is

that although there may not be any direct dependencies among these attributes, they

may be linked through a chain of dependencies arbitrarily far down the subtree rooted at

r, or in the tree above the node r. (See, for example, the dependencies between the

attributes SymTabln and SymTabOut of Decls in figure 2-2 (c).) For this reason, the

scheduling algorithm for determining which attribute should be evaluated next must

take into account transitive dependencies.

For the general class of noncircular AGs, the transitive dependencies among the

attributes of a nonterminal symbol may be different for different occurrences of the

symbol in a semantic tree. The upper tree context of a non terminal instance r in a

semantic tree is the resulting tree after the subtree rooted at r is pruned. There can be

several different subtrees derived from r, and several upper tree contexts. Therefore, it

is in general not possible to determine the transitive dependencies among the attributes

of a non terminal symbol from a static analysis of the AG.

For the single subtree replacement case, Reps et al. use characteristic graphs to keep

track of transitive dependencies among the attributes of a nonterminal occurrence in the

tree. A characteristic graph is a directed graph, G = (V, E), where V consists of the

attribute instances associated with a nonterminal occurrence in the semantic tree, and an

edge (v, w) is in E, where v and w are in V, and there is a path from v to w in the

dependency graph of the semantic tree that does not go through any other attributes in

V. A subordinate characteristic graph of a node r, denoted by r.C, only considers

dependencies in the subtree rooted at r. A superior characteristic graph of a node r,

denoted by r.C, only considers dependencies in the upper tree context of r.

We first define the graph operations, union (U), deletion (-), and projection (/), that

are used in the incremental attribute evaluation algorithm .

• Given directed graphs G I = (VI' E,) and G2 = (V2, E2), which mayor may

not be disjoint, the union of G I and G2 is defined as:

GI U G2 = (VI U V2, £1 U £2)

• The deletion of G2 from GI is defmed as:

GI - G2 = (VI' £1 - £2)

• Given a directed graph G = (V, £) and a set of vertices V' ~ V, the
projection of G onto V'is defined as:

G / V' = {(v, w) I v, WE V' and there exists a path from v to w in G

that does not contain any elements of V'}.

32

Figure 2-3 shows the incremental algorithm for reevaluating a semantic tree T after a

subtree replacement at r has occurred [Reps 84b]. It makes use of two central data

structures: (1) a model M, which is a graph containing attributes that need reevaluation

and direct and transitive dependency edges among them, and (2) a worklist S, which

contains those attributes in the model that are ready to be evaluated (i.e., their

arguments have already been evaluated, or do not need to be reevaluated). M initially

contains the attributes of the root of the replaced subtree, r. The (direct and transitive)

dependencies among these attributes are obtained from the characteristic graphs

associated with r. Those attributes in M that have no incoming edges are placed in the

worklist S.

Attributes are removed from S and evaluated until S is empty. When an attribute is

evaluated and its value changes, other attributes that depend on it may need to be

brought into the model. This is performed by the EXPAND procedure, shown in figure

2-4 and explained below. The attribute that was just evaluated, as well as all its

outgoing edges, are then removed from the model. This may result in some additional

attributes becoming ready for evaluation, which are inserted into the worklist S.

The model is expanded by procedure EXPAND when an attribute b is reevaluated and

changes value, and b has a successor c that is not in the model. EXPAND adds to the

model all the attributes of a neighboring production of the attribute b, as well as all

dependency edges among them. Let p denote the production Xo ~ XI ... X,., and

D(P) the direct dependencies of the production p. If b is associated with Xo (so c is

associated with some child Xj' 1 ~ i ~ n, of Xo), then the model is expanded downwards

by production p to include all the attributes of p. If b is associated with Xj' 1 ~ i ~ n

procedure PROPAGA lE(T: semantic tree; r: nontcnninal node of T at root of replaced subtree);
declare

M: a directed graph;

S, NeecfToBeEvaluated: sets of attribute instances;

b, c: attribute instances;

changed: Boolean;

OldValue, NewValue: attribute values;
begin

M:= r.Cur.C;

S := the set of vertices of M with in-degree 0 in M;
NeecfToBeEvaluated := the set of vertices of M;
whileS 'I- 0 do

od
end

Select and remove a vertex b from S;
changed := false

if b E NeedToBeEvalualed then

Remove b from NeecfToBeEvaluated;
OldValue := value of b;

fi

evaluate b;

NewValue := value of b;
if OldValue 'I- Newvalue then

changed := true;

fi

if M does not contain all the successors of b in D(T) then
EXPAND(M, b, S)

fi

while there exists c, a successor of bin M do

Remove edge (b. c) from M;

if in-degree of c in Mis 0 then Insert c into S fi
if changed = true then Insert c into NeedToBeEvaluated fi

od

Figure 2-3: Reps' Incremental Attribute Evaluation Algorithm

33

(so c is associated with the parent node Xo or a sibling node Xi' 1 ::; j ::; n, j '# i), then

the model is expanded upwards by production p. Direct and transitive dependency

edges among the attributes of production p are added to the model, using the two

functions ExpandSubordinate and ExpandSuperior defined below.

ExpandSubordinate(Xo) = D(P) u X!.C U ... U Xn'C

procedure EXPAND(M: a directed graph; b: an allribuLe instance; S: a set of attribute instances);
declare

c: an attribute instance;
begin

ir there exists c. a successor of b in D(J) that is not in M

and TreeNode(c) is a child of TreeNode(b) then

fi

M:= (M - TreeNode(b).C) u ExpandedSubordinate(TreeNode(b»;

Insert into S all vertices of ExpandedSubordinaLe(TreeNode(b)

whose in-degree in M is 0

ir there exists c. a successor of b in D(T) that is not in M

fi
end

and TreeNode(c) is the parent or a sibling of TreeNode(b) then

M := (M - TreeNode(b).c) u ExpandedSuperior(TreeNode(b»;

Insert into S all vertices of ExpandedSuperior(TreeNode(b)

whose in-degree in Mis 0

Figure 2-4: Expanding a Model

34

Since the model is expanded by an entire production instance. an attribute may be added

to the model, and eventually evaluated, even if none of its arguments changes. To avoid

this, a third data structure, NeearoBeEvaluared, is used in the incremental evaluation

algorithm of figure 2-3 to keep track of the set of attributes in the model that depend on

one or more changed attributes. Only atrributes in NeearoBeEvaluared are evaluated.

Reps' incremental evaluation algorithm does not require both superior and subordinate

characteristic graphs to be maintained at each node in the semantic tree. After a subtree

replacement at a node r, PROPAGATE never needs subordinate characteristic graphs for

nodes on the path from r to the root of the tree, and it never needs superior graphs for

any node that is not on the path from r to the root. Reps defines the "prepared for

propagation" invariant on the semantic tree representing the program being edited as

follows:

• The non terminal node where the editing cursor is placed is labeled with

both its superior and subordinate characteristic graphs.

• Each node on the path from the cursor to the root of the tree is labeled with
its superior characteristic graph.

• Each node that is not on the path from the cursor to the root of the tree is
labeled with its subordinate characteristic graph.

35

The prepared for propagation invariant is reestablished after subtree replacement

operations and when the cursor is moved. The functions ComputeSubordinate and

CompureSuperior compute the subordinate and superior characteristic graphs of a

semantic tree node, respectively, and are defined as follows for nodes in the production

p: Xo --7 Xl ... XII'

ComputeSubordinate(X~ = ExpandSubordinate(X~ I A(X~

ComputeSuperior(X) = ExpandSuperior(X) I A(X)

For a given grammar, the functions CompureSubordinare and CompureSuperior each

have unit cost.

Reps' incremental evaluation algorithm for a single subtree replacement is

asymptotically optimal in time. This means that both the number of semantic function

applications. as well as the cost of maintaining the necessary characteristic graphs, are

proponional to the size of the set AFFECTED, where AFFECTED is the set of

attributes whose values differ in T and T'.

Chapter 3

Incremental Attribute Evaluation for
Multiple Asynchronous Subtree Replacements

36

In this chapter, we present new incremental attribute evaluation algorithms that handle

multiple asynchronous subtree replacements for the general class of noncircular (well

defined) attribute grammars. Multiple asynchronous subtree replacements arise

naturally in multi-user semantics-based editors as multiple programmers make changes

simultaneously in different parts of the program. Incremental evaluation of

asynchronous subtree replacements for restricted classes of attribute grammars is

addressed in the following chapter.

When development or maintenance of a software system involves teams of

programmers, the semantic tree representing the system being developed or maintained

is divided into parts, called segments. The entire semantic tree is not usually available

in main memory since segments may be edited on different workstations, or they may

be dormant (that is, no one is currently working on them). In both this chapter and the

next, the problem of incremental attribute evaluation for asynchronous subtree

replacements is addressed separately from the issues of segmentation of the semantic

tree, which are the topics of chapters 5, 6 and 7. The incremental evaluation algorithms

to be described are applicable to either a nonsegmented semantic tree,8 or to a segment

of a segmented semantic tree. Multiple evaluation processes may be initiated

asynchronously within a segment by (1) internal subtree replacements within the

segment, and/or (2) updates to "interface attributes" of the segment caused by

propagation from external subtree replacements within other segments of the tree.

8Although this scenario may not be practical for our primary application of multi-user programming
environments, it may occur in other applications.

37

3.1. Problem Formulation

We state the problem of incremental attribute evaluation for k asynchronous subtree

replacements for the case when k is two. Let T be a consistently attributed semantic tree

of some attribute grammar G, T' the resulting tree after subtree S in T is replaced by S',

and Til the resulting tree after subtree R in T' is replaced by R', where the subtrees S'

and R' are also consistently attributed. The two modifications at Sand R are

asynchronous, that is, the second one may occur while the evaluation of the first one is

still in progress. The problem is to design an incremental evaluation algorithm that

reestablishes attribute consistency in Til in an optimal way.

The "goodness" of an incremental attribute evaluation algorithm is measured by two

costs: (1) the number of attributes reevaluated, and (2) the bookkeeping costs incurred

in scheduling attributes for reevaluation. An incremental evaluator for asynchronous

subtree replacements is optimal if it meets the following requirements:

1. For any single modification, the algorithm evaluates only those attribute
instances affected by the modification.

2. For any k > 1 modifications affecting the same attribute a, where the k
evaluation processes are still in progress and none have yet evaluated a,
the algorithm evaluates a at most once.

3. The bookkeeping costs of the evaluation algorithm are proportional to the

number of attributes evaluated.

This is an ideal definition of optimality, and it remains an open question whether an

algorithm that achieves all these requirements can be designed. There seems to be a

tradeoff between minimizing (1) the number of attributes reevaluated, and (2) the

bookkeeping costs incurred in scheduling attributes for reevaluation. Algorithms that

compromise between these two costs in different ways are presented in this chapter and

the next. That is, a particular evaluation algorithm may evaluate the minimum number

of attributes but only by being sub-optimal in its bookkeeping costs. Such an algorithm

would be useful for an application where attribute evaluation is expensive compared to

the bookkeeping costs, such as the proof checker described in [Reps 84c].

The second requirement is the more important one for the purposes of this section of the

38

thesis, so we shall state it more formally for the case when k = 2. Suppose that subtree

S is replaced at time t[l and subtree R at time t2, where t\ ~ t2• Let AFFECTEDs be the

set of attributes that are affected (and therefore must be reevaluated) because of the

subtree replacement at S, and similarly, AFFECTED
R

the set of attributes affected by the

subtree replacement at R. Furthermore, suppose that the evaluations from the two

modifications overlap, that is,

AFFECTEDs (J AFFECTEDR ~ 0

If the evaluation due to the subtree replacement at S is still in progress at the time of the

second modification, t2, then AFFECTEDs can be divided into two subsets: (1) EVAL,

containing those affected attributes that have already been evaluated at the time of the

second replacement, and (2) UNEV AL, containing the attributes still needing evaluation.

AFFECTEDs = EVALS'
12

U UNEVALs.~

Note that all these sets are not known a priori but are determined as the evaluation is

proceeding. The second optimality requirement states that every attribute a, such that

a E UNEV ALS'
12

(J AFFECTED R'

is evaluated at most once. The attribute a does not need to be evaluated at all if the

change to the value of the attribute at the root of the subtree S that affected a was

undone by the subtree replacement at R.

3.2. A Naive Algorithm for Multiple Updates

A naive approach to handling k asynchronous subtree replacements is to perform k

sequential applications of the classical algorithm for single subtree replacements

(described in chapter 2, section 2.2), where new changes and thus new evaluation

processes are blocked until the previous one has completed.

This solution has two shortcomings. First, the classical algorithm assumes that there is

a single editing cursor (i.e., semantic tree node where a subtree replacement can occur),

and is prepared for propagation at only one position in the tree - the position indicated

by the (single) editing cursor. If a subtree replacement is performed at a semantic tree

node different from the cursor, the characteristic graphs required by the evaluation

process are not available. Therefore, to correctly handle k asynchronous edits at k

cursors (for k users), the k sequential applications of the single-edit algorithm must be

39

interleaved with commands to move a special internal cursor from the root of one

subtree replacement to the next, making it appear as if there was only a single user

cursor.

Second, if the sets of attributes affected by the k subtree replacements,

AFFECTED j , 1 ~ i ~ k, are not disjoint, the naive solution would always evaluate

attributes in the intersection more than once, even though information might have been

available to prevent unnecessary evaluations.

3.3. Collision-Merging Algorithm for Multiple Updates

We present a better approach for handling k asynchronous subtree replacements. The k

evaluation processes proceed independently while they cover disjoint parts of the

semantic tree, where each independent process uses a variation of the classical

algorithm for single subtree replacement. A model is maintained for each independent

evaluation process in progress to schedule inconsistent attribute instances for

reevaluation.9 As the model changes, either when it is first initialized or when it is

expanded, it may cover a semantic tree node that is already included in another model

arising from a different subtree replacement that is being evaluated concurrently; this is

called a collision. When this happens, the colliding models are merged into one,

thereby combining the corresponding evaluation processes that had been proceeding

independently prior to the collision, and evaluation continues with the merged model.

We call this algorithm for incrementally evaluating a semantic tree for k asynchronous

subtree replacements the Collision-Merging Algorithm.

Figures 3-1 and 3-2 show the modified classical incremental evaluation algorithm

executed by each independent evaluation process. The parts of the algorithm that detect

collisions and merge the colliding models are explained in later sections, as indicated in

the figures.

When a subtree replacement occurs, evaluation processes in progress are suspended

9ntis is the same data structure used in the single subtree replacement algorithm presented in section
2.2.

atomic procedure startup (T: semantic tree; r: node of T at root of replaced subtree);

declare
M: a directed graph;
S, NeedToBeEvaluated: sets of attribute instances;

begin
if collision during model initialization is detected then

Merge initial model with existing model/* defmed in section 3.7 */
else

fi

end

M:= r.Cu r.c;

S := the set of vertices of M with in-degree 0 in M;
NeedToBeEvaluated:= the set of vertices of M;

fork asynch-propagate(M, S, NeedToBeEvaluated)

Figure 3-1: Startup Algorithm

40

until the pruning and grafting operations on the tree have been perfonned, and an

evaluation process for the new subtree replacement initiated. A new evaluation process

is initiated by the procedure startup, shown in figure 3-1.

An evaluation process can only be suspended when it is not executing a critical section.

The startup procedure, which initializes the model and other data structures used by the

evaluation process, is a critical section, and is defined as an atomic operation. The

second critical region consists of each iteration of the while loop body of procedure

asynch-propagate shown in figure 3-2; this critical section removes an attribute b from

the worklist S, evaluates b, and if necessary expands the model.

The novelty of the Collision-Merging algorithm is not the approach itself, which was

originally reported by Kaplan and Kaiser [Kaplan 86] and improved and expanded in

[Kaiser 90]. Rather, our contribution is the complete collection of supporting

algorithms needed to make the approach work. In panicular, we describe solutions to

the following problems previously left open:

• How are superior and subordinate characteristic graphs maintained in the
semantic tree when there are multiple editing cursors at which subtree
replacements can be initiated?

• What constitutes a collision between models of independent evaluation
processes, and when do collisions occur?

procedure asynch-propagare (M: a directed graph; S. NeedToBeEvaluated: sets
of attribute instances);

declare

b. c: attribute instances;

changed: Boolean;

OldValue. NewValue: attribute values;

begin

while S *" 0 do

od

atomic begin
Select and remove a vertex b from S;

changed := false
if b E NeedToBeEvalualed then

Remove b from NeedToBeEvalualed;

OldValue := value of b;

fi

evaluate b;

NewValue:= value of b;

ifOldValue *" Newvalue then

changed := true;

if M does not contain all Lhe successors of b in D(f) then

asynch-expand(M. b. S) /* defined in sections 3.6 and 3.7 */
fi

else

anlifreeze(b. M. S) 1* defined in section 3.7 */
fi

while there exists c, a successor of bin M do

Remove edge (b, c) from M;

if in-degree of c in M is 0 then Insert c into S fi
if changed = true then Insert c into NeedToBeEvalualed fi

od

atomic end

clear-model-field(apex of M) /* defined in section 3.6 */
end

Figure 3-2: Propagate Algorithm/or Asynchronous Subtree Replacements

• Following a collision, how are the models merged to ensure that the tree is
consistently attributed when the evaluation process using the merged model
terminates?

41

As mentioned earlier, there is a trade-off between minimizing the number of attributes

reevaluated and bookkeeping costs for the multiple asynchronous subtree replacement

42

problem. This results in a spectrum of algorithms that differ in how they compromise

between these costs. In the naive approach described earlier, bookkeeping is simplified

at the expense of reevaluating attributes more than once; this approach lies at one end of

the spectrum.

A different approach at the other end of the spectrum consists of incrementally

maintaining a complete transitive closure of the entire dependency graph; the number of

attributes reevaluated is minimized at the expense of much higher bookkeeping costs.

The Collision-Merging algorithm attempts to find a balance between the two costs:

additional bookkeeping costs are only incurred at collision, and on average, collisions

prevent unnecessary attribute reevaluations. Furthermore, the Collision-Merging

algorithm is easily extended to actually minimize attribute reevaluations, with the

concomitant higher bookkeeping costs, if necessary.

The rest of this chapter is organized as follows. Section 3.4 introduces terminology.

The additional complexity introduced by multiple editing cursors is explored in section

3.5. In section 3.6, the scenarios where collisions occur are described, and algorithms

for merging models involved in a collision are presented in section 3.7. The cost of the

Collision-Merging algorithm is analyzed in section 3.8. Related work is compared in

section 3.9.

3.4. Terminology

The model- the graph for scheduling attribute evaluations introduced in section 2.2 -

represents direct and transitive dependencies of a connected region of the semantic tree.

Its purpose is to prevent an attribute from being considered for evaluation before its

arguments receive their fmal values. This ensures that an attribute is not evaluated more

than once due to a single subtree replacement. When a subtree replacement occurs, the

only inconsistent attributes initially are those associated with the root r of the replaced

sUbtree. lO Thus, the initial model consists of the attributes of r and the dependencies

among them (both direct and transitive).

lOWe assume that the attribUle grammar is in Bachmann normal form.

43

When an attribute b is evaluated and its value changes, the modeled region of the tree

may need to be expanded. Expansion is required if there is an attribute c that depends

on b, and c is not in the model. In this case, the modeled region of the tree is expanded

to include the production p, where c is defined, by adding to the model the attributes

associated with non terminal instances of p, as well as direct and transitive dependencies

among them. Since semantic equations have locality of reference, p is adjacent to the

previously modeled region of the semantic tree.

The modeled region of the semantic tree, which we call the backbone of the model, is a

rooted subgraph of the semantic tree; it includes the root node of the replaced subtree

and all production instances by which the model was expanded. The attribute instances

in the model are associated with the tree nodes in the backbone, but not all attribute

instances in the backbone are in the model - some of them may have been deleted,

either because they were evaluated or because it was not necessary to evaluate them

because their arguments did not change. We call the root node of the backbone the

apex, and the leaves of the backbone the frontier. The root and leaf nodes of the

backbone do not necessarily correspond to the root and leaf nodes of the semantic tree.

A model contains two kinds of edges: direct dependencies, and transitive dependencies.

There is a direct dependency edge (a, b) between two attributes a and b if a is an

argument to the semantic function defining b. The model only represents transitive

dependency edges between attributes of the same nonterminal instance. There is a

transitive edge (a, b) between two attributes a and b of nonterminal X if there is a path

of direct dependency edges between a and b. If the path only goes through attributes

associated with nodes in the subtree rooted at X, then this is a subordinate transitive

edge. If the path only goes through attributes associated with nodes in the tree that

remains after the subtree rooted at X is pruned, then the edge is called a superior

transitive edge. There are superior transitive dependency edges among the attributes

associated with the apex of the model, subordinate transitive dependencies among the

attributes of frontier nodes of the model, and direct dependency edges everywhere else.

44

3.5. Multiple Cursors and Characteristic Graphs

In this section we describe how to correctly maintain the characteristic graphs

associated with semantic tree nodes for multiple editing cursors. Characteristic graphs

are employed to efficiently initialize and expand the model used by each independent

evaluation process of the Collision-Merging algorithm. Characteristic graphs, defined

in section 2.2, contain the transitive dependencies among the attribute instances of a

semantic tree node.

When there are multiple editing cursors, the semantic tree is "prepared for

propagation" at anyone of the editing cursors if the following invariant holds. Let m

be the number of editing cursors, rp ... , r m denote the m cursors, and LCA their lowest

common ancestor. Then, the invariant, which is illustrated in figure 3-3, states that:

• Each node on the path from the LCA (inclusive) to the root of the tree is

labeled with its superior characteristic graph.

• Each node on the path from an editing cursor rj (inclusive) to the LCA (not
inclusive) is labeled with both its superior and subordinate characteristic

graphs, where 1 ~ i ~ m.

• Each node that is not on a path from an editing cursor to the root of the tree

is labeled with its subordinate characteristic graph.

For a segmented semantic tree, the prepared for propagation invariant is defined with

respect to each segment. and not for the entire semantic tree. Within a segment, there is

a (real) editing cursor for the single user making changes to that segment, and (virtual)

editing cursors for each "interface" node of the segment (that is, a node on the

boundary with another segment). We treat an interface node of a segment as an editing

cursor because an update in some other segment of the tree is propagated to the segment

via an interface node, and is handled as a subtree replacement at that interface node.

(The details of the attribute evaluation algorithm for a segmented semantic tree are

explained in chapter 6, section 6.1.)

In the rest of this section, we examine the two events that affect the prepared for

propagation invariant for multiple editing cursors: cursor movement operations, and

subtree replacements. When an editing cursor is moved to a neighboring node in the

lC===~====~~superior and
subordinate
characteristic

graphs

45

Figure 3-3: Characteristic Graphs Required/or Multiple Editing Cursors

semantic tree, characteristic graphs may have to be computed or deleted to maintain the

prepared for propagation invariant; this issue is the topic of subsection 3.5.1. A subtree

replacement at one of the editing cursors may invalidate characteristic graphs in other

parts of the semantic tree; algorithms to recompute the necessary characteristic graphs

after a subtree replacement are described in subsection 3.5.2.

3.5.1. Effect of Cursor Movement on Characteristic Graphs

Every cursor movement can be broken up into a sequence of two kinds of cursor

movement operations: (1) DescendToChild(rj,j) moves cursor rj to the j th child of r,

and (2) AscendToParent(r) moves cursor rj to its parent. We assume that the cursor

movement operations, DescendToChiid and AscendToParent, are atomic.

The actions that must be perfom1ed to reestablish the prepared for propagation invariant

when an editing cursor rj is moved depends on whether (1) rj is the LCA, (2) rj is not the

LeA but is the ancestor of another editing cursor ri , 1 ~ j ~ m, j ¢ i, or (3) rj is not the

ancestor of any other editing cursor rj' These three cases are mutually exclusive when

there are multiple editing cursors (i.e., m > 1).

46

To maintain the prepared for propagation invariant, DescendToChild(rj,j) performs the

following actions:

• Case (rj = LCA):

a. Compute new LeA.

b. If new LeA is not equal to rj (i.e., new LCA is equal to j th child of
r), delete subordinate characteristic graph of rio

• Case (3 j, 1 ~ j ~ m, j :;. i, rj is ancestor of r):

a. Do nothing (superior characteristic graph of j th child of rj is already
available).

• Case ("if j, 1 ~ j ~ m, j :;. i, rj is not ancestor of r):

a. Compute superior characteristic graph of j th child of rj using
function ComputeSuperior defined in chapter 2, section 2.2.

AscendToParent(ri) reestablishes the prepared for propagation invariant as follows:

• Case (rj = LCA):

a. Set new LCA to be parent of rio

b. Compute subordinate characteristic graph of parent of rj using
function ComputeSubordinate defined in chapter 2, section 2.2.

• Case (3 j, 1 ~ j ~ m, j :;. i, rj is ancestor of r;'J:

a. Do nothing (superior characteristic graph of rj still needed).

• Case ('<;/ j, 1 ~ j ~ m, j :;. i, rj is not ancestor of r):

a. Delete superior characteristic graph of rio

The actions performed by the cursor movement operations to reestablish the prepared

for propagation invariant depend on whether an editing cursor is an ancestor of another

cursor, and may entail the recalculation of LCA. We now describe how this can be done

efficiently so that for a given grammar, each cursor movement operation has unit cost.

We maintain an "edge-color" invariant on the semantic tree, which is defmed as

follows:

• Each semantic tree edge on the path from an editing cursor to the LCA is
colored blue.

• Each edge that is not on a path from an editing cursor to the LCA is colored
white.

47

Given the edge-color invariant, we can detennine whether a semantic tree node n is a

(proper) ancestor of an editing cursor by checking whether there is a blue edge from n

to any child of n. Furthennore, we can easily recompute the LCA when an editing

cursor ri that is positioned at the LCA is moved to a child c - if there is a blue edge

from ri to any sibling of c, then LCA stays the same, otherwise LCA is set to c.

The edge-color invariant must be reestablished after each cursor movement operation.

When an editing cursor r i is moved to a child c, there are two situations when the color

of the edge (ri, c) must be changed. (1) If r i is not an ancestor of any other editing

cursor, then the (white) edge (ri, c) is colored blue. (2) If rj is positioned at the LCA,

and moving ri to c changes LCA to c, then the (blue) edge (ri, c) is colored white. The

part of DescendToChild(ri,j) that maintains the edge-color invariant is defined as:

let c = j th child of rj in

nj

if (rj = LCA) and (there is no blue edge from r i to a child k of r i, where k :;:. j) then

LeA:= c;

Color edge (ri, c) white

else

fi

if there is no blue edge from r i to any child of rj then

Color edge (ri • c) blue

fi

Reestablishing the edge-color invariant when an editing cursor ri is moved to its parent

p is similar. Again, there are two situations when the color of the edge (p, r j) must be

changed. (1) If r i is not an ancestor of any other editing cursor, then the (blue) edge

(p, r) is colored white. (2) If ri is positioned at the LCA, then the (white) edge (p, ri) is

colored blue. The part of AscendToParent(r) that maintains the edge-color invariant is

defined as:

let p = parent of r · in ,
if (r; = LCA) then

LeA :=p;

Color edge (p. ri) blue
else

if there is no blue edge from rj to any child of r . then ,
Color edge (p. ri) white

fi

fi

ni

48

Putting th is all together, we obtain an efficient (unit COSt) algorithm for reestablishing

the prepared for propagation invariant when a cursor is moved. The resulting

algorithms for the two kinds of cursor movement operations are shown in figure 3~4.

3.5.2. Updating C haracteris tic Graphs after Subtree Replacement

A subrree replacement at one of the editing cursors may invalidate characteristic graphs

that may be needed for evaluations initiated by subsequent, or previously started bu t

still in progress, evaluation processes. Consider the cree illustrated in figmc 3-5 (a),

with twO editing cursors at the nodes labeled X and Y. The superior and subordinate

characteristic graphs of all nodes in the cree contain twO vertices, attributes a and b, and

no edges. If the subtree whose rOOl is Y is replaced by a new subtree in which there is a

direct dependency between the attributes a and b of Y, as shown in figure 3·5 (b), the

superior characteristic graphs of the nodes on the path from X to the root should now

contain an edge from b to a (and from a to b for the subordinate graphs on the path from

Y to the rool),

dated after subtree
Consider the possibility that the charactensuc graphs are not up

replacements. [f a subITee replacement at no<k X updated the value OfnX'::~~:~u:~
th

o hange might not be reflected consistently 10 all attnbutes dependi g h
tS c d f b to a for nodes on t e

the model does not have any transitive dependency e ges ra; from Y to the root). The

(d fr a to b for nodes on the pat
path from X to the root an om 1 d before the b attributes for

. hat the a attributes may be eva uate
consequence mtght be t he model is supposed to preven t

f h . ght path Because t
the \eh ~ath and vice versa or len . . . final value, once an attribute has

'0 te !rom being assigned a value that lS not \ts
an attn u

-

DescendToChild(ri ,j):

let c = j lh child of r i in

ni

if ('i = LeA) and (there is no blue edge from 'i to a child k of 'i' where k * J) then

LeA:= c;

Color edge (ri , c) white;

r.C:= null

else

if there is no blue edge from r i to any child of r i then

c.C := ComputeSuperior(c);

Color edge (ri' c) blue

Ii

Ii

AscendToParent(r):

let p = parent of r i in

ni

if ('i = LCA) then

LeA :=p;

Color edge (p, r) blue;

p.C := ComputeSubordinate(p)

else

Ii

if there is no blue edge from ri to any child of r i then

Color edge (p, r) white;

Ii

49

Figure 3-4: Reestablishing Prepared/or Propagation Invariant/or Multiple Cursors

been removed from the model and evaluated, it is never considered for evaluation again.

Thus, some of the attributes (in particular, the a attributes on the left path, and the b

attributes on the right path), may be incorrect when evaluation terminates.

Let pathI' ... , pathm denote the m paths from the editing cursors rl' ... , r m to LCA.

Note that these paths are not necessarily node disjoint, and it is possible for a path to

have zero length in the case when the LCA is itself pointed to by one of the editing

50

(a) (b)

Figure 3-5: Changing Transitive Dependencies

cursors. In general, a subtree replacement at a cursor ri , 1 $ i $ m, may invalidate

subordinate characteristic graphs associated with nodes on path j , and superior

characteristic graphs associated with those nodes on paths path) that are disjoint from

the nodes on path i , where 1 $ j $ m andj :;; i.

An algorithm that updates the necessary characteristic graphs after a subtree

replacement is shown in figure 3-6. This algorithm is atomic, and is invoked when a

subtree replacement at a node r occurs, before the evaluation process is initiated. Note

that this procedure only needs to be called if the subtree replacement changes the

subordinate characteristic graph of r.

To explain procedure cgraph_update, we recall the definition of the functions

ComputeSubordinare and ComputeSuperior from chapter 2, section 2.2. The

subordinate characteristic graph of a node n is used in the computation of the

subordinate characteristic graph of the parent of n, and in the computation of the

superior characteristic graphs of siblings of n. Therefore, if the subordinate

characteristic graph of n changes, these characteristic graphs must be recomputed. The

superior characteristic graph of a node n is used in the computation of the superior

characteristic graphs of children of n, which must be recomputed if the superior

characteristic graph of n changes.

Procedure cgraph_update is driven by a new value for the subordinate characteristic

atomic procedure cgraph _update (r: semantic tree node at root of subtree replacement);
declare

node, s: semantic tree nodes;
new _C: characteristic graph;

changed: boolean;

begin
[1] if (r ~ LCA) then

[2] node := parent(r);

[3] changed := true;
[4] while (node ~ LCA) and (changed) do

[5] new_C:= ComputeSubordinate(node);

[6] if (node.C = new_C) then changed:= false
[7] else

[8] node.C:= new_C;

[9] for each sibling s of node do

[lOJ superior _updaJe(s);
[11] od

[12] node := parent(node)

[13J fi
[14] od

[15] if (changed) and (LCA is pointed to by an editing cursor) then

[16] node.C := ComputeSubordinate(node)

fi

fi

end 1* of cgraph_updare */

Figure 3-6: Algorithm to Update Incorrect Characteristic Graphs

51

graph of node, computed in line r5]. The superior characteristic graphs of siblings of

node are updated by a call to the procedure superior_update, shown in figure 3-7 and

explained below. The subordinate characteristic graph of the parent of node is

recomputed in the next iteration of the while loop. This process is repeated for each

node on the path from the root of the subtree replacement to the LCA, until the

subordinate characteristic graph of a node does not change (line [6]), or the LCA IS

reached.

The LCA is treated as a special case (lines [15]-[16]). If the LCA is not pointed to by an

editing cursor, then it is not labeled with a subordinate characteristic graph, and

therefore nothing must be done. If the LCA is pointed to by an editing cursor, then its

subordinate characteristic graph must be recomputed if the subordinate characteristic

procedure superior_update (node: semantic tree node);
declare

queue: FIFO list of semantic tree nodes;

c, p: semantic tree nodes;

new J;: characteristic graph;

begin

[1] Initialize queue to contain node;
[2] while (queue is not empty) do

[3] Remove node p from front of queue;

[4] new_C:= ComputeSupcrior(p):

[5] if (p.C "# new J~) then

[6] p.C := new _C;
[7] for each child c of p do

[8] if edge (p, c) is colored blue then Insert c into queue fi

fi

od

od

end /* of superior_update *1

Figure 3-7: Characteristic Graph Update (cont.)

52

graph of a child of LCA changed. However, the siblings of LCA are not labeled with

their superior characteristic graphs, and therefore no superior characteristic graphs need

to be updated as a result of a change to the subordinate characteristic graph of LCA.

Procedure superior update, shown in figure 3-7, recomputes the superior characteristic

graph of a node n, and if necessary, the superior characteristic graphs of the descendents

of n. It is necessary to recompute the superior characteristic graph of a descendent node

if (1) the superior characteristic graph of n changes, and (2) the descendent node is

labeled with its superior characteristic graph (i.e., the descendent is on the path from an

editing cursor to the LCA). The edge-color invariant is used to determine which

descendent nodes are labeled with their superior characteristic graphs. The descendents

of the node n are visited in a breadth-fITSt manner. Traversal along a path terminates

either when the superior characteristic graph of a node does not change (line [5]), or

when a node that is not labeled with a superior characteristic graph is reached (line [8]).

The cost of updating characteristic graphs invalidated by a subtree replacement is at

53

most proportional to the number of semantic tree nodes on the paths from the m editing

cursors to the LeA. In the worst case, this cost can be O(n). In practice, we expect that

the semantic tree nodes whose characteristic graphs are changed because of a subtree

replacement also have attribute instances that are affected by the subtree replacement,

and therefore, the bookkeeping cost incurred to update characteristic graphs after a

subtree replacement is proportional to the number of attributes affected by the subtree

replacement.

3.6. Detecting Collisions

We now refine the definition of a collision given earlier in section 3.3. Two models are

involved in a collision if the corresponding backbones of the models are not node

disjoint (i.e., the two models share a semantic tree node). There are two cases when

models collide with each another in the course of attribute evaluation:

• During initialization of one of the models.

• During expansion of one of the models.

After a subtree replacement at a node r, the initial model created for the new evaluation

process contains the attribute instances associated with node r and dependencies among

them. The backbone of the initial model consists of the single node r. An initialization

collision occurs if node r is in the backbone of another model used by a different

evaluation process.

A model (and its associated backbone) can be expanded either downwards from a

frontier node, or upwards from the apex. Consider the semantic tree illustrated in figure

3-8, where the backbones of two models Ml and M2 are shown. If Ml is expanded

downwards at node X, then the backbone for M\ grows to include the production

instance that applies at X. This production instance includes the node Y, which is the

apex of the backbone of M2• The result is a downward collision at node Y. In general, a

downward expansion of the model at a node Xo, where the production that applies at Xo

is Xo ~ Xl ... X"' can have up to n downward collisions at the children of Xo-

A dual case arises if the model M2 is expanded upwards from node Y, causing an

LEGEI'm

• - nodes in backbone of
model M,

0- nodes In backbone of
model J1,

Figure 3-8: Scenario for Collisions during Model Expansion

54

upward collision at node X. Generally, an upward expansion of the model at a node Xi'

I ~ i ~ n, by production Xo ~ Xl ... XII' can have an upward collision at the parent

Xo of the expansion node Xi' and up to n - 1 downward collisions at the siblings of Xi.

To detect collisions, each semantic tree node contains additional information indicating

whether the node is at the apex, interior or frontier of the backbone of some model.

This information is stored in the in-model field of each semantic tree node. The

in-model field of a node n is equal to

• apex!frontier - if n is both the apex and a frontier node of the backbone of

a model (i.e., n is the backbone of an initial model).

• apex - if n is the apex of the backbone of a model.

• interior - if n is an interior node of the backbone of a model.

• frontier - if n is on the frontier of the backbone of a model.

• lIot-in-model- if n is not in the backbone of any model.

An initialization collision is detected if a subtree replacement at r occurs, and the

in-model field of r is not equal to not-in-model. Initialization collisions must be

detected before the old subtree is pruned from the tree. The reason is that some cleanup

operations must be performed for the part of the existing model that covered the deleted

subtree. (The details are explained later in section 3.7.)

55

Procedure asynch-expand, shown in figure 3-9, expands a model and also detects

collisions during model expansion. If the model is expanding downwards at a node n,

then each child of n is checked to detennine whether the child node is an apex of

another model, in which case a downward collision is detected. If the model is

expanding upwards from n, then an upward collision is detected at the parent of n if the

parent node is a frontier node of another model, and a downward collision is detected at

a sibling of n if the sibling is an apex of another model. The elided parts of procedure

asynch-expand merge the colliding models, and are elaborated in section 3.7.

When a model is expanded by a production p, the in-model field of semantic tree nodes

of p must be updated, as shown in procedure asynch-expand.

When an evaluation process terminates, the in-model field of nodes in the backbone of

the model must be cleared. This is accomplished by the atomic procedure

clear-modelfield, shown in figure 3-10. This procedure clears the in-model field of

semantic tree nodes in the model's backbone during a depth-first traversal of the

backbone, started from the backbone's apex.

3.7. Merging Colliding Models

After a collision is detected, the colliding models are "merged" into one. We discuss

the problem of merging two colliding models for the case of a downward collision

caused by a downward expansion of a model. Merging models subsequent to an upward

collision caused by an upward expansion of a model is similar, and therefore omitted.

Merging two models following an initialization collision is discussed in subsection

3.7.2.

Figure 3-11 (a) illustrates a downward collision resulting from a downward expansion.

Model MI expands downwards at node Xo by production p: Xo ~ Xl ... Xn , causing

a collision with model M2 at node Xi' where 1 ~ i ~ n. If M2 was not in the picture, the

expansion would add to model MI the atrributes of Xi' all direct edges between atrributes

of Xi and other atrributes in p, and subordinate transitive edges among attributes of Xi

(and similarly for each sibling of X). Let Mt denote the expanded model MI.

atomic procedure asynch-expand (M: a directed graph; b: an attribute instance; S: set of
attribute instances);

declare
c: an attribute instance;

begin
if there exists c, a successor of b in D(T) that is not in M

and TreeNode(c) is a child of TreeNode(b) then
1* downward expansion * /
ror each child of TreeNode(b) do

ir (child.in-model = apex) or (child.in-model = apex/frontier) then
1* downward collision: merge colliding models */

child. in-model := interior
else

child.in-model := frontier
fi

od
TrecNode(b).in-model := interior;
1* expand M */

fi

ir there exists c, a successor of bin D(y) that is not in M
and TreeNode(c) is the parent or a sibling of TreeNode(b) then

/* upward expansion */

56

ir (parent(TreeNode(b».in-model = frontier) or (parent(TreeNode(b».in-model = apex/frontier) then
/* upward collision: merge colliding models */

parent(TreeNode(b».in-model := interior
else

parent(TreeNode(b».in-model := apex

fi
for each sibling of TreeNode(b) do

if (sibling.in-model = apex) or (sibling. in-model = apex/frontier) then
/* downward collision: merge colliding models */

child.in-model := interior
else

child.in-model := frontier
fi

od
TreeNode(b).in-model := interior;
/* expand M */

fi
end

Figure 3-9: Algorithm to Expand Model and Detect Collisions

atomic procedure clear-model-field (node: semantic tree node);
begin

if (node.in-model *' frontier) then

for each child c of node do

clear-model-field(c)

od
fi

node. in-model := not-in-model

end

Figure 3-10: Clearing in-model Field when Evaluation Process Terminates

~ backbone of
modrl M, ____

backhon~ of ____

mod~IMl ~

(a): After expansion of M2 at Xo by
production Xo ~ Xl' .. XII

(b): Dependencies across
colliding models

Figure 3-11: A Downward Collision due to a Downward Expansion

57

Model M2 contains those attributes of Xi that have not yet been evaluated, as well as

superior transitive edges among them. To merge Mt and M2, all that may seem

necessary is to delete the subordinate and superior transitive edges among attributes of

Xi from Mt and M2 respectively, and then unite the two resulting graphs, where the

union operation removes identical vertices and edges.

The problem with this simple merging approach arises when there is an attribute a

58

within the backbone of one of the colliding models, for instance, Ml' that depends on an

attribute b in the other colliding model, M2, and a has already been evaluated and

removed from MI' The attribute a may be affected, through b, by the subtree

replacement corresponding to the model M2• But with the simple merging scheme, a

will not be evaluated again since no future expansions of the merged model will reinsert

a. (Recall that a model represents the dependencies of a connected region of the

semantic tree, and thus is only expanded from the apex and frontier nodes.) This is

clearly wrong - the semantic tree will still have inconsistent attributes after all

evaluations terminate.

We solve this problem by reinsening all such attributes back into the model, together

with the direct dependency edges needed to link them up to attributes still in the model.

This is accomplished by the atomic procedure freeze, shown in figure 3-12. Freeze

performs a search of the dependency graph within the backbone of a model, looking for

dependent attributes that should be reinserted into the model. However, the search

space can be reduced because of the following observation. Referring again to the case

illustrated in figure 3-11, the subtree replacement corresponding to the model Ml can

only affect attributes in M2 through the inherited attributes associated with the node Xj'

Conversely, the subtree replacement corresponding to M2 can only affect attributes in

Ml through the synthesized attributes associated with the node Xo.11 Thus, for the

example of figure 3-11 ,freeze is called for each synthesized attribute of Xo in model M l'

and for each inherited attribute of Xj in model M2•

Freeze takes three arguments: (1) an attribute instance, ai, (2) a model M, and (3) a

worklist S of attribute instances in M that are ready to be evaluated. Freeze perfonns a

depth-first traversal of the dependency graph in the region of the semantic tree bounded

by the backbone of M, starting from ai. Traversal along a path from ai stops at an

attribute x if any of the following three conditions hold:

1. Attribute x is in the model M (lines [1]-[4] in figure 3-12). In this case,
we have gone as far as we need to go along this path.

liThe proof of Lhis observation follows direcLly from the definition of "synthesized" and "inherited".

atomic procedurefreeze (ai: attribute instance: M: a model, S: set of

attribute instances);
declare

adjacent _ attrs: set of attribute instances:

b: attribute instance:
begin

[1] if ai E M then

[2] if in-degree of ai in M is 0 then

[3] Remove ai from S

fi
[4] return

[5]
[6]

[7]
[8]
[9]

[10]

fi
Mark ai visited:

adjacent attrs := find adjacent attrs(al): - - -
for each attribute instance b in adjacent _ attrs do

if b is not visited then

freeze(b,M)

fi
Add ai and red edge (ai. b) to M

od

end /* ofJreeze */

functionfind adjacent attrs (ai: attribute instance) - -
returns set of attributes instances;

declare

adjacent _ attrs: set of attribute instances:

begin

[1] if (TreeNode(al).in-model = apex/frontier) then

[2] adjacent_attrs:= transitive_transitive(al)

[3] else if (TreeNode(ai).in-model = apex) then

[4] adjacent_attrs := transitive_direct(ai)

[5] else if (TreeNode(ai).in-model = frontier) then

[6] adjacent _ attrs := direcCtransitive(ai)

[7] else 1* TreeNode(ai) is an interior node */
[8] adjacent_attrs := direccdirect(al)

fi
[9] return(adjacencattrs):

end /* ofjind_adjacent_attrs */

Figure 3-12: Search/or Attributes to be Reinserted into a Colliding Model

59

2. Attribute x has already been visited (line [8]). In this case, there is no
need to continue past x since the rest of the path has been traversed
already.

3. Attribute x is on the boundary of M. In this case, continuing along this
path leads outside the backbone of M. (When this condition occurs, the
value of adjacent _ attrs is the empty set, for reasons which become clear
in the next paragraph, causing the invocation of freeze with x to

tenninate.)

60

The procedure find_adjacent_attrs, also shown in figure 3-12, computes the set of

attribute instances that are immediate successors of ai within the region of the semantic

tree bounded by the backbone of M. An immediate successor of ai is an attribute b such

that the edge (ai, b) is in the model, or was in the model at some point but has been

removed. Detennining the immediate successors of ai depends on whether ai is at the

apex, frontier, or interior of model M's backbone: In the case of attributes at the apex or

frontier, M contains (or contained) transitive dependency edges as well as direct

dependency edges, whereas for attributes at an interior node, only direct dependency

edges are (or were) in the model.

The four functions that are invoked in find_adjacent _attributes to detennine the

immediate successors of an attribute ai, depending on the position of ai in the model's

backbone, are defmed as follows:

• transitive transitive: Returns attributes that are successors of ai because of
a transitive dependency superior to the semantic tree node that ai is
associated with, or because of a transitive dependency subordinate to the
semantic tree node of ai.

• transitive direct: Returns attributes that are successors of ai because of a

transitive dependency superior to the semantic tree node that ai is
associated with, or because of a direct dependency subordinate to the
semantic tree node of ai.

• direct transitive: Returns attributes that are successors of ai because of a
direct dependency superior to the semantic tree node of ai, or because of a
transitive dependency subordinate to the semantic tree node of ai.

• direct direct: Returns attributes that are successors of ai because of a
direct dependency superior to, or subordinate to, the semantic tree node of
ai.

61

These functions use the characteristic graphs of the semantic tree node that ai is

associated with, and the direct dependencies of the two production instances that apply

at the tree node of ai.

After a recursive invocation of freeze with attribute instance b returns, the attribute ai

and the edge (ai, b) are added to the model M (line [10]). As each recursive call returns,

line [10] reinserts into M all attributes reachable from the attribute instance that freeze

was initially called with that were not in M, as well as all edges between them. These

edges are colored red to differentiate them from other model edges, which have no

color, for reasons to be explained below.

If freeze adds an edge (x, y) to M, where x is an attribute reinserted by freeze and y was

in M before freeze was invoked, the attribute y may be in the worklist S. In this case, y

must be removed from S since it is no longer ready for evaluation (lines [2]-[3]).

The reason for coloring the edges that are reinserted into the model by freeze is to avoid

reevaluating a reinserted attribute whose predecessor does not change in value. That is,

suppose that a whole chain of edges and attributes were reinserted between an attribute

ai associated with Xo and a successor b of ai that was in M) at collision. Recall that this

means that all attributes along the path between ai and b have already been in M) once,

reevaluated, and removed. If an attribute c along this chain is reevaluated but its value

does not change, none of the attributes between c and b need to be evaluated again.

Figure 3-13 shows the atomic procedure antifreeze that is called when an attribute c is

evaluated and its value does not change. Antifreeze removes an attribute d (as well as

all its outgoing red edges) from the model M if two conditions hold: (1) d depends only

on c in the model M, and (2) d was inserted in M by a previous invocation of freeze.

Red edge coloring is used to determine which dependent attributes were reinserted by

freeze: An attribute d that depends on c was inserted into the model by freeze if d has

outgoing red edges.

Antifreeze may cause an attribute instance that was not inserted into the model by freeze

(and is therefore not removed by antifreeze) to become ready for evaluation because of

the removal of incident red edges. Lines [5]-[6] of antifreeze insert such attributes into

the worklist S.

atomic procedure antifreeze (ai: attribute instance; M: a model; S: set of attribute

instances);
declare

b: attribute instance;
begin

[1] for each attribute b such that (ai, b) is a red edge in M do

[2] Remove edge (ai, b) fromM;

[3] if red in-degree of bin M is 0 then

[4] ifred out-degree of bin Mis 0 then

[5] if in-degree of b in Mis 0 then

[6] Insert b into S fi

else

[7] antifreeze(b,M,S)

fi

od

fi

end /* of antifreeze */

Figure 3-13: Antifreeze Algorithm

3.7.1. Merging l\lodels after Expansion Collision

62

Figure 3-14 gives the complete algorithm for expanding a model by a downward

expansion, detecting collisions during expansion, and merging the colliding models.

When a collision at a child c of the node n being expanded is detected, the following

actions are perfonned. We denote the model being expanded at node n by Mil' and the

model that covers node c by Mc.

1. Freeze is called for each inherited attribute of c to reinsert attributes in

model Mc that depend on attributes in Mil.

2. The worklists of the two colliding models are combined.

3. The evaluation process using the model at the child node c is terminated.

After the collision, the evaluation process that perfonned the expansion at

node n continues with the merged model. This, in effect, combines the

two evaluation processes that had been executing independently prior to

the collision.

atomic procedure asynch-expand (M: a directed graph: b: an attribute instance; S: set of

attribute instances);
declare

c: an attribute instance;

ExpandedSubordinale: directed graph;

collision: boolean;

begin

if there exists c, a successor of b in D(T) that is not in M

fi

and TreeNode(c) is a child of TreeNode(b) then

!* downward expansion *'
ExpandedSubordinate := direct dependencies of production that applies at TreeNode(b);

for each child of TreeNode(b) do

if (child.in-model = apex) or (child. in-model = apex/frontier) then

collision := true;

for each inherited attribute i of child do

freeze(i, model of child, worklist of model of child);

S := S u worklist of model of child;

Terminate evaluation process using model of child

od

child.in-model := interior;

ExpandedSubordinale := ExpandedSubordinale u (model of child - child.C)

else

child.in-model := frontier;

ExpandedSubordinale := ExpandedSubordinale u child.C

fi

od
if (collision) then

for each synthesized attribute s of TreeNode(b) do

freeze(s,M,S)

od

fi
TrccNode(b).in-model := interior.

!* expand M *'
M := (M - TreeNode(b).C) u ExpandedSubordinate;

Insert into S all vertices of ExpandedSubordinate

whose in-degree in M is 0

!* upward expansion *'
end

Figure 3-14: Algorithm to Expand Model, Detect Collisions, and Merge Models

63

4. Freeze is called on the synthesized attributes of n to reinsert attributes in
model M" that depend on attributes in Me.

5. The models M" and Me are united by adding to M" (a) the direct
dependencies in the prOOuction that applies at n, (b) the mcxlel Me with the
superior transitive dependency edges of nOOe c deleted, and (c) the
subordinate transitive dependency edges of other children of n.

64

There are two operations in asynch-expand that require further explanation: (1) the

union of the model at the colliding child node with the expanding model, and (2)

locating the mcxlel that covers the colliding child nOOe, and its associated worklist.

The union operation can be performed efficiently (in unit time) if the mOOel is

represented as follows. Each attribute instance in the semantic tree has a field listing

the attributes adjacent to it in the mOOel; this field is null if the attribute instance is not

in the mOOel. The data structure representing the mOOel consists only of a pointer to the

semantic tree nOOe that is the apex of the mOOel' s backbone; all the other information

about the mOOel is maintained in the semantic tree data structure. Therefore, uniting

two colliding models during an expansion at node n involves updating the model field

of attribute instances in the production that applies at n. For a given grammar, the cost

of the union operation is bounded by a constant - the maximum number of attribute

instances in a production of the grammar.

A simple solution for locating the model of a node involved in a collision consists of

keeping back pointers from the apex node of each model to the model data structure.

For a downward collision, this solution takes constant time since the colliding node is

the model's apex. However, in the case of an upward collision (which can occur at any

node on the frontier of the model), or an initialization collision (which can occur at any

node in the model), the semantic tree may have to be traversed from the colliding node

to the apex of the model. Thus, the simple solution is not satisfactory.

Our solution for locating the model of a ncxle involved in a collision has constant

expected cost for downward and upward collisions, as well as initialization collisions.

A unique timestamp is associated with each subtree replacement. The timestamp is

employed by the evaluation process to label semantic tree nodes that are in the

65

backbone of the associated model. The model (j.e., a pointer to the model's apex) and

worklist of each independent evaluation process are stored in a hash table, and the

timestamp of the corresponding evaluation process is used as the key for the hash table.

To lookup the model of an arbitrary node in the semantic tree (that is covered by some

model), the node's timestamp is used to find the hash table entry containing the node's

model.

When two models are merged, the hash table entries for the two models must be

updated. Suppose that two models, Ml and M2 are merged, and suppose that the apex of

Ml is an ancestor of the apex of M2 in the semantic tree. We call Ml the superior

model, and M2 the subordinate model.

The apex of the merged model is the apex of the superior model. Therefore, the hash

table entry for the superior model is not changed by the merge operation, since the

model already points to the right node. The hash table entry for the subordinate model,

however, must be changed to point to the apex of the superior model. The combined

worklist of the merged model is stored in both hash table entries for the two colliding

models. With this scheme, even though semantic tree nodes in the merged model are

labeled with different timestamps, the correct merged model and worklist will be

located for each node in the merged model's backbone.

3.7.2. Merging Models after Initialization Collision

After a subtree replacement at a node r, the initial model created for the new evaluation

may overlap an existing model of a previous evaluation in progress, causing a collision.

Collisions at model initialization are simpler than those at model expansion because

none of the attributes in the new model have been evaluated. Therefore, it is only

necessary to callJreeze on the synthesized attributes of r.

There is however an additional complexity in the initialization case: the existing model

involved in a collision may cover the deleted subtree. Thus, the part of the existing

model in the replaced subtree must be deleted, and attribute instances in the worklist S

associated with nodes in the replaced subtree must be removed. These cleanup

66

operations are perfonned by the routine replace-subtree before the replaced subtree is

pruned, as shown in figure 3-15. The part of the model covering node r is not deleted

since pruning the subtree rooted at r does not delete node r from the tree. Therefore, the

in-model field of r is set to frontier if an initialization collision occurred.

atomic procedure replace-subtree (r: nontenninal node at root of replaced subtree;

S: new subtree);

begin

if (r.in-model * not-in-modef) then

cleanup-modeler, worklist of model of r);

if (r.in-model = apex) then

r.in-model := apex/frontier
else

r.in-model := frontier
fl

fl

/* prune subtree rooted at r, and graft subtree S onto r */

end /* of replace-subtree */

procedure cleanup-model (node: semantic tree node; S: set of attribute instances);

begin

if (node.in-model * frontier) or (node.in-model * apex/frontier) then

for each child c of node do

cleanup-model(c)

od

fl

for each attribute instance ai of node do

if in-degree of ai in model is 0 then

Remove ai from S

fl

ai.model := null;

od

end /* of cleanup-model */

Figure 3-15: Replace Subtree Operation

67

The complete startup procedure, which initializes an evaluation process for a new

subtree replacement, is shown in figure 3-16. An initialization collision is detected if

the root r of the replaced subtree is on the frontier of an existing model. If a collision is

detected, freeze is called for each synthesized attribute of r to reinsert attributes in the

existing model that depend on attributes in the new subtree at r. Uniting the initial

model with the existing model is performed by adding subordinate characteristic graph

of r to the existing model. Since the initial model has been merged with an existing

model, no evaluation process has to be initiated for a subtree replacement that causes an

initialization collision.

atomic procedure startup (T: semantic tree: r: node of T at root of replaced subtree):
declare

M: a directed graph:
S, NeedToBeEvaluated: sets of attribute instances:

begin
if (r.in-model = apex/frontier) or (r.in-model = frontier) then

1* initialization collision */
for each synthesized attribute s of r do

freeze(s. model of r, worlclist of model of r)

od

model of r := model of r u r.C;

Insen into worklist of model of r venices of r with in-degree 0;
lnsen into NeedToBeEvaluated of model of r the vertices of r

else

fi

end

M:= r.Cu r.C;
S := the set of vertices of M with in-degree 0 in M;
NeedToBeEvaluated:= the set of venices of M:

fork asynch-propagate(M, S, NeedToBeEvaluated)

Figure 3-16: Startup Algorithm (revisited)

68

3.8. Analysis of Collision-Merging Algorithm

The number of attributes evaluated by the Collision-Merging algorithm for k

asynchronous subtree replacements is optimal when initialization collisions occur for

each subtree replacement. If models for new evaluation processes do not collide

immediately with existing models, however, attributes that are affected by more than

one edit may be evaluated unnecessarily.

The bookkeeping costs of the algorithm are analyzed in two parts: (1) the cost of

detecting collisions, and (2) the cost of merging the models if there is a collision.

Collision detection is performed once when the model is initialized, and each time the

model is expanded. Detecting collisions costs 0(1), since the algorithm simply checks

if any of the semantic tree nodes added by the expansion, or during initialization of a

new model, are in another model's backbone. The field of the semantic tree node

indicating whether the node is within the backbone of a model can be updated in unit

time at each expansion. This field is cleared when the evaluation of the k subtree

replacements (all of which have collided) terminates, at a maximum cost of

O(2.~1 IAFFECTED;!). (Termination is assumed only for analysis purposes. The

Collision-Merging algorithm works correctly even if there is a continuous stream of

asynchronous edits.)

The cost of merging two models involved in a collision can be broken into the

following items:

1. Linking the two models at the collision point node: This operation

involves the attributes associated with the collision point node, which is

bounded by a constant for a given AG. Thus, this operation costs 0(1).

2. Combining the worklists associated with the two models: This is a set
union operation. Since the two models before collision cover different
parts of the semantic tree, the two sets are disjoint. Therefore, there is no

need to check for duplicates in the sets being united, and this operation is

also 0(1).

3. Deleting the part of a model that covers a replaced subtree in the case of
an initialization collision: The cost of this operation is proportional to the
number of attributes in the region of the replaced subtree covered by the

model. The cost can be "charged" to the subtree replacement that caused
the model to expand over the replaced subtree. Since each distinct part of

a model can only be deleted once, the total cost of deleting parts of the

model because of subsequent subtree replacements that is charged to each
subtree replacement is at most equal to the number of attributes affected
by the subtree replacement.

4. Reinserting attributes in one model that may be affected by attributes in
the other model: This is the algorithm that causes the worst-case
complexity. The worst case happens when the following conditions hold:

• The intersection between the sets AFFECTED; and AFFECTED;+l'

1 ~ i ~ k-l, is very small.

• Model M j collides with model Mj+l at the point when both have
perfonned all their expansions.

• All but a few of the attributes in AFFECTED; and AFFECTEDi+1

have been evaluated at the time of the collision.

This means that the collision will reinsert (AFFECTED i + AFFECTEDi+1)

attributes into the merged model, which will eventually be removed

without ever being evaluated.

For k - 1 collisions between Mi and Mj+l' I ~ i ~ k-l, the maximum cost
of inserting evaluated attributes back into the merged model is:

AFFECTED! + AFFECTED2 + [Collision 1]
AFFECTED! + AFFECTED2 + AFFECTED3 + [Collision 2]

AFFECTED! + AFFECTED2 + ... + AFFECTEDk [Collision k-l]

The worst-case cost of this step of the merging algorithm is

O(L~=! IAFFECTED,.I- i). The cost for removing the inserted attributes
from the merged model if they do not need to be evaluated is the same.

69

Thus, the worst-case bookkeeping costs for k colliding models is

O(L~=l IAFFECTED,.!· i). We expect that in practice the Collision-Merging algorithm

will perform considerably better than the worst case. If k (the number of asynchronous

subtree replacements whose models collided) is large, then collisions occur soon after

model initialization, and therefore the worst-case scenario analyzed for the cost of

merging the colliding models does not arise. If k is very small compared to the average

size of AFFECTEDi , then the bookkeeping costs are O(L~=l IAFFECTED j !), which is

close to the size of the union of the affected sets, resulting in almost optimal

bookkeeping costs.

70

The algorithms we have described can be extended to minimize the number of attribute

evaluations. This may be desirable if the cost of attribute evaluation is much higher

than the cost of traversing the semantic tree. In order to do this, we force a collision

between the initial model of a new subtree replacement with the existing model as soon

as the new subtree replacement occurs. Forcing a collision is done by expanding one or

both models, depending on whether one model is an ancestor of the other or not. The

model edges added by the expansions required to force a collision are colored red for

the same reason that edges added by the freeze procedure are colored: to avoid

evaluating attributes that are not affected by either subtree replacement. This version of

the Collision-Merging algorithm minimizes the number of attributes evaluated, but the

worst-case bookkeeping costs are proportional to the size of the semantic tree.

3.9. Related Work

Kaplan and Kaiser were the fIrst to describe an attribute evaluation algorithm to handle

multiple asynchronous edits for the general class of noncircular AGs [Kaplan 86].

Their algorithm was later expanded for parallel evaluation on a centralized or

decentralized tree in response to multiple asynchronous edits, with multiple editing

cursors protected from each other by firewalls [Kaiser 90]. Firewalls prevent a subtree

replacement from being performed in a region of the tree where an evaluation process is

in progress. Their initial work left open the problems addressed in this chapter. Their

updated algorithms assume the collision detection and merging algorithms just

described. They do not address the problem of maintaining correct characteristic graphs

at derivation tree nodes when there are multiple cursors. The latter problem is not

solved by fuewalls since the characteristic graphs may need to be updated even if a

subtree replacement occurs when there are no other evaluation processes in progress.

Neither of the other two incremental attribute evaluation algorithms for handling

multiple asynchronous subtree replacements that have been reported are applicable to

the general class of noncircular AGs. Geitz gives an algorithm that minimizes the

number of attributes reevaluated by maintaining transitive dependency edges between

attributes in one model that depend on attributes in another model [Geitz 87]. This

algorithm is only applicable to a subset of the partitioned grammars for which the

71

transitive dependency infonnation required by the algorithm can be computed statically

from the grammar. Since Geitz does not analyze the complexity of the bookkeeping

costs of his algorithm,12 it is not clear how his algorithm compares with the version of

our Collision-Merging algorithm that minimizes attribute reevaluation.

The evaluation strategy in Geitz' algorithm is dynamic while the other reported

algorithm for multiple subtree replacements, by Peckham, is static [Peckham 90].

Peckham's work is reviewed in the related work section of the next chapter, which deals

with static evaluation algorithms.

Reps et al. developed an algorithm for synchronous subtree replacements [Reps 86],

applicable to the same subset of the partitioned AGs as Geitz' algorithm. This

paradigm was invented in the context of single user environments to allow commands

that do not map nicely to single subtree replacements. This algorithm is not effective

when changes occur asynchronously: although one can postpone all evaluation until

some predetermined number of changes have been made and then apply the

synchronous algorithm, the rapid feedback about errors is then lost.

Another algorithm by Reps [Reps 88], also not suitable for multiple users, supports

incremental evaluation for a single cursor after an arbitrary movement of the single

cursor from any point in the tree to any other. This algorithm is an improvement over

the naive approach described in section 3.2, reducing the cost of moving the internal

cursor from the root of one subtree replacement to another, but it still completes the

attribute evaluation process initiated by one subtree replacement before starting the next

and thus may evaluate attributes unnecessarily.

In his work on parallel attribute evaluation for tree transfonnations, Alblas [Alb las

90] describes a merging operation for overlapping models resulting from different

transfonnations that seems similar to the one described in this chapter. However,

Alblas describes the merge operations as "a union operation, i.e., identical arcs and

vertices in two graphs become one in the resultant graphs". His algorithm is incorrect

12We attempted to perform the analysis ourselves but did not succeed due to the complexity of the
algorithm.

72

because as we described in section 3.7, uniting the two graphs is not sufficient to ensure

that after the evaluation terminates all attributes have consistent values.

Chapter 4

Static Evaluators for Incremental Attribute Evaluation
of Multiple Subtree Replacements

73

In the previous chapter, we presented a dynamic evaluation strategy for reestablishing

attribute consistency in a semantic tree after multiple asynchronous subtree

replacements. This chapter describes a static evaluation algorithm for the multiple

update problem for two restricted classes of attribute grammars.

When evaluating the attributes of a semantic tree T, any evaluator must follow the

panial order of T's attribute dependency graph. Dynamic evaluators maintain the

dependency graph of the semantic tree representing the program at run-time. When a

change is made to the program, the dependency graph is updated and attribute

evaluations are scheduled by dynamically performing a topological son on the

dependency graph. The disadvantages of a dynamic evaluation strategy are twofold.

First, most of the work is done at run-time. In an incremental editor, this degrades the

response time after an edit Second, in order to build the dependency graph, large

structures must be kept around, resulting in an incredible use of storage.

Static evaluators overcome both these problems; they are more efficient, both in tenns

of CPU time as well as memory utilization. Static evaluators precompute plans that

specify the order of evaluation of attributes of each production in the grammar. These

plans are created once for each AG during construction of the grammar's evaluator. At

run-time, the evaluator determines the order of attribute evaluations using the plans

associated with each production instance in T. The disadvantage of static evaluators is

that not all well-defined attribute grammars can be evaluated by a static evaluation

scheme. However, static evaluators can be constructed for a large subclass of AGs,

including most of the ones that arise in practice in the programming language

application domain [Reps 89a].

74

We present a new static incremental evaluator that can handle multiple asynchronous

subtree replacements. Our algorithm is applicable to partitioned attribute grammars, 13

a subclass of the noncircular attribute grammars that will be defined below. However,

since the cost of determining the plans of a partitioned grammar is exponential [Waite

84], we expect our algorithm to be used for ordered attribute grammars (OAGs) in

practice. OAGs are a subclass of the partitioned attribute grammars for which an

efficient algorithm for constructing attribution plans is known [Kastens 80]. Also, the

same general idea can be used to extend semi-static evaluation strategies, such as the

one described in [Kennedy 76], to handle asynchronous subtree replacements.

The new evaluation algorithm presented in this chapter minimizes the number of

attributes evaluated: (1) only attributes affected by each modification are evaluated, and

(2) an attribute that is affected by more than one subtree replacement still in progress

and which has not yet been evaluated in any of them is evaluated once only. In order to

accomplish this for partitioned (or ordered) attribute grammars, some run-time checks

are required. We define a subclass of OAGs, called the pairwise ordered attribute

grammars (POAGs), for which this run-time check can be replaced by a table lookup

operation, making the evaluator even more efficient.

Section 4.1 gives an overview of static evaluators. An incremental evaluation algorithm

for partitioned (and ordered) AGs when asynchronous subtree replacements are allowed

is presented in section 4.2. Section 4.3 defines pairwise ordered attribute grammars,

and describes algorithms to construct evaluators for these grammars and record

information needed during incremental evaluation. We conclude this chapter with a

comparison to other relevant work.

13This class was defmed by Kastens [Kastens 80], but he used the tenn "arranged orderly" to denote a
partitioned grammar. The tenn "partitioned" is now widely used to refer to this class.

75

4.1. Overview of Static Evaluators

A static evaluator uses a strategy that is precomputed at construction-time by a static

analysis of the grammar for evaluating the attributes of a semantic tree. The static

evaluators discussed in this chapter are tree-walk evaluators that do not follow a pre

specified order of visiting the nodes of the tree (e.g., a pre order traversal), but rather, the

tree traversal is defined by the attribute dependencies of the grammar. A tree-walk

evaluator' 'roams" over the semantic tree: upon reaching a node, it evaluates some of

the node's attributes, visits some children, returns to the node, evaluates more attributes,

and so on, until it finally leaves the node.

A static tree-walk evaluator is guided by plans, which are constructed for each

production in the grammar. The plan for a production p: Xo ~ Xl ... X,. is composed

of the following basic instructions:

• Eval(Xj.a) - Evaluates the attribute Xj.a according to the semantic
function defining it in production p. Xj.a is a synthesized attribute if i = 0
and an inherited attribute if 1 ~ i ~ n .

• v (i, k) - {i = 0, Visits parent of p for the klh time.
i > 0, Visits child Xj for the klh time.

The evaluator is a table-driven algorithm; a driver runs under control of a table

containing the plans for a specific attribute grammar. To evaluate the attributes of a

semantic tree T, the driver executes the instructions in the plans associated with the

production instances of T. Execution starts with the first instruction of the plan for the

root production of T. When an Eval instruction is encountered, the specified attribute is

evaluated, after which the driver moves on to the next instruction in the same plan. If

the instruction is a "visit child" (or "visit parent") instruction, then control is passed

to the plan at the child (or the parent) production, resuming execution of that plan where

it last left off. The driver halts when the last instruction in the plan of the root

production, a "visit parent" instruction, is encountered.

The plan generated for a production p is used to evaluate the attributes defined in an

instance of pin any derivation tree of the attribute grammar, independent of p's context

in the tree. This restricts the class of AGs for which such static evaluators can be

76

constructed to the partitioned attribute grammars. An attribute grammar is partitioned

if

... for each symbol a partial order over the associated attributes can be given, such
that in any context of the symbol the attributes are evaluable in an order which
includes that partial order.

[Kastens 80]

To see why this restriction is necessary in order for the plan of a production to be

applicable in any context, consider two productions p: Y ~ a X ~ and q: X ~ X. The

plans for p and q cooperate to evaluate the attributes of a node X in the tree. The

inherited attributes of X are evaluated by instructions in the plan for p while the

synthesized attributes of X are evaluated by instructions in q's plan. Each time control

is transferred from production p to production q, the evaluator expects that a particular

subset of the synthesized attributes of X will be evaluated before control returns to p.

This subset must be evaluated by the plan for every production of the form X ~ X. The

same is true for the inherited attributes of X.

Thus, for each symbol X in the attribute grammar, there must exist a partition dividing

the attributes associated with X into disjoint subsets of inherited and synthesized

attributes, such that the attributes of X can be evaluated in the (partial) order14 given by

the partition for any occurrence of X in derivation trees of the grammar.

The algorithm for finding a partition for a partitioned attribute grammar, needed to

compute the grammar's plans, is exponential, and therefore this class of grammars is of

little practical interest. Ordered attribute grammars are a subclass of the partitioned

attribute grammars for which there is a polynomial time algorithm for constructing the

plans of a static tree-walk. evaluator [Kastens 80].15 Only the algorithm used to

construct the plans distinguishes the evaluators for partitioned and ordered AGs; the

evaluation driver is the same for both classes. The results described in this chapter are

applicable to both partitioned and ordered AGs, with the exception of the section on

14The attributes in a subset can be evaluated in a different order in different productions.

15We do not describe the algorithm for constructing plans for OAGs in this thesis; the algorithm can be
found in [Kastens 80] as well as in [Waite 84].

77

pairwise ordered attribute grammars (section 4.3), a subset of the ordered attribute

grammar class.

In the next two subsections we present non-incremental and incremental drivers, which

when combined with plans generated for a partitioned or ordered attribute grammar,

form a static tree-walk evaluator for that grammar. The non-incremental driver

evaluates all the attributes of a semantic tree while the incremental driver evaluates only

those attributes affected by a single subtree replacement. These algorithms form the

basis of the evaluator for multiple asynchronous subtree replacements to be described in

section 4.2.

4.1.1. Non-Incremental Driver for Static Evaluator

In this subsection and the rest of this chapter, we assume that the nodes of a semantic

tree are represented by data structures containing fields for the attributes of that node,

pointers to the (direct) descendents and parent of that node, and a field indicating the

production applied to that node. For a treenode X, an attribute a of X is referenced by

X.a, the parent of X by X.parent, the jth descendent by X.chi/dU], and the production

applied to X by X.production.

The plans constructed for the attribute grammar are collected into a table, Plan. Planfp]

contains the plan for production p, and Planfp][i] denotes the i th instruction in p's plan.

Figure 4-1 shows a stack implementation of a non-incremental driver for partitioned and

ordered attribute grammars - this driver evaluates all the attributes in a semantic tree.

The stack contains pairs of a reference to a treenode (stored in the field currentNode)

and an index into the plan for that node indicating the next instruction to be executed

(stored in the field planIndex). The top of the stack is available in the global variable

StackTop. Thus, StackTop.currentNode indicates the node whose plan is currently

active (i.e., being executed), and StackTop.planIndex indicates the instruction to be

executed next by the driver. The stack is initialized with the root node of the tree and

the index of the first instruction in the plan of the root node.

The function MapDown(p,k) used in the driver returns the next instruction to be

78

executed in the plan for production p : Xo ~ Xl' " X
lI

after the klh visit to Xo' The

values returned by MapDown are detennined during construction of the plans for a

specific AG.

procedure OAGevaluate(root: root node of semantic tree to be evaluated):
begin

push(root. MapDown(root.production.l)):
repeat

case Plan[StackTop.currenrNode,production] [StackTop,planlndex] of
Eval(X.a) : call semantic function defining X.a:

increment(StackTop .planl ndex)
v(i.k). i> 0: /* descendent visit */

increment(StackTop.planlndex):
push(StackTop.currentNode.child[i].

MapDown(currenrNode.chUd[i].production. k))
v(O)c) : /* ancestor visit */

esac
until StacklsEmpty

end

pop

Figure 4-1: Non-Incremental Driver

The actions of the driver depend on whether the next instruction to be executed is an

Eval or visit instruction. An Eval instruction is executed by invoking the semantic

function defining the specified attribute. Then the driver continues with the next

instruction in the same plan.

If the next instruction is a "visit child" instruction, the driver must resume executing

the plan for the production instance at the child node. This is accomplished by pushing

the child's plan on top of the stack. The next instruction to be executed in the child's

plan is determined by MapDown.

If the next instruction is a "visit parent" instruction, then the plan for the parent node

must be resumed. This is accomplished by popping the stack, so that the stack element

containing the execution information of the parent plan is again at the top of the stack.

The algorithm terminates when the stack is empty, which happens when the last

instruction of the plan for the production at the root of the tree (a "visit parent"

instruction) is executed.

79

4.1.2. Incremental Driver for Static Evaluator

Optimal algorithms for performing incremental attribute evaluation in response to a

single subtree replacement for ordered attribute grammars have been described by Yeh

[Yeh 83] and Reps and Teitelbaum [Reps 89a]. The plans used by these incremental

evaluators are identical to the ones used in the non-incremental version, and for OAGs

are determined by the algorithm described by Kastens [Kastens 80]. The driver

described in this subsection can therefore be used for partitioned attribute grammars as

well.

Our presentation of the driver routine for an incremental evaluator that handles single

subtree replacements combines the somewhat different approaches used by Yeh [Yeh

83] and Reps and Teitelbaum [Reps 89a]. Suppose a subtree S of a consistently

attributed tree T is replaced by another tree, S', which is also consistently attributed.

Let T' be the tree T with S replaced by S'. The incremental algorithm described below

evaluates the minimum number of attributes in T' to reestablish attribute consistency.

Initially, there are two production instances in T' that may have inconsistent attributes.

These are the two productions at the point of subtree replacement. If r is the

nonterminal occurrence at the root of S' (and necessarily of 5), then the two productions

are:

p:Xo--+X\ ... Xm , wherer=Xj, l~i~m, and

q 'r --+ Y ... y • \ n

The incremental driver starts by executing the first instruction of the plan for production

p. Since plans associated with production instances not affected by the subtree

replacement do not have to be evaluated, additional information must be maintained to

indicate which production instances are affected. This information is stored in the field

Reactivated of semantic tree nodes deriving production instances that may have affected

attributes. Initially, the nodes Xo and r, which derive the two productions p and q at the

point of subtree replacement, are marked Reactivated.

The incremental driver routine for ordered and partitioned AGs is given in figure 4-2. It

is similar to the non-incremental version described in the previous subsection, except

procedure IncOAGevaluate(T: semantic tree: r: node at root of replaced subtree):
declare

neighborNode: node in semantic tree;
begin

Mark r and r.parent Reactivated;
Initialize stack:
/* start evaluation of plan for production at parent of r * /
push(r.parent. MapDown(r.parent.production. 1»:
forever do

case Plan[StackTop.currentNode.production][StackTop.planIndex] of
Eval(X.a) : call semantic function defining X.a:

increment(StackTop .planI ndex):
ifNewValue(X.a) ~ OldValue(X.a) then

fi

if (X = StackTop.currentNode) and (X.a is synthesized) then
neighborNode := StackTop.currentNode.parent

else if (X is the i th child of StackTop.currentNode) and
(X.a is inherited) then

neig/lborNode := StackTop.currentNode.child[i]
else

neig/lborNode := Null
fi
if (neig/lborNode ~ Null) and

fi

(X.a has successors in neighborNode.production) then
Mark neighborNode Reactivated

v(i,k). i > 0: /* descendent visit */
increment(StackTop.plan!ndex);
if StackTop.currentNode.child[i] is marked Reactivated then

push(StackTop.currentNode.child[i] ,

fi
MapDown(StackTop .curre ntN ode.c hild[i] .production. k»

v(O,k) : /* ancestor visit */
if Plan[StackTop.currentNode.production] [StackTop.planindex]

is the last instruction in the plan then
Mark StackTop.currentNode not Reactivated

fi
if StackTop.currentNode = root of T then return fi
if StackTop.currentNode.parent is marked Reactivated then

pop

80

else if Plan [StackTop.currentNode.production] [StackTop.planindex]
is the last instruction in the plan then

esac
od

end

return
else

fi
increment(StackTop .plan! ndex);

Figure 4·2: Incremental Driver

81

that the Reactivated field is used to limit the scope of attribute evaluations to only those

affected. When an attribute a is evaluated, if its value changes and it is an argument in

a semantic function defining another attribute b, then the treenode deriving the

production instance where b is defined is marked Reactivated. "Visit child" and "visit

parent" instruction are skipped if the child or the parent are not marked Reactivated.

Otherwise, they are executed in the same way as in the non-incremental algorithm. The

Reactivated field of a semantic tree node is cleared when the last instruction in the

node's plan (a "visit parent" instruction) is executed.

The driver halts when a "visit parent" instruction in the plan for the root of the

semantic tree is encountered, or when the last instruction in a plan is encountered, and

the parent is not marked Reactivated.

If the incremental driver is implemented using a stack, as we have shown in figure 4-2,

the stack must be initialized to be in the same configuration as the stack used by the

non-incremental evaluator at the moment that the plan associated with the parent of r is

first visited. An algorithm for initializing the stack is given in [Yeh 83]. This

initialization cost can be avoided if the recursion implicit in the stack implementation is

eliminated, as in the iterative incremental driver of [Reps 89a]. We chose to describe

the evaluators in this chapter using a stack implementation because the iterative

versions are more complicated. We do not include the cost of initializing the stack in

the analysis of the evaluator, however, since this cost can be eliminated.

4.2. Static Incremental Evaluator for Multiple Asynchronous Subtree
Replacements

The key idea behind the static evaluation algorithm for k asynchronous subtree

replacements is that the visit sequences followed by the k evaluation processes are

interleaved in such a way that an attribute affected by more than one subtree

replacement, and not yet evaluated, is evaluated at most once. The plans used by this

evaluator are the same as for the non-incremental and incrementallsingle-subtree

replacement evaluators described in the preceding section. In this section we present a

new incremental driver routine for the multiple subtree case.

82

The driver consists of three procedures: StartUp, Schedule, and Evaluate, shown in

figures 4-3, 4-4, and 4-5, respectively. Startup is invoked when a subtree replacement

occurs, possibly interrupting another evaluation in progress. Schedule determines the

interleaving order of multiple evaluation processes in progress, and is invoked by

Startup and Evaluate as we explain below. Evaluate is similar to the driver routines of

the preceding section - it executes the instructions in (affected) plans of a semantic

tree. It differs in its actions for skipped visits to a parent or child node, where by calling

the Schedule routine, it maintains the correct interleaving order of the multiple

evaluation processes in progress.

We now describe the details of each of these algorithms, using a stack implementation

of the evaluator as before. However, in this algorithm, a separate stack is needed for

each evaluation process initiated by a different subtree replacement in progress. The

global variable StackTop now indicates the top of the stack for the evaluation process

that currently has control of the evaluator - the one whose affected plans are being

executed. We call the evaluation process that has control of the evaluator the active

evaluation process.

Other evaluation processes initiated by asynchronous subtree replacements wait for

their turn to take control of the evaluator. The interleaving order for evaluating the

plans of different evaluation processes is determined from the computation sequence of

the semantic tree. The computation sequence of a semantic tree T is a linearization of

the plans associated with the production instances of T. achieved by simulating the

operation of an evaluator on T, where instead of executing the instructions, they are

(conceptually) appended to the computation sequence [Engelfriet 82]. Note that the

computation sequence is a dynamic property of a semantic tree - it changes whenever

the semantic tree is modified.

A data structure, PenliingList, records the state of evaluation processes waiting to take

control of the evaluator. The state of a blocked evaluation process consists of a

reference to the top of the stack used by the evaluation process. Thus, the i th element in

the pending list, PendingList[i] , points to the top of the stack of the jth pending

evaluation process.

83

The pending list is ordered, with the evaluation that will be resumed fIrst at the head of

the list. The ordering of this list is determined according to the computation sequence

of the semantic tree. Consider two evaluation processes EI and E2 whose state is saved

in the pending list. Let Next/nst l and Nextlnst2 denote the next instructions to be

executed for each of these evaluation processes once they have control of the

evaluator. 16 Then, EI and E2 are saved in the i th andjth position of PendingList, where

i < j, if Nextlnst l comes before Nextlnst2 in the computation sequence of the semantic

tree. I? The use of the computation sequence to order the pending evaluations is the key

to achieving the second optimality requirement stated in chapter 3, section 3.1:

For any k > 1 modifications affecting the same attribute a, where the k evaluation
processes are still in progress and none have yet evaluated a, the algorithm will
evaluate a at most once.

We assume that the Evaluate routine receives an interrupt signal when the user issues an

editor command for performing a subtree replacement. The notation "On Interrupt" is

used to defIne the sequence of statements that are executed when an interrupt is

received. When interrupted, Evaluate fInishes evaluating the current instruction, and

then suspends the evaluation process that was currently executing, saves the suspended

process's state on the pending list, and returns.

The semantic tree is then modifIed according to the subtree replacement command

issued by the user, and procedure StartUp is invoked. StartUp initializes the stack and

marks the set of nodes with affected attributes for the new evaluation. The stack of the

new evaluation is stored in the global variable StackTop, making the new evaluation

(temporarily) the active one. That is, if the evaluator is resumed (by a call to Evaluate),

it would start executing the plans affected by the new subtree replacement. But this

would be wrong if the new evaluation process should be executed after other blocked

evaluations in the pending list according to the computation sequence of the tree.

16Recall that the next instruction for an evaluation process whose top of stack is SrackTop is available
in Plan[ScackTop.currentNode.produclion][SrackTop.planIndex), and the top of the stack used by the i th

evaluation process in PendingLisl is PendingLisr[ll.

17 An algorithm for comparing the position of two instructions in the computation sequence for
partitioned attribute grammars is described below in subsection 4.2.1. A more efficient algorithm for
pairwise ordered attribute grammars is given in section 4.3.

global variables
T: semantic tree;
StackTop: top of stack of currently active evaluation process: .
PendingList: list of evaluations waiting to be restarted. ordered accordmg to

which should be restarted first;

procedure StartUp(r: node at root of replaced subtree);
begin

Mark r and r.parent Reactivated;
StackTop := Initialize stack;
/* evaluation starts with plan for production at parent of r */
push(r.parent, MapDown(r.parent.producrion, 1));
ScheduleO

end

Figure 4·3: StartUp Algorithm

84

Therefore, Schedule is called fIrst to ensure that the new evaluation is processed in the

correct order.

Schedule determines which one of two evaluation processes - the currently active one

whose state is available in the global variable SrackTop, or the fIrst one on the pending

list - should be the active evaluation. It compares the position of the next instruction to

be executed in these two evaluations processes in the computation sequence of the tree.

If the next instruction in the currently active evaluation process is fIrst in the

computation sequence, then it remains the current evaluation. Otherwise, the current

evaluation process is suspended and inserted into the pending list, and the fIrst

evaluation on the pending list is activated. Schedule then calls Evaluate, which starts

(or continues) executing the instructions of the current evaluation process.

The rationale behind the operation of the scheduler is that the evaluation that is resumed

will eventually' 'reach" the other evaluation that was placed on the pending list. This

reasoning may be incorrect if a visit to the child or parent that would have reached the

other evaluation is skipped because the child or parent were not marked Reactivated.

Therefore Evaluate must handle slcipped visits in a special way: If a "visit child" or

"visit parent" instruction is about to be skipped because the child or parent node is not

marked Reactivated, Schedule is called.

procedure ScheduleO;
declare

TempStackTop: temporary variable for top of stack;
begin

if PLan[StackTop.currentNode.production][StackTop.pLanlndex] is after
P Lan[P endingLisc{l] .currentN ode.production] [P endingList[1] .planl ndex]
in computation sequence of T then

/* Swap currently active evaluation with first element in PendingList */
TempStackTop:= PendingLisc{l];
Insert SrackTop in appropriate place in PendingList;
StackTop := TempStackTop;

fi
EvaluateO

end

Figure 4-4: Schedule Algorithm

85

The currently active evaluation process "reaches" a pending evaluation when the

instruction that it is about to execute is the pending evaluation's next instruction. This

is checked by the CheckljReachedPendingEval routine shown in figure 4-6, which is

called from Evaluate before executing each instruction. When a pending evaluation is

reached, it is removed from PendingList - the pending evaluation is subsumed by the

current evaluation.

One last issue that needs to be addressed to complete the static evaluation algorithm for

multiple asynchronous subtree replacements is the following: How does replacing a

subtree affect pending evaluations? In other words, what happens to a pending

evaluation whose next plan instruction is associated with a node in the subtree to be

replaced? Or, what about a pending evaluation that requires multiple visits to the

subtree to be replaced, only some of which were completed before the subtree was

replaced?

In the following discussion, let S denote the subtree to be replaced and r the root node

of S, where the two productions that apply at r are:

P:XO~Xl ... Xm , wherer=X j , lim, and

q: r ~ Y
1

••• Y
II

We refer to the pending evaluation process by E nd' and the evaluation process that pe mg'

will be initiated when the subtree S is replaced by EII~w'

procedure EvaluateD:
declare

neighborNode: node in semantic tree:
begin

forever do
CheckIfReachedPendingE valO:
case Plans[StackTop.currentNode.production][StackTop.planlndex] of

Eval(X.a) : call semantic function defming X.a:
increment(StackTop.planlndex):
if NewValue(X.a) '" OldValue(X.a) then

if (X = StackTop.currentNode) and (X. a is synthesized) then
neighborNode := StackTop.currentNode.parent

fi

else if (X is the 11h child of StackTop.currentNode) and
(X.a is inherited) then

neighborNode := StackTop.currentNode.child[!l
else neighborNode := Null fi
if (neighborNode '" Null) and

(X.a has successors in neighborNode.production) then
Mark neighborNode Reactivated

fi

v(i,k), i > 0 : 1* descendent ~isit */
increment(StackTop.planlndex):
if StackTop.currentNode.child[ll is marked Reactivated then

push(StackTop.currentNode .child[i] ,
MapDown(StackTop.currentNode.child[ll.produclion,k»

else /* skipping this visit - check interleaving order * /
ScheduleO

fi
v(O,k) : 1* ancestor visit */

if Plan [StackTop.currentNode.production] [StackTop.planindex]
is the last instruction in the plan then

Mark StackTop.currentNode not Reactivated
fi
if StackTop.currentNode = root of T then return fi
if StackTop.currentNode.parent is marked Reactivated then

pop
else if Plan[SiackTop.currentNode.production] [StackTop.planindex]

is the last instruction in the plan then
/* end of currently active evaluation process */
/* resume first pending evaluation process, if any * /
if PendingList is empty then return
else

StackTop := PendingList[l]:
Delete first item from PendingList

fi
else 1* skipping this visit - check interleaving order * /

increment(S tack Top .planl ndex);
ScheduleO

fi
esac

od
on interrupt do

od
end

Insert (StackTop) in first place in PendingList:
return

Figure 4-5: Evaluate Algorithm

86

procedure ChecklfReachedPcndingEvalQ:
begin

if (StackTop.currentNode = PendingList[1].currentNode) and
(StackTop.planlndex = PendingList[1].planlndex) then

Delete first item from PendingUst
fi

end

Figure 4-6: Algorithm to Check if a Pending Evaluation has been Reached

87

Recall that the evaluation for a subtree replacement at r starts with the flrst instruction

in plan p. The plan for production p divides the computation sequence of the semantic

tree into regions, as depicted in flgure 4-7. The instructions in p's plan are numbered

[I' [2' .,. '[p ,where n is the number of instructions in the plan.
P. p. .n

Plan p

Computation
Sequence

----_. ..--------------- . - .. ---------------
Region 1 Region 2 Region 3 Region 4

Figure 4-7: Regions of the Computation Sequence

The first region consists of the instructions in the computation sequence before the flrst

instruction in p's plan, [p.I' Suppose a pending evaluation, Ependiltg' would execute an

instruction in this region when resumed. Then, the Startup and Schedule algorithm

would place Enew after Epending in the pending list. Nothing else is required for handling

pending evaluations in this region.

The second region is delimited by the flrst instruction in p's plan, [p.l' and the flrst

"visit child" instruction to node r, instruction ['. If a pending evaluation E ' is in
. p. I peNiiJlg

88

this region, then Enew is scheduled for evaluation first. ElI~w eventually either reaches

E __ I: at which point the two evaluation processes are merged, or skips a visit
~",,"lIg'

instruction causing E~ndUtg to become the active evaluation. Again, nothing special has

to be done for pending evaluations in the second region.

The third region consists of instructions between a "visit child r" instruction in p' s plan

and the "visit parent" instruction in q's plan that returns control to p; i.e., all

instructions executed during one visit to the subtree rooted at r. The next instruction in

a pending evaluation in this region is in a plan associated with a node in the subtree S to

be replaced. This case requires special handling since replacing the subtree would leave

dangling references in the pending list.

A pending evaluation process EpendiJ:g whose next instruction falls in the third region of

the computation sequence is handled by combining it with the evaluation process Enew'

deleting its corresponding entry from the pending list. We can think of this as rolling

back EpendiJ:g to the "visit child r" instruction at the end of the previous region. This

instruction is in the plan associated with the production at the parent of node r, the root

of the replaced subtree. Enew will eventually reach this instruction since the parent node

is marked Reactivated, and therefore all the instructions in the parent's plan will be

executed (although visits can be skipped). So combining the two evaluations early is

correct. Pending evaluations in the third region can be easily identified since the node

at the top of the stack of such an evaluation is a descendent of the root of the subtree to

be replaced.

Note that combining Ependillg with Ellew does not mean that we are reevaluating attributes

more than once - any Eval instructions executed by E~nding within this region prior to

the subtree replacement evaluated attributes in the replaced subtree S, and therefore

these will not be evaluated again by Enew'

The remaining instructions in the computation sequence up to the last "visit child r"

instruction in plan p can be divided into region pairs similar to the second and third

regions. The fourth (sixth, eighth, etc.) region stans with an instruction in p's plan

following a "visit child r" instruction and ends with a "visit child r" instruction. The

89

fifth (seventh, ninth, etc.) region starts with the first instruction in q's plan executed for

this visit to r, and ends with a "visit parent" instruction.

Pending evaluations in region four (sixth, etc.) are handled like those in the second

region, except that any nodes in Reactivated that are in the subtree S are removed from

the set Pending evaluations in this region visited the subtree S when they were active,

and may have propagated attribute values from the subtree S to other parts of the tree.

The following argument shows why this will not result in inconsistent attributes. The

propagation of attribute values from S to other parts of the semantic tree must flow

through the synthesized attributes of r. If the synthesized attributes of r change as a

result of the subtree replacement, then attributes in other parts of the tree that depend on

them (and whose current value is based on the replaced subtree) will be reevaluated

because they are affected by the subtree replacement. If the synthesized attributes do

not change, then those attributes whose value is based on the replaced subtree are still

consistent with the new subtree. Thus, all attributes in the semantic tree will be

consistent when all evaluation processes have terminated.

Pending evaluations in the fifth (seventh, etc.) region are handled like those in the third

region. Pending evaluations whose next instruction occurs after the last "visit child r"

instruction in the computation sequence are not affected by the replacement of subtree

S.

4.2.1. Determining Relative Order Among Plan Instructions

The Schedule algorithm described above needed to determine whether an instruction il

in plan PI associated with treenode n1 occurs before another instruction i2 in plan P2

associated with treenode nz in the computation sequence of the semantic tree T. This

can be done as follows:

(Step 1) Find the least common ancestor (LeA) of n1 and nz.

(Step 2) Find the next "visit parent" instruction following i l in plan Pl'

(Step 3) Simulate the operation of the evaluator to determine the instruction that
would be resumed in the parent plan.

(Step 4) Repeat steps (2) and (3), each time going up to the parent plan, until

instruction j in the plan for LCA is encountered. (If n l is equal to the LCA,

thenj = i l .)

(Step 5) Repeat steps (2) and (3), but this time for i2 in plan P2 until instruction k
in the plan for LCA is encountered. (If ~ is equal to the LCA, then k = i2·)

90

If j < k, then the answer to the question "Does instruction i l come before instruction i2

in the computation sequence ofT?" is yes; otherwise the answer is no.

4.2.2. Analysis of Multiple Subtree Replacement Static Evaluator

The static evaluator described in this section minimizes the number of attributes

reevaluated for multiple asynchronous subtree replacements. In particular, suppose that

a subtree replacement affecting an attribute instance a occurs, but before a is evaluated,

a second subtree replacement operation, also affecting the same attribute instance a, is

performed. The evaluator shown in figures 4-3, 4-4, and 4-5 evaluates a at most once.

To prove this, suppose there were no funher subtree replacements, and let T denote the

tree after the second subtree replacement. The evaluator processes instructions in the

plans associated with nodes in T in the order defined by the computation sequence of T.

Thus, no instruction is executed more than once. In particular, the Eval instruction that

evaluates the affected attribute instance a is evaluated at most once.

Furthermore, if the value of an attribute a was changed as a result of a subtree

replacement, but before any other attributes that depend on a were evaluated, a second

subtree replacement was performed, causing a's value to be changed back to what it

was originally, the algorithm will not evaluate any of the attributes that depend on a.

Although the semantic tree nodes containing attributes dependent on a may have been

marked Reactivated by the first evaluation process, the new evaluation process will

evaluate a before any of a's dependents, and therefore no more nodes are marked

Reactivated because of the (temporary) value of attribute a.

The cost of interleaving evaluation processes for k subtree replacements to minimize the

number of attributes reevaluated is due to calls to the procedure Schedule. The non-unit

cost operations of Schedule are (1) the comparison of the position of two instructions in

91

the computation sequence, and (2) the insertion of an evaluation process in the pending

list.

Let n be the number of nodes in the semantic tree. Comparing two instructions in the

computation sequence using the algorithm described in the subsection 4.2.1 involves a

least common ancestor operation, and a traversal of the tree from the nodes with which

the instructions are associated to their least common ancestor node, which costs O(n) in

the worst case. Several instructions of the plan for each node on the path to the least

common ancestor may have to be examined to find the next "visit parent" instruction,

but the number of instructions in a plan is a (usually small) constant for a particular

attribute grammar. Therefore, the worst-case cost of comparing two instructions is

O(n).

Inserting an element in the pending list requires at most k comparisons, each of which

costs O(n), with a total cost of O(k· n). Therefore the worst-case cost of one invocation

of Schedule is O(k· n).

For each subtree replacement, Schedule is called once by StarnqJ, and each time

Evaluate is about to skip a visit. The number of skipped visits is at most proportional to

the number of attributes affected by the subtree replacement since plan size is a constant

of the grammar. Therefore, the total worst-case bookkeeping cost for k subtree

replacements is 0(1 A SYNC-AFFECTED I· n· k), where ASYNC-AFFECTED is the total

number of attributes reevaluated as a result of the k subtree replacements.

4.2.3. Improvements

The evaluation algorithm given above evaluates the minimum number of attributes, but

its bookkeeping costs can be improved if we can find a more efficient method for

determining the relative order among plan instructions, such as precomputing this

information at evaluator-construction time. It turns out that this cannot be done for

every ordered attribute grammar. An ordered attribute grammar for which it is not

possible to precompute the relative order among plan instructions is shown in figure

4-8. Figure 4-9 gives possible attribution plans for the productions in this grammar,

such as would be constructed by the algorithm given in [Kastens 80].

92

p1: ex ::= ~Xy. p4: Y::=W.
{X.a = ... {W.a = Y.a;

X.c = X.b; Y.b = W.b;
... : } W.c = Y.c;

Y.d = W.d;}

p2: X::=Y. pS: W::=Z.
{ Y.a = X.a: {W.b = W.a:

X.b = Y.b: Z.a = W.c;
Y.c = X.c; W.d= Z.b; }
X.d=Y.d;}

p3: Y::=Z. p6: Z··=Q .. .
{Z.a = Y.a; { Q.a = Z.a;

Y.b = Z.b: Z.b= Q.b; }
Y.d = Y.c: }

Figure 4-8: Attribute Grammar that is not Pairwise Ordered

The reason that we cannot detennine at construction time whether instruction it in plan

PI is executed before instruction i2 in plan P2 is that the answer depends on the structure

of the tree containing the two productions P and q associated with the plans PI and P2'

respectively. Consider the two attributed trees, T] and T2, shown in figure 4-10 below.

Production P is X ::= Y and production q is Z ::= Q. If the plan for production q is the

current one, and instruction "Evaluate Q.a" is being executed, then when the plan for P

is eventually resumed, the next instruction is "Evaluate X.b" in the case of T1, whereas

in the case of T 2' the next instruction is "Evaluate X.d".

In the next section, we define a subclass of OAGs, called the pairwise ordered attribute

grammars, for which it is possible to precompute the relative order among plan

instructions.

Evaluate Y.a
Move to Y
Evaluate X.b
Move to parent
Evaluate Y.c
Move to Y
Evaluate X.d
Move to parent

a) Plan for X ::= Y

Evaluate Z.a
Move toZ
Evaluate Y.b
Move to parent
Evaluate Y.d
Move to parent

b) Plan for Y ::= Z

Evaluate W.a
Move to W
Evaluate Y.b
Move to parent
Evaluate W.c
Move to W
Evaluate Y.d
Move to parent

c) Plans for Y ::= W

Evaluate W.b
Move to parent
Evaluate Z.a
Move toZ
Evaluate W.d
Move to parent

d) Plan for W ::= Z

Evaluate Q.a
Move to Q
Evaluate Z.b
Move to parent

e) Plan for Z ::= Q

Figure 4-9: Attribution Algorithms for Attribute Grammar of Figure 4-8

q:

Z a b

t i
Q ~

Figure 4-10: Two Semantic Trees

93

94

4.3. Pairwise Ordered Attribute Grammars

Pairwise ordered attribute grammars are defined as a subclass of ordered attribute

grammars. I8 An AG is pairwise ordered if:

1. It is ordered, and

2. For each pair of symbols, X and Y, such that X ~ Y, a partial order over

the attributes of X and Y can be given, such that in any semantic tree

where X is an ancestor of Y, the attributes of X and Y are evaluable in an

order which includes that partial order.

4.3.1. Algorithm to Compute Plans for POAGs

In this section we describe an algorithm that constructs plans for POAGs according to

the definition given above. The algorithm is modeled after Kasten's original algorithm

to construct visit-sequences for ordered attribute grammars [Kastens 80]. Only the

steps that differ from Kasten's algorithm are described in detail here. Furthermore, we

make use of an algorithm to compute transitive dependencies between pairs of symbols

in an attribute grammar that was published in [Reps 86]. The details of this algorithm

are also not repeated below.

In the algorithm below we use the following notation:

• A (X) is the set of attributes associated with the nonterminal symbol X. A(X)

is divided into two disjoint subsets, I(X), containing the inherited attributes

of X, and S(X), containing the synthesized attributes of X.

• SF is the set of semantic functions associated with the productions in the

grammar. SFp is the set of semantic functions associated with production p.

• The relation TDSx contains direct and transitive dependencies between

attributes of a nonterminal symbol X.

• The relation TDPp contains direct and transitive dependencies between

attribute occurrences in production p.

• The relation TDPSx,r contains direct and transitive dependencies between
attributes of symbols X and Y, where X ~ Y.

18POAGs are a subclass of ordered auribute grammars and not partitioned attribute grammars because
the plans for these grammars are constructed using a modified version of Kastens algorithm for
generating the plans for OAGs.

95

Step 1 and Step 2: Computation of TDSx and TDPSx•y•

Method: Use algorithms described in the appendix of [Reps 86].19.20 Note that TDPp is

not computed in these first two steps (as is done in [Kastens 80]) but in step 4. This is

done only to simplify the description of the algorithm.

Step 3: Use TDSx to partition A(X) into subsets A(X,i), i = 1, ... , m, such that A (X,i) is

a subset of I(X) for odd i and a subset of SeX) for even i. The attributes of X can be

evaluated in the order A (X, 1), ... , A(X,m). The output of this step is a vector

PARTITION describing the disjoint partitions of A (X).

Method: Same as Step 3 of Kasten's algorithm.

Step 4: Computation ofTDPp'

Method: The algorithm is given in figure 4-11. Arcs are added to the (initially empty)

TDPp for the direct dependencies among attribute occurrences in p; the transitive

dependencies among attributes of each symbol X in p (given by TDSx); the transitive

dependencies among attributes of the left-hand side symbol X of p and occurrences of

each unique symbol Y in the right-hand side of p (given by TDPSx•y); and the

dependencies among attributes of each symbol X due to the partitions of X. After

adding an edge to TDP p' other edges required to transitively close TDP are also added.

This is accomplished by the function AddArcTrans which is the same as defined in

[Kastens 80].

If each TDPp is acyclic, then the AG is a POAG.

Step 5: Construction of visit-sequences.

Method: Same as Step 5 of Kasten's algorithm.

190ur notation follows that of Kastens. It differs from the notation used in [Reps 86], where DS (X)

and DP(X,y) are used instead of TDSx and TDPSx,Y respectively.

~eps et al. use the relation TDPSx y in their algorithm to handle multiple synchronous subtree
replacements. .

procedure step40:
begin

for each production p : X 0 -+ Xl' . . X k. do

od
end

1* add direct dependencies among attribute occurrences in p * /
for each f E SF p defining Xfo.b do

for each argument Xj.a 0 f do

od
od

if (Xj.a, X/b) ~ TDPp then AddArcTrans(TDPp,(Xj.a, X/b» fi

1* add transitive dependencies among attributes of each symbol */
1* X in P (given by TDSx) */
for each unique X j in p do

for each edge (c, d) in TDSx . do
I

let (Xj.a, Xj.b) = (c, d) in

ni

for each occurrence X/ of Xj in P do
if (X/.a, X/.b) ~ TDP p then AddArcTrans(TDP p ,(X/.a, X/.b» fi

od

od
od
1* add transitive dependencies among attributes of each pair of * /
1* symbols X and Yin p (given by TDPS

XY
) */

for each Xj in p, 1 ~ i ~ k do
for each edge (c,d) in TDPSXO'X

j
do

let (Xo.a,Xj.b) = (c,d) in

ni

for each occurrence X/ of Xj in p do
if (Xo.a, X/.b) ~ TDP p then AddArcTrans(TDP p ,(Xo.a, X/.b» fi

od

od
od
1* add dependencies among attributes of each symbol X due to the partitions of X */
for each non terminal occurrence X/ of Xj in p do

od

for each X/.a do
for each X/.b do

/* Kasten's partitioning algorithm places the attributes that are to */
/* be evaluated first in the largest-numbered partition */
if PARTITION [Xj.a] > PARTITION[Xj.b] then

fi
od

od

AddArcTrans(TDP p .(Xj.a. Xj.b»

Figure 4-11: Algorithm to Compute TDP

96

97

4.3.2. Computation of Relative Order Among Plans

For each two productions, p: Xo ~ XI ... Xm and q: Yo ~ Y I •.. Yn , such that

Xo ~ Yo' we want to compute:

• Index in Planfp] where control is transferred after a "Visit parent"

instruction in Plan[q].

This information is computed once for each grammar, and stored in the table

Map Vis itParen tToP lanIndex. MapVisitParentToPlanIndex[p,q,tl returns the index of

the next instruction in the plan for p to be executed after the "visit parent" instruction

in position i in the plan for q.

This table is used in the algorithm for determining whether an instruction i1 in plan PI

associated with treenode nl occurs before another instruction i2 in plan P2 associated

with treenode nz in the computation sequence of the semantic tree T, as follows:

(Step 1) Find the least common ancestor (LCA) of n l and nz.

(Step 2) Find the next "visit parent" instruction following i l in plan PI' Denote

this instruction by vPI'

(Step 3) Let j = i l if n l is equal to the LCA, otherwise

j = Map VisitParentToPlanIndex[LCA , nl' VPl]'

(Step 4) Find the next "visit parent" instruction following i2 in plan P2' Denote

this instruction by vP2'

(Step 5) Let k = i2 if n2 IS equal to the LCA, otherwise

k = MapVisitParentToPlanIndex[LCA,n2, VP2]'

(Step 6) If j < k, then instruction il comes before instruction i2 in the computation

sequence of T; otherwise i2 comes before i I'

This algorithm for comparing the position of two instructions in the computation

sequence has amortized cost O(log n) - the cost of a least common ancestor operation

[Sleator 83] - reducing the cost of the scheduling overhead incurred by the POAG

evaluator for multiple asynchronous subtree replacements to

0(1 ASYNC-AFFECTED ,·log n· k) for k subtree replacements.

Before describing the algorithm for constructing MapVisitParentToPlanIndex, we

98

present an algorithm to compute the ANCESTOR relation for pairs of productions in the

grammar needed for the construction of the table, where

ANCESTOR = {(P,q)lp, q are productions, and p is an ancestor of q
in some derivation tree of the grammar).

The algorithm, Ancestor, is shown in figure 4-12.

A directed graph G is used, initially containing vertices representing the productions of

the grammar and no edges. First, edges are added to G to represent the PARENT

relation between pairs of productions - an edge between p and q indicates that one of

the right hand side symbols of p derives q directly. The edges added in this step are

blue. Then the transitive closure of G is computed to give the ANCESTOR relation.

Edges added to transitively close G are red. Edge color is used in the next algorithm.

procedure Ancestor(G: a directed graph):
declare

V : set of vertices of G;
E : set of edges of G;
p, q : productions;
Xi' Yj : nonterminal symbols;

begin
V:= {p I p is a production};
E:=0;
for each vertex p: Xo ~ XI ... Xm in G do

for each vertex q: Yo ~ YI ... Yn in G do
if Xj = Yo' i = 1, ... ,m then

AddBlueEdge(p, q) to G
fi

od
od
Compute transitive closure of G, adding red edges

end

Figure 4-12: Algorithm to Compute ANCESTOR Relation

The algorithm BuUdMaps, shown In figure 4-13, builds the table

MapVisitParenfl'oPlanIndex. In order to construct MapVisirParentToPlanIndex, it

creates another (temporary) table MapVisitChildToPlanIndex.

MapVisitC}zildToPlanIndexfp,q,il returns the index of the next instruction in the plan

for q to be executed after the "visit child" instruction at index i in the plan for p.

procedure BuildMapsO:
declare

p : production Xo ~ XI ... Xm:
q : production Yo ~ YI ... Yn :

r : production Zo ~ ZI ... Zk;
plndex, qlndex, rlndex : integers, used as indices into plans for p, q and r respectively:
EdgeList : list of edges:

begin
EdgeLisl := sort edges (p. q) in ANCESTOR graph in increasing order of length of path

of blue edges between p and q:
for each edge (p. q) in EdgeList do

if (p. q) is blue then
let i be the index of the right hand side (RHS) symbol of p

such that Xj = Yo' i = 1, ... • m in

ni

qlndex:= 1;
for plndex:= 1 to Length(Planfp]) do

if Planfp] [plndex] = "Visit Child i" then
MapVisitChildToPlanlndexfp.q,plndex] := qIndex;

fi
od

while Plan[q][qlndex] ;t; "Visit parent" do qlndex := qlndex + 1 od
MapVisitParentToPlanlndexfp,q,qlndex] := plndex + 1;
qlndex:= qlndex + 1

else /* (p, q) is red. a transitive edge */

ti
od

end

let r be a production such that (p, r) and (r. q) are edges in ANCESTOR
and (p. r) is a blue edge, and

ni

i be the index of the RHS symbol of P such that Xj = Zo' i = 1 •... ,m
and Zj ~ Yo' j= 1, ... • k. in

for plndex := 1 to LengthcP1anfp]) do
if Planfp] [plndex] = "Visit Child i" then

fi
od

rlndex := MapVisitChildToPlanlndexfp,r,plndex]:
while Plan[r][rlndex] ;t; "Visit child/, do rlndex:= rlndex + 1 od
MapVisitChildToPlanIndexfp,q,plndex] :=

MapVisitChildToPlanIndex[r,q,rlndex]:
qlndex := MapVisilChildToPlanIndex[r,q,rlndex]:

while Plan[q][qlndex] ;t; "Visit parent" do qlndex := qlndex + 1 od
rindex := MapVisitParentToPlanIndex[r,q,qlndex]:
while Plan[r][rlndex] ;t; "Visit parent" do rlndex := rlndex + 1 od
MapVisilParenrToPlanIndexfp,q,qlndex] :=

MapVisitParemToPlanIndexfp,r,rlndex]:
rlndex := rlndex + 1

Figure 4·13: Computarion of MapVisitParentToPlanIndex

99

100

BuildMaps first sorts the edges (p,q) in the ANCESTOR relation in increasing path-of

blue-edges order, that is, first the pairs of productions such that p is the parent of q are

considered, (length of path-of-blue-edges is 1), then those such that p is the grandparent

of q (length of path-of-blue-edges is 2), and so on. Then, the algorithm iterates over the

sorted list of edges, considering them one at time.

If the edge considered, (p, q), is blue (a direct edge), then the actions of the evaluator are

simulated to find the instruction i in q's plan that is executed after each "visit child"

instruction in p's plan, where the child visited is the left hand side symbol of q. Letj be

the first "visit parent" instruction after instruction in q's plan.

MapVisitParentToPlanIndexfp,q,11 is then initialized to the index of the instruction

following the "visit child" instruction in p's plan.

If the edge (p, q) is red (a transitive edge), then the principle of dynamic programming is

used. We find a production r such that (p, r) and (r, q) are edges in ANCESTOR, and

(p, r) is a blue edge. The length of the path-of-blue-edges of both (p, r) and (r, q) is less

than that of (p,q), and therefore the table entries for these pairs of plans must be already

filled in. We can use the table entries in the MapVisitChilaToPlanIndex to determine

where a "visit child" inp's plan takes us in q's plan: (1) find the next instruction in r's

that will be executed following the "visit child r" instruction in p's plan (from table);

(2) find the next' 'visit child s" instruction in r, where s is an ancestor of the left hand

side symbol of q; (3) find the next instruction in q's plan that will be executed following

the "visit child s" instruction in r's plan (from table). The entry in the

MapVisitParentToPlanIndex table is then computed similarly to what we explained for

direct edges.

4.4. Related Work

The class of ordered attribute grammars was defined by Kastens, who also described

polynomial time algorithms for constructing evaluators for them [Kastens 80]. Yeh

describes an incremental version of Kasten's evaluator [Yeh 83]. The evaluator used in

the Cornell Synthesizer Generator for ordered attribute grammars is presented in [Reps

89a]. This algorithm is also based on Kasten's, and is similar to Yeh's. Both these

incremental algorithms only allow single subtree replacements.

101

Yeh and Kastens extended the algorithm for single subtree replacements reported in

[Yeh 83] to handle multiple synchronous subtree replacements [Yeh 88]. As we

mentioned in the related work section of the previous chapter, such an algorithm is not

effective for evaluating changes to the semantic tree that occur asynchronously because

it requires the changes to be batched up and then evaluated, obviating the benefits of the

incremental nature of these algorithms.

Peckham independently devised static incremental evaluators for multiple synchronous

or asynchronous subtree replacements for globally partitionable attribute grammars

[Peckham 90]. The class of globally partitionable attribute grammars is comparable to

the pairwise ordered attribute grammar class defined in this chapter. His algorithm

maintains a structure tree, which is a "structure-preserving projection of a tree onto a

vertex subset", to skip over nodes in the tree not affected by any of the subtree

replacements. The structure tree contains all nodes with changed attributes, as well as

their least common ancestors. The structure tree is modified during evaluation as

additional nodes whose attributes must be reevaluated are encountered. Peckham's

algorithms minimize the number of attributes evaluated. The worst-case bookkeeping

costs incurred by the synchronous and asynchronous evaluators are

0(1 ASYNC-AFFECTED I· log n·k) and O(IASYNC-AFFECTEDI·n·k), respectively,

for k subtree replacements.

Parallel incremental attribute evaluation techniques for ordered attribute grammars are

described in [Zaring 90]. Two parallel evaluation algorithms are presented. In the

"synchronous" version, a process is forked for each attribute that is ready for

evaluation, i.e., those attributes whose arguments have already been evaluated. In the

"asynchronous" version, a process is forked for any arbitrary attribute evaluation, but

this process may have to wait if one of its arguments is not yet available.21 Zaring's

algorithms are applicable only to single subtree replacements.

21Note that the tenns "synchronous" and "asynchronous" are used by Zaring to describe the
synchronization technique of the parallcl algorithm, and not to characterize the occurrence of subtree
replaccments.

102

Chapter 5

Extending Attribute Grammars to Support
Static Semantic Analysis for Programming-in-the-Large

5.1. Introduction

In this and the following two chapters we are concerned with programs that are

composed of a number of modular units, such as Ada library and secondary units or C

source and header flles. Modern programming systems, such as for Ada and C, often

provide specific language constructs or environmental conventions for defining separate

modular units and the composition of a program in terms of these units. The abilities to

formally specify the structure of a large program and analyze the interface semantics

among modular units are crucial for programming-in-the-Iarge, but have previously

been addressed primarily by module interconnection languages (e.g., [DeRemer

76, Tichy 79, Habermann 81, Wolf 85, Narayanaswamy 87]) independent and distinct

from the formalisms used to define the programming language structure and semantics

within the modular units. We address the problem of unifying the approaches to

formalizing and analyzing both inter-module and intra-module static semantic

properties.

The use of the attribute grammar formalism for specifying the static semantic analysis

(and code generation) of monolithic programs is well-understood (e.g., [Ganzinger

77, Reps 84b, Waite 84, Farrow 84, Jourdan 90]). However, attribute grammars for

languages with programrning-in-the-Iarge facilities, such as for Ada [Uhl 82], define

only the intra-module semantics since the formalism cannot directly express inter

module semantics. Thus normal English prose or a secondary formalism must be used

to describe inter-module semantics, either preventing automatic analysis mechanisms or

requiring an ad hoc integration of two distinct mechanisms, respectively. We fulfill our

103

goal of unifying inter-mcxiule and intra-mcxiule static semantics by extending attribute

grammars to express the programming-in-the-Iarge constructs found in real

programming languages, including textual inclusion, multiple kinds of compilation

units, and nested compilation units.

In our extended attribute grammar fonnalism, a program that is composed of multiple

mcxiular units is represented by an attributed segmented derivation tree. A segmented

derivation tree is a derivation tree that is decomposed into segments at some of its

ncxies, where each segment represents a single mcxiular unit. For example, figure 5-1

(a) shows a derivation tree that is decomposed into segments at the ncxies marked X,

resulting in the three segments shown in figure 5-1 (b). A derivation tree ncxie on the

boundary of two segments is called an interface ncxie, and it is replicated in both of the

segments. The segment where the interface ncxie appears as a leaf ncxie is called the

parent segment with respect to that interface node; the segment where the interface

ncxie is the root ncxie is called the child segment. Two segments connected at an

interface ncxie are called adjoining segments.

, , , , , ,

,
, , , ,

,,--

, ,

~x
interface node .. __ ~ ~ -. - --.. '

I \ \ X " , , ' , , . ' , ..
, t .. --- ______ - .. , . .

"

~~" X-'" '.) ",

: ~ __ , I

: _----------;:::.l\of X \\ yent
, . . ,
\ " ,

. -.

(a): A Derivation Tree (b): A Segmented Derivation Tree

Figure 5-1: Segmented Derivation Tree

, , , , . , ,

104

The structure of the derivation tree representing a program is specified by the context

free grammar describing the syntax of the language in which the program is written.

However, context-free grammars are not sufficiently expressive, and cannot directly

specify segmented derivation tree structures. We extend CFGs to

• Denote which nontenninal symbols are interface nodes, and

• Allow the specification of the following types of segment interconnections:

• Unordered collection of segments; e.g., Ada library units, C flles,
Modula-2 modules.

• Included shared segments; e.g., C header files.

• Included nonshared segments; e.g., Ada subunits.

We extend the definitions of attributes and the built-in operators available for use in

their semantic equations, to employ extended context-free grammars and express the

static semantic properties of segment interfaces. We describe how existing attribute

evaluation algorithms can be extended to local segment evaluators for attribute

evaluation within segments, and combined with a global evaluator for intersegment

linkage and propagation of attribute values across interface nodes. Such a segmented

attribute evaluator can be used to decorate the segmented derivation tree with attributes

for the purpose of detecting interface errors (and generating code). Figure 5-2 depicts a

pattern of attribute flows across the segment boundaries, with the attributes of interface

nodes replicated in both segments.

Our result is a unifonn approach to formal specification of both intra-module and inter

module static semantic properties, that is, both within and between segments, with the

ability to use attribute evaluation algorithms to carry out a complete static semantic

analysis of a multi-module program.

The rest of this chapter and the following two chapters are organized as follows. In

section 5.2 of this chapter, we introduce segmentable context-free grammars,

illustrating with examples from Ada, Pascal and C. Algorithms for transforming the

segmented representation of a program as specified by a segmentable context-free

grammar into an alternative, but more convenient, representation specified by a related

grammar are presented in section 5.3 of this chapter.

, ,

, , ,

o
o
o --

Figure 5-2: Segmented Attribute Evaluation

LEGE.\[)

der;nuioll free' Illlde

allni'lIfC prOpdJ5,aliOI1
\Il/hill \e~melll

dun!>w..: proPdJ5,lIl/uIl
(/(ro .. , 't.'gI1If!l1t.'

105

Segmentable context-free grammars provide the underlying substrate for segmentable

attribute grammars, which are the topic of chapter 6. Besides defining this class of

attribute grammars, in this chapter we also discuss the issues of attribute evaluation in

the context of programming-in-the-large, particularly the separation of concerns

between the local evaluator for each segment and the global evaluator that propagates

attribute flows across segment boundaries. The approach described in chapter 6 applies

to the general class of noncircular attribute grammars, extended as we describe.

We focus in chapter 7 on a particular anomaly that arises when attributes flow from one

segment into another and then back to the first segment, and describe a technique for

summarizing attributes in such a way that evaluation is not delayed in the first segment

due to the propagation through the second segment. Our summarizing technique

involves the transfom1ation of an attribute grammar into an equivalent one, and is only

applicable to a subclass of attribute grammars that we define. We conclude in section

7.3 with a discussion of other work related to these three chapters.

106

S.2. Segmentable Context-Free Grammars

A segmentable contextjree grammar is an extension of a context-free grammar, and is

denoted as G+ = (N, T, S, D, E, P+). Nand T are finite sets of nontenninal and tenninal

symbols, respectively, and S is the start symbol of the grammar, these have the same

meaning as for a context-free grammar. The other components of a segmentable CFG

are defined as follows.

• D is a finite set of nonterminal property declarations. These declarations

are given in the CFG in either of the following two forms:

(i) distributable X

(ii) shared distributable X

where X E N and X #; S. A nontenninal property declaration states that

the nontenninal symbol X derives a segment; or, in other words, X is an

interface node between two segments. In the first form of a nontenninal

property declaration, the child segment derived from X interfaces to exactly

one parent segment that has X as a leaf node. In the second form, a child

segment derived from X may interface to several parent segments each of

which has X as a leaf node.

The start symbol of the grammar, S, derives the top-level segment in the

segmented derivation tree representation of the program. In the typical

case where a program is implicitly constructed from an unstructured

collection of modules, this top-level segment may correspond to the

"makefile" [Feldman 79] rather than a language construct.

• E is a singleton set containing the set-of construct. This construct may be

used on the right-hand side of productions in the grammar to describe an

unordered collection of segments.

E = {set-of(X)}

where X EN, and X is a nonshared distributable symbol.

• P+ is a finite set of productions, which are of the form:

Y~a

where YEN, and a E (N u T u E)" .

In the next subsections, we show how segmentable context-free grammars can be

written for the languages Ada, C, and Pascal, to indicate how programs in these

languages may be divided into segments.

107

5.2.1. Example 1: Ada

In an Ada program, a segment corresponds to an Ada compilation unit as defined in the

Ada reference manual [AdaTEC 82]. We identify three classes of compilation units,

and define a different segment type to represent each class. The three segment types are

specification segments, implementation segments, and subunit segments. A

specification segment is either a package specification, a subprogram specification, or a

subprogram body that has no corresponding specification; this segment type

corresponds to the library units in the Ada reference manual. An implementation

segment is either a package body or a subprogram body that has a corresponding

specification, while a subunit segment is a subunit; implementation and subunit

segments are collectively called secondary units in the Ada reference manual.

The extended context-free grammar in figure 5-3 defines the three kinds of segments in

Ada and their interconnections. (Nonterminals shown in italics are defined in the Ada

reference manual.) There are three productions defming a specification segment, one

for each kind of compilation unit represented by this segment type. A specification

segment that derives a subprogram specification must have a corresponding body; this

is indicated in production p2 by the interface nonterrninal implementation_segment,

which serves as the connection point between this specification segment and the

implementation segment representing the subprogram body.

pI: ada_program ::= set-or (specification_segment):

distributable specification_segment;
p2: specification_segment ::= context clause subprogram declaration implementation_segment
p3: I context_clause package __ declaration [implementation_segment]
p4: I context_clause subprogram_body;

distributable implementation_segment;
p5: implementation_segment ::= context clause subprogram body
p6: I context_clause package_body; -

p7: subuniUxxly _stub ::= body _stub subunit_segment:

distributable subunicsegment;
p8: subunit_segment ::= context_clause subunit;

Figure 5-3: Extended CFG for Definition and Interconnection of Segments in Ada

108

A specification segment that derives a package specification mayor may not have a

corresponding body; in this case, shown in production p3, the interface nontenninal

implementation_segment connecting the specification segment to the implementation

segment representing the package body is enclosed in square brackets ([...]),

indicating that it is optional. A specification segment that derives a subprogram body

has no corresponding implementation segment, and thus there is no need for an

interface nontenninal on the right-hand side of production p4.

To keep the grammar in figure 5-3 shon, we do not distinguish between implementation

segments that represent subprogram bodies and those that represent package bodies.

The result is that interfacing a package body with a subprogram specification, or vice

versa, is syntactically correct according to this grammar. To disallow this, the semantic

analysis specified by the AG could check that a package (subprogram) body is only

connected to a package (subprogram) specification, and flag an error otherwise.

Alternatively, the grammar of figure 5-3 could be rewritten so that there are two kinds

of implementation segments, one for subprogram bodies and one for package bodies,

with the appropriate symbol used in the interface constructs of productions p2 and p3.

The connection between a subunit segment and its parent is defined in production p7 in

figure 5-3. Each subunit in Ada, represented as a subunit segment, must have a

corresponding body stub. The body stub is a declarative item in the parent segment,

which specifies that the body of a subprogram, package or task declared in the parent is

to be developed as a separate unit (typically a separate file in conventional

development). Production p7 associates with each body stub an interface to the

corresponding subunit segment. All occurrences of body stub that appear on the right

hand side of productions in the syntax given in the Ada reference manual are replaced

by the nonterrninal subunit_body _stub.

109

5.2.2. Example 2: C

Figure 5-4 gives an extended context-free grammar for the C language. A C program is

composed of a collection of source files, as specified in production pl. A source file

contains a list of definitions, such as function definitions, data definitions, or include

definitions. An include definition corresponds to the C include statement, such as the

statement #include "foo.h", which specifies that the contents of foo.h are included as

text in the source file in which the include statement appears. The connection between

the segment for the source file containing the include statement and the segment

representing the included file is specified by the interface non terminal c _header Jile in

production p9. This interface symbol is shared since the file foo.h may be included in

more than one source file. Production pIO specifies that a segment that corresponds to

an included file is also composed of a list of definitions.

distributable c_file:
p2: cJlle ::= c_defs;

p3: c_defs ::=!* empty */
p4: I c_def c_defs:

pS: c_def ::= function_def
p6: I data_def
p7: I data_type_def
p8: I include_def

I ... :

shared distributable c_header_file:
plO: c_headecfile ::= c_defs;

Figure 5·4: Extended CFG for Definition and Interconnection of Segments in C

5.2.3. Example 3: Pascal

The segmentable CFG for a Pascal program shown in figure 5-5 specifies that each

procedure declaration declared in the outermost scope of a Pascal program is a separate

110

segment.22 The segments representing outer-level procedures form an ordered

collection (or sequence). This facilitates writing an attribute grammar for the Pascal

scope rules to check that a procedure is declared before it is called,23 which would be a

problem if procedures were modeled as an unordered collection of segments. As seen

from this example, no new construct is necessary to specify an ordered collection of

segments.

pI: pascaU)rogram ::= name program_params labeCdccls consCdecls type_defs
vacdecls proc_decls stmts;

p2: proc_decls ::= 1* empty *'
p3: I proc proc_decls;

distributable proc;
p4: proc ::= ... :

Figure 5-5: Extended CFG for Definition and Interconnection of Segments in Pascal

Let us look in some more detail at the Pascal example to show how flexible an extended

CFG is in describing a segmented derivation tree structure. A Pascal program in the

language specified in figure 5-5 must have each outermost procedure in a separate

segment, and no outermost procedure may be declared in the main program segment.

These two restrictions may be removed by minor changes in the extended CFG, as

shown in figure 5-6.

The grammar in figure 5-6 (a) defines outermost procedures in a Pascal program in

terms of a list of lists of procedure declarations. A segment in this grammar consists of

a list of procedure declarations, and thus may contain an arbitrary number of

procedures. In contrast, the grammar in figure 5-6 (b) specifies that outermost

procedures do not have to be developed as separate segments, but may be declared

either in the main program segment or as a separate segment. This is accomplished by

22This requires that a different nonterminal symbol be used for nested procedures or functions, which
are not shown in figure 5-5.

23This would be similar to the AG given in figure 2-1 in chapter 2, section 2.1, that checks that an
identifier is not declared more than once.

pi: pascaU)rogram ::= '" proc_decls_list ... ;

p2: proc_decls_list ::= 1* empty */
p3: I proc_decls_segment proc_decls_list;

distributBble proc_decls_segment;
p4: proc_decls_segment ::= proc_decls;

p5: proc_decls ::= 1* empty */
p6: I proc proc_decls;

p7: proc ::= ... ;

(a): Segments with More than One Procedure

pI: pascaCprogram ::= '" proc_decls ... ;

p2: proc_decls ::= 1* empty .. /
p3: I proc 1 proc_decls
p4: I proc2 proc_decls;

distributBble proc 1;
p5: procl ::= proc;
p6: proc2 ::= proc;

p7: proc ::= ... ;

(b): Optional Distributable Procedure Segment

Figure 5-6: Other Segmentation Structures for Pascal

111

having two nontenninal symbols for an outermost procedure, procl and proc2, one of

which is distributable and the other is not. We call this an optional distributable

segment.

A Pascal program that has been segmented according to one grammar (such as the one

shown in figure 5-5) can be automatically transformed into a program with a different

segmentation scheme (such as either of those shown in figure 5-6). This feature is

important for a programming environment since program development often entails

changing the modular structure of the program. The grammar writer would only need

to specify the simple segmentation scheme shown in figure 5-5, and the associated

semantic equations, and the extended grammar would be automatically transfonned to

112

permit a more flexible organization of the program. The transformation algorithms are

described in the following section.

5.3. Transforming the Segment Organization of a Program

In this section we describe two kinds of transfonnations of the segment organization of

a program specified by a segmentable context-free grammar. The first, called list

segment transformation, takes a program containing a sequence of segments, where

each segment's root nontenninal is X, and transfonns it to a program containing a

sequence of segments, where each segment contains a list of subtrees each with root

nonterminal X. The second transformation, called optional segment transformation,

takes a program containing a sequence of segments with root X, and transfonns it to a

program containing a sequence of nodes from which are derived segments or subtrees

rooted at X. These two transfonnations are illustrated in figure 5-7. These

transformations entail changes to both the segmentable CFG as well as the semantic

equations associated with the changed productions.

5.3.1. List Segment Transformation

Let Gi = (Nl' T, S, Dl' E, Pi) denote a segmentable CFG deriving programs containing

a sequence of segments with root X, and X-List the nontenninal symbol in Nl deriving

the list of segments. (The nontenninal X corresponds to proc in the Pascal grammar of

figure 5-5 while X-List corresponds to proc_decls.) The relevant prcxluctions in Gi

have the following fonn:24

p: ... ::= ... X-List ... ;

q: X-List ::= /* empty */
r: I X X-Lis~

distributable X:
s: X ::= ... ;

Let Gi = (N2, T, S, D 2 , E, Pi) be the segmentable CFG resulting from the list

24For simplicity, any additional symbols on the right-hand side of productions q and r are omitted. The
transformation algorithms can easily be modified to take into account these extra symbols.

,

, , x
o

list segment
trans/ormation

-------- , . , .
, ,

, , . .

,

o
X
o , . , . , , . , . .

------_ ..

LEGEi'D

, , .
" .. {/ seg mell t , .

'- - !

D (/ slIbtree \\'ithin (l segment

, ,
, ,

, ,
,----------1

, ,

, ,

optional segmellt
tralls/orlllatioll

, .

, ,

. .

113

. ------ __ .. _-------

, .
, .

, . , .
,-----------_\

Figure 5-7: Transformation of Segment Organization of a Program

114

transformation. That is, Gi derives programs containing a sequence of segments, each

of which contains a list of subtrees with root X.

Algorithm to transform Gi to Gi:
1. Initialize Gi to Gi.

2. Add new nonterminal symbols X -List-List and X -List-Segment to N 2'

3. Let p denote any production in Pi where X -List appears on the right-hand

side but not on the left-hand side. Replace the occurrence of X-List in
each production p in Pi by X-List-List.

4. Define X-List-List to be a (possibly empty) list of X-List-Segment by

adding the following two productions to P!:

t: X-List-List ::= /* empty */
u: I X-List-Segment X-List-List;

5. Declare the nonterminal X -List-Segment distributable, instead of X, in

D2•

6. Add the following production to Pi :
v: X-List-Segment ::= X-List;

The productions in Gi that are changed by the list transformation are the following:

p: .. , ::= ... X-List-List ... ;

t: X-List-List ::= /* empty */
u: I X-Liscsegment X-list-List;

distributable X-List-Segment:
v: X-List-Segment ::= X-List;

q: X-List ::= /* empty */
r: I X X-List;

s: X ::= ... ;

One may wonder why it is necessary to introduce the new symbol X-List-Segment and

the unit production v. That is, why not define X-List-List to be a list of X-List, and

declare X -List the distributable symbol? The reason is that the node labeled with the

symbol X -List in each instance of production r in the derivation tree would become the

root of a new segment. Each of these X-List segments would contain exactly one

subtree rooted at X, which is not what is intended by the list transformation.

115

The above transformation of the segmentable CFG must be accompanied by a

complimentary transformation of the semantic equations associated with the relevant

productions in the grammar, which is given in the algorithm below. Recall that A(X)

denotes the attributes associated with the nonterminal X, I(X) the inherited attributes of

X, and SeX) the synthesized attributes of X.

Algorithm to transform AGI' based on Gr, to AG2, based on Gi:

1. Declare the attributes for the new nonterminals X-List-List and
X-List-Segment to be the same as for X-List; i.e.,

I(X-List-List) = I(X-List-Segment) = I(X-List) and
S(X-List-List) = S(X-List-Segment) = SeX-List).

2. In the semantic equations associated with each production p in Gi, replace

each attribute occurrence X -List. a by X -List-List. a , where a E A(X -List).

3. For the two productions t and II defined above, copy the semantic
equations associated with the two productions defining X-List (i.e.,
productions q and r), replacing X -List by X -List-List and X by
X-List-Segment.

4. Associate the following parr of semantic equations with the unit

production v for each inherited attribute a j in I(X-List) and each
synthesized attribute as in SeX-List):

X-List.a j = X-List-Segment.a j

X-List-Segment.as = X-List.as

5.3.2. Optional Segment Transformation

Let Gr be a segmentable CFG defined as in subsection 5.3.1. Let

Gj = (N3, T, S, D 3, E, Pj) be the segrnentable CFG resulting from the optional segment

transformation. That is, Gj derives programs containing a sequence of subtrees rooted at

X, where an X subtree may either be in a separate segment or may form part of the

parent segment

Algorithm to transform Gr to Gj:

1. Initialize Gj to Gr.

2. Add new nonterminal symbols Xl and X2 to N
3

•

3. Let r be the recursive production in Pi defining the list of segments X.

Replace production r in P3 by the following two productions:

w: X-List ::= Xl X-List
x: I Xl X-List;

4. Declare the nontenninal Xl distributable, instead of X, in D3•

5. Add the following unit productions to Pj:

y: Xl ::= X;
z: Xl ::=X;

116

The productions in G3 affected by the optional segment transformation are the

following:

p: ... ::= ... X-List ... :

q: X-List ::= /* empty */
w: I Xl X-List
x: I X2 X-List:

distributable Xl;
y: Xl ::= X;

z: X2 ::= X;

s: X ::= '"

We now present the algorithm to transform the semantic equations associated with the

affected productions in the grammar G3.

Algorithm to transform AG1, based on Gi, to AG3, based on G3:
1. Declare the attributes for the new nonterminals Xl and X2 to be the same

as for X; i.e., I(XI) = I(X2) = 1(X) and S(XI) = S(X2) = SeX).

2. For the two productions w and x defined above, copy the semantic
equations associated with the recursive production r defining X-list, with

each attribute occurrence X.a replaced by Xl.a in production w and by

X2.a in production x, where a E A(X).

3. Associate the following pair of semantic equations with the unit
production y for each inherited attribute ai in 1(X) and each synthesized
attribute as in SeX):

X.ai = X1.a j

X1.as = X.as

117

4. Repeat step (3) for production z, substituting X2 for Xl.

The details of how these transformations are integrated into a multi-user programming

environment are beyond the scope of this thesis.

Chapter 6

Segmentable Attribute Grammars

118

We define the class of segmentable attribute grammars (SAGs) to contain extended

attribute grammars that are based on segmentable context-free grammars. The purpose

of this chapter is twofold. First, we describe how attribution of a segmented derivation

tree, that is, giving values to the attributes decorating the nodes of the derivation tree, is

performed through the combined actions of local and global evaluators. This differs

substantially from the attribution of a monolithic derivation tree, where only one kind of

evaluator is required. Second, we present additional built-in operators that are required

to write semantic equations associated with productions containing distributable

symbols, or the set-of construct described in the previous chapter.

More formally, an SAG consists of the following components:

1. An underlying segmentable context-free grammar, G+, which describes
the structure of the segmented derivation tree of sentences in the language
L(G+). (Segmentable CFGs were defined in chapter 5, section 5.2.)

2. Attribute declarations, specifying the set of attributes that are associated
with each grammar symbol, and their types. There are two new concepts:

• All attributes associated with an interface (distributable)

nonterminal symbol are implicitly declared to be interface
attributes. The value of an interface attribute is accessible in the
segment in which it is defined, as well as in the adjoining

segment.25

• A new type of attribute, called a conglomerate attribute, is defined
for non terminal symbols deriving segments by the set-of construct
Conglomerate attributes collect information from the collection of
segments connected by the set-of construct, and are explained in
section 6.4.

3. Segment linkage declarations, which are required to specify which
segment instances with interface nodes labeled with the same nonterminal
symbol are connected to each other. Segment linkage will be described in

section 6.2.

4. Semantic equations associated with productions in G+. These differ from
their counterparts in conventional attribute grammars in two ways:

• New built-in operators may be used in semantic equations
associated with productions containing distributable symbols.

• The operators makeNull, assign, and compute are used to
manipulate conglomerate attributes, and the boolean operator
isUnique is used to check that segments in an unordered
collection have unique names; these operators are defmed in
section 6.4.

• The operators IinkedSetSize and for each linked

<nonterminal> are used to determine the number of child
segments linked to a parent segment, and to iterate over the
number of child segments, respectively; these operators are
related to segment linkage, and are defined in section 6.2.

• Completing semantic equations are required for interface attributes.
Completing semantic equations give values to interface attributes
defined in segments that have not yet been created, and are
explained in section 6.1 below.

119

25There may exist attribute grammar applications where it is desirable that some attributes associated
with an interface nontenninal symbol be loca1lO one segment, that is, their value is accessible only in the
segment in which the attribute is defined. Since this can be achieved by means of local attributes
[Jourdan 89, Reps 89b] - attributes associated with a production rather than with nontenninal symbols

- we decided to keep the definition of SAGs simple by having only interface attributes associated with
an interface nontenninal symbol. If a non-interface attribute of the interface symbol X is needed in the
segment where X is a leaf node, a local attribute associated with the production where X appears on the
right-hand side is declared. And instead of a non-interface attribute of the interface symbol X in the
segment derived from X, one can declare a local attribute in the production where X is the left-hand side
symbol.

120

As we mentioned in earlier chapters, there is a hierarchical classification of standard

attribute grammars based on the complexity of the expressible attribute dependencies,

leading to different evaluation strategies for the different classes. The segmentable

classification is orthogonal to the evaluation strategy classification. Thus, a

segmentable attribute grammar may be ordered, in which case it can be evaluated by the

algorithms described in chapter 4, modified to handle segmented derivation trees as we

describe in section 6.1. Or, a segmentable AG may not be ordered but is noncircular, in

which case the dynamic evaluation algorithms described in chapter 3 (also modified for

segments) can be used to perform attribute evaluation.

Figure 6-1 gives an example of a segmentable attribute grammar specification of a

simple modular language. A program in this language consists of a set of modules. The

exported facilities of a module are stored in the attribute exports associated with each

module. The facilities exported by all the modules are collected in the conglomerate

attribute, allexports, associated with the entire program. This is accomplished by means

of the assign operation. The isUnique operator is used to check whether a module's

name is unique in the set of modules comprising the program.

A module references facilities exported by other modules through the import statement.

An import statement names the module from which the facility is imported, and the

facility itself. The import statement uses the component of the allexports attribute

identified by the imported module's name to check the legality of the import statement

(the imported module must exist and must be unique, and the imported facility must be

exported). The compute operation finds the appropriate component.

(Segment linkage declarations are not required in this simple example and will be

illustrated in section 6.2 where this concept is explained.)

Program: (synthesized attributes: conglomerate allexports;)

Module: (synthesized attributes: name. exports;
inherited attributes: error default "";)

Name: (synthesized auributes: id;)

Import: (synthesized attributes: error;)

VarId: { synthesized attributes: name; }

(a): Attribute Declarations

pI: Program ::= set-of (Module);
(for each linked ModuleSi

assign(Program.allexports. ModuleSi.name. ModuleSLexports);
for each linked Module$i

Module$i.error = isUnique(Module$i.name)
? nH

: "<-- duplicate module"; }

distributable Module;
p2: Module ::= Name Export Import Decl Body;

{ Module.name = Name.id;
Module.exports = ...
... ; }

p3: Import ::= ModuleId VarId
(local single_modulc_cxports;

single_module_cxports = compute({Program.allexports}. ModuleId.name);
Import.error = (single_module_exports = bottom)

? "<-- imported module unknown"
: (single_modulc_exports == multiple)

? "<-- imported module duplicate"
: Mcmber(single_module_exports. VarId.name)

? ttll

: "<-- variable not exported";
... ;)

(b): Abstract Syntax and Semantic Equations

Figure 6-1: Specification of a Simple Modular Language

121

122

6.1. Attribute Evaluation for Segmented Derivation Trees

An attribute evaluator for a segmentable AG consists of two parts: (1) a local segment

evaluator, which evaluates attributes within a segment, and (2) a global evaluator,

which propagates attributes among segments and performs evaluations involving more

than one segment.

A local segment evaluator is similar to an evaluator for a monolithic semantic tree

except for its actions at attributes associated with the segment's interface nodes. Recall

that an interface node is a node that is on the boundary between two segments, and

therefore is either the root or a leaf node of a segment. Interface nodes and their

associated (interface) attributes are duplicated in the semantic tree of the two adjoining

segments.

The output attributes of a segment S are those attributes associated with interface nodes

of S that are defined by semantic equations associated with production instances in S.

These are the synthesized attributes of the root node of S and the inherited attributes of

leaf interface nodes of S. The input attributes of a segment S are the copies of the

output attributes of segments connected to S; that is, the inherited attributes of the root

node of S and the synthesized attributes of leaf interface nodes of the segment S.

A local evaluation process is initiated within a segment either because of an edit

performed on the segment, or because of a change made to a remote segment that has

propagated (via the global evaluator) to this one. If in the process of attribute

evaluation within a segment an output attribute's value changes, the local evaluator

communicates the new value to the global evaluator. The global evaluator then

transmits the new value to the local evaluator of the adjoining segment, where the

changed attribute is an input attribute of the segment.

When an input attribute of a segment receives a new value due to propagation by the

global evaluator, the segment's local evaluator initiates its own attribute evaluation

process at the corresponding interface node. Changes to the interface attributes of

mUltiple other segments may be propagated to a segment asynchronously, so another

may arrive before an evaluation triggered by a previous change has completed.

123

Therefore, the local segment evaluator should support some kind of merging of the

evaluation processes to avoid unnecessary multiple evaluations of the same attributes as

described in chapters 3 and 4.

The input attributes of a segment S may be used as arguments in semantic equations

associated with production instances in S. In order for S's local evaluator to be able to

evaluate these semantic equations, each input attribute of S must have a value, even

when the adjoining segment where the corresponding output attribute is defined has not

yet been created. This is the purpose of completing semantic equations: they defme the

default values of a segment's input attributes.

In the SAG of figure 6-1, the error attribute associated with the symbol Module is an

input attribute of the segment derived from Module. The completing semantic equation

is defined as part of the attribute declaration, in this case defining error to be the empty

string:

Module: { synthesized attributes:
inherited attributes:

name, exports:
error default "": }

Completing semantic equations are not required to define the default values of

synthesized attributes associated with a distributable symbol X in an unordered

collection, set-of(X). In the segment where these attributes are input attributes - the

segment where the symbol X appears as a leaf node - they can only be used to

construct conglomerate attributes. As shall be explained in section 6.4, a conglomerate

attribute is defined as the union of components from all existing segments in the

collection. The conglomerate is defined even when there are no segments in the

collection. Thus, in the attribute grammar of figure 6-1, there is no need for completing

semantic equations for the synthesized attributes name and exports of the nonterrninal

symbol Module.

Before any attributes can be propagated among segments, the global evaluator must

determine which segments are connected to each other. This process is described in the

following section. Then, in section 6.3, we discuss attribute evaluation of segments

derived from shared distributable nonterminals. This is different from the attribute

evaluation procedure just described because a shared segment may be linked to more

than one parent segment.

124

6.2. Segment Linkage

One of the functions of the global evaluator is to perform segment linkage, that is,

determine which segment instances with interface nodes labeled with the same

nontenninal symbol are connected to each other. The segmentable CFG describes

which segment types can be connected together, and where the root of the child

segment is (logically) connected to the parent segment. But it does not describe which

two segment instances are involved in a particular connection. This additional

information is required in order to propagate a changed interface attribute in a parent

segment to the correct child segment, and vice versa.

Segment linkage is specified in the extended attribute grammar by means of segment

linkage declarations. A segment linkage declaration has the following form:

X { aj <-> as };

where X is a distributable nonterminal symbol; a j is an inherited attribute of X; and as is

a synthesized attribute of X. The types of the two attributes a j and as in a segment

linkage declaration must be the same. Two segments with an interface node labeled by

the non terminal symbol X are connected to each other if the values of the attributes a j

and as of X are the same. There are constraints on the semantic equations defining the

segment linkage attributes a j and as' These constraints are described in subsection

6.2.1.

We show how segment linkage is specified for an Ada program. Figure 6-2 extends the

segmentable context-free grammar for Ada (shown in figure 5-3 in chapter 5) with

segment linkage declarations and semantic equations defining the segment linkage

attributes for implementation and subunit segments. The attributes used for linking

implementation segments to their corresponding specification segments are

specification_segment _name and implementation _segment_name. These attributes are

assigned the simple name of the package or subprogram whose specification or body

appears in the segment. We assume that the package or subprogram name is available

in the attribute name, but omit the semantic equations defining it.

Segment linkage for subunit segments is similar, except that fully expanded names are

1* segment linkage declarations */

implementation_segment
(specificatioo_segmencname <-> implementation_scgment_name);

subunit_segment
(body _stub_name <-> subunicname)

1* segment linkage attribute defmitions */

p2: specification_segment ::= context clause subprogram declaration implementation_segment
(implementation_segmentspecification_segmenUlame =

subprogram_declaration.name;)
p3: I con text_ clause package_declaration [implementation_segment]

(implementation_segment.specificaLion_segment_name =
package_declaration. name;)

distributable implementation_segment;
p5: implementation_segment ::= context clause subprogram body

(implemcntation_segffient.implementation_scgmencname =
subprogram_body. name;)

p6: I context_clause package_body;
(implementation_segment.implementation_segment_name =

package_body.name;)

p7: subunicbody _stub ::= body stub subunit_segment;
(subunit_scgment.body_stub_name =

Concatenate(body _stub.parent_name,body _stub. simple_name);}

distributable subunit_segment;
p8: subunit_segment ::= context clause subunit;

(subunit_segffient.subunicname =
Concatenate(subunit.parencname, subunit.simple_name); }

Figure 6-2: Attribute Grammar for Marching Segments in Ada

125

required by the Ada language definition. The segment linkage attributes for subunit

segments are body _stub _name and subunit_name. In Ada, each subunit specifies the

full name of its parent unit, starting with the simple name of the ancestor library unit.

The subunit_name attribute of a subunit segment is assigned the full parent name

specified in the subunit (attribute parent_name) concatenated with the simple name of

the subunit (attribute simple_name). (The semantic equations defming the attributes

parent_name and simple_name are omitted In figure 6-2.) The attribute

body_stub _name is similarly defined; in this case, the attribute parent_name is the fully

expanded name of the segment in which the body stub appears, and simple_name is the

name of the declarative item specified in the body stub.

126

In the case of Ada, it is possible to specify segment linkage using information that is

available in an Ada program written according to the syntax defined in the Ada manual.

This is not always possible in other languages. For example, include files in C cannot

be linked to the source files that include them without requiring additional syntax. For

C include files, linkage is performed on the basis of the included file's name. The file

name is specified in the parent segment that contains the corresponding include

statement (see production p9 in figure 5-4, chapter 5), and so the file name can be used

to initialize aj • However, the file name does not appear in the segment corresponding to

the included file (production pIO in figure 5-4). In order to define the attribute as'

production pIO must be modified to include the name of the file, as follows:

pIO': c_header_flle ::= file_name c_defs;

Segment linkage declarations can be omitted when there is no ambiguity about which

segment instances are connected to each other. In the example grammar shown in

figure 6-1, segment linkage declarations are not required since all segments derived

from the symbol Module are connected to the top-level segment derived from Program.

In general, segment linkage declarations are not needed for a distributable symbol X if

(i) there is only one production, say production p, in the segmentable CFG with the

symbol X on the right-hand side, and (ii) the left-hand side symbol of p is not derived

(directly or indirectly) from a recursively defined nonterminal symbol (i.e., all

derivation trees of the grammar contain only one instance of production p).

6.2.1. Constraints on Segment Linkage Attributes

The semantic equations defining the segment linkage attributes aj and as are constrained

so that aj only depends on attributes defined in the same segment where aj is defined,

and as only depends on attributes defmed in the same segment where as is defined. The

reason for this restriction is obvious - no propagation of attributes between two

segments connected at an interface node X can take place until segment linkage has

occurred. To state the constraints more precisely, let p and q denote the production

instances in the parent and child segments respectively that apply at the interface node

X, defined as follows:

p: ... ~ ... X ...

q:X ~ Xl'" XII

127

The attribute a j (defined by a semantic equation associated with p) cannot depend,

directly or indirectly, on synthesized attributes of the interface nonterminal X, and az

(defined by a semantic equation associated with q) cannot depend, directly or indirectly,

on inherited attributes of X.

For an arbitrary noncircular attribute grammar G, checking whether the constraints on

the segment linkage attributes, a j and as' of a distributable symbol X hold, requires the

computation of all possible characteristic graphs of X. (Recall from chapter 2 that the

characteristic graph of a symbol X of an arbitrary noncircular grammar G may be

different for different derivation trees of G.) Then, the constraint on dependencies

involving a j is satisfied if there is no edge from a synthesized attribute of X to a j in any

superior characteristic graph of X, while the constraint on dependencies involving as is

satisfied if there is no edge from an inherited attribute of X to as in any subordinate

characteristic graph of X.

Unfortunately, computing all possible characteristic graphs of a distributable symbol X

may require exponential time. We prove this complexity result by contradiction.

Suppose that there exists a polynomial time algorithm for computing all the

characteristic graphs of a single symbol of an arbitrary noncircular grammar G. Then,

we can construct a polynomial algorithm for computing all possible characteristic

graphs of all symbols in G: execute the algorithm for finding all characteristic graphs of

one symbol on every nonterminal symbol in G. This implies that the number of

possible characteristic graphs of all symbols in G is bounded by a polynomial. If this

were true, then we can determine whether an attribute grammar G is noncircular in

polynomial time by checking if every characteristic graph of every symbol in G is

acyclic. However, the circularity problem of AGs is a known NP-complete problem

[Jazayeri 75], so we have our contradiction.

We therefore use an approximation that can be computed in polynomial time instead of

the set of possible characteristic graphs of a distributable symbol X to check the

constraints on the segment linkage attributes of X. This approximation is the relation

128

TDSx ' which was defined in chapter 4, section 4.3. As we said in that chapter, TDSx

contains any essential dependency among the attributes of a symbol X that could be

present in any derivation tree. This relation is pessimistic because all these

dependencies are assumed to be present simultaneously. Because this is a pessimistic

approximation, TDSx could contain an edge representing a dependency from a

synthesized attribute of the interface symbol X to a j (or from an inherited attribute of X

to as) that could not be present in any semantic tree derived from the grammar. This is

illustrated by the attribute grammar shown in figure 6-3, which is adapted from one

given in [Waite 84].

pI: Z::=X
{ X.a = 1; }

p2: X ::= Y
{X.b = Y.f;

Y.c = X.a;
Y.d = Y.e; }

p3: Y ::= u
(Y.e=2;

Y.f= Y.d;)

p4: Y ::= v
(Y.e = Y.c;

Y.f=3;)

Figure 6-3: A Noncircular Attribute Grammar

This grammar derives two trees, shown in figure 6-4. The relation TDSy has the

dependency edges {(d,j), (e,d), (c,e), (c,!)}. Note that both edges (d,!) and (c,e) are

included in TDSy even though it is clear from figure 6-4 that only one of them can occur

in any derivation tree. The result is that the relation TDSx contains the edge (a, b) even

though there is no dependency from X.a to X.b in any derivation tree of the grammar.

We believe that the definitions of the segment linkage attributes a j and as are simple and

do not involve such pathological chains of transitive dependencies so that the

approximation will work for most practical cases. See, for example, the segment

linkage declarations for Ada presented above.

129

z z

\I v

Figure 6-4: Dependency Graphs of Trees Derivedfrom AG of Figure 6-3

6.2.2. Built-in Operators Related to Segment Linkage

There are two built-in operators related to segment linkage that may be used in semantic

equations of a segmentable AG: IinkedSetSize and for each linked <Ilonterminal>.

1. IinkedSetSize(X): Returns the number of segments with root node labeled

X that are linked to a parent segment at a leaf interface node labeled X.

The argument X must be a distributable non terminal symbol.

The meaning of the IinkedSetSize operator depends on the form of the

associated production instance .

• If the associated production is p: ... ~ ... set-of(X) .. , ,

IinkedSetSize(X) returns the number of segments X in the

unordered collection linked to the parent segment containing
production instance p.

• If the associated production is q: ... ~ ... X ..., then
IinkedSetSize(X) returns the number of segments derived from X

that are linked to the parent segment at the interface node labeled X

in the production instance q. In the latter case, a return value
greater than 1 indicates an error, as we shall see in the examples
below.

2. for each linked X$i: Iterates over all segments derived from X in a

specified collection of segments. Again, the collection of segments

depends on the form of the associated production instance. If the
associated production is p defined as in (1) above, then this operator
iterates over all segments in the unordered collection specified by the
set-of construct. If the associated production is q defmed as in (1) above,
the iteration is over all child segments that are linked to the parent
segment at interface node X.

The notation "X$i" is used in this operator to underscore the fact that there
are multiple occurrences of the interface symbol X, and that the semantic

equation in the body of the iterator is applied to each occurrence of X.

130

Examples of the use of the iteration operator are seen in the simple SAG of figure 6-1.

In the first semantic equation associated with production pJ, the conglomerate attribute

aI/exports is constructed from the exponed facilities of each module in the collection of

modules comprising the program by the repeated application of the assign operator on

each module. The second semantic equation associated with the same production also

iterates over all modules in the program, in this case to check whether each module's

name is unique.

To exemplify the use of the IinkedSetSize operator, we show semantic equations that

check that there is exactly one subunit body corresponding to each declared body stub

in an Ada program.26 The second semantic equation associated with production p7 in

figure 6-5 checks that there is at most one subunit segment for each declared body stub.

This equation would flag an error if an Ada program contains two subunits defining the

body of a subprogram P whose body stub is specified in a parent compilation unit TOP.

The third semantic equation shown in figure 6-5 checks that there is at least one subunit

segment for each declared body stub. If an Ada program contains a body stub for a

subprogram P in the compilation unit TOP, but there is no subunit defining the body of

P, this semantic equation would cause an error to be reported.

26In [Micallef 90], we present a SAG specification for performing inter-module semantic analysis for
Ada, including (1) determining which contexts are accessible to a compilation unit and propagating
context information accordingly, (2) detecting compilation units with duplicate names where unique
names are required, and detecting missing bodies when they are required by specifications, and (3)
checking that there is an order for submitting the compilation units comprising a program for
compilation.

p7: subunit_body _stub ::= body _stub subunit_segment;
(local nO_linked_segments;

no_linked_segments = linkedSetSize (subunit_segment);
for each linked subunit_segmentSi

subunit_segmentSLerror =
(no_linked_segments = 1)

? un

: (no_linke(Csegments > 1)
? "<-- duplicate subunit";

subunit_body _stub.error = (no_linked_segments = 0)
? "<-- missing subunit for this body stub"
: n": }

Figure 6-5: Checking for Duplicate or Missing Subunits in Ada

6.3. Representation and Attribute Evaluation of Shared Segments

131

The shared distributable fonn of a nontenninal property declaration presents

additional complexity to the local attribute evaluation algorithm within a segment

because the attributed derivation tree representing such a segment must contain

additional infonnation, as will be described in this section.

A segment S whose root node is labeled with the nontenninal symbol X, where X is

declared to be a shared interface symbol, may be linked to several other segments. We

call such a segment S a shared segment, and each segment linked to S a

shared-inclusion site of S. For example, consider the C program in figure 6-6. This

program consists of five segments: two source ftles (filel.c and file2.c), and three

include files (x.h, y.h, andfoo.h). The include filefoo.h will be linked to the two source

files that contain the statement #include "foo.h",filel.c andfile2.c.

The input attributes for such a segment S may have different values for each segment

that includes it. Similarly, attributes in S that depend (directly or transitively) on the

input attributes may be different. In our example, one possible input attribute of the

segmentfoo.h is the list of user-defined types that have been defmed prior to this point

in the program, user _defined_types_in. This attribute has a different value depending

on whether segment foo.h is linked to filel.c or file2.c. In the first case,

user _defined_types_in defines the type NAME to be a character string; in the second

... file1.c •••

iinclude <stdio.h>
#include nx.h"
#include "foo.h"

main () {
EMPLOYEE empll;

printf("hello world from main\nn);
empll.name = "Joe Blow";
printf(empll.name);
f();

••• file2.c •••

hnclude "y.h"
#include "foo.h"

f(){
EMPLOYEE worker;

printf("hello world from f\n");
worker.name = "Joe Blow";
printf(worker.name);

••• x.h •••

typedef char *NAME;

••• y.h •••

typedef struct name {
char *first;
char middle;
char *last;
NAME;

••• foo.h •••

typedef struct employee {
NAME name;
int id;

) EMPLOYEE;

132

Figure 6·6: Example Showing Why Replication is Needed/or Shared Segments

case, user_defined Jypes _in defines the type NAME to be a structure. A typical output

attribute of foo.h is the list of user-defmed types that have been defined up to and

including this point in the program. Since this output attribute depends on

user_defined Jypes _in. its value will also be different depending on whether segment

133

foo.h is linked tofilel.c orfile2.c: the name field of the EMPLOYEE type is a character

string in one case and a soucture in the other.

Therefore, some form of replication is required for shared segments in order to

represent a different collection of attribute values for each use of the shared segment.

One possibility is to replicate the entire semantic tree representing the segment S, that

is, both the derivation tree and the attributes decorating the nodes of the derivation tree.

The disadvantage with this approach is that the derivation tree for S must be kept

consistent in all the copies when changes to the segment S are made. A better approach

is to replicate only the attributes decorating the derivation tree of S for each shared

inclusion site. This can be further optimized so that only attributes that may have

different values for each shared-inclusion site of S are replicated. We describe the latter

approach below.

We present algorithms to replicate and evaluate the necessary attributes of a shared

segment for the following four cases: (1) creation of a new segment S derived from a

shared distributable symbol; (2) replacement of a subtree within segment S; (3)

addition of a new shared-inclusion site for segment S in some other segment; (4)

deletion of an existing shared-inclusion site for segment S from some other segment.

For simplicity, we assume that the AG is in normal form, and that the attribute

evaluation method used is the dynamic one described in chapter 3 that applies to the

general class of noncircular grammars. Static evaluation algorithms, such as the ones

described in chapter 4, can be modified to handle replicated attributes of shared

segments in a similar way.

There are two other cases that merit consideration, but they can be handled by one of

the algorithms for the four cases above, or by completing semantic equations. (5)

Deleting a shared segment; deleting a shared segment that is linked to other segment(s)

requires that the completing productions be used in the other segments to give values to

their interface input attributes, but does not require any special handling with regards to

replication of attributes. (6) Replacing an entire shared segment; this is equivalent to

deleting the shared segment (case 5) followed by creation of a new segment (case 1).

134

We use the following notation for replicated attributes. Let S be a shared segment

whose root node is labeled by the nontenninal symbol X, and Sl, ... ,Sx" the n shared

inclusion sites of the shared segment S. Each input attribute a associated with X is

replicated n times, as are all other attributes in S that depend on S's input attributes. We

denote the i th copy of the attribute a corresponding to the i th shared-inclusion site S; by

a i
• We call an attribute that is replicated n times an n-replicated attribute.

When there are no shared-inclusion sites of a shared segment S, the input attributes of S

are defined by their completing semantic equations. In this case, there would be one

copy of each input attribute of S and of any attribute that depends on S's input

attributes. This copy is denoted by aD. In the remainder of this subsection we assume

that all replicated attributes have an additional copy corresponding to the default value.

Case 1, Creation of a New Shared Segment: When segment S is first created, all the

attribute instances decorating the derivation tree for S have Null values. (This is true

whether S is shared or not.) The evaluation algorithm for a shared segment must

replicate the input attributes of S as well as all other attributes in S that depend on them,

and evaluate all the attributes in the segment. A copy of each input attribute of S is

created for each shared-inclusion site as determined by the segment linkage operation.

Replication and evaluation of attributes is performed in the same way as for a subtree

replacement as described in Case 2 below, with the root of the subtree in this case being

the root of the segment S.

Case 2, Replacement of a Subtree in a Shared Segment: When a subtree S is

replaced by a subtree S' within a shared segment, replication of attributes associated

with nodes in S' is interleaved with the evaluation of attributes affected by the subtree

replacement. Let r and r' be the root nodes of subtrees S and S' respectively. (These

two nodes must be labeled with the same nontenninal symbol). Recall from chapter 2

that the subtree replacement operation retains the synthesized attributes of r and the

inherited attributes of r'.27 If an inherited attribute of r was replicated n times, then n

27The reason for this. as stated in chapter 2. is to limit the initial set of inconsistent attributes to those
associated with the root of the replaced subtree.

135

copies of the corresponding inherited attribute of r' are created, and the values of all

copies are initialized to Null.

As described in chapters 2 and 3, the dynamic attribute evaluation algorithm uses a

scheduling graph - the model - to represent the dependencies among the attributes in

the shared segment S that need to be reevaluated. When an n-replicated attribute

instance b is scheduled for evaluation, it is evaluated once for each copy Ii of the

attribute, where 1 ~ i ~ n. The evaluation of the i th copy !Ji must employ the correct

corresponding copy ai of each replicated argument a. By definition, at least one

argument of a replicated attribute instance must be replicated.

If the model expands to include a successor c of an n-replicated attribute b, and c is not

replicated,28 then n copies of the attribute c are created. The value of each copy of c is

initialized to Null. Note that even if the attribute c had some other value before the

subtree replacement, all copies of c must be reevaluated since the old value of c

corresponded to a non-replicated b.

Case 3, Creation of a Use of a Shared Segment: Let S;+l denote the new shared

inclusion site of S. Another copy a 11+1 of each input attribute a of S is created.

initialized to Null. Then, a variation of the replication/evaluation algorithm for a

subtree replacement described in case 2 above is performed, with the root of S

corresponding to the root of the replaced subtree.

The initial set of inconsistent attributes are the (n + l)st copy of the input attributes of S

(i.e., the inherited attributes of X). The definition of the set NeedToBeEvaluated

defined in chapter 2 is modified to contain either non-replicated attributes or individual

copies of replicated attributes. This is done in order to avoid evaluating all copies of a

replicated attribute unnecessarily.

When the model expands to include an n-replicated successor c of an (n+ I)-replicated

attribute b, another copy C Il+ 1 of c is created and scheduled for evaluation. This

28This can happen if c is in S', or if the subtree replacement added a direct or transitive dependency
from one of the shared segment's input attributes to c.

136

algorithm adds a copy corresponding to S;+1 to all attributes in S that depend on the

inherited attributes of X, and evaluates each copy correctly.

Case 4, Deletion of a Use of a Shared Segment: Let Sj denote the deleted shared

inclusion site of a shared segment S. The aj copy of each input attribute a of S

corresponding to Sj is deleted. Then, a traversal of the dependency graph of S is

performed, starting from each input attribute of S. When a replicated attribute b is

encountered, the b j copy corresponding to SI is deleted.

6.4. Conglomerate Attributes

In this section, we present conglomerate attributes, which collect information from an

unordered collection of segments connected by the set-of construct. We also describe

an evaluation algorithm called selective propagation for conglomerate attributes so that

a change in one segment is propagated to a second segment only if the latter actually

uses the changed information.

We distinguish conglomerate attributes from aggregate attributes, which consist of a

number of more-or-Iess independent components derived from a single segment. An

example of an aggregate attribute is the symbol table containing the declarations within

an Ada specification segment. An example of a conglomerate attribute is the symbol

table containing the public declarations of all the specification segments of an Ada

program.

A well-known problem with aggregate (and conglomerate) attributes is that a change to

one component of the aggregate results in the reevaluation of all attributes that depend

on any component of the aggregate. For instance, a new variable declaration results in

reevaluation of all variable references in the scope of the changed declaration.

Similarly, if conglomerate attributes are evaluated naively, then in the example shown

in figure 6-1, a change to the exported variable of a Module segment is propagated to all

modules, including those that do not import the facility.

Our definition of conglomerate attributes is based on finite junctions, a type for

aggregate attributes proposed by Hoover and Teitelbaum which, together with a

137

modified attribute evaluation algorithm, reduces the overhead caused by aggregate

attributes in a single-user environment [Hoover 86]. This is one of several mechanisms

proposed in the literature to solve the aggregate problem [Johnson 83, Johnson

85, Demers 85, Horwitz 86]. We base our approach on Hoover's work because, unlike

the others, it solves the problem in the single-user environment within the framework of

the attribute grammar fonnalism.

The asynchronous nature of changes made by multiple users to a segmented program is

the root of a fundamental difference between our work and that of Hoover. We use

finite relations29 to represent conglomerate attributes, rather than functions. The reason

is that without synchronization between the programmers making changes to the

different segments of the program, it cannot be guaranteed that the same component of

the conglomerate attribute will not be defmed simultaneously by more than one

programmer. This is true in any multiple-user environment, whether running in a

distributed or time-sharing system. To simplify the exposition of the new ideas in this

section, we discuss only the changes to the attribute evaluation algorithm to handle

attributes whose types are finite relations. Hoover's work can be applied directly to

attributes whose propagation is fully contained within a segment, and the combination

of his work with ours to reduce the aggregate overhead both within and among the

segments is straightforward.

6.4.1. Definition of Conglomerate Attributes

A conglomerate attribute is a collection of components from various segments

connected by the set-of construct. We introduce a new attribute type for conglomerate

attributes: the finite binary relation. A binary relation on two sets D and R is a subset of

D xR, the Cartesian product of D and R. Every finite relation type declaration must

specify one element of R as the bottom element. A binary relation is finite if and only

if the set C = {(d,r) IdE D, r E R, and r is not bottom} is finite.

29Throughout this section, the term "relation" denotes the mathematical concept, and not the relations
of the database world This point is noted to distinguish our work from previous research in
programming environments where the attribute grammar formalism is augmented with relational database
constructs [Horwitz 86].

138

We refer to finite binary relations simply as finite relations, since all conglomerate

values of interest are keyed lists that are binary mappings from a domain (the type of

the key) to a range (the information stored for this key). For the conglomerate atnibute

aI/exports of the AG defined in figure 6-1, the domain D of the relation is the set of

module names, and the range R is the set of symbol tables for the modules' exported

facilities, needed to check consistency between the definition and uses of these

facilities.

The following operations are defined on a finite relation R:

• makeNull(R): Makes a null conglomerate value. A declaration of an
attribute of finite relation type implicitly calls this operation to initialize the
attribute to the null value. Typically used to initialize an empty symbol
table for a new scope.

• assign(R, d, r): Assigns R u {(d,r)} to R. Typically adds a new module to
the symbol table.

• compute(R, d): If (d,r) E R and there is only one component in R whose
key is d, returns r. If there is more than one component with the same key

d, returns special value multiple. If (d,r) i!: R, returns bottom. Typically

looks up a module name in the symbol table.

These are the only operations by which attributes of finite relation type may be

manipulated. The reason for this restriction is that the set of segments that use a

particular component in a conglomerate attribute is derived automatically from these

operations.

Conglomerate attributes can only be associated with symbols of the grammar that derive

collection of segments by the set-of construct. If the attribute grammar contains the

production "Z ::= ... set-of(X) ... ", then a conglomerate attribute associated with

grammar symbol Z is constructed by means of the assign operation with two

synthesized attributes (one attribute for d and one for r) from each member of the set

derived from the grammar symbol X. (For an example, see the semantic equation

defining the conglomerate attribute aI/exports associated with the grammar symbol

Program in figure 6-1.)

139

Other attributes refer to components of conglomerate attributes by means of the

compute operation. The fIrst argument of this operation indicates the conglomerate

from which the component is to be selected. This conglomerate is usually accessed via

an upward remote reference [Reps 89b]. An upward remote reference allows a non

local reference to an attribute of a different production p that necessarily occurs above

the production where the reference is made in any tree derived from the grammar. The

notation for upward remote references is {id.artr}, where id is the name of a grammar

symbol of the production p, and artr is an attribute name associated with this symbol.

For example, the operation compute({Z.a}, d) returns the value r of the component

(d,r) in the conglomerate attribute a associated with the non-tenninal symbol Z. (For an

example, see the semantic equation defining the local attribute single_module_exports

associated with production p3 in figure 6-1.)

6.4.2. Selective Propagation

We now extend the algorithm described in section 6.1 for evaluating the attributes of a

segmented semantic tree to handle conglomerate attributes effIciently. We call the

extended algorithm selective propagation. The increase in efficiency is achieved by

means of use-lists that are maintained for each component of a conglomerate attribute.

A component's use-list contains the names of segments that reference that component.

In each program segment, the set of references to components of conglomerate

attributes are built from the compute operations within that segment by the evaluation

algorithm, as follows. If a semantic equation contains a compute operation. a demand

is placed on the component of the conglomerate identified by the second argument. It is

not desirable to copy the entire conglomerate attribute to each segment that has access

to this conglomerate (that is, the enclosed scopes) because a change to a component in

the conglomerate would trigger an evaluation process in each segment, independent of

whether the segment references the changed component or not. Instead, we keep copies

of only those components actually referenced by compute operations within a particular

segment in an attribute associated with the root of the segment. This attribute is called

the uses set of the segment.

140

Thus, the uses set of a segment is a subset of the conglomerate attribute. For each

element in uses, there is a list of references to attribute instances within the segment that

depend on (use) that particular component. This list of pointers is used to evaluate

attributes within a segment affected by a change to a conglomerate attribute, as will be

described in paragraph 6.4.2.3. There is also a pointer from each attribute instance back

to the uses set. These back pointers are required to update the uses set after edit

operations; see algorithm of figure 6-7 in paragraph 6.4.2.1 below.

The infonnation from each local segment's uses set is used to build for each unique

component in the conglomerate the set of segments that should receive propagations if

the value of that component changes. This is called the used-by set of the conglomerate

component.

For the example of figure 6-1, the components of the conglomerate attribute allexports

are the exported symbol tables of each module in the system. The uses set of a module

M is the set of modules named in import statements of M. The used-by set of the

component for a module M is the set of modules that import facilities from M.

Whenever one of the exported facilities of M changes, the change is propagated to all

modules in the used-by set of the component of M. We can refine our notion of use-lists

so that a used-by set is kept for each facility exported by M. This improves the

efficiency of the attribute propagation algorithm even further since a change to an

exported facility results in propagations only to those segments that reference the

particular facility. This is accomplished in the general case by extending the finite

binary relations to n-ary relations, and the key used by assign and compute to n - 1

pre-specified fields.

We give a simple calculation to compare the efficiency of the attribute evaluation

algorithm of conglomerate attributes with and without selective propagation.

Let

m = the number of modules in the system,

e = the average number of exported facilities per module,

i = the average number of imported facilities per module,

141

p = the average number of imported modules per module, and

c = the average number of changes to an exported facility throughout the lifetime of
the system.

If selective propagation is not used, each module would receive m x e x c propagations.

Using finite relations for the type of conglomerate attributes, which associate used-by

sets with each module's exported symbol table, results in pxexc propagations per

module. Note that p is usually much smaller then m. With used-by sets associated with

each exported facility individually, this is improved even further to ixc propagations to

each module.

We now describe incremental algorithms to maintain the uses and used-by sets

(paragraphs 6.4.2.1 and 6.4.2.2), and to propagate changes made to the components of

conglomerate attributes (paragraph 6.4.2.3) after each edit operation. This collection of

algorithms form what we have been calling selective propagation.

6.4.2.1. Updating a Segment's Uses Set

A segment's uses set changes if (1) a new use site is added, (2) a use site is removed, or

(3) the key of a use site is changed. Removing a use site occurs if either (a) the

derivation tree node containing the key attribute identifying the component of that

reference is deleted, or (b) the subtree decorated with the attribute instance that created

the use is deleted. In our example grammar shown in figure 6-1, these correspond to the

module name and the enclosing import statement, respectively. In the first case,

deletion of the node containing the key leaves a null value for the key, so this becomes

the same as changing the key of a use site (case 3). We present two algorithms for

maintaining a segment's uses set, illustrated in figures 6-7 and 6-8 below.

The algorithm shown in figure 6-7 is a modified attribute evaluation algorithm that

recognizes a new use of a conglomerate attribute, either by addition (case 1) or by

change in value of the key of an already existing use (cases 2(a) and 3).

A new algorithm for deleting a subtree, shown in figure 6-8, updates the set of

conglomerate components used in a segment, the segment's uses set. If the subtree

being deleted contains a reference to a conglomerate component, that reference is

/* Attribute instances defined by compute(conglomerate. key) have an */
/* additional field. backptr. pointing back to the uses set of */
/* the conglomerate component specified by key argument to compute. */

function eval (ai: attribute instance): attribute value;
begin

[1] if ai is defined by compute(conglomerate. key) then
/* Case (1): a new use site not yet */
/* added to multiple-level uses set */

[2] ifbackptr of ai = nil then
/* first reference to key within segment */
/* add entry for key to uses set ./

[3] if key not in uses attribute at root of segment then
[4] entry = geccomponencfrom30nglomerate(conglomerate. key);
[5] add entry to uses attribute:
[6] add ai to list of attribute references of entry;
[7] set backptr of ai to entry;

/* already references to same key within segment */
/* reuse entry for key in uses set */

[8] else
[9] entry = get_componenCfrom_uses_set(conglomerate. key)
[10] add ai to list of attribute references of entry;
[11] set backptr of ai to entry;
[12] fi

/* Cases (2a) and (3): an old use site */
/* whose key may have changed */

[13] else
/* get previous entry from local conglomerate */
entry = follow backptr of ai;
/* same key * /

[14] if key = key of entry then
[15] do nothing;

/* different key */
/* remove from list of attribute references of previous entry */
/* add to list of attribute references of new entry */

[16] else
[17] remove ai from list of attribute references of entry;
[18] set backptr of ai = nil;
[19] Do lines [3] - [12];
[20] fi
[21] fi

/* evaluate attributes not defined by compute */
[22] else

fi
end

Figure 6-7: Evaluation Algorithm/or Conglomerate Attributes

142

143

removed from the component. If the component has no more references, it is removed

from the segment's uses set; the global evaluator is notified so that the segment's name

is removed from the used-by set of the component in the parent segment containing the

conglomerate attribute.

procedure delete subtree(r: treenode);
begin -

[1] for each attribute instance, ai, associated with every
treenode in subtree rooted at r, excluding r, do

[2] if ai is defined by compute(conglomerate, key) then
/* get entry for key and */
/* remove attribute from list of attribute references of entry */

[3] entry = follow backptr of ai;
[4] remove ai from list of attribute references of entry;

/* last reference to key within segment */
[5] if list of attribute references of entry = nil then
[6] remove entry from uses attribute;
[7] remove_use _from_conglomerate(cong lomerate, key);

fi
fi

od

/* free storage taken up by r * /

end

Figure 6-8: Subtree Deletion Algorithm/or Conglomerate Attributes

6.4.2.2. Change to Component's Used-by Set

The used-by set for each conglomerate component, indicating which segments use a

particular component of a conglomerate attribute, is affected by the two functions

get_component Jrom _ conglomerate(conglomerate, key) and

remove_use Jrom _ cong lomerate(cong lomerate, key) invoked in the algorithms of

figures 6-7 and 6-8 above. The former function adds the name of the segment that

issued the call to the used-by set of the component whose key is specified. The latter

removes the segment name from the used-by set. The name of the segment is not a

parameter to these functions since each segment's local evaluator communicates with

the global evaluator over a unique channel, which serves to identify the segment.

144

There are two situations that require special handling: (1) the key specifies a multiply

defined component, or (2) the key specifies an undefined component. If the call to

get_componentJrom_conglomerate specifies a multiply defined component, then the

segment name is added to the used-by set of any component with the specified key.

Multiply defined components, as well as the program segments that define them, are

treated as erroneous - there is no propagation from duplicate segments to adjoining

segments unless additional information is given (by the programmer) indicating which

one of the duplicate segments should form part of the program being developed.

(Checking for duplicate segments is elaborated in subsection 6.4.3.) We describe below

in paragraph 6.4.2.3 how to handle the deletion of a component such that the correct

action is taken when a key that was multiply defined becomes unique. If

remove_useJrom_conglomerate specified a multiply defined key, then the used-by set

of each component with that key must be searched to delete the segment that invoked

the function.

If get_componentJrom_conglomerate specifies a key that is not defined in the

conglomerate, bottom is returned. A component is added to the global conglomerate

with the specified key and the value bottom, and a used-by set for it is created. This is

necessary to handle the correct propagations if a component with that key is defined

later on. We mark such components as "demanded-but-undefined", and distinguish

them from regularly defined components.

6.4.2.3. Propagation after Change to Conglomerate Attribute

A conglomerate attribute is changed when arguments to the assign operator used to

construct it are modified. Recall that the assign operator adds a component (d, r) to a

conglomerate attribute a from each segment in the collection of segments specified by

the set-of construct, where d and r represent the key and value of the component.

respectively. A change to the attributes d or r of a segment results in a change to a

component of the conglomerate attribute instance a, which in turn causes propagations

to affected segments.

The following algorithms handle changes in the definitions of conglomerate

components.

1. Change from r to r' in segment - The component (d, r') is transmitted
from the segment where the change occurred to the parent segment where
the conglomerate is defined. The global evaluator propagates the
component with the changed value to segments that use that component
- listed in the component's used-by set - to update the corresponding
component of the affected segments' uses attribute. In the example AG
shown in figure 6-1, this arises when the exports list of a module is
modified.

When a component of the uses attribute of a segment is changed,
evaluation processes are initiated at all nodes within the segment whose

associated attributes use that particular component. These nodes are
determined from the list of references to attribute instances associated
with the changed component in the uses set. These evaluation processes
can proceed concurrently until they collide, when they are merged as we
described in chapter 3. Or the merging could be forced to occur
immediately by initializing a single model (and therefore a single
evaluation process) to cover all affected nodes.

2. Definition of new component - This happens when a new key is defined,

i.e., a new segment is created.

• If the key is already in a defmed component of that conglomerate
attribute, the value mUltiple is propagated to all segments that use
that key.

• If there is a demanded-but-undefined component with the same key
as the newly defined component, then the component is marked as
defined. The value of the newly defined component is propagated
to all reference sites as indicated by the component's used-by set.

• If no component with the specified key exists, then the component
is added to the conglomerate attribute, with its used-by set
initialized to empty.

3. Deletion of component from conglomerate attribute - This happens
either because (a) the segment corresponding to the component is deleted
from the program, or (b) the part of the segment defining the key attribute
is deleted. In the example AG of figure 6-1, a component with key M is
removed from the allexports conglomerate either if the segment
containing module M is deleted, or if the subtree defining the name of the
module M is deleted from the segment containing module M.

145

• If this was a duplicate component, the used-by set for the deleted
component is combined with the used-by set of another component
with the same key. Then, the component is deleted. If only one
component is left with the key of the deleted component. the value
of the remaining component is propagated to the segments on its
used-by set. This is appropriate, for example, when all but one
instance of a multiply defined module are removed.

• If the component was not a duplicate, then the component is marked
as demanded-but-undefined. The r value is changed to bottom, and
is propagated to all segments on the component's used-by set.

6.4.3. The isUnique Operator

146

In our original formulation of conglomerate attributes, reported in [Micallef 88], the

assign operator had a secondary function: to define an error attribute for segments

contributing components with the same key to the conglomerate. This method of

checking for duplicate segments in an unordered collection is problematic when

multiple conglomerate attributes are defined on the same set of segments. In this case,

the check for duplicate segment names is repeated for each conglomerate since the

assign operation is the only available operation for constructing conglomerate

attributes.30 Not only does this cause unnecessary attribute evaluation and propagation,

but it also results in multiple semantic equations defining the error attribute that

indicates duplicate segment names.

In the definition of conglomerate attributes presented in this thesis, we decoupled the

two functions originally provided by the assign operator. The assign operator now only

adds components to conglomerate attributes. A different built-in operator, isUnique, is

used to check for duplicate segments in a program.

The isUnique operator is a predicate that can be used in semantic equations associated

with a production defining an unordered collection of segments, such as "p: Z ::= ...

set-of(X) ... ". This operator takes one argument, an attribute associated with the

3~ultiple conglomerate attributes are required to perform inter-module semantic analysis in Ada
[Micallef 90].

147

nontenninal symbol specified in the set-of construct (such as X in production p). This

key attribute usually contains the name of the program unit represented by the segment

derived from the nonterminal symbol.

The isUnique operator is invoked from within the body of the iteration operator, with

the key attribute of each segment in the collection. For each segment, it returns true or

false, depending on whether or not the specified key is unique. Figure 6-9 shows the

semantic equation that checks that the names of library units (represented by

specification segments) in an Ada program are distinct. If the name of a library unit is

not distinct, then the error attribute for the segment representing that library unit is set

to the string "<-- duplicate library unit". As was described in section 6.1, the global

evaluator propagates any changes to a segment's input attributes, such as the error

attribute, to the segment in question.

specification_segment: (synthesized attributes:
inherited attributes:

pI: ada_program ::= set-of (specification_segment);
(for each linked specification_segment$i

spccification_segmentSi.error =

name;
error default ;)

isUnique (specification_segmentSLname)
? 1111

: "<-- duplicate library unit";)

Figure 6-9: Checking for Library Units with Duplicate Names in Ada

Changes to the key attribute of a segment used as an argument to the isUnique operator

are handled incrementally, similarly to what was described for handling changes to the

components of a conglomerate attribute in paragraph 6.4.2.3. A local conglomerate

attribute, called segmentNames, is implicitly declared for each production with an

associated semantic equation containing the isUnique operator. A component of

segmentNames is defined for each segment in the collection, where the key of the

component is equal to the key attribute specified in the isUnique operator, and the value

of the component is Null.

Only two kinds of changes to components of the conglomerate segmentNames are

148

imponant If a new component is added to the conglomerate with the same key as an

existing component, then the isUnique operator returns false for both segments. In the

AG fragment of figure 6-9, this would cause the error attribute instances associated

with both specification segments to be set to the string "<--duplicate library unit". If a

component is deleted from segmentNames so that a remaining component that was

multiply defined becomes unique, the isUnique operator returns true for the unique

segment, causing the attribute defined by the isUnique operator to be reevaluated.

Chapter 7

Summarizable Attribute Grammars

149

An anomaly may arise during attribute evaluation of a segmented derivation tree where

certain attributes in a segment may remain inconsistently attributed for a considerable

amount of time. To illustrate how this may happen, consider the segmented derivation

tree shown in figure 7-1. There are two segments Rand S, (logically) connected at

interface node X. There are two attributes associated with the interface node X, a and b,

and there is a transitive dependency from a to b that goes through attributes in segment

S. Suppose that a subtree replacement in segment R causes the value of attribute a to

change. Then, all the attributes in the chain between a and b in segment S have to be

evaluated before attribute b is updated. In the meantime, the attribute b and all of its

dependent attributes in segment R are inconsistent. In the multi-user editor application,

if the time period during which a segment has inconsistent attributes is long - which is

likely to happen when segments reside on different workstations - the user "sees" this

intermediate state of attribute evaluation and receives the wrong feedback about his

change. We would therefore like to avoid such scenarios.

In general, a segmentable attribute grammar exhibits the anomaly just described if there

is a direct or transitive dependency between two attributes a and b of a distributable

symbol X, and a and b are defined in different segments (i.e., one of the attributes is

defined in the segment where X is a leaf node and the other is defined in the segment

derived from X). Thus, the dependencies that cause the anomalous behavior must be

from an inherited to a synthesized X, or from a synthesized to an inherited attribute of X.

The desirable solution to avoid this anomaly from arising is to rewrite the attribute

grammar to avoid such dependencies across segments. This is always possible, in

theory, since attribute grammars that use both inherited and synthesized attributes are

,lttribllte instance

intel/ace attribllte

" , ,
, , , , , , , , , , ,

\\ ~ segment R

, ,

, ,
, , , , ,

\\~ segment S

, , , ,
, , L ____________________________ ~

Figure 7-1: Attribute Evaluation Anomaly in Segmented Derivation Tree

150

no more powerful than methods that use just synthesized attributes [Knuth 68]. Thus,

every attribute grammar can be rewritten to use only synthesized attributes and thus

avoid the anomalous dependencies across segments altogether. However, writing an

equivalent attribute grammar using no inherited attributes is often considerably harder,

and the resulting grammar is more complicated, and more difficult to understand and

change. And automatically transforming an AG that has anomalous dependencies

across segments to an equivalent one that has no such dependencies is an undecidable

problem.31

We define a subclass of the segmentable attribute grammars, called summarizable AGs,

which do not exhibit anomalous behavior. A segmentable attribute grammar, AGI' is

summarizable if either of the following two conditions hold:

• Condition 1: For each distributable symbol X in AGI' there are no direct or

transitive dependencies from an inherited interface attribute of X to a
synthesized interface attribute of X, or from a synthesized interface
attribute of X to an inherited attribute of X.

31Since AGs are equivalent in power to Turing machines. checking whether two AGs compute the
same function is undecidable [Cutland 80].

• Condition 2: AG1 can be transfonned into an equivalent attribute grammar

for which condition 1 holds by one of the transfonnation methods to be

described in the following sections.

151

We identify two patterns of attribute dependencies across segments commonly found in

AGs defining the static semantics of programming languages that do not satisfy

condition 1 stated above. The first pattern involves a direct dependency from a

synthesized (inherited) interface attribute of X to an inherited (synthesized) interface

attribute of X. This pattern can be automatically detected from the attribute grammar by

checking the dependencies in the two productions that apply at X.

The second pattern involves a transitive dependency from a synthesized (inherited)

interface attribute of X to an inherited (synthesized) interface attribute of X, where both

attributes are aggregates, and the inherited (synthesized) attribute is defined to be equal

to the synthesized (inherited) attribute plus some additional components. Although this

pattern cannot be detected automatically - it requires knowledge of the meaning of a

semantic function - a human can easily identify instances of it in AG specifications.

In the following sections, we give representative examples of these two patterns of

attribute dependencies across segments, and present algorithms to transfonn attribute

grammars that contain these dependency patterns into equivalent AGs without

dependencies across segments.

7.1. Transformation involving Direct Dependencies

The first pattern is exemplified by the AG fragment for procedures in a Pascal-like

language shown in figure 7-2. Each top-level procedure in the program is defmed in a

separate segment. A procedure consists of the procedure name, a list of fonnal

parameters, and a sequence of statements.

The AG of figure 7-2 adds a symbol table entry for each top-level procedure defined in

the program. A pair of attributes, dejs_in and dejs_out, are used to accomplish this;

these attributes are associated with the two nontenninals, proc _list and proc. The

attribute dejs _in represents the symbol table available to a procedure and defs _ out

152

represents the symbol table after the procedure's header has been added. Defs_in is

initialized to contain the symbol table entries for the global types and variables that are

defined in the program before the top-level procedures.

proc_list, proc:
(inherited attributes:

synthesized attributes:
defs_in;
defs_out;)

pI: program ::= ... proc_list ...
(proc_listdefs_in = program.sym_tab;

... ;)

p2: proc_list ::=/* empty *'
(proc_listdefs_out = proc_listdefs_in;)

p3: I proc proc_Iist
(proc.defs_in = proc_listSl.defs_in;

proc_listS2.defs_in = proc.defs_out;
proc_listS l.defs_out = proc_listS2.defs_out;)

distributable proc;
p4: proc ::= proc_name formals stmt_seq

(proc.defs_out = AddEntry(proc_name.name, formals.out, proc.defsjn);
formals.enY _in = proc.defs_out;
stmt_seq. eny = formals.enY _out;
... ; }

Figure 7-2: AG with Direct Dependencies across Segments

The entry for a top-level procedure is added to the symbol table in the first semantic

equation associated with production p4 by the user-defined function A ddEn try. This

function adds the name of the procedure and the signature of the procedure's fonnal

parameters to the symbol table. (We omit the semantic equations defining the attributes

proc_name.name and formals.out, which contain the procedure's name and the

signatures of the formal parameters, respectively.)

The nonterminal proc is distributable, that is, it is an interface node between two

segments. As was described in chapter 6, section 6.1, the interface attributes associated

with proc (defs_in and defs_out) are duplicated in the parent and child segments. The

value of the inherited attribute defs _in is computed in the parent segment, and the value

of the synthesized attribute defs_out is computed in the child segment. When either

attribute changes in value, the global evaluator propagates the change from one segment

to the other.

153

There is a direct dependency between the attributes defs _in and defs _ out associated with

the nontenninal proc resulting from the fIrst semantic equation associated with

production p4. If the attribute defs_in associated with proc changes due to a

modification to a global type, variable or another procedure defIned before this

procedure, the value of attribute defs_out must be recomputed. Since this attribute is

synthesized, it is recomputed in the child segment and then propagated to the parent

segment. Thus, the new value for defs _out and any attributes dependent on it in the

parent segment are not available until communication with the child segment has

occurred.

proc: (inherited attribules:
synthesized attributes:

defs_in;
proc_name, formals_types;)

p3: proc_list ::= proc proc_list
(proc.defs_in = procJistSl.defs_in;

proc_listS2.defs_in = AddEntry(proc.proc_name. proc.formals_typeS.
proc.defs_in);

proc_listS l.defs_out = proc_listS2.defs_ouc)

distributable proc;
p4: proc ::= proc_name formals sUnt_seq

(proc.proc_name = peoc_name.name;
proc.formals_types = formals.out;
formals.eny _in = AddEntry(proc_name.name, formals.out, proc.defs_in);
sLffit_seq. eny = fonnals.eny_out;
... ;)

Figure 7·3: AG of Figure 7-2 without Direct Dependencies across Segments

This attribute grammar can be rewritten so that after a change to the value defs _in

associated with proc, the value of defs_out in the parent can be recomputed without

going through the child segment. The resulting summarizable AG is shown in fIgure

7-3. The attribute defs_out associated with the distributable nonterminal proc is

eliminated by duplicating its computation in both parent and child segments, as

explained below. Instead, two other synthesized (interlace) attributes, proc _ name and

formals types, are declared for the nonterrninal proc. This means that if the

procedure's name or the signature of a fonnal parameter changes, the new value for the

corresponding attribute is propagated to the parent.

154

In the original grammar, the attribute proc.deJs_out was used in the parent segment to

define the attribute defs _in associated with the second occurrence of proc _list in

production p3. In the child segment, the attribute proc.dejs_oUl was used to define

fonnais.env _in. Eliminating the attribute dejs_our to remove the direct dependency

between dejs_in and dejs_our associated with the distributable symbol proc requires

that the semantic equation defining dejs_our be duplicated in every place where this

attribute was previously used, in bOLh. parent and child segments. This is done in the

two semantic equations defining proc_lisr$2.dejs_in andformals.env _in in productions

p3 andp4, respectively.

We now give a general solution for removing direct dependencies across segments. We

consider two dual cases: (1) when there is a direct dependency from an inherited

attribute to a synthesized attribute of a distributable nonterminal symbol, and (2) when

there is a direct dependency from a synthesized attribute to an inherited attribute of a

distributable symbol.

7.1.1. Case 1: Direct Dependency from an Inherited to a Synthesized

Attribute.

Let Xo denote the distributable symbol, and productions p and q the productions in the

parent and child segments that apply atXo, defined as follows:

p: ... -7 ... Xo ...

q: Xo -7 Xl' . . X"

Let aSYll and a",h denote synthesized and inherited attributes associated with the

distributable symbol Xo' Then, there is a direct dependency from ajnh to aSYfl if aSYfl is

defined by the following semantic equation associated with production q:

Xo·aSY/t = f(XO·a"'h' Yl·a t , ••• , Yk·a.\:)

where f is a semantic function, Yj E (Xo' ... , X,,} for 1 ~ i ~ k, and Yj.a j is an attribute

associated with the symbol Xj corresponding to Yj for 1 ~ i :5 k and 0 ~ j :5 n.32

32 Although our presentation is specific to the case where the allribute XO.a",h is the first argument to
the semantic function!. the algorithms discussed below apply for any permutation of the parameters to/.

155

To remove the direct dependency from Xo.a jllh to Xo.a.ry7l' the AG is changed as follows:

1. For each attribute Yj.a j, 1 ~ i ~ k, such that Yj :;C Xo'

a. Declare Xo.a j to be a new synthesized interface attribute.

b. Define each newly declared attribute from step (a) by a copy rule

associated with production q:

Xo.a j = Yj.a j

2. In semantic equations associated with production p, replace every

occurrence of Xo.aSYfl on the right-hand side of the semantic equation by

!(Xo.aiM, Xo·a!' ... , Xo·a.).

3. In semantic equations associated with production q, replace every

occurrence of Xo.aSYfl on the right-hand side of the semantic equation by

!(Xo.aiM, YI.a!> ... , Yk.ak), i.e., the original semantic function defining

Xo·asyrt.

4. Delete the declaration of the synthesized interface attribute aSYfl associated

with the distributable symbol Xo'

7.1.2. Case 2: Direct dependency from a synthesized to an inherited

attribute.

Let Xm denote the distributable symbol, and productions p and q the productions in the

parent and child segments that apply at Xm , defined as follows:

p:Xo -? Xl ... Xm ... Xfl

q:Xm -?

Let aSYII and aillh denote synthesized and inherited attributes associated with the

distributable symbol Xm • Then, there is a direct dependency from as)71 to aiM if aiM is

defined by the following semantic equation associated with production p:

Xm·aillh =- !(Xm·asyrt' YI·a l , ••• , Yk·a ..)

where! is a semantic function, Yj E (Xo' ... , XII} for 1 ~ i ~ k, and Yj.a j is an attribute

associated with the symbol Xj corresponding to Yj for 1 ~ i ~ k and 0 ~ j ~ n.

To remove the direct dependency from Xm.aSYfl to Xm.a illh , the AG is changed as follows:

1. For each attribute Yj.a j, 1 ~ i ~ k, such that Yj :;C Xm,

a. Declare Xm.a j to be an inherited interface attribute.

b. Define each newly declared attribute from step ea) by a copy rule
associated with production p:

Xm.a j = Yj.a j

2. In semantic equations associated with production p, replace every
occurrence of Xm.a inh on the right-hand side of the semantic equation by

!eXm.aSYfl' Y1.al' ... , Yt.at), i.e., the original semantic function defining

Xm·a inh •

3. In semantic equations associated with production q, replace every

occurrence of Xm.a inh on the right-hand side of the semantic equation by

!eXm·aSYfl' Xm·a l , ••• , Xm·at)·

4. Delete the declaration of the inherited interface attribute ainh associated

with the distributable symbol Xm•

7.2. Transformation involving Transitive Dependencies

156

A segmentable AG with transitive dependencies across segments is shown in figure 7 -4.

This AG defines a list of declarations, where a sublist of declarations forms a segment.

There is a transitive dependency from the inherited attribute sym _tab _in associated with

the distributable symbol decls _segment to the synthesized attribute sym _tab_out

associated with the same symbol. Sym _tab _in contains the symbol table entries for

identifiers declared prior to the nontenninal symbol that this attribute is associated with.

Sym tab out contains the symbol table entries for identifiers declared prior to and

including the non terminal symbol that this attribute is associated with.

Figure 7-5 shows a functionally equivalent attribute grammar, that has no transitive

dependencies across segments. The transformation is again accomplished by removing

one of the interface attributes involved in the transitive dependency, and defining

additional attributes to fill in the role previously assigned to the deleted attribute. The

interface attribute that is eliminated is sym _tab_out associated with decls _segment.

Instead of this attribute, a synthesized interface attribute subtree _ sym _tab _out is

declared for decls _segment; this attribute contains the symbol table for declarations

defined in the segment derived from the symbol decls _segment. The union of this new

attribute and the attribute sym _tab _in of decls _segment is equal to the value of the

previous interface attribute sym _tab_out of decls _segment. Thus, the union of the two

deels_list, deels_segment, deels. deel:
(inherited attributes:

synthesized attributes:

pi: deels_Iist ::= 1* empty */

sym_tab_in;
sym_tab_out;)

{ deels_list.sym_tab_out = deels_Iistsym_tab_in;)

p2: I deels_segment deels_list
{ deels_segment.sym_tab_in = deels_listS I.sym_tab_in;

deels_listS2.sym_tab_in = decls_segmenLsym_tab_out;
deels_listSl.sym_tab_out = deels_listS2.sym_tab_out; }

distributable decls_segment;
p3: deels_segment ::= deels;

{ deels.sym_tab_in = deels_segment.sym_tab_in;
deels_segment.sym_tab_out = decls.sym_tab_out;)

p4: deels ::= 1* empty */
{ deels.sym_tab_out = deels.sym_tab_in;)

p5: I deel deels
{ deel.sym_tab_in = declsS l.sym_tab_in;

declsS2.sym_tab_in = deel.sym_tab_out;
deels$1.sym_tab_out = decls$2.sym_tab_out; }

p6: deel ::= var_name type_denoter
{ deel.sym_tab_out = AddEntry(var_name.name. type_denoter.type,

decl.sym_tab_in);
... ; }

Figure 7-4: AG with Transitive Dependencies across Segments

attributes replaces all occurrences of the eliminated

157

attribute

decls _segment.sym _tab_out on the right-hand side of semantic equations in the parent

segment (the second semantic equation associated with p2 in figure 7 -5).

The value of the synthesized interface attribute subtree _ sym _tab_out is computed in the

child segment derived from decls_segment. This is accomplished by defining an

additional pair of attributes for the nonterminals decls and declo This pair of attributes,

subtree _ sym _tab _in and subtree _sym _tab_out, play the same role as the attributes

sym _tab _in and sym _tab _out associated with the same nonterminals, except that the

former pair only contain declarations found in the child segment Therefore, the

attribute subtree _ sym _tab _in associated with the topmost occurrence of decls in the

child segment is initialized to NullList (in the second semantic equation associated with

production p3 of figure 7-5). The semantic equations defining subtree _ sym _tab _in and

158

subtree _ sym _tab_out are identical to those defining the attributes sym _tab _in and

sym _tab _out, except that occurrences of the latter pair of attributes on the right-hand

side of the equations are replaced with the corresponding attribute from the former pair.

decls_list (inherited attributes:
synthesized attributes:

dec Is_segment (inherited attributes:
synthesized attributes:

decls, decl: (inherited attributes:
synthesized attributes:

pi: decls_Iist ::= 1* empty *'

sym_tab_in;
sym_tab_out.;)

sym_tab_in;
sUbtree_sym_tab_out.;)

sym_tab_in, subtree_sym_tab_in;
sym_tab_out, subtree_sym_tab_out;)

(decls_lisLsym_tab_out = decls_list.sym_tab_in;)

p2: I decls_segment decls_list
(decls_scgmenLsym_tab_in = decls_lisrS1.sym_tab_in;

decls_list$2.sym_tab_in = Union(decls_scgment.sym_tab_in,
decls_segment.subtree_sym_tab_out);

decls_listS1.sym_tab_out = decls_listS2.sym_tab_out.; }

distributable deels_segment;
p3: decls_segment ::= decls;

(decls.sym_tabjn = decls_scgment.sym_tab_in;
dcds.subtree_sym_tab_in = NullListO;
decls_scgmenLsubtree_sym_tab_out = decls.subtree_sym_tab_out.;)

p4: decls ::= '* empty *'
(decls.sYTTl_tab_out = decls.sym_tab_in;

decls.subtree_sym_tab_out = decls.subtree_sym_tab_in;)

p5: I decl decls
(decl.sym_tab_in = decIsS1.sym_tab_in;

dcclsS2.sym_tab_in = decl.sym_tab_out;
declsS1.sym_tab_out = declsS2.sym_tab_out;
decl.subtree_sym_tab_in = decls$l.subtree_sym_tab_in;
dcclsS2.subtree_sym_tab_in = decl.subtree_sym_tab_out.;
declsS I.subtree_sym_tab_out = declsS2.subtree_sym_tab_out;)

p6: decl ::= var_namc type_denoter
(decl.sym_tab_out = AddEntry(var_name.name, type_denoter.type,

decl.sym_tab_in);
decl.subtree_sym_tab_out = AddEntry(var_name.name, type_denoter.type,

decl.subtree_sym_tab_in);
... ; }

Figure 7-5: AG of Figure 74 without Transitive Dependencies across Segments

159

7.2.1. Removing Transitive Dependency from an Inherited to a Synthesized

Attribute

We now present a general solution for removing the type of transitive dependencies

across segments exemplified by the AG of figure 7-4. We only consider the case where

the transitive dependency is from an inherited attribute associated with a distributable

symbol to a synthesized attribute of the distributable symbol. The solution for the dual

case is similar.

Let Xo denote the distributable symbol, and proouctions p and q the productions in the

parent and child segments that apply atXo, defined as follows:

p: ... ~ ... Xo ...

q:Xo ~ Xl ... Xli

Let asyn and aiM be the synthesized and inherited attributes associated with the

distributable symbol Xo such that there is a transitive dependency from a Uth to aSYll' The

type of both attributes aSYll and a Uth is a list of elements. Elements in the child segment

derived from Xo are added to the list represented by aUth to form the list represented by

In order to describe the algorithm for removing the transitive dependency from aiM to

aSYll' we have to characterize the structure of the derivation tree containing the path of

dependency edges from a Uth to aSYll' Our characterization is intentionally simple so as

not to obscure the algorithm with undue details. We recognize that there are other

variations of the transitive dependency pattern that are not captured by our

characterization, but the transformation algorithm can be easily extended to cover such

variations.

Let Y and Z denote nonterminal symbols that have the following properties:

1. Z is directly derived from Xo; i.e., Z is one of the right-hand side symbols
of production q.

2. Z is a recursively defined nonterminal symbol.

3. Y is derived from Z, and is not recursively defined.

4. Y has a pair of attributes, biM and bSYll' which have the same type and

meaning as ainh and asyn' respectively. That is, Y.bsyn is defined to be equal
to Y.binh plus the list element derived from Y.

5. Z has a pair of attributes, cinh and csyn' which have the same type and

meaning as ainh and asyn' respectively. That is, Z.csyn is defined to be equal
to Z.cinh plus the list elements in the subtree derived from Z.

The path of dependency edges from Xo.ainh to Xo.asyn has the following form:

XO·ainh, Z.cinh' (Y.binh,Y.bsyn' Z.Cinh)", Z.Csynll+I ,Xo.asyn

where n ~ o.

160

The transitive dependency from XO.ainh to Xo.aSYII is removed by transforming the AG as

follows:

1. Delete the declaration of the synthesized interface attribute aSYII associated
with the distributable symbol XO.

2. Declare subtree-asyn to be a new synthesized interface attribute of Xo with
the same type as asytt.

3. For the symbol Y with the properties defined above, declare an additional

pair of attributes, subtree-bsyn and subtree-binh with the same type as bSJII
and binh.

4. For the symbol Z with the propenies defined above, declare an additional

pair of attributes, subtree-csyn and subtree-cinh with the same type as bSJII
and binh.

5. Let Xi be the symbol in production q: Xo ~ Xl ... Xn such that Xi = Z,
1 ~ i ~ n. Add the following semantic equation to production q to

initialize the subtree-cinh attribute of this symbol:

Xi.subtree-cinh = NullListO;

The user-defined function NullList returns the data structure representing

the empty list for this attribute type.

6. In productions with Y or Z on the left-hand side, add semantic equations

defining the attributes Y.subtree-bsyn or Z.subrree-csyn by copying the

semantic equation defining the attribute Y.bSJII or Z.csyn in the same
production, replacing occurrences of Y.bsyn and Y.binh or Z.csyrt and Z.cinh
by Y.subrree-bsyn and Y.subrree-binh or Z.subrree-csyn and Z.subtree-cinh
respectively.

7. In productions with Y or Z on the right-hand side, add semantic equations

defining the attributes r.subtree-bUt/a or Z.sublree-cilllt by copying the

semantic equation defining the attribute r.binh or Z.cUt/a in the same

production, replacing occurrences of r.b and r.b· L or Z.c and Z C'_L sy,. Uln syn . Inn

by r.subrree-bsyn and Y.sublree-b illlt or Z.subtree-csy,. and Z.subtree-c inh
respectively.

8. Replace occurrences of Xo.asy,. on the right-hand side of semantic
equations by

Union (Xo.ainJa, Xo.subtree-asyn)

where Union is a user-defined semantic function that takes two lists of the
same type and returns a merged list.

7.2.2. Removing Transitive Dependency for AG with Nested Segments

161

Transforming an AG with a transitive dependency across segments to one without such

a dependency requires the introduction of an additional pair of attributes for every

nonterminal symbol in the path of direct dependency edges constituting the transitive

dependency. If there are nested segments of the same type (i.e., labeled by the same

nonterminal symbol), then the number of additional attributes that are needed to

perform the transformation is unbounded. Figure 7-6 shows such an AG for specifying

a list of declarations: a segment derived from the distributable symbol decls has an

interface node to another dec/s segment if it contains an instance of production p3.

To remove the transitive dependency from decls.sym_Tab_in to decls.sym_tab_out from

each occurrence of the interface node decls along the lines of the solution given in the

previous subsection, an additional pair of attributes for each nested decls segment is

required. The function of this pair of attributes is to compute the one-element list

containing the symbol table entry for the identifier declared within that segment. Since

the nesting level of each segment is only known at run-time, the transformation of the

AG would have to be performed at run-time. Although this can be done using a

parameterized version of the solution we presented above, where the parameter

represents the nesting level of the segment, we believe that such a segment organization

is unnecessary, and the AG can be written in a way to avoid having nested segments of

the same type. For instance, declaring the nonterminal dec/ distributable instead of

decls in figure 7-6 results in an AG that has no nested segments of the same type. Yet,

deels, decl: { inherited attributes:
synthesized attributes:

sym_tab_in;
sym_tab_out; }

pI: ... ::= ... deels ... ;
{ decls.sym_tabjn = NullList; }

distributable decls;
p2: deels ::= 1* empty */

{ decls.sym_tab_out = deels.sym_tab_in; }

p3: I deel decls
{ decl.sym_tab_in = deels$1.sym_tab_in;

declsS2.sym_tab_in = deel.sym_tab_out;
decls$1.sym_tab_out = decls$2.sym_tab_out; }

p4: deel ::= var_name type_denoter
{ decl.sym_tab_out = AddEntry(var_name.name. type_denoter.type,

decl.sym_tab_in; }
... ; }

Figure 7·6: AG with Nested Segments o/the Same Type

162

each segment in the resulting AG derives the same set of strings that the AG in figure

7-6 does. As we described in chapter 5, section 5.3, segmentation schemes allowing

optional segments and list segments can also be written without having nested segments

of the same type.

7.3. Related Work

As far as we know, no other researchers have considered the extensions to context-free

grammars and Knuth's original attribute grammar formalism necessary to express

complex inter-module syntactic and semantic connections, respectively.

Perry's Inscape system [Perry 89] also unifies the specification of inter-module and

intra-module semantics. A set of preconditions, postconditions and obligations is

associated with every statement in a subroutine, with each subroutine, and with each

module interface (specified as a list of exported subroutines). A set of invariants are

associated with every global variable and type definition. Semantic analysis is

accomplished by propagation of statement preconditions to their ceilings, the earliest

points in a subroutine after which they are not invalidated, and by propagation of

163

statement postconditions and obligations to their floors, the latest points in the

subroutine before which they are not invalidated. All preconditions and obligations

must be satisfied by corresponding postconditions. If there is no invalidation within the

subroutine, then preconditions, postconditions and obligations are propagated to the

interface to the subroutine; a subset of them, selected by the programmer, is propagated

to the interface of the module. Since full theorem-proving is infeasible, Inscape

performs its analysis using only simple symbol manipulation, and thus the

"correctness" guaranteed cannot depend on deep properties and implications of the

predicates that appear in the preconditions, postconditions and obligations.

This approach is orthogonal to attribute grammars and attribute evaluation techniques,

since there is nothing about attribute grammars that limits them to the traditional

symbol resolution, type checking and code generation, and in fact we believe the

semantics analysis described could be implemented using our extended attribute

grammars formalism. The main difficulty would be representation of the preconditions,

postconditions, obligations and invariants in terms of aggregate attributes. Teitelbaum

and Chapman's recent work on higher-order attribute grammars [Teitelbaum 90], where

the attribute grammar can describe updates to the derivation tree as well as to the

attributes, may help since then the logical clauses could be represented as part of the

derivation tree rather than as attributes. This representation is currently used in the

Inscape implementation, which was constructed using the Gandalf system [Habermann

86], where action routines rather than attribute grammars are used to express semantics

processing.

More recent work on the Gandalf system describes a model for scaling up the system to

support large software databases and multiple users [Krueger 88]. They allow multiple

(context-free) grammars to describe the database organization, and segmentation of the

database at grammar boundaries. Segmentation is essential for two reasons: (1) to

support large databases, so that the entire database does not have to be loaded into a

user process space, and (2) to support multiple users, so concurrency control can be

applied at the segment level. Multiple grammars are combined at segment nodes; a

segment node is a terminal symbol representing an abstraction in one grammar, and the

164

stan symbol in the grammar defining the abstraction. Segment nodes are similar to our

distributable nontenninal symbols. The scaled up version of the Gandalf system still

uses action routines for semantics processing.

Boehm and Zwaenepoel [Boehm 87] describe a distributed algorithm for parallel

attribute evaluation, in order to speed up the compilation process, but their approach

seems to work only for monolithic programs rather than what would be separately

compiled modules in a conventional compilation system. The parse tree is divided into

subtrees, which are evaluated in parallel by evaluators executing on different machines.

The attribute grammar specifies at which nonterminals the parse tree may be split, and

the minimum size of the subtree to be evaluated separately. The attribute grammar is

based on a conventional context-free grammar, and the subtrees that are evaluated in

parallel do not correspond to modular units of the language. Their distributed evaluator

differs from our combined local and global evaluator because: (1) it is not incremental,

that is, it performs a complete evaluation of all attribute instances in a tree; (2) it uses a

built-in evaluation strategy - bottom subtrees are evaluated using a static strategy

while other attribute instances are evaluated dynamically; (3) it has no support for

programming-in-the-Iarge constructs.

Klaiber and Gokhale also describe parallel non-incremental evaluators for attribute

grammars, but in their case for execution on a multiprocessor [Klaiber 89]. The class of

grammars handled by their parallel evaluator are the absolutely noncircular AGs

(ANCAGs) [Kennedy 76]. The plans generated for ANCAGs are similar to the ones we

described in chapter 4, except that they are parameterized with the set of input attributes

needed to evaluate the attributes in the plan. The set of input attributes of a plan

depends on the plan's context in the parse tree. Plans are parallelized by forking a

process for each independent visit instruction in the plan. Weights attached to nodes of

the tree estimate the cost of evaluating the subtrees rooted at the nodes, so that it is

possible to determine at evaluation-time whether the cost of starting a new process for a

subtree outweighs the speedup achieved by parallelization, in which case the code is

executed sequentially. Because simulations showed that productions of the fonn

X ~ Y X severely limit the amount of possible parallelism, Klaiber and Gokhale

165

propose a method for restructuring the attribute grammar to instead use the production

X ~ Y+ (i.e., X expands to one or more instances of Y). This allows clusters of several

small subtrees rooted at Y to be executed in parallel, where otherwise each subtree

would have been too small to justify the overhead of forking a new process. Although

superficially this form of a list production may resemble our set-of construct, it still

derives an ordered list, requiring that attribute dependencies among the symbols in the

list flow from left to right

Our algorithms for conglomerate attributes are based on an efficient incremental

solution presented by Hoover for evaluating aggregate attributes [Hoover 86]. Hoover

defines a new attribute type for aggregate attributes, the finite function, and primitive

operators for manipulating attributes of this type. A key tree is maintained for each

component of an attribute of finite function type, which contains non-local edges from

the site in the derivation tree defining the component with the specified key to the sites

which use that component. This allows efficient propagation following a change to an

aggregate component. Our work on conglomerate attributes extends and differs from

Hoover's work in several ways. (1) Components of a conglomerate attribute are

defined in different segments of the decentralized tree, invalidating the concept of a key

tree. (2) Components with the same key may be defined asynchronously by multiple

users, thereby requiring the type to be a relation rather than a function. (3) A new

mechanism for detecting duplicate components is needed. (4) We use our merging

algorithm. which performs incremental evaluation when there are multiple inconsistent

sites in a derivation tree, to efficiently propagate a changed component to attribute

instances that use that component within a segment, rather than maintaining a key tree

locally within the segment.

8.1. Contributions

Chapter 8

Conclusion

166

The research reported in this thesis significantly advances previous work on semantics

based editors that use the attribute grammar fonnalism in two areas: (1) incremental

attribute evaluation algorithms for multiple asynchronous subtree replacements, either

on a centralized tree or within a segment on a decentralized tree, and (2) extension of

the classical attribute grammar fonnalism to allow the specification and analysis of

interface consistency of large programs. These results make it possible to construct

semantics-based editors for use by teams of software developers building or

maintaining large software systems, whereas previously, such editors were ~nly usable

by single programmers writing small programs.

We presented a family of algorithms for perfonning incremental attribute evaluation

when multiple asynchronous modifications are made to the program being developed or

maintained. These algorithms differ in how they balance the tradeoff between

algorithm efficiency and expressiveness of the attribute grammar. This is important

because we anticipate that our work will be incorporated in editors for other application

domains, not just programming or software development. These other applications may

have different definitions of efficiency, and may impose different requirements on the

expressiveness of the attribute grammar. The characteristics of the application domain

can then be used to select the most efficient evaluation strategy for each particular

editor.

We defined an extension of classical AGs to allow the specification of interface

consistency checking for programs composed of many modules. Classical AGs can

- --------------------

167

specify the static semantics of monolithic programs or modules, but not inter-module

semantics; the latter was done in the past using ad hoc techniques. Extended AGs

specify the interface static semantics of programming-in-the-Iarge constructs found in

real programming languages, where a program may be composed of different kinds of

modules, modules may be nested arbitrarily deep to fonn a hierarchical program

structure, and modules containing common definitions may be textually included in

other mcxlules that use those definitions. Our incremental evaluation algorithms, now

applied at each module, are augmented with a global evaluator for coordinating the

efforts of the mcxlules' local evaluators, so that the combined actions of the global and

local evaluators result in a complete static semantic analysis of a multi-module

program.

The contributions of the thesis research are threefold: (1) a body of theoretical results

regarding incremental attribute evaluation for multiple asynchronous subtree

replacements, and specification of interface consistency analysis by extended attribute

grammars, (2) the immediate application to multi-user semantics-based environments

for software development and maintenance, to improve programmer productivity by

reducing communication costs (and snafus); and (3) a foundation for other applications

involving dependencies among data and changes to data.

8.2. Future Work

One promising area for applying our results is derived data in distributed objectbases.

By derived data, we mean data or integrity constraints that are defined in terms of other

data items in the database. The immediate application is to what the database

community calls "triggers", that is, automatically recomputing derived values

whenever necessary, and enforcing constraints whenever updates are made. One way to

think of this application of our work is "blowing up" a derivation tree node with its

children ncxles and attributes to a composite object with component objects, with

relationships to other objects as well as status information represented as attributes

[Banerjee 87]. There has been some work in this area already, by Hudson and King in

their Cactis project [Hudson 89]. Cactis applies AG evaluation algorithms to

recomputation of derived data in a centralized database, but it does not support multiple

168

users. A major difficulty in this application is that objectbases may be arbitrary graphs,

while our work has dealt only with trees. One direction for future work is therefore to

extend our evaluation techniques to deal with attributed graphs, taking advantage of

previous work on incremental evaluation of attributed graphs for single edits [Kaplan

87, Alpern 88].

Distributed objectbases are considered by many researchers to be an appropriate basis

for software development environments [Rowe 89, Neuhold 89]. Automatically

maintaining consistency, or detecting inconsistency, among software artifacts in the

database is essential throughout the software lifecycle as requirements, design

documents. source code, test cases and so on change over time. In this thesis we have

considered source code consistency defined by the static semantics of the

implementation language. A second area for future study is to extend the framework

for multi-user semantics-based environments developed in this thesis to support the

entire software lifecycle. This entails the development of a theory of software system

consistency, where consistency is defined in terms of the various software artifacts

written (or generated) throughout a system's lifetime. Such a theory would allow one to

define consistency between a module's source code and a set of test data when the test

data is sufficient for testing the module according to some test coverage criterion. Is the

attribute grammar formalism an appropriate basis for defming software system

consistency? Can the evaluators developed for checking static semantic consistency of

a program be used with other definitions of consistency?

A third area that requires further investigation is a more comprehensive analysis of the

various attribute evaluation algorithms developed in this thesis for multiple

asynchronous subtree replacements. We believe that the worst-case complexity

analysis does not provide much insight into how well these algorithms perform in

practice. One possibility is to study the expected-case complexity of the algorithms. In

order to do this, the distribution of the inputs to the algorithms is needed. The inputs

consist of an attribute grammar, which derives a (usually infinite) number of semantic

trees, and sequences of asynchronous edits. Although the problem of finding the

distribution is in general a hard problem, focusing on one application domain, such as

programming editors, may make the problem more tractable.

169

Alternatively, or in conjunction with an expected-case analysis, the perfonnance of the

algorithms for specific application domains may be studied empirically or by

simulation. Such a study would help answer the following questions, essential in order

to transfer this technology to everyday tools used by software developers. How many

software developers can be supported by the environment before response time is

severely degraded? How many lines of code can the environment handle? How much

network traffic is generated when modules reside on different workstations, and can the

message complexity be reduced by an alternate assignment of modules to workstations?

Finally, finding a lower bound for the problem of incremental attribute evaluation for

multiple asynchronous edits is still an open question. A trivial lower bound is the

number of attributes affected by the multiple edits, with attributes affected by more than

one edit counted once. We conjecture that there exist no algorithms with such a

complexity for both the number of attributes evaluated and the bookkeeping overhead,

except maybe for some overly restricted attribute grammar subclass.

Bibliography

[AdaTEC 82]

[Alblas 90]

AdaTEC the SIGPLAN Technical Committee on Ada.
Reference Manualfor the Ada Programming Language
United States Department of Defense, 1982.
Draft Revised MIL-SID 1815.

Henk Alblas.
Concurrent Incremental Attribute Evaluation.

170

In International Workshop on Attribute Grammars and their
Applications. Springer-Verlag, Paris, France, September, 1990.

[Alpern 88] Bowen Alpern, Alan Carle, Barry Rosen, Peter Sweeney, Kenneth
Zadeck.
Graph Attribution as a Specification Paradigm.
In Proceedings of the ACM SIGSOFJISIGPLAN Software

Engineering Symposium on Practical Software Development
Environments, pages 121-129. Boston, Massachusetts,
November, 1988.

[Banerjee 87] Jay Banerjee, Haong-Tai Chou, Jorge F. Garza, Won Kim, Darrell
Woelk, Nat Ballou, and Hyoung-Joo Kim.
Data Model Issues for Object-Oriented Applications.
ACM Transactions on Office Information Systems 5(1):3-26, January,

1987.

[Bochmann 76] G.V. Bochmann.
Semantic Evaluation from Left to Right.
Communications of the ACM 19:55-62,1976.

[Boehm 87] Hans-Juergen Boehm and Willy Zwaenepoel.
Parallel Attribute Grammar Evaluation.
September, 1987.

[Chandhok 85] Ravinder Chandhok, David B. Garlan, Dennis Goldenson, Philip
L. Miller and Mark Tucker.

[Cutland 80]

Programming Environments Based on Structure Editing: The
GNOME Approach.

In Anthony S. Wojcik (editor), 1985 National Computer Conference,
pages 359-370. AFIPS, Chicago, IL, July, 1985.

Nigel J. Cutland.
Computability .
Cambridge University Press, Great Britain, 1980.

171

[Demers 81] Alan Demers, Thomas Reps and Tim Teitelbaum.
Incremental Evaluation for Attribute Grammars with Applications to

Syntax-directed Editors.
In 8th Annual ACM Symposium on Principles of Programming

Languages, pages 105-116. Williamsburg VA, January, 1981.

[Demers 85] Alan Demers, Anne Rogers and Frank Kenneth Zadeck.
Attribute Propagation by Message Passing.
In SIGPlAN 1985 Symposium on Language Issues in Programming

Environments, pages 48-59. Seattle, WA, June, 1985.
Proceedings published as SIGPLAN Notices, 20(7), July, 1985.

[DeRemer 76] Frank DeRemer and Hans H. Kron.
Programming-in-the-Large Versus Programming-in-the-Small.
IEEE Transactions on Software Engineering SE-2(2), June, 1976.

[Engelfriet 82] Joost Engelfriet and Gilberto File.
Simple Multi-Visit Attribute Grammars.
Journal of Computer and System Sciences 24:283-314, 1982.

[Farrow 84] Rodney Farrow.
Generating a Production Compiler from an Attribute Grammar.
IEEE Software 1(4):77-93, October, 1984.

[Feldman 79] S.1. Feldman.
Make - A Program for Maintaining Computer Programs.
Software - Practice & Experience 9(4):255-265, April, 1979.

[Ganzinger 77] Harald Ganzinger, Knut Ripken and Reinhard. Wilhelm.
Automatic Generation of Optimizing Multipass Compilers.
In Information Processing 77, pages 535-540. North-Holland Pub.

Co., New York, 1977.

[Garlan 84] David B. Garlan and Philip L. Miller.
GNOME: An Introductory Programming Environment Based on a

Family of Structure Editors.
In Peter Henderson (editor), ACM SIGSOFJISIGPLAN Software

Engineering Symposium on Practical Software Development
Environments, pages 65-72. Pittsburgh, April, 1984.

Proceedings published as SIGPLAN Notices, 19(5), May 1984 and of
Software Engineering Notes, 9(3), May 1984.

[Geitz 87] Bob Geitz.
Asynchronous Subtree Replacement for Language-Based Editors.
1987.
Oberlin College and Cornell University.

[Greif 88] Irene Greif (editor).
Computer-Supported Cooperative Work: A Book of Readings.
Morgan Kaufman, San Mateo CA, 1988.

[Habermann 81] A. Nico Habermann and Dewayne E. Perry.
System Composition and Version Control for Ada.
Software Engineering Environments.
North-Holland, New York, 1981.

[Habermann 86] A.N. Habermann and D. Notkin.
Gandalf: Software Development Environments.

172

IEEE Transactions on Software Engineering SE-12(12): 1117 -1127,
December, 1986.

[Hoover 86] Roger Hoover and Tim Teitelbaum.
Efficient Incremental Evaluation of Aggregate Values in Attribute

Grammars.
In SIGPLAN '86 Symposium on Compiler Construction, pages 39-50.

Palo Alto, CA, June, 1986.
Proceedings published as SIGPLAN Notices, 21(7), July, 1986.

[Hoover 87] Roger Hoover.
Incremental Graph Evaluation.
PhD thesis, Cornell University, May, 1987.
Technical Report 87-836.

[Horwitz 86] Susan Horwitz and Tim Teitelbaum.
Generating Editing Environments Based on Relations and Attributes.
ACM Transactions on Programming Languages and Systems

8(4):577-608, October, 1986.

[Hudson 88] Scott E. Hudson and Roger King.
Semantic Feedback in the Higgens UIMS.
IEEE Transactions on Software Engineering 14(8):1188-1206,

August, 1988.

[Hudson 89] Scott E. Hudson and Roger King.
Cactis: A Self-Adaptive, Concurrent Implementation of an Object

Oriented Database Management System.
ACM Transactions on Database Systems 14(3):291-321, September,

1989.

[Jazayeri 75] M. Jazayeri, W.F. Ogden and W.e. Rounds.
The Intrinsically Exponential Complexity of the Circularity Problem

for Attribute Grammars.
Communications of the ACM 18(12):697-706, December, 1975.

[Johnson 82] Gregory F. Johnson and Charles N. Fischer.
Non-syntactic Attribute Flow in Language Based Editors.
In 9th Annual ACM Symposium on Principles of Programming

Langu.ages, pages 185-195. Albuquerque NM, January, 1982.

[Johnson 83] Gregory F. Johnson.
An Approach To Incremental Semantics.
PhD thesis, University of Wisconsin at Madison, 1983.

[Johnson 85]

[Jourdan 89]

[Jourdan 90]

[Kaiser 87]

[Kaiser 90]

[Kaplan 86]

[Kaplan 87]

[Kastens 80]

Gregory F. Johnson and C.N. Fischer.
A Meta-Language and System for Nonlocal Incremental Attribute

Evaluation in Language-Based Editors.

173

In Twelfth Annual ACM Symposium on Principles of Programming
Languages, pages 141-151. New Orleans, Louisiana, January,
1985.

Martin Jourdan and Didier Pari got.
The FNC -2 System User's Guide and Reference Manual
INRIA, France, 1989.

Martin Jourdan, Didier Parigot, Catherine Julie, Olivier Durin and
Carole Ie Bellec.
Design, Implementation and Evaluation of the FNC-2 Attribute

Grammar System.
In ACM SIGPLAN '90 Conference on Programming Language

Design and Implementation, pages 209-222. June, 1990.
Proceedings published as SIGPLAN Notices, 25(6), June 1990.

Gail E. Kaiser and Simon M. Kaplan.
Reliability in Distributed Programming Environments.
In Sixth Symposium on Reliability in Distributed Software and

Database Systems, pages 45-55. Kingsmill-Williamsburg, VA,
March, 1987.

Gail E. Kaiser and Simon M. Kaplan.
Parallel and Distributed Incremental Attribute Evaluation

Algorithmsfor Multi-User Software Development Environments.
Technical Report CUCS-019-90, Columbia University Department

of Computer Science, April, 1990.
Submitted for publication.

Simon M. Kaplan and Gail E. Kaiser.
Incremental Attribute Evaluation in Distributed Language-Based

Environments.
In 5th ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing, pages 121-130. Calgary, Alberta,
Canada, August, 1986.

Simon M. Kaplan.
Incremental Attribute Evaluation on Node-Label Controlled Graphs.
Technical Report UIUCDCS-R-87-1309, University of lllinois at

Urbana-Champaign Department of Computer Science, May,
1987.

U we Kastens.
Ordered Attribute Grammars.
Acta Informatica 13:229-256, 1980.

[Kastens 82]

[Kennedy 76]

[Kincaid 85]

[Klaiber 89]

[Knuth 68]

[Knuth 71]

[Krueger 88]

[Micallef 88]

[Micallef 90]

174

U. Kastens, B. Hutt and E. Zimmermann.
Lecture Notes in Computer Science. Volume 141: GAG: A Practical

Compiler Generator.
Springer-Verlag, Heidelberg, 1982.

K. Kennedy and S.K. Warren.
Automatic Generation of Efficient Evaluators for Attribute

Grammars.
In Third Annual ACM Symposium on Principles of Programming

Languages, pages 32-49. Atlanta, GA, January, 1976.

Christine M. Kincaid, Pierre B. Dupoint and A. Roger Kaye.
Electronic Calendars in the Office: An Assessment of User Needs

and Current Technology.
ACM Transactions on Office Information Systems 3(1):89-102,

January, 1985.

Alexander Klaiber and Maya Gokhale.
Parallel Evaluation of Attribute Grammars.
In Fred Ris and Peter M. Kogge (editor), 1989 International

Conference on Parallel Processing, pages 193-201. The
Pennsylvannia State University Press, University Park PA, 1989.

Donald E. Knuth.
Semantics of Context-Free Languages.
Mathematical Systems Theory 2(2):127-145, June, 1968.

Donald E. Knuth.
Semantics of Context-Free Languages: Correction.
Mathematical Systems Theory 5(1):95-96, March, 1971.

Charles W. Krueger and Annalisa Bogliolo.
Scaling Up: Segmentation and Concurrency in Large Software

Databases.
Technical Report CMU-CS-87-178, Carnegie Mellon University

Department of Computer Science, February, 1988.

Josephine Micallef and Gail E. Kaiser.
Version and Configuration Control in Distributed Language-Based

Environments.
In Jurgen F.H. Winkler (editor), International Workshop on Software

Version and Configuration Control, pages 119-143. B.G.
Teubner, Stuttgart, January, 1988.

Josephine Micallef and Gail E. Kaiser.
Extending the Mercury System to Support Teams of Ada

Programmers.
In 1st International Symposium on Environments and Toolsfor Ada,

pages 1-12. Redondo Beach CA, April, 1990.
In press.

[Morris 81] Joseph M. Morris and Mayer D. Schwartz.
The Design of a Language-Oriented Editor for Block-Structured

Languages.

175

In SIGPLAN SIGOA Symposium on Text Manipulation, pages 28-33.
Portland OR, June, 1981.

Proceedings published as SIGPLAN Notices, 16(6), June 1981.

[Narayanaswamy 87]

[Neal 87]

[Neuhold 89]

[Peckham 90]

[Perry 85]

[Perry 87]

[Perry 89]

[Reps 83]

K. Narayanaswamy and Walt Scacchi.
Maintaining Configurations of Evolving Software Systems.
IEEE Transactions on Software Engineering SE-13(3):324-334,

March, 1987.

Lisa Rubin Neal.
Cognition-Sensitive Design and User Modeling for Syntax-Directed

Editors.
In CHI + GI' 87 Conference on Human Factors in Computing

Systems and Graphics Interface, pages 99-102. ACM, Toronto,
Canada, April, 1987.

Erich Neuhold and Michael Stonebraker (editors).
Future Directions in DBMS Research.
SIGMOD Record 18(1):17-26, March, 1989.

Stephen B. Peckham.
Incremental Attribute Evaluation and Multiple Subtree

Replacements.
PhD thesis, Cornell University, February, 1990.
TR 90-1093.

Dewayne E. Perry and W. Michael Evangelist.
An Empirical Study of Software Interface Errors.
In International Symposium on New Directions in Computing, pages

32-38. IEEE Computer Society, Trondheim, Norway, August,
1985.

Dewayne E. Perry and W. Michael Evangelist.
An Empirical Study of Software Interface Faults - An Update.
In 20th Annual Hawaii International Conference on Systems

Sciences, pages 113-126. Kona HI, January, 1987.

Dewayne E. Perry.
The Inscape Environment.
In 11th International Conference on Software Engineering, pages

2-9. IEEE Computer Society, Pittsburgh PA, May, 1989.

Thomas Reps, Tim Teitelbaum and Alan Demers.
Incremental Context-Dependent Analysis for Language-Based

Editors.
ACM Transactions on Programming Languages and Systems

5(3):449-477, July, 1983.

[Reps 84a]

[Reps 84b]

[Reps 84c]

[Reps 86]

[Reps 88]

[Reps 89a]

[Reps 89b]

[Reps 89c]

[Ross 85]

[Rowe 89]

[Sleator 83]

Thomas Reps and Tim Teitelbaum.
The Synthesizer Generator.
In SIGSOFTISIGPIAN Software Engineering Symposiwn on

Practical Software Development Environments, pages 41-48.
Pittsburgh, PA, April, 1984.

Proceedings published as SIGPLAN Notices, 19(5), May, 1984.

Thomas Reps.
Generating Language-Based Environments.
M.LT. Press, Cambridge, MA, 1984.

Thomas Reps and Bowen Alpern.
Interactive Proof Checking.

176

In 11 th ACM Symposiwn on Principles of Programming Languages,
pages 36-45. Salt Lake City, Utah, January, 1984.

T. Reps, C. Marceau and T. Teitelbaum.
Remote Attribute Updating for Language-Based Editors.
In 13th ACM Symposiwn on Principles of Programming Languages,

pages 1-13. St. Petersburg Beach, FL, January, 1986.

Thomas Reps.
Incremental Evaluation for Attribute Grammars with Unrestricted

Movement Between Tree Modifications.
Acta Informatica 25:155-178, 1988.

Thomas W. Reps and Tim Teitelbaum.
Texts and Monographs in Computer Science: The Synthesizer

Generator A System for Constructing Language-Based Editors.
Springer-Verlag, New York, 1989.

Thomas W. Reps and Tim Teitelbaum.
Texts and Monographs in Computer Science: The Synthesizer

Generator Reference Manual.
Springer-Verlag, New York, 1989.

Thomas W. Reps and Tim Teitelbaum.
Texts and Monographs in Computer Science: The Synthesizer

Generator: A Systemfor Constructing Language-Based Editors.
Springer-Verlag, New York, 1989.

R. Ross.
Design of Personal Computer Software.
Insights Into Personal Computers.
IEEE Press, New York, 1985, pages 282-300.

Lawrence A. Rowe and Sharon Wensel (editors).
1989 ACM SIGMOD Workshop on Software CAD Databases.
February, 1989.

Daniel D. Sleator and Robert Endre Tarjan.
A Data Structure for Dynamic Trees.
Journal of Computer and System Sciences 26:362-391,1983.

177

[Teitelbaum 90] Tim Teitelbaum and Richard Chapman.
Higher-Order Attribute Grammars and Editing Environments.
In SIGPLAN '90 Conference on Programming Language Design and

Implementation, pages 197-208. White Plains, NY, June, 1990.
Proceedings published as SIGPLAN Notices, 25(6), June, 1990.

[Tichy 79] Walter F. Tichy.
Software Development Control Based on Module Interconnection.
In 4th International Conference on Software Engineering. Munich,

Germany, September, 1979.

[UhI82] J. Uhl, S. Drossopoulou, G. Persch, G. Goos, M. Dausmann,
G. Winterstein, and W. Kirchgassner.
Lecture Notes in Computer Science 139: An Attribute Grammar for

the Semantic Analysis of Ada.
Springer-Verlag, Heidelberg, FRG, 1982.

[Waite 84] W. Waite and G. Ooos.
Compiler Construction.
Springer-Verlag, New York, 1984.

[Wegman 80] Mark N. Wegman.
Parsing for structural editors (Extended Abstract).
In 21st Annual Symposium on Foundations of Computer Science,

pages 320-327. Syracuse NY, October, 1980.

[Wirth 82] Niklaus Wirth.
Programming in Modula-2.
Springer-Verlag, New York, 1982.

[Wolf 85] Alexander L. Wolf, Lori A. Clarke and Jack C. Wileden.
Ada-Based Support for Programming-in-the-Large.
IEEE Software 2(2):58-71, March, 1985.

[Yeh 83] Dashing Yeh.
On Incremental Evaluation of Ordered Attribute Grammars.
BIT 23:308-320, 1983.

[Yeh 88] Dashing Yeh and Uwe Kastens.
Improvements of an Incremental Evaluation Algorithm for Ordered

Attribute Grammars.
SIGPLAN Notices 23(12):45-50, December, 1988.

[Zaring 90] Alan K. Zaring.
Parallel Evaluation in Attribute Grammar-Based Systems.
PhD thesis, Cornell University, August, 1990.
Technical Report 90-1149.

178

Appendix A

The MERCURY System

A.I. Overview

The MERCURY system generates multi-user, distributed, semantics-based editors from

an attribute grammar specification of the desired programming language. Each

MERCURY editor detects syntactic and semantic inconsistencies, as defined in its

language specification, with immediate feedback regarding inconsistencies. Like other

semantics-based editors, such analysis is applied incrementally within each modular

program unit while it is being edited by an individual editor user working in isolation.

The innovative feature of MERCURY editors is that they also provide this capability

among units to notify all affected users of any semantic inconsistencies introduced into

their own program units by changes to the interfaces of units being modified by other

users. This was illustrated in the Smod example given in the introductory chapter of

this thesis.

Each MERCURY editor provides a number of levels of change propagation as desired by

the individual programmers cooperating on a large software project. Each programmer

editing a program unit can request that (1) his changes to the interface of his program

unit be immediately propagated, at the individual editing command level of granularity,

to inform any other programmers of changes that affect their units - with subsequent

earliest-possible detection of newly introduced static semantic errors; or (2) that such

change propagation be delayed until requested, to avoid premature communication of

interface changes that are only under consideration and have not yet been committed.

Further, each programmer can also select that (3) any changes made by other

programmers be immediately propagated to notify him of changes to the interfaces of

179

other program units that adversely affect his own units, again with subsequent earliest

possible detection of newly introduced interface mismatches; or (4) that notification is

delayed to avoid bombardment by error messages when many interfaces are undergoing

significant changes, such as during early development stages or when it is desirable to

assume the interface provided by earlier versions of other program units for an extended

period of time.

MERCURY consists of two parts: (1) the editor generator, and (2) run-time support

required to run the generated distributed editors. The editor generator takes as input an

AG for the desired programming language, which is linked to a kernel containing

algorithms common to all generated editors to produce a semantics-based editor tailored

to that particular language. Copies of this editor are installed on each machine. Each

invocation of one of these copies is known as a local editor, while the entire system

involving all these editors and the run-time support is called the distributed editor.

MERCURY was implemented by modifying the Synthesizer Generator [Reps

89c] developed at Cornell University, which supports incremental static semantic

analysis within a monolithic program in a single-user editor. MERCURY runs on a

variety of Unix systems using X windows.

A.2. The Editor Generator

The current implementation of MERCURY supports only a flat segment (module)

organization, that is, programs consisting of a collection of monolithic segments. The

specification language used for these restricted segmentable attribute grammars is

therefore considerably simpler than the one described in chapter 6:

• The start symbol of the AG represents the distributable non termin al
symbol; that is, this symbol derives a segment of the program.

• Because of the simple program structure, the root production of the
program is not explicitly represented. The implicit root production for an
AG whose distributable symbol is module would be

"program ::= set-of (modu/e)".

• Certain attributes of the distributable symbol are declared to be interface
attributes, meaning they represent dependencies across segments (e.g. the

imports and exports lists of modules). This makes it clear when
incremental evaluation must propagate across segment boundaries .

• Interface attributes must be defIned in pairs, a synthesized interface

attribute and an inherited interface attribute. When a synthesized interface

attribute in one segment changes in value, the corresponding inherited

interface attribute in all segments must be reevaluated. This simplifies the
dependencies among the interface attributes of segments .

• We limit the semantic equation for an inherited interface attribute of a

segment to the union of the corresponding synthesized interface attributes
of all segments. Thus, there is no need for explicit attributes and semantic
equations for the root of the program.

• Segment linkage is performed by means of a special attribute of the
distributable symbol, system-module-name. This attribute is defined as the
concatenation of two attributes representing the name of the modular unit

contained in the segment, and the name of the program that contains this

modular unit. Both name attributes must be defined in each segment.

180

The architecture of the MERCURY editor generator is depicted in figure A-I. It is

similar to the Synthesizer Generator on which it is based, except for the parts of the

specification language that deal with segments (which were described above), and some

of the kernel algorithms (which are discussed in section A.4 below).

A.3. Run-Time Support: The Attribute Propagation Layer

The run-time support, known as the attribute propagation layer (APL), is responsible for

propagating changes in attribute infonnation among the local editors. The APL is

implemented as a separate process where the (virtual) root of the program resides. The

root of the program is represented by a linked list of nodes, one for each segment, with

each node containing a copy of the synthesized interface attributes of the segment. The

APL is replicated on each workstation in the distributed development environment.

The APL can support editors for several programs simultaneously, even programs

written in different languages. The current implementation, however, does not handle

the transmission of changes between modules belonging to the same program that are

written in different languages.

[.lI1guage

Spt:ci tication
· Synta,<;

· SemantIcs
· Parsmg
· L'nparsmg

Language
Tables

· Attribute Evaluation Algorithm
· Command Interpreter
· Tree Traversal Routines
· File va Routines

t

Figure A-I: The MERCURY Editor Generator

Specitic
Editor ..

181

The control loop of the APL algorithm accepts messages from either (1) local editors

running on the same machine, or (2) other APL processes running on other machines.

Local editors can send the following types of messages to the APL:

• START· LOCAL-EDITOR - This message is sent when the local editor is first
invoked. It sets up a communication channel between the local editor and

the local APL process over which further communication takes place .

• INIT·MODULE - This message is sent when a new segment is created. If

this is the first segment of a new program, a program node is created and
added to the list of programs supported by the APL. A node corresponding
to this new segment is then created, containing the segment's synthesized
interface attributes, and added to the list of segments for the specified

program.

The APL then recomputes the value of each inherited interface attribute by
concatenating the corresponding synthesized interface attribute from all

segments, and sends the inherited interface attributes in SYSTEM-UPDATE

messages to every local editor running on the same machine. Then, the
APL forwards the INIT·MODULE message to APL processes running on
other machines, so these can, in tum, update the segments that reside on

those machines.

• MODULE_UPDATE - This message is sent when the value of a synthesized
interface attribute of a segment changes as a result of a subtree replacement
perfonned on the segment. The new value of the synthesized interface
attribute replaces the one previously stored in the node for the segment in
the APL. A SYSTEM-UPDATE message containing the new value of the
corresponding inherited interface attribute is sent to all local editors, and
the MODULE-UPDATE message is forwarded to other APLs.

• KILL-MODULE - This message is sent when a program segment is deleted.
The APL deletes the segment node and all its associated synthesized
interface attributes. Then it sends SYSTEM-UPDATE messages for each

inherited interface attribute to the the local editors, and forwards the
KILL-MODULE message to other APL.

• EXIT-EDITOR - This message is sent at the end of an editing session. If
the segment was saved, then the APL sets the segment's status as
"donnant". No messages are sent to donnant segments. If the segment
was not saved, then the APL processes this message in the same way as a
KILL-MODULE message.

182

As can be inferred from the description of how messages from the local editors are

handled, an APL also receives INIT-MODULE, MODULE-UPDATE, and Kll..L-MODULE

messages from other APL processes running on remote machines. These messages are

handled in the same way as we described above, except that they are not forwarded to

other APLs.

The APL contains additional algorithms for restoring consistency among the replicated

data after machine or network failure; these algorithms, which require additional

messages to be sent between APLs than those listed above, are described elsewhere

[Kaiser 87]. Thus, programmers can continue working even when part of the network

is broken or some machines are down, trusting that the editor will propagate changes

affecting previously inaccessible modules as soon as the network or machine is brought

back up.

183

A.4. Kernel Algorithms

The most interesting kernel algorithm is the distributed incremental attribute evaluation

algorithm. This algorithm is a distributed version of the incremental attribute

evaluation algorithm used in the Synthesizer Generator for single-user environments.

The algorithm used in MERCURY differs in the following ways: (1) the program is split

up into segments, each of which can be separately edited in a local editor, and (2)

changes made to one segment can propagate into another segment, requiring the

attribute evaluation algorithm within a local editor to handle multiple evaluations

simultaneously.

A subtree replacement within a segment initiates an incremental evaluation process to

reestablish consistency. In many cases, operation proceeds exactly as in the algorithm

used in the Synthesizer Generator. But sometimes a synthesized interface attribute of

an edited segment changes in value, and thus becomes inconsistent with the

corresponding inherited interface attributes of the other segments. In this case, the new

value of the synthesized interface attribute is transmitted to the APL in a

MODULE-UPDATE message. The APL computes the new value of the corresponding

inherited interface attribute and transmits it to all the segments in a SYSTEM-UPDATE

message.

When an editor receives a SYSTEM-UPDATE message from the APL with a new value

for an inherited interface attribute, it is treated as a simulated subtree replacement at the

root of the segment; a new incremental evaluation process is initiated within the

segment to reestablish consistency. Multiple evaluation processes initiated by the APL

and by subtree replacements within a segment are merged to minimize costs when

multiple processes may affect the same attribute, or cancel each other out, by the

algorithms described in chapter 3.

Interface attributes are not propagated between a local editor and the APL when the

value of the system-module-name attribute of the segment being edited is not

completely defined (i.e., either the program name, or the segment name, or both, have

not yet been filled in by the programmer). A change in the value of this attribute from

184

undefined to defined results in the transmission of an INIT-MODULE message to the

APL, while changing this value from defined to undefined (e.g., if the identifier

defining the program name is deleted from the segment) results in the transmission of a

KILL-MODULE message to the APL. MODULE-UPDATE messages contain information

derived from the system-nwdule-name attribute indicating the names of the program and

the module to which the changed synthesized interface attribute belongs.

Several other algorithms of the Synthesizer Generator needed to be modified or created

anew to handle multiple users and a distributed editing environment. Examples include

the new editing commands to switch between the different granularities for propagating

changes among segments, the protocol between the editor and the APL for initiating and

terminating editing sessions, routines for displaying information about incoming and

outgoing messages, and asynchronous va routines to read input from the APL or the

keyboard.

Several programmers have expressed interest in an additional facility not currently

included in MERCURY: change simulation. Change simulation would allow

programmers to experiment with a module interface change, and see how it affects other

modules, but without informing the other programmers responsible for those modules.

The intent is to carry out "what if" experiments, as in spreadsheet systems [Ross 85],

to determine the impact and extent of proposed changes.

We implemented a rudimentary version of change simulation, but then ran into the

dilemma of how to present the results to the programmer who made the "simulated"

change. In MERCURY, static semantic errors are normally indicated by displaying a

string containing an error message next to the statement or expression containing the

error. But this is problematic when this statement or expression was written by a

different programmer within a different module, and the programmer who introduced

the error through his module interface change has no understanding of the context of the

statement or expression and how it interacts with the rest of the other programmer's

module. It is clear that further user modeling research is needed to determine how best

to handle this issue, so we have not incorporated the change simulation feature into

MERCURY.

185

A.S. Conclusion

Implementing the MERCURY prototype proved to be an invaluable exercise because it

helped identify the key problems involved in building a distributed editor based on

attribute grammars. Elegant solutions to these key problems were presented in the

thesis, but only some of these solutions were incorporated in the prototype due to time

constraints.

The choice we made in implementing MERCURY by modifying the Synthesizer

Generator made it abundantly clear why code reusability is (1) essential, and (2)

extremely difficult The Synthesizer Generator consists of over 50,000 lines of code.

The only documentation we had access to was the sporadic comments in the code itself.

Thus, even though both systems have a lot of common functionality, making even the

smallest change required considerable time and effort Having a tool like MERCURY to

help analyze the impact of a change would have made the task somewhat easier!

186

Appendix B

Attribute Grammar for Distributed Calendar Application

Editor specifications for the MERCURY system are written In the Synthesizer

Specification Language [Reps 89b], extended for segmentable attribute grammars as

described in Appendix A.

The specifications for the calendar environment are divided into the following nine

files:

1. cal.x.ssl- abstract and concrete syntax for appointments and meetings;

2. cal.m.ssl - semantics for appointments;

3. cal.t.ssl - attribute type definitions and semantic function definitions for
appointments;

4. cal.u.ssl - unparsing specifications for appointments and meetings (i.e.,
how information in each calendar is displayed to the user);

5. caI2.m.ssl- semantics for meetings;

6. caI2.t.ssl - attribute type defmitions and semantic function definitions
for meetings;

7. cal.lexical.ssl -lexical definitions of input tokens;

8. cal.errors.ssl - list of error messages;

9. cal.transforms.ssl- transformation declarations.

File 1: cal.x.ssl

/* Abstract syntax */

let fonnacstrings = true;

root calendar;

calendar: Cal (group owner commands)

group: GroupBot()
I GroupName(ID)

owner: OwnerBotO
I Name(ID)

list commands;
commands: CommandsNilO

I CommandsPairCcommand commands)

command: CommandBot()
I MakeAppoinunent(month day from to note)
I SchedulcMeeting(attendccs duration month day month day purpose)
I DisplayCalendarO
I DisplayDay(month day)
I DisplayPcriod(month day month day)

month: MonthBotO
I TheMonth(JNT)

day: DayBotO
I TheDay(lNT)

from: FromBot()
I Beg(JNT)

to: ToBotO
I End(INT)

note: NoteBot()
I For(STRING)

list attendees;
attendees: NoOneO

I Two(person attendees)

person: PersonBotO
I RealPerson(ID)

duration: TimeBot()

187

I Time(INT)

purpose: PurposeBotO
I ThePurpose(STRlNG)

/* Concrete syntax .,

Calendar (syn calendar abs;);
Group (syn group abs;);
Owner (syn owner abs;):
Commands (syn commands abs;);
Command (syn command abs;):
Month { syn month abs; }:
Day { syn day abs: };
From { syn from abs; };
To (syn to abs;);
Note (syn note abs;);
Attendees (syn attendees abs;);
Person { syn person abs; }:
Duration { syn duration abs; };
Purpose (syn purpose abs;);

calendar
group
owner
commands
command
month
day
from
to
note
attendees
person
duration
purpose

Calendar.abs;
Group.abs;
Owner.abs;

Commands.abs;
Command.abs;

Month.abs;
Day.abs;
From.abs;

To.abs;
Note.abs;

Attendees.abs;
Person.abs;
Duration.abs;
Purpose.abs;

Calendar ::= (Group Owner Commands)
(Calendar.abs = Cal(Group.abs, Owner.abs, Commands.abs); }

Group ::= (TO)
(Group.abs = GroupName(TD);)

Owner ::= (TD)
(Owner.abs = Name(ID); }

Commands ::= (Command)
(Commands.abs = CommandsPair(Command.abs, CommandsNil(»; }

I (Command Commands)
(CommandsSl.abs = CommandsPair(Command.abs, Commands$2.abs); }

Command ::= (Month 'f' Day',' From'·' To ':' Note)
(Command.abs = MakeAppointment(Month.abs, Day.abs,

From.abs, To.abs, Note.abs); }
I (NEED 'C Attendees ')' FOR Duration SOMETIME BETWEEN Month

'r Day AND Month ',. Day RE Purpose)

188

(Comrnand.abs = ScheduleMeeting(Attendees.abs, Duration.abs,
MonthSl.abs, DaySl.abs, MonthS2.abs,
DayS2.abs, Purpose.abs); }

I (DISPLAY ALL)
(Comrnand.abs = DisplayCalendarO;)

I (DISPLAY DAY Month '/' Day)
(Comrnand.abs = DisplayDay(Month.abs, Day.abs); }

I (DISPLAY PERIOD Month 'r Day TO Month '/' Day)
(Comrnand.abs = DisplayPeriod(MonlhSl.abs,

Day$l.abs, MonthS2.abs, Day$2.abs); }

Month ::= (INTEGER)
(Month.abs = TheMonlh(STRtoINT(lNfEGER»; }

Day ::= (INTEGER)
(Day.abs = TheDay(STRtoINT(lNfEGER»; }

From ::= (INTEGER)
(From.abs = Beg(STRtoINT(INTEGER»; }

To ::= (INTEGER)
(To.abs = End(STRtolNT(INTEGER»; }

Note ::=(STRING)
(Note.abs = For(STRING); }

Attendees ::= (Person)
(Attendees.abs = Two(Person.abs, NoOne(»; }

I (person',' Attendees)
(AttendeesSl.abs = Two(Person.abs, Attendees$2.abs); }

Person ::= (lD)
(Person.abs = RealPerson(ID); }

Duration ::= (INTEGER)
(Duration.abs = Time(STRtoINT(INTEGER»; }

Purpose ::= (STRING)
(Purpose.abs = ThePurpose(STRING); }

FUe 2: cal.m.ssl

1* Semantics for appointments·'

1* Attribute declarations .,

calendar (
syn STR group_ownecname;
interface syn SCHEDULE owners_appts;
interface inh SCHEDULES alLappts;
) ;

189

group (
syn 10 group_name;
):

owner (
syn 10 name;
):

commands, command (
inh APPTS appt.Un;
syn APPTS applS_out;
) ;

month. day (
syn INT id;
) ;

10, from (
syn INThr;
);

note (
syn STRING note;
) ;

,. Semantic equations */

calendar: Cal (

}

SS.group_owner_name = group.group_name # "%%" # owner.name:
commands.applS_in = NuliList();
SS.owners_appts = Schedule(owner.namc, commands.appts_out);

group: GroupBot (
SS.group_name = "?";

)
I GroupName (

SS.group_name = 10;
)

owner: OwnerBot (
SS.name = "?";

)
I Name (

SS.name = 10;
)

commands: CommandsNil (
SS.applS_out = SS.applS_in;

)
I ComrnandsPair (

)

command.applS_in = SS.appts_in;
commandsS2.applS_in = command.applS_out;
SS.appts_out = commandsS2.appts_out;

command: CommandBot (
SS.applS_out = SS.applS_in;

190

}
I MakeAppointment (

local ERR error!;
local ERR error2;
local ERR error3;
local ERR error4;
local ERR error5;

}

error! = is_date_valid(month.id, day.id);
err0r2 = is_hour_valid(from.hr);
error3 = is_hour_valid(to.hr); '* only check that the slot specified by from and to is *' '* valid if the hours from and LO are valid. *'
error4 = «error2 = NoErr) && (error3 = NoErr»

? is_time_slot_valid(from.hr, LO.hr)
: NoErr; '* only check that time slot is free if date and slot are valid *'

err0r5 = «error! = NoErr) && (error2 = No Err) &&
(error3 = NoErr) && (error4 = NoEn»

? is_free(SS.appts_in. month.id, day.id, from.hr, 10.hr)
? NoErr
: Err!'- <-- slot already ruled -,

: NoErr;
SS.appts_oul = «error! = NoErr) && (error2 = No Err) &&

(error3 = NoErr) && (error4 = No Err) &&
(error5 = No Err»

? insen(Appt(month.id, day.id, from.hr,LO.hr, note.note),
SS.appts_in)

: SS.appLS_in;

I ScheduleMeeting {
SS.appLS_out = SS.appLS_in;

}
I DisplayCalendar {

$S.appLS_OUl = SS.appLS_in;
}
I DisplayDay (

)

local APPTS appLS;
local ERR error;

SS.appLS_oUl = SS.appLS_in;
error = is_date_ valid(month.id, day.id);
appLS = (error = NoErr)

? fmd_appLS_for_day _specified(SS.appts_in,
month.id, day.id)

: NullList();

I DisplayPeriod (
local APPTS appts;
local ERR errorl;
local ERR error2;
local ERR error3;

SS.appLS_oUl = SS.appLS_in;
error! = is_date_valid(monthSl.id, daySl.id);
error2 = is_date_ valid(monthS2.id, dayS2.id);
error3 = «error! = NoEn) && (error2 = No Err»

? is-J>Criod_ valid(monthSl.id, dayS1.id,
monthS2.id, dayS2.id)

: No Err;
appLS = «error! = NoErr) && (error2 = NoErr) &&

(error3 = NoErr»

191

? fmd_appts_for-J>erio<Upecified(SS.appts_in.
monthSl.id. day$l.id. month$2.id. day$2.id)

: NullList();

month: MonthBot (month.id = -1;)
I TheMonth (month.id = !NT;)

day: DayBot (day.id = ·1;)
I TheDay (day.id = !NT;)

from: FromBot (from.hr = -1;)
I Beg (from.hr = !NT;)

to: ToBot (to.hr=-I;)
I End (to.hr = INT;)

note: NoteBot (note.note = ;)
I For (note.note = STRING;)

File3: cal.t.ssl

/* Attribute type definitions for appointments *'

list APPTS;
APPTS : NullList() [@ :]

I ListConcat(APPT APPTS) [@: @ ["%n"] @]

'* month day from to note *'
APPT : Appt(INT INT INT !NT STRING)

[@ : U%t" @ "r' @ ", n @ " _ .. @ ": n @ "<fOb"]

list SCHEDULES;
SCHEDULES: NulJScheduJeO [@ : J

I ScheduleConcat(SCHEDULE SCHEDULES) [@ : @ ["%n") @]

SCHEDULE: ScheduJe(ID APPTS) [@ : @ ":%n" @ "%n")

/* function deftnitions *'

/*
* is_date_valid (mrn. dd)
• Check if the date specified by nun/dd is valid. Does not
• repon error if either the month or the date are equal
* to the default value set by the bottom productions. -l.
*,

ERR is_date_valid(INT mrn.!NT dd)
(

««mrn < 1) II (mm > 12» && (mrn != -1»
? Err2'* <-- month must be between 1 and 12 *'
: «(mm = 1) II (mm = 3) II (mm = 5) II (mm = 7) II

192

(mrn = 8)" (mrn = 10) II (mrn == 12»
&& «(dd < 1) II (dd> 31» && (dd!= -1)))
? Err3,. <-- day must be between 1 and 31 */
: «(mrn == 4) II (mrn = 6) II (mm = 11»

&& «(dd < 1) II (dd > 30» && (dd != -1)))
? Err4,. <-- day must be between 1 and 30 ·f
: «mrn = 2) && «(dd<1) \I (dd>28» && (dd != -I)))

? Err5,. <-- day must be between 1 and 28 *f
: NoErr

)

l:
,.
* is_hollT_ valid (hr)
* Checks that the hour, hr. is between 1 and 24 inclusive.
* or -I, the initial value.
*/

ERR is_hOlIf_valid (lNf hr)
{

l: ,.

««(hr < 1) II (hr > 24» && (hr != -1»
? Err6" <-- hour must be between 1 and 24 */
: NoErr)

• is_time_slot_valid (fr, to)
* Checks that the time slot specified by the hours "fr" and "to"
• is valid. that is, that "fr" is less than "to (we don't allow
• appts spanning consecutive days) . . /
ERR is_time_slot_valid(INT fr, INT to)
{

l:
,.

«(fr = -1) \I (to = -1) II (fr < to»
? NoErr
: Err?),. <-- from must be less than to */

* overlap (51. el, s2, e2)
* Checks whether the time period 52 to e2, which is the time
* of the appointment being scheduled, overlaps with 51 to e I,
* the time of an appointment in schedule . . /

BOOL overlap(lNf sl, INT el, INT 52, INT e2)
{
,. no conflict if the second appointment ends before the first one */
/* begins, or if the first appointment ends before the second one */
,. begins. */

l:
,.

«(e2 <= 51) \I (el <= s2»
?false
: true)

* is_free (schedule. month. day, from. to)
* Returns true if the time slot specified is clear in the
• list of appointments, schedule.

*'

193

BOOL is_free(APPTS schedule. INT month, INT day. INT from. INT to)
{

with (schedule) (
NullList: true,
ListConcat(head. tail):

with (head) (
Appt(m. d, f. t, *):

«m = month) && (d = day) && overlap(f.t,from.IO»
? false
: is_free(tail, month. day. from. to)

)
} ;

,.
* insert (a. a_list)
* Inserts appt, a. in the right place in a list of appointments.
* a_list, where the list is ordered by the date and time of the
* appointment. Note that a does not overlap with any entries
* in a_list

*'
APPTS insert(APPT a. APPTS a_list)

with(a_list) (

)
};

,.

Null List: a :: NullList().
ListConcat(head,tail):

with(head) (
Appt(m. d, f. t, *):

with(a} (
Appt(a_m. a_d. a_f. a_t, *):

«a_m >m) II
«a_m = m) && (a_d > d» II
«a_m = m) && (a_d = d) && (a_f>= I»)

? head :: insert(a. tail)
: a:: a_list

* fmd_appts_for_day_specified (a_list, nun, dd)
* Selects from a_list, an ordered list of appointments. those
* appointments for the day specified by the month. nun and the
* day. dd.

*'
APPTS find_appts_for_day_specified (APPTS a_list, INT mm. INT dd)
(

with(a_list) (
Null List: NullListO.
ListConcat(head.tail):

with (head) (
Appt(m. d, f. t, *):

«m = nun) && (d = dd»
? head :: find_appts_for_day _specified(tail, mm, dd)
: «m < mm) II «m == mm) && (d < dd)))

? fmd_appts_for_day_specified(tail. mm. dd)
: NullList()

194

)
};

,.
* fmd_appts_for-J>eriod_specified (a_list, mml, ddl, mm2, dd2)
* Selects from a_list, an ordered list of appointments, those
* appointments for the period specified.

*'
APPTS find_apptsjor~riod_specified (APPTS a_list, INf mml, INf ddl,

INf mm2, INf dd2)
(

with(a_list) (
NuliList: NullListO,
ListConcat(head,tail):

with (head) (
Appt(m, d, f, t, *):

is_in-J>eriod(m, d, mml, ddI, mm2, dd2)
? head::

fmd_appts_for_period_specified(tail, mml, ddI, mm2, dd2)
: «m < mmI) II «m = mml) && (d < ddl)))

? fmd_appts_for.JlCriod_specified(tail, mml, ddl,
mm2, dd2)

: NuIlList()

)
};

,.
* is_in~od (m, d, mml, ddl, mm2. dd2)
* Returns true if the day mid falls within the period,
• mml/ddl to mm2/dd2 inclusive.

*'
BooL iUn.JlCriod(INf m, INf d, INf mml, INf ddl, INf mm2, INf dd2)
(

};

,.

«(m> mml) && (m < mm2» II
«m = mml) && (m = mm2) && (d >= ddl) && (d <= dd2» II
«m = mml) && (m!= mm2) && (d >= ddl) II
«m != mml) && (m = mm2) && (d <= dd2)))

* is~riod_valid (mml, ddl, mm2, dd2)
* Rerurns true if the date mmI,ddl comes before mm2/dd2.
* The two dates are guaranteed to be valid.

*'
ERR isJleriod_valid (INf mmI, INf ddl,lNT mm2, INT dd2)
(

};

««mml = -1) II (ddl = -I) II (mm2 = -1) II (dd2 = -1» II
(mmi <mm2) II
«mmi = mm2) && (ddl < dd2)))
?NoErr
: Err8())" <-- first date must be less than the second *'

File 4: cal.u.ssl

,. Unparsing *'

195

calendar: Calf @ ::= .. Group "@ "%n%n"
" Appointment Manager [or" @ "%n%n"
s1 calendar.pendin8-mt8-requests s2 @ "%n%n"]

group: GroupBot["::= "<group>"]
I GroupName(" ::="]

owner: OwnerBot[" ::= "<owner>" I
I Name(A ::=")

commands: CommandsNil[":)
I CommandsPair[A:" ["%n%n") @I

command: CommandBot[A ::= "<command>"]
I MakeAppointment[@ ::= @ "I" @ error1 ", "@ error2 .. - " @

error3 error4 errorS ": "@)
I ScheduleMeeting{@ ::= "schedule (" @ ") for" @ " hrs " errorl

" sometime between"
@ "f' @ error2 " and" @ "f' @ error3 error4
" re: .. @ "%t%t%n" error date "%n%b%b"]

I DisplayCalendar[@ ::= "%t%nAppointments:9'Ot%n"
command.appt5_oUl "%b%b"l

I DisplayDay[@ ::= "display calendar for " @ ",. @ error "%n%t%n"
"Appointments, "month.id "r day.id
":%t%n" appts "%b%b"]

I DisplayPeriod[@ ::= "display calendar from"@ "f' @ errorl
" to" @ HI" @ error2 error3 "%n%t%n"
"Appointments. "monthSl.id "r daySl.id " to ..
monthS2.id ",. dayS2.id
":%t%n" appts "%b%b"]

month: MonthBot[A ::= "<month>"]
I TheMonth[" ::= AI

day: DayBot[" ::= "<day>"]
I TheDay[A ::= A]

from: FromBot[A ::= "<from>"]
I Beg[" ::= ")

to: ToBot[" ::= "<to>"]
I End[" ::= "]

note: NoteBot[" ::= "<note>"]
I For[" ::= "]

attendees: NoOne[" :]
I Two[" : " [", "] @I

person: PersonBot[" ::= "<name>" I
I RealPerson[" ::= A error]

196

duration: TimeBot{ " ::= "<timo"]
I Time[" ::= "]

purpose: PurposeBot[" ::= "<purpose>"]
I ThePurpose[1\ ::= "]

FileS: cal2.m.ssl

1* Semantics for meetings'"

1* Attribute declarations *'
calendar {

interface syn ALL_MfGS_ITEM owners_mtg5;
interface inh ALL_MTGS_UST alCmtgs_requested;
syn MTGS pendinLmtLrequests;
);

commands. command {
inh MTGS mtgs_in;
syn MTGS mtgs_out;
);

attendees. person {
inh ATTENDEES au_in;
syn ATTENDEES au_out;
);

purpose (
syn STRING note;
);

duration {
syn!NT hrs;
);

1* Semantic equations *'
calendar: Cal {

local STR 51;
local STR 52;

commands.mtgs_in = NullMtgList();
SS.owners_mtgs = MtgsItem(owner.name. comrnands.mtgs_out);
SS.pendinLmtLrequests =

f(SS.all_mtgs_requcstoo, SS.all_appts);
sl = (S$.pendinLmtLrequests = NUllMtgList)

? ""
: "%t%nPending Meeting Requests:%t%n";

s2 = ($S.pendinLmtLrequests = NullMtgLisl)
? tilt

: "%b%b%n%n";

commands: CommandsNil (
SS.mtgs_out = $S.mtgs_in;

)

197

I CommandsPair (

)

command.mtgs_in = $S.mtgs_in;
commandsS2.mtgs_in = command.mtgs_out;
$S.mtgs_out = commandsS2.mtgs_oul;

command: CommandBot (
S$.mtgs_out = SS.mtgs_in;

)
I MakeAppointment (

SS.mtgs_out = SS.mtgs_in;
)
I DisplayCalendar (

SS.mtgs_out = SS.mtgs_in;
)
I DisplayDay (

$S.mtgs_out = SS.mtgs_in;
)
I DisplayPeriod (

S$.mtgs_out = SS.mtgs_in;
)
I ScheduleMeeting (

local ERR error1;
local ERR error2;
local ERR error3;
local ERR error4;
local BOOL ready_to_schedule;
local CHUN1CUST possible_days;
local CHUNICUST possible_times:
local WHEN mtLtime;
local ERR error;
local STR date;

auendees.au_in = NoAttO;
errorl = is_duration_valid(duration.hrs);
error2 = is_date_valid(monthSl.id, daySl.id);
error3 = is_date_ valid(monthS2.id, day$2.id);
error4 = «error2 = NoErr) && (errorJ = Now»

? is_meetinLperiod_ valid(monthSl.id, day$l.id,
monthS2.id, day$2.id)

: NoErr;
ready_to_schedule = «errorl = NoErr) && (error2 = NoErr) &&

(error3 == NoErr) && (error4 = No Err) &&
(monthS1.id 1= -1) && (day$1.id 1= -1) &&
(monthS2.id != .1) && (dayS2.id != -1»;

possible_days = ready_to_schedule
? chunk(monthSl.id, daySl.id, 9,

monthS2.id. dayS2.id. 18)
: NoChunks();

possible_times = ready_to_schcdule
? break3hunks(possible_days. duration.hrs)
: NoChunksO;

mtLlime = ready_to_schedule
? schedule(possible_times. attendees.au_out,

(calendar.alCappts). purpose.note)
: When(-I. -1. -1. -1);

,. When(-9. -9. -9. -9): meeting could not be scheduled .,
,. with given constraints. .,
/- When(-I. -1. -1. -1): meeting not scheduled because -/
/* of erroneous/missing dates. ./
date = «mlLtime = When(-9. -9. -9, ·9» II

198

(ml&-time = When(-I. -I. -1. -1)))
?

: "meeting scheduled for" # date_to_str(mt&-time);
error = (ml&-lime = When(-9. -9. -9. -9»

? ErrlO 1* <-- cannot schedule this meeting *'
: NoErr,

$Smtgs_out =
«error = NoErr) && (mt&-time != When(-I. -1. -1. -1)))

? Mlg(attendees.att_out, mt&-lime. purpose.note) ::
SSmtgs_in

: SSmtgs_in;

attendees: NoOne {
S$.au_out = SS.au_in;

}
ITwo{

)

person. au_in = SS.att_in;
auendeesS2.att_in = person.all_out;
SS.au_oul = altendeesS2.att_out;

person: PersonBot (
SS.au_out = SS.au_in;

)
I RealPerson (

local ERR error;

error = is...group_member(lD. (calendar.alI_appls});
SS.au_out = (error = NoErr)

? (SS.atUn @ (lD :: NoAtt(») '* so lisl is not *' '* reversed. *'
: SS.au_in;

duration: TimeBol (
SS.hrs = -1;

)
I Time (

SS.hrs = !NT;
)

purpose: PurposeBol (purpose.note = ;)
I ThePurpose{ purpose.note = STRING; }

File 6: ca12.t.ssl

1* Attribute type defInitions for meetings *'
list ALL_MTGS_LIST;
ALL_MTGS_LIST: EmptyMtgsLislO [@ : 1

I MlgsListConcal(ALL_MTGS_ITEM ALL_MTGS_LIST) [@ : @ ["%n"] @]

ALL_MTGS_ITEM: Mtgsltem(ID MTGS) [@ : @ ":%n" @ "%n" 1

199

liuMTGS;
~ITGS : NullMtgList() 1 @ : J

~ MtgLislConcat(MTG MTGS) [@ :@I"%n"J @ I

MTG
, - dale/time purpose -,

: Mlg(ATTENDEES WHEN STRING)
(@'""'""("@"'"@"'"@""b")

list ATTENDEES;
AITENDEES: NOAlt() [@: I

I AuConcat(m ATTENDEES) (@:@[". "I@I

,- month day from 10-,
WHEN, WOO"(INT INTINT INTH@'@"f'@", "@"."@)

t- month day from(>=9) 10«=18) -'
CHUNK, Ch,,",(INT INT INT l!'IT H@ '@ "r@ ", ,.@ "."@)

lisl CHUNICUST;
CHUNiCUST: NoChwlksO (@ : I

I ChunkConcal(CHUNK CHUNK_UST) [@ :@ [M%nMj@ J

r funclion defmilions -,

r
• is_duration_valid (hrs)
- Checks if the duralion of a meeting, hrs, is Icss than Of

- equal to 9. Meetings are only scheduled between 9am and
- 6 pm.
,/

ERR is_duration_ valid(lNT hrs)
{

);

r

«(hIs = -1) II «(hes > 0) && (hIs <= 9»
? NoErr
: Errll) , - <-- meeting length must be between I and 9 hours -,

- is_meetin&,...perio(Cvalid (mml. ddl. mm2. dd2)
• Rerums lnIe if the date mm l/ddl is equal 10. or comes
• before mm2Jdd2. The IWO dates are guaranteed 10 be valid.
' /

ERR is_meetin&,...penod_valid (INT mml. INT ddl . !NT mm2. INT dd2)
{

((<runl = .1)" (ddl = .1) n (mm2 = ·1) ' (dd2 = . 1»"
(mm l < mm2) II

);

{(mml = mm2) && (ddl <= dd2»)
? Now _
: £n12) r < •• first date must be less than or equal to the second I

200

* case he would have an enlI}' in all_applS.
*/

ERR is..group_member(ID name, SCHEDULES all_applS)
(

with(aICapplS) (

)
};

/*

NullSchedule: Err9,/* <-- person not member of group */
ScheduleConcat(head, tail):

with (head) (
Schedule(n, *): (n = name) ? NoErr : is-8fOup_member(name, tail)

)

• lookup_applS (all_applS, name)
* Returns the list of appointmenlS for the specified person.
* We only call this function with a name that has been put in
* all_applS, so it is
• not possible for it not to be found; however, we include
* the case for NullScheduleO because it is required by SSL.
*/

APPTS lOOlrup_applS (SCHEDULES alUpplS, ID name)
(

with (aII_applS) (
NullSchedule: NullList(),
ScheduleConcat(head, tail):

with (head) (

)
};

/*

Schedule (id, applS):
(id = name)? applS : lookup_applS(tail, name)

* chunk (mml, ddl, nl, mm2. dd2. ttl)
• Creates a list of chunks of free time between mml/ddl/ttl and
• mrn2Jdd2/tt2. ttl and n2 are guaranteed to be between
* 9 and 18 inclusive, which is the time during which
• meetings can be scheduled. The biggest chunk is
• all day, which is the chunk m/dI9/l8.
*/

CHUNICUST chunk (!NT mml, INT ddt, INT ttl, !NT mm2, INT dd2, 1NT ttl)
(

«(mmt = mm2) && (ddl = dd2»

)
};

/*

? Chunk(mmt, ddl, nl. n2) :: NoChunksO
: «mml == mm2) && (ddl < dd2»

? (chunk_days(mml, ddt, ttt, dd2-t, l8)@
chunk(mmt, dd2, 9, mml, dd2, n2»

: (mml <mm2)
? (chunk_mos(mml, mm2-1)@

(chunk_days(mm2, 1,9, dd2-1, 18) @
chunk(mm2, dd2, 9, mm2, dd2, tt2»)

: NoChunksO /* never true */

* chunk_days (m, ddl. ttl. dd2, ttl)

201

)
);

1*
- schedule (possible_times, p. all_appts, purpose) &
- ok_with_rest (p, all_appts, m, d. f, l, s)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Finds a time for scheduling a meeting, where possible_times
contains a list of chunks. where each chunk is exactly the
length of the meeting; p is the list of attendees; all_appts
contains everybody's calendar; and purpose describes
what the meeting is for. The list of possible_times is
examined W1til either a meeting time is found that does
not conflict with any attendee's schedule, or the list
of possible times is exhausted, in which case the meeting
cannot be scheduled.

The way to agree to a meeting is to enter an appointment
in your calendar with the exact information as the meeting.
Therefore. we check that if there is an appointment with
the same values as the meeting being scheduled. that this
does not cause a conflict.

WHEN schedule (CHUNK_LIST possible_times. A TfENDEES p, SCHEDULES alCappts,
STRING purpose)

(
with(possible_times) (

)
);

NoChunks: When(-9, -9, -9, -9), '* can't schedule-,
ChunkConcat(head. tail):

with(head) (
Chunk(m, d, f, t):

(ok_with_rest(p, all_appts, m, d. f, l, purpose»
? When(m. d. f, t)
: schedule(tail, p. all_appts. purpose)

BOOL ok_with_rest(ATIENDEES p, SCHEDULES alCappts,!NT m,!NT d.
!NT f, !NT l, STRING s)

(
with(p) (

)
) ;

NoAttO: true,
AuConcat(head.tail):

(is_free(lookup_appts(all_appts, head), m, d. f, t) II
conflict_wi th_appt_for_same_meeting(lookup_appts(all_appts. head),

m, d, f, l, s»
? ok_with_rest(tail, all_appts, m, d, f, l, s)
: false

BOOL conflict_ with_appcfocsame_meeting (APPTS a. !NT mo, INT da.
!NT fr, !NT to, STRING str)

(
with (a) (

NullList: false,
ListConcat(head. tail):

with (head) (
Appt(m. d, f. l, s):

«m = mo) && (d = da) && (f = fr) &&

203

*
*

Returns free chunks for the days ddl/ttl to dd2/112 of
the same month. m.

*'
CHUNK_UST chunk_days (!NT m.!NT ddl.!NT ttl. !NT dd2.!NT tt2)
(

} :

/*

({ddl =dd2)
? Chunk(m, ddl. ttl. 112) :: NoChWlksO
: Chunk(m, ddl. ttl. 18):: chunk_days(m. ddl+l. 9. dd2. tt2»

* chunk_mas (mml. mm2)
* Returns free chWlks for the period of time between
* mm1/1 to mm2/30. I'm taking a shortcut here and considering
* all months to have 30 days.
*/

CHUNK_UST chunk_mas (!NT mml.!NT mm2)
(

};

/*

«mml =mm2)
? chunk_days(mml. 1.9.30. 18)
: chunk_days(mml. 1.9.30. 18) @ chunk_mos(mml+l. mm2»

* break_chunks (free_chunks. length) & small_chunks (ch, length)
* Breaks up each chunk in the list of free chunks. free3hunks,
* even smaller chunks. where each small chunk is exactly
* length hours.
*/

CHUNK_UST break_chunks(CHUNK_UST free_chunks. !NT length)
(

with (free_chunks) (
NoChunks: NoChunksO.
ChunkConcat(head.tail):

with(head) (

)
} ;

Chunk(m, d. f. t):
«t-O < length) /* no good - throwaway chunk *'

? break3hunks(tail. length)
: «t-f) = length)

? (head :: break_chunks(tail. length»
: /* (t-O > length */

(small_chunks(head, length) @
break_chWlks(tail.length»

CHUNK_UST small_chunks (CHUNK ch. !NT length)
(

with (ch) (
Chunk(m. d, f. t):

«t-O < length)
? NoChunksO
: «t-O = length)

? (Chunk(m. d, f. t) :: NoChunks(»

: /* (t-f) > length *'
(Chunk(m. d, f. f+length) ::
srnall_chunks(Chunk(m, d, f+1. t). length»

202

)
};

1*

(t = to) && (s = Sir»
? true

: conflict_ with_appt_for_same_meeting(tail.
mo, cia. fr, to, Sir)

* date_to_SIr (date)
* Converts date, which is made of four integers representing
* the month., the day, from and to respectively, to
* a siring.

*'
STR date_LO_SIr (WHEN date)
{

with (date) (
When(m, d, f, t):

INTtoSTR(m) # ",. # INTtoSTR(d) # .. , .. #
INTtoSTR(f) # .. - .. # INTtoSTR(t)

)
} ;

1*
* f (all_mtgs_requested, all_appts) &
* g (aICmtgs_requested, all_appts)

*
*
*

Returns the list of meetings that have been requested but
which have not yet been agreed on by all of the attendees.

*'
MTGS f(ALL_MTGS_UST all_mtguequested, SCHEDULES all_appts)
{

with (all_mtgs_requested) (
EmptyMtgsList: NuIIMtgList(),
MtgsListConcat(head,tail):

with(head) (

)
};

Mtgsltem(*, mtgs): g(mtgs, all_appts) @ [(tail, alCappts)
)

MTGS g (MTGS m, SCHEDULES all_appts)
(

with (m) (

)
j;

NullMtgList: NuiIMtgList(),
MtgListConcat(h, t):

with (h) (
Mtg(people. date, purpose):

is_mt&.-accepted(people, date, purpose, all_appts)
? get. all_appts)
: h :: get, all_appts)

1*
* is_mt&-accepted (people. date, purpose)
• ReturnS true if all the attendees have accepted the
• meeting [or the date and p~rpo.se specified .. A pers?n
• accepts a meeting by entenng !l as an appomtmcnt m

204

*
*
*/

his calendar, with exact matches for the date and
purpose required.

BOOL is_mt&..accepted (ATIENDEES people, WHEN date, STRING purpose,
SCHEDULES all_appts)

(
with (people) (

)
} ;

/*

NoAtl.: true,
AttConcat(head, tail):

with (date) (
When(m, d, f, t):

has_enlry(loolcup_appts(alLappts, head), m. d, f, t. purpose)
? is_mt&..accepted(tail, date, purpose, all_appts)
: false

* has_enlry (appts, rna, da., fr, to, purpose)
* Returns true if there is an enlry in appts for the meeting
* on the date, mo/da. between the hours, fr and to, for the
* purpose specified.
*/

BOOL has3nlry (APPTS appts, INT rna, INT da.1NT fr, !NT to, STRING purpose)
(

with (appts) (

)
};

Null List: false,
ListConcat(hcad, tail):

with (head) (
Appt(m, d, f, t, for):

«m = rna) && (d = da) && (f = fr) && (t == to) &&
(for = purpose»
? true
: has_cnlry(tail, mo, da. fr, to, purpose)

File 7: cal.lexical.ssl

/* Lexical syntax */

NEED: < "need" >;
FOR: < "for" >;
RE: < "re" >;
DISPLA Y: < "display" >;
DAY: < "day" >;
PERIOD: < "period" >;
TO: < "to">;
ALL: < "all" >;
SOMETIME: < "sometime" >;
BETWEEN: < "between" >;
AND: < "and" >;
INTEGER: < [0·9)+ >;
WHITES PACE: < [\ \L\n] >;
ill: < [a-zA-Z)[a-zA-ZO-9]*I[?] >;
STRING: < ([II\nJ+) >;

File 8: cal.errors.ssl

205

1* Errors and their print representation -,

ERR: NoEnO[@ :]
I ErtIO [@: .. { <- slot already filled) ..]
I En20 [@: .. { <-- month must be between I and 12 } ..]
I En30 [@: .. { <- day must be between 1 and 31 } ..]
I Ert4() [@: .. { <- day must be between 1 and 30 } "]
I Ert50 [@: .. { <- day must be between 1 and 28) ..]
I Err60 [@: .. { <-- hour must be between 1 and 24) ..]
I Ert70 [@: " { <- from must be less than to) ..]
I En80 [@: .. { <-- fIrst date must be less than the second) ..]
I Err90 r@: .. { <- person not member of group) ..]
I EnlO() [@: .. { <-- cannot schedule this meeting) "]
I Err 1 10 [@: .. (<- meeting length must be between I and 9) "]
I Enl2() [@:" (<- flTSt date must be less than or equal to the second) " 1

File 9: cal.transrorms-SSl

1* Template commands -,

transfoITn calendar
on "calendar"

<calendar.>: Cal«group>. <owner>. <commands»;

transfoITn command
on "make-appointment"

<command>: MakeAppointment{<month>. <day>. <from>.<to>. <note».
on "schedule-meeting"

<command>: ScheduleMeeting(<attendees>. <duration>.
<month>. <day>. <month>. <day>. <purpose».

on "display-caJendar"
<command>: DisplayCalendar().

on "display-day"
<command>: DisplayDay(<month>. <day».

on "display-period"
<command>: DisplayPeriod(<month>. <day>. <month>. <day»

206

