
5C~ErlCEJ
-1

l~~-__2-i~~~~=­

I

. l
osu: A High speed Software Development Environment

sherry Yang
Dr- Ted G. Lewis

Department of computer science
oregon state university

89-60-21 Corvallis, OR 97331-3902

•

n
n
n
fl
0
R

l

[I
j

I l
u
f I

LI

OSU: A High Speed Software Development
Environment

by

Sherry Yang

A research paper

Submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Major Professor: Dr. Ted G. Lewis

Completed June 8, 1989

t
I

n
A

n

[I

11

I
j

J

ABSTRACT

Several problems with user interface design and implementation

have been identified: (1) user interfaces are difficult and time­

consummg to design and implement; (2) most user interface

management systems (UIMS) are themselves difficult to use by a

programmer; (3) UIMS' s have not been integrated with other tools that

support structured design, coding and maintenance, thus failing to

maximize programmer productivity.

In the Oregon Speedcode Universe (O.S.U.) project, we hao taken

the following approaches: (1) direct manipulation programming

technique is used to address the problems with user interface design

and implementation; (2) integration of UIMS with CASE tools; and (3)

high-level program generation from scripts, and reusable components.

This report surveys some of the existing UIMS's and describes O.S.U., a

high-speed software development system. The main emphasis of this work

is the design and implementation of Structure Chart Editor in O.S.U.. The

Structure Chart Editor has three unique features: 1) combination of

functional decomposition with object-oriented design, 2) alternate

architectural views, e.g. call graph, uses graph, object graph, and graphical

display of procedures, 3) merging the user interface specification with

design and coding specifications.

Experimental results suggest that the techniques employed by

OSU can be used to develop 50-90% of an application without explicit

programming yielding 2-10 fold productivity improvements.

n
n

~

D
n

l
[I
I
I
u
I J

[]

u
J

LI

Acknowledgments

I would like to express my appreciation to Dr. Ted G. Lewis, for

his guidance, understanding, and encouragement. Full credit for the

origination of the idea for Oregon Speedcode Universe must go to Dr.

Lewis. Working with him is a rewarding experience and I am

~ooking forward to continue working with him.

I thank Dr. Walter Rudd and Dr. Bruce D'Ambrosia for serving

on my committee and for their helpful comments.

I thank other members of the Oregon Speedcode Universe: Fred

Handloser, Sharada Bose, Jagannath Raghu, Jihwan Lin, Ching-pin

Liao, Kritawan Kruatrachue, James Armstrong, Molly Joy, John Chia

and very special thank you to Chia-Chi Hsieh, who is always there

when I needed a friend, no matter how far away she is.

I thank the "gang": Kirt Winter, Karl Schricker, Bob Singh,

Becky Roof, and Paula Hannan for the good times we had.

Lastly, I would like to express my gratitude to my parents,

grandma and my brother Samson for their support and

encouragement.

n
n

Table of Contents
n
fl

0. Introduction Page 1

A. The Problem Page 1

D B. The Approach Page 2

r C Scope of work Page 4

R D. Significance of work Page 4 L

I. User Interface Management Systems (UIMS) Page 6

I A. Introduction Page 6

1. User interface toolkit Page 7

11 2. User Interface management system (UIMS) Page 7

B. Survey of UIMS Page 1 1

I 1. History of Development Page 1 1

J
2. Generations of UIMS Page 12

a. First ge!leration. Page 12

I b. Second generation Page 13

C. Third generation Page 20

I d. Fourth and Future generations Page 24 .

n C Ultimate goal of UIMS Page 2 5

II. Oregon Speedcode Universe (O.S.U.) Page 2 7

A. Integration of UIMS and CASE Page 2 7

B. Components of O.S.U. Page 2 9

1. UIMS Page 2 9

a. RezDez Page 2 9

n
n
n
B
n
R

l
[J

l

b. Graphical Sequencer

c. Code Generator

2. CASE tools

a. Structure Chart Editor

b. VIGRAM

3. Software Accelerators

III. Design of Structure Chart Editor

A. Integration of UIMS and CASE

B. New and Reusable Software Components

C Combination of Functional Decomposition and

Object-oriented Methodology

IV Evaluation and Enhancements

A. Evaluation and enhancement of the main user

interface

1. Menu

a. Old menu

b. New menu

2. Functionality

B. Evaluation and enhancement of RezDez

1. Main selection dialog

a. Old main selection dialog

b. New main selection dialog

2. File 1/0

Page 30

Page 32

Page 3 2

Page 3 2

Page 40

Page 42

Page 4 3

Page 43

Page 45

Page 46

Page 4 7

Page 4 7

Page 4 7

Page 4 7

Page 4 8

Page 5 0

Page 5 0

Page 5 0

Page 5 0

Page 51

Page 5 2

r-1

n 3. Menus in each resource editor Page 5 2

II a. Old menu Page 5 2

I b. New menu Page 5 3

A 4. Preview Capability Page 5 5

D
5. Enhancement to Windows Page 5 5

6. Enhancement to Menus Page 5 6

n a. Old menu entry dialog Page 5 6

b. New· menu entry dialog Page 57

I 7. Enhancement to Dialogs Page 5 8

C Evaluation and Enhancement of Code Generator Page 5 9

[I V o.s.u. . The solution? Page 6 3 . .
A. Limitations Page 63

I B. Conclusion Page 63

J Appendix Page 6 4

I
A. Project Statistics Page 64

B. Dataflow Diagram of O.S.U. Page 65

References Page 6 6

lJ

7
n
n
A

D
R

[]

I

J

u

0. Introduction
A. The Problem

User interfaces are difficult and time-consuming to implement.

Because they constitute approximately 70% of a typical application, they

represent a major obstacle to software development. The easy-to-use

direct-manipulation interfaces popular on many modern systems are

among the most difficult to implement. These interfaces let the user

operate directly on objects that are visible on the screen, performing

rapid, reversible, incremental actions. Direct manipulation interfaces,

such as those found on the Apple Macintosh, are difficult to create

because they often provide elaborate graphics, many ways to give the

same command, many asynchronous input devices, a mode-free

interface (the user can give any command at virtually any time) and

rapid semantic feedback. Semantic feedback is the appropriate

response to user actions based on specialized information about the

objects in the program.

Since user interfaces constitute a significant portion of a typical

application, automating the production of user interface code seems to

be the solution to the problem. Many user interface management tools

and systems have attempted to do exactly that, but with little success.

The main problems with the existing systems are they are too difficult

to use, in that they usually require the programmer to know hundreds

of procedures in a toolkit and/or special-purpose language or diagram

to specify the user interface; and they offer too little functionality

[Myers 89]. Most user interface management systems (UIMS) provide

only a small part of the design task. While they are very good at

handling menus and scroll bars, they can rarely be used to help control

- 1 -

n
n

A

D
n

11

I
I

11

the display and manipulation of the application's data objects. Many of

these systems make no attempt to handle an application's output. In

addition, most systems · require the use of a special script language to

provide functionality. This causes problems, because in additional to

the learning curve, a programmer must . revert to using low-level coding

tools to do the complete application. Finally, UIMS's have not

previously been integrated with other tools. For example, most

Computer-aided Software Engineering (CASE) tools ignore user interface

management systems, and separate design into the functional part and

the interface part. In order to achieve the maximum increase of

programmer productivity possible from these tools, UIMS must be

integrated with other tools.

B. The Approach

We suggest that the problems with user interfaces and current

UIMS's can be overcome with a user interface management system

based on direct manipulation programming technique, integration of

UIMS with CASE, and automatic code generation.

Direct manipulation is a new programming concept. Its main

principle is showing instead of telling. Telling is done by manuals,

programming languages, and other written documents which attempt to

teach user and machine alike. Showing is done by doing in the form of

direct manipulation of "objects". No manuals, programs, or other

written documents are needed and there is no linguistic ambiguity m

showing because showing is direct. Showing a computer what to do 1s

difficult, and at present, less successful than traditional methods of

giving instructions by telling via a programmmg language. However,

-2-

n
n
n
n
D
n

[)

)

)

showing has the potential for maJor advances in programmer

productivity while programming by telling has reached a 20-year

plateau [Musa 85]. Even an imperfect software tool for programming by

showing can have dramatic impact on programmer productivity. In

addition, direct manipulation programming is concrete, not abstract. It

allows the user to work with objects of interest, user interface objects,

directly, not through some abstraction notation or languages. Direct

manipulation programming ideally provides a means for the

programmer to use only the mouse to indicate what the programmer

desires~

In order to incorporate functionality to the user interface of an

application, CASE tools need to be integrate with user interface

management systems. The CASE tools need to serve not only as

automated design tools, but also automated program generator tools

that automatically generate source code from design specifications. The

CASE approach is chosen because of the many benefits that can be

derived from it. · It enables the reuse of software components, it speeds

up development process, and it simplifies program maintenance. In

sum, CASE improves programmer productivity.

Oregon Speedcode Universe (O.S.U.) is a high-speed software

development environment for the Macintosh. Its has a UIMS that

allows the user to prototype the user interface portion of an application

very rapidly and automatically without explicit coding. O.S.U. is based

on direct manipulation programming. By allowing direct manipulation

of the user interface objects, O.S.U. frees the programmer from the need

to learn new language or diagrammatic technique for specifying the

-3-

I

n
n
[l

n
n
Fl

7
I

I I

I
I

11

ll
l l
j

u
u

user interface. In contrast, the programmer must understand many of

the 600+ ROM-based toolbox routines to write Macintosh applications.

The pair of CASE tools integrated with the UIMS portion of O.S.U.

are : 1) Structure Chart Editor, which is a modular design tool with

which the programmer specifies the modular structure of the

application, and 2) the VIGRAM(Vlsual proGRAMming) tool, which is a

detailed design tool with which the programmer specifies the down-to­

the-statement level detail of a procedure/function.

O.S.U., though limited in functionality in its current state, is

· designed for wide-spectrum prototyping. To illustrate its wide­

spectrum prototyping functionality, current work is underway to design

and implement several domain-specific software accelerators. [Lewis

89]

C. Scope of Work

The design and implementation of the Structure Chart Editor, a

programming environment which combines 2 structured design

methods with user interface design, is the main scope of this work. Also

included in this work is a survey of existing user interface management

systems and comparison between earlier versions and the existing O.S.U.

system.

D. Significance of Work

Some preliminary results using O.S.U. indicate that direct

manipulation programming, integration of UIMS and CASE and

automatic program generation, O.S.U. can achieve a 3.3-fold increase m

programmer productivity in limited use [Lewis 89]. Further

-4-

t

n
D

n
n
R
]

I
IJ

I
IJ

d
IJ

experimentation is needed before it is clear how powerful this approach

1s. However, we anticipate 2 to 10 fold improvments.

The CASE portion of the work is particularly significant in that it is

the first CASE tool to combine structure charts from functional

decomposition method with object-oriented design methodology. It is

also the first CASE tool to combine user interface design with structured

design methodologies.

-5-

rl

n
n
fl
D
R
I
]

11

I
I

f

I
Li

LI

I. User Interface Management Systems (UIMS)
A. Introduction

Creating good user interfaces for software is very difficult.

Interface software is often large, complex, and difficult to debug and

modify [Myers 89]. The user interface portion of software systems

seems to be the bottleneck of software development. Consequently,

many tools and systems have been developed in an attempt to ease

their design and creation.

A user-interface tools come in two general forms: User interface

toolkits and user interface management systems.

User interface toolkit is a library of interaction techniques, where

an interaction technique is a way of using a physical input device (such

as mouse, keyboard, tablet, or rotary knob) to input a value (such as

command, number, percent, location, or name) along with the feedback

that appears on the screen. Examples of interaction techniques are

menus, graphical scroll bars, and on-screen buttons operated with the

mouse. A programmer uses a user-interface toolkit by writing code to

invoke and organize the interaction technique. Toolkits do not provide

much automatic support for the design of interfaces or for the

specification of sequencing and dialogue control.

A user interface management system (UIMS) 1s an integrated set

of tools that help a programmer create and manage many aspects of a

user interface. A UIMS helps with both designing and implementing the

interface and so encompasses a broader class of programs than does a

toolkit.

-6-

l
I

I
I

l
n
n
~

D
n

I
[

I

J I
I
LI

J

1 . User interface toolkits

There are two kinds of toolkits: 1) a collection of procedures that

can be called by application programs, like the Macintosh toolbox; and

2) a collection of objects with inheritance, which make it easier for the

designer to customize interfaces, like the X.11 toolkit for the X window

system manager. With all toolkits, the designer writes programs in a

conventional programming language to control the interface. A toolkit

typically includes hundreds of procedures that implement many

interaction techniques.

The problem with using toolkits is that they provide limited

interaction styles and are often expensive to create and difficult to use.

It is often not clear how to use the procedures to create a desired

interface. Hence, not only do we need a collection of procedures or

objects, but we also need an environment that will aid in the design,

implementation and maintenance of the user interface component of an

application.

2. User Interface Management System (DIMS)

· A UIMS, according to Hix [Hix 89], is a set of interactive tools for

the development and execution of the user interface of a software

system. In particular, they aid in specification, design, prototyping,

implementation, execution, evaluation, modification, and maintenance of

the user interface component of an interactive software system.

User Interface Management Systems [Cardwell 87] have 3

characteristics:

-7-

I

t
I

n

n
n
fl
I
I

f I
I

I I

I

J

I

• They comprise a set of shared and reusable code modules, which

are separate and independent from the application specific

software.

• The shared or reusable code modules are capable of implementing

an abstract or generalized set of user interaction or dialogue

techniques. For example, the modules can provide command-line

parsers, menuing systems, and forms systems. Moreover, each of

these dialogue techniques can be implemented in a . wide variety of

a pp li ca ti on s.

• The UIMS code modules are general enough to work with a set of

methods, techniques or tools for the description or specification of

the user interface for a wide range of specific applications.

Hence a UIMS is not only a modular, application-independent user

interface, but it is also a set of user interface code modules that may be

reconfigured and reused with different application together with a

collection of software tools that enable this to happen.

A UIMS helps the designer combine and sequence interactions

between user and application. Some UIMS's help the designer create

toolkits, while others help the designer lay out and use predefined user

interface objects.

A comprehensive UIMS handles all aspects of the interface, which

includes all visible parts of the display and all aspects of the dialogue

between the user and the application. The UIMS should

• Handle the mouse and other input devices,

• Validate user inputs,

• Handle user errors,

• Process user-specified aborts and undos,

- 8 -

l
n
n
n

n
I
I

11

I
I

I
J

• Provide appropriate feedback to show that input has been received,

• Provide help and prompts,

• Update the display when application data changes,

• Notify the application when the user updates application data,

• Handle field scrolling and editing,

• Insulate the application from screen-management functions,

• Automatically evaluate the interface and propose improvements, or

at least provide information to help the designer evaluate the

interface, and

• Let the programmer customize the -interface.

In order to perform these functions, the UIMS may contain

• A toolkit,

• A dialog-control component that handles event sequencing and

interaction technique,

• A programming framework that helps guide and structure the

interface code . and application semantics,

• A mouse-based layout editor to specify the location of graphical

elements, and

• An analysis component that may either evaluate the interface

automatically based on rules and guidelines or save information such

as keystrokes for later evaluation by the designer.

Using interface tools have 2 advantages in the following areas:

1. It results in better interfaces:

• Designs can be rapidly prototyped and implemented, possibly before

the application code is written.

-9-

~

n
n
fl
D
n
n
I

f I
I
J

ti
I J

l I

u
u

• It is easier to incorporate changes discovered through user testing

because the interface is easier to modify.

• One application can have many interfaces.

• More effort can be expended on the user interface tools than may be

practical on any single interface because the tools will be used again

and again.

• Different applications will have more consistent interfaces because

they have been created with the same user-interface tools.

• It is easier to investigate different styles for an interface, thereby

providing a unique look and feel for a program.

• It is easier for many specialists to be involved in designing the

interface, including graphic artists, cognitive psychologists, and

human factors specialists. Professional interface designers, who may

not be programmers, may be in charge of the overall design.

2. The interface code will be easier to create and more economical to

maintain:

• The code will be better structured and more modular because it has

been separated from the application. This lets the designer change

the interface without affecting the application, it lets the

programmer change the application without affecting the interface.

• The code will be more reusable because the user interface tools

incorporate common parts.

• The reliability of the interface is higher because the code is created

automatically from a higher level specification.

• Interface specifications can be represented, validated, and evaluated

more easily.

-10- .

n
n
n
□
D
n
I

LI

u
II
)

I J

• Device dependencies are isolated m the user-interface tool, so it is

easier to port an application to different environments.

B. Survey of UIMS

1. History of Development

The term UIMS was first used by Kasik in 19 82 [Kasik 82].

However, the concept of tools for supporting development and execution

of the user interface existed well before this time. In 1982, a workshop

on Graphical Input and Interaction Techniques was held in Seattle,

Washington [GIIT 83]. The purpose of this meeting was to understand

and document an emerging change in technical emphasis on interactive

graphics and interaction techniques in the human-computer interface.

Results of this workshop included exposition of what constituted a

UIMS, its role in the software development process, and an

acknowledgement of the need for interdisciplinary research and

exchange in this field. Emphasis at this workshop was heavily on run­

time support for the interface with much less concern for design-time

tools.

Closely following the Seattle workshop, another working meeting

was held in Seeheim West Germany in 1983 [Pfaff 85]. Focus at this

session included concentration on the role, model, structure and

construction of a UIMS. A significant result of this workshop was what

has become known as the "Seeheim model" that describes the logical

components of a DIMS.

ACM SIGGRAPH sponsored a workshop, again m Seattle,

Washington, in 1986. Its goal was to synthesize new ideas and

directions for future research in software tools for interface

-11 -

7
n

f)

D
n

11

11

I
l
l I

management. Working groups addressed topics such as goals and

objectives of UIMS the relationship between the UIMS and the

application, and the environment for UIMS. A main topic addressed

was the process of designing human-computer interface, in particular,

the methodological and software engineering issues, and the type of

UIMS needed by interface developers to support these issues. This was

apparently the first discussion of the role of a UIMS in the software

development process and the relationship of a UIMS to software

engineering. In particular, conclusions of the session included -the kinds

of tools and other support that were thought to be appropriate at all

phases of the traditional waterfall life cycle of software development.

Based on the success of the 1986 meeting, SIGGRAPH is now sponsoring

symposia on UI Software. This area is receiving wide attention at

various different conferences and journals.

2. Generations of DIMS

a. First Generation.

First generation UIMS's were not really UIMS's, in any broad

sense, but were more pre-UIMS -- the predecessors to modern UIMS's

[HIX 89]. They were generally facade-only and simulation-,like

prototype builders that were capable of producing only a mock-up of an

user interface. Once that mock-up was deemed satisfactory (by its

developers usually, rather than by its intended end-users) it was

thrown away and work was begun on developing the real software

system, complete with a user interface, that was hopefully patterned

after that of the mock-up. This generation also included display

managers that provide general development tools for some parts of the

-12-

[

n

~

n
n
n
]

l
11

I
I
[I

]

J

user interface, with emphasis on screen display. While they address

some problems of interface design, display managers lack a generality

in approach as they are typically oriented toward development of a

specific format or interaction technique (e.g. menus or forms). They are

also often limited to specific devices and specific classes of applications.

UIMS's of the first generation established themselves in the

research arena as well as the commercial world. Interfaces produced

by these UIMS were typically specified in a BNF-style language,

supplemented with conventional programming. They were tools for

application programmers, not for non-programming interface

developers.

The first generation "pre-UIMS" were relevant to the world of

software engineering in the sense that they were used by software

developers to help simulate and build parts of what eventually became

an application system. The ability to prototype an interface, even if it

was only a facade, and to produce some parts (displays) of the interface

without writing source code, demonstrated that such capabilities were a

good conceptual foundation upon which to build and extend into a

second generation of UIMS's.

b. Second Generation.

Second generation UIMS's focused on support for execution of the

user interface, with very little emphasis on interface design, human

factors, or the end-user of the systems these UIMS's produced [HIX 89].

The second generation produced several experimental systems that

greatly expanded the conceptual knowledge and experience base for

developing such systems (See below for some example systems). This

-13-

n
n
n
n
D
n

[I

[J

l I

I
I

included departure from the BNF-like grammars used in the first

generation UIMS into use of state-transition diagrams, declarative

languages, event languages and graphical techniques for representation

of the interface, formal abstraction of the interface from the rest of the

application system, and increased varieties of interaction styles.

State-transition diagrams can be used to code the interface,

because much of what an interface does involves handling a sequence of

input events. A state-transition network is a diagram that represents

the behavior of finite-state machines. A finite-state machine is- · a

hypothetical mechanism which can be in one of a discrete number of

conditions or states. Certain events can cause the finite-state machine

to change its state. Events can occur asynchronously, that is, at any

point in time, or synchronously, at clock intervals. An example of a

state-transition diagram shown in Figure 1 is the representation of a

simple desk calculator from Jacob[Jacob 85]'s State-Diagram

Interpreter. The circles represent the states, and arcs out of each state

are labeled with an input token, which is the event that will trigger the

state transition. In addition to input tokens, the arcs in some systems

are labeled with application procedures to be called and output to be

displayed.

-14-

n
n

n
D
n

I
11

I I

11

11

11

l I

oBYE

OREADY iNUM

Figure 1. A state-transition diagram from Jacob's State-

Diagram Interpreter of a simple desk calculator. [Jacob 85]

The problems with the state-transition approach are that the

connections between the interface and application are made through

global variables, and all states must have explicit arcs for all possible

erroneous input and all universal commands such as Help and Undo.

State-transition UIMS's are most useful when the interface must

do a lot of syntactic parsing or has many modes (each state is really a

mode). However, most highly interactive systems are largely mode­

free, so the user has many choices at every point. Because this requires

many arcs out of each state, the state-transition method has not been

successful in mode-less interface design. Another problem with state­

transition networks is that they cannot handle interfaces that let the

user operate on multiple objects concurrently (possibly using multiple

input devices). Also the diagrams get very confusing when used for

-15-

t
I

n
n
n
n

n

I
I I
11

11

I
I

large interfaces, because they become a maze, with arcs that are hard to

follow as they go off the page or screen.

With an event language, input tokens are considered to be events

that are · sent immediate by event handlers. These handlers can cause

output events, change the internal state of the system (which might

enable other event handlers) and call application routines.

Algae [Flecchia 87] uses an event language that is an extension of

Pascal. The designer programs the interface as a set of small event

handlers, which Algae compiles into conventional code.

Sassafras [Hill 86] uses a similar idea but with an entirely

different syntax. It uses local variables called flags to help specify

control flow. Sassafras is especially well-suited for interfaces that use

multiple input devices concurrently (also called multi-threaded

dialogues). It can also support direct-manipulation interfaces because it

promotes efficient, frequent communication between the UIMS objects

and the application program.

Squeak[Ca:rdelli 85] is a textual language for mouse-based

interfaces that exploit concurrency. Squeak's processes are similar to

event handlers and the messages sent by Squeak processes are similar

to events. Squeak supports many concurrently active input devices.

The primitive input events are mouse-button transitions, keyboard key

processes, incremental movements of the mouse or other devices, and

clock time-outs.

A Squeak program compiles into a sequential state machine.

Although it is a compact notation for specifying complex, time­

dependent interfaces, Squeak is unfortunately a fairly difficult

language to write in.

-16-

n
n

n
I

j

Event-language UIMS's are explicitly designed to handle multiple

processes. Research has shown that people can be more effective when

they operate multiple input devices concurrently. It is also often easier

to use multiple processes to program multiple interactions where the

user can choose which interaction to use.

The disadvantages of event languages is that they are often very

difficult to use to create correct code because control flow is not

localized. Small changes in one part of the program can affect many

other parts. It is often difficult for the designer to understand -the code

once it gets large.

Declarative languages state what should happen rather than how

to make it happen. The interfaces supported by declarative language

are usually form-based. The user types text into fields or selects

options with menus or buttons. There are often graphical output areas

for use by applications. The application is connected to the interface

through global variables that are set and accessed by both application

and interface.

COUSIN(COoperative USer INterface) [Hayes 85] produces an

interface definition centered around form-based interface abstraction,

expressed in an interpreted language. Such an interface definition

consists of a declaration of the form name followed by a sequence of

field definitions containing attributes. COUSIN' s interface definition

language is based on a communication abstraction between end -user

and application, in which communication takes place through a set of

value-containing slots with one slot for each piece of information the

end-user and application need to exchange. However, the resultant

interfaces must be forms-based.

-1 7 -

n
n
n
n
D
n
I

[I
I
I
I
I
u
J

LJ.

The advantage of declarative language-based UIMS's is that they

free designers from worrying about the sequence of events, so they can

concentrate on the information that is passed back and forth. The

disadvantage is that they support only form-based interfaces. Others

must be hand-coded in the graphical areas provided to applications.

Also, they provide only pre-programmed, fixed kinds of interactions.

For example, they provide no support for such things as dragging

graphical objects, rubberbanding lines, or drawing graphical objects.

Menulay [Buxton 83] is an example of graphical UIMS iif the

second generation. A graphical UIMS lets one define the interface, at

least partially, by placing objects on the screen with a mouse. The

philosophy behind this approach is that, because the visual presentation

of the interface is one of its most important aspects, a graphical tool is

the most appropriate way to specify that presentation.

This technique is usually much easier for the designer to use.

Menulay, for instance, can be used by non-programmers. Three

disadvantages of this technique are that

• The UIMS itself is more complicated to build.

• It supports the creation of a limited range of interfaces.

• It forces the application to handle such things as help screens,

aborting and prompting.

Menulay lets the designer place text, potentiometers, icons, and

buttons on the screen and see exactly what the user will see when the

application runs. Each active item in the display is associated with a

semantic routine that is invoked when the user selects that item with a

pointing device. Like virtually all UIMS's, the semantic routines are

written in a conventional programming language. Menulay generates

-18 -

r

n
n
n
n
D
n
I

f I
I
I
u
11

u

tables and code that are linked to its run-time support package which

executes the interface. Menulay generates its own interface and

supports the concurrent operation of multiple input devices. However,

its rigid table-driven structure limits the interaction between the

semantic level and the interface, preventing semantic feedback.

Syngraph (SYNtax-directed GRAPHics) [Olsen 83] uses BNF­

grammar to specify the user interface. Grammar-based systems are

good for textual command languages, but they have mostly failed for

graphics programs, for reasons similar to those given for state-=-­

transition diagrams.

Syngraph generates an interface program in Pascal from a

description written in a formal grammar using an extended BNF. It

handles prompting, echoing, and errors. It provides menus, textual

input, and a few pre-defined interaction devices (locater, valuator, and

pick) with some limited tracking. Syngraph can deal with semantic

error recovery, Cancel and Undo at the semantic level, and deciding

what to select when multiple items are on the screen at the pick

position. However, Syngraph does not provide semantic feedback or

defaults because there is no way for application routines to affect the

parsing.

The UIMS's of the second generation varied vastly in their

capabilities and even more in their usability. Many UIMS's were still

limited in the kinds of interfaces they could produce, often covering

only a small portion of possible user interface styles, techniques, and

devices. Other UIMS's have greater functionality, particularly in

supporting the development of rather complex graphics in the

interfaces they produce. With this expanded functionality sometimes

-19-

n
n
fl
I
]

LI

l
J

I J

J

j

comes a decrease in usability. Many of the UIMS's of the second

generation still required significant conventional programming. Thus, as

with the . first generation, second generation UIMS's were often tools for

an application programmer, not an interface developer.

Despite their initially limited scope -- that of execution-time for

the user interface -- UIMS's near the end of the second generation

began to address issues relevant to more phases of the software

development lifecycle. In particular, they began to explore new

techniques for specifying the interface, for example through the- use of

state-transition diagrams. Increased emphasis on prototyping also

broadened the UIMS perspective into the software engineering world,

by providing more support for this well-recognized aspect of system

development. Some second generation UIMS's were actually used in

commercial development environments but they were not integrated

into other software engineering tools of that time. Yet even this isolated

use further supported the efficiency of UIMS's as a viable tool for

interface development, leading to their further research, development,

and use.

c. Third Generation.

The third generation UIMS's have broadened sufficiently in their

orientation so that virtually all emphasize design-time activities for

user interface development [HIX 89]. In particular, they started a

strong trend away from programming of the interface toward

interactive, often direct manipulation tools for developing the interface.

Their functionality is increasing, the kinds of interface styles,

techniques, and devices that can be produced using third generation

-20-

r

n
n
n
n
n
n

]

[_]

. I

I
11

I

UIMS's are expanding to include windows, mice, and other features that

were rarely handled by previous generation UIMS's. In addition, the

type of dialogue they address is moving away from the sequential,

turn-taking kinds of dialogue that were most often addressed in

previous generation UIMS's toward direct manipulation, asynchronous,

and complex graphical dialogue.

Coupled with increased functionality is an attempt at improved

usability. This is being achieved through the direct manipulation

interfaces which many third generation UIMS's now have. More

attention is being paid to the user interface of the UIMS's themselves,

and their interfaces are now beginning to be both empirically developed

and evaluated. Improved usability is also being achieved by different

approaches to the UIMS interface, such as "by demonstration"

Approaches to building a DIMS have also changed during the third

generation, with many UIMS's now being built using an object-o_riented

paradigm or using a windowing _package such as X-windows.

Peridot (Programming by Example for Real-time

Interface Design obviating Typing)[Myers 87], Trillium

[Henderson 86], Grins [Olsen 85], and SmetherBarnes Prototyper

[Prototyper 87] are all graphical-based UIMS's.

Trillium, which is very similar to Menulay, supports the design

of interface panels, for photocopiers. One strong advantage Trillium

has over Menulay is that it interprets rather than compiles the

specification, so the frames can be executed as they are designed.

Trilli um also separates the interaction behavior from the graphical

presentation so the designer can change the graphics without changing

-21-

~l

n
n
n
0
n

f I

I

the behavior. However, Trillium provides little support for frame-to­

frame transition because that is rarely necessary in photocopiers.

HyperCard hypertext system belongs in the graphical UIMS class.

It supports graphical specification (and programming in the HyperTalk

language) of mostly static pages. Using the editor, the designer can

define the text and graphics for the current page, and buttons that

cause transitions to other pages.

Grins combines a grammar processor with a constraint-based,

- input-output linkage system to handle semantic feedback. It -

incorporates a graphics editor that lets the designer place interaction

techniques (menus, icons, and text areas) with a mouse.

Peridot is very different from these systems because it lets the

designer create the interaction techniques themselves. It uses a "by

demonstration" mechanism for interactively developing the user

interface. The interface developer represents how input devices are to

be handled by showing examples of their use. The designer

manipulates primitives (rectangles, circles, text and lines) to construct

menus, scroll bars, sliders, (graphical potentiometers) and buttons.

Peridot generalizes from the designer's actions to create parameterized,

object-oriented procedures like those found in interaction technique

toolkits. Peridot can be used to represent devices found in direct

manipulation interfaces, including mouse and touch tablet.

The SmetherBarnes Prototyper is a commercially-available tool

that, despite its name, is more a UIMS than a prototyper. It can be used

in a direct manipulation fashion to develop Macintosh-style interfaces,

including windows, pull-down menus, radio buttons, check boxes and

other objects typically found in Macintosh application interfaces. No

-22-

n
fl
n
n
0
n
I

[I

I
11

J

I
'J.

u

programming is required to produce the interface. The application

semantics can be coded in one of several programming languages and

linked to the interface for execution.

An object-oriented language-based UIMS provides an object­

oriented framework in which the designer programs the interface.

Typically, objects from classes handle default behavior. The designer

specializes these classes to deal with behavior specific to the interface

using the inheritance mechanism built into object--oriented languages.

MacApp [Schmucker 86] is programmed in Object Pascal. G WUIMS

[Sibert 86] uses object-oriented Lisp and provides a classification · of

interface operations and objects that fit into each class. Higgens

[Hundon 86] adds a structured data description that supports Undo and

Redo and lets the UIMS automatically manage the recalculation and re­

display of objects intelligently.

Object-oriented systems can handle highly interactive, direct

manipulation interfaces because there is a computational link between

the input and the · output that the application can modify to provide

semantic processing. Although these systems make it much easier to

create interfaces, they are programming environments and as such,

inaccessible to non-programmers.

The third generation of UIMS started a revolution. Recognition of

the importance of the user interface is now well-accepted and therefore

the need for tools to support development for the interface is well­

motivated. The increased functionality and usability of third generation

UIMS's have allowed them to reach even further into the software

engineering realm, and to support even more phases of the software

engmeenng life cycle. In particular, interface development is becoming

-23-

[

7
n

n
B
Fl

I

[I
:l
u

I J

q

J

J

espoused as an integral and equal part of the entire software

development process.

The traditional linear waterfall model is no longer the accepted

approach to developing the interface. Rather, an evaluation-centered

lifecycle is emerging as a more natural and useful · paradigm for

producing quality user interfaces. This has led to integrating these tools

with CASE tools. Sophisticated techniques for specification of a broader

range of interface types, in an easier manner with increased

functionally and usability, have caused UIMS users to realize tlieir

enormous potential. This is especially true when a UIMS is integrated

into a software engineer!ng development environment, giving interface

development an equal emphasis with the rest of the application system.

Present day UIMS's are well into the third generation and moving

toward fourth generation. It is in fact the success of this generation of

UIMS's that will determine if they are to become an accepted, viable

tool, moving them from the realm of research into the real world of

software development.

d. Fourth and Future Generations.

We shall speculate about fourth and future generations, based on

the trends we perceive in UIMS development. Researchers and

practitioners in the field of user interface development readily espouse

a development approach based on the concept of evaluation and

interactive refinement of the interface. Now it is time to apply this

development approach to the production of UIMS's themselves.

Fourth and future generation UIMS's will have improved usability,

often as a result of empirically-based derivation, iterative refinement,

-24-

~

n
n
n
0
n
I

11

I
J

I
I
J

and enhancements beginning to be found m real world user software

development environments.

C. Ultimate goal of UIMS

Hix[Hix 89] states that the ultimate goal, of course, is to have

UIMS's integrated into the software development environment,

supporting all aspects of user interface production throughout the

complete lifecycle. Every phase of the interface development lifecycle

can potentially and should be supported by UIMS tools.

Rapid prototyping is key at almost every phase of the interface

development lifecycle; during task analysis some early design work is

typically done, for example, use of informal screen sketches and

experimentation with various interaction styles. When these doodles

are captured interactively through a UIMS, they can be used as the vary

earliest prototypes of an interface, and can be carried forward to

subsequent development activities, being refined as evaluation occurs.

Rapid prototyping is indispensable in design and pre-implementation

lifecycle activities, when much more of the interface, in a more concrete

form, can be made available for end-user testing and iterative

refinement. Support of evaluation efforts after implementation includes

the need for tools to capture log data of end-user activities during

interaction with the system, as well as to expedite the collapse and

analysis of these data.

In summary, a UIMS needs to support usability . engineering, to

allow visibility of interface behavior, and to provide rapid modifiability,

accommodating easy and effective evaluation and sometimes massive

design changes throughout the lifecycle.

-25-

1
n
n
D
D
n

11

n
11

j

u

When support for each phase of the interface development

lifecycle is available, UIMS's may become ubiquitous and as

indispensable as tools such as database management systems, language

compilers, and programming environments are currently. They will be

fully integrated into CASE-like environments that give recognition to

the importance of development of the user interface. Only then will we

be able to take advantage of the potentially vast improvement m

productivity that can be achieved through use of UIMS.

By developing better tools for producing user interfaces, ·we can

expect, ultimately, to produce better user interfaces. We have much to

gain from continued pursuit of this exciting and fast-growing field. This

exploration will take us to the next generation of UIMS and beyond.

-26-

~

n
[1

n
f]

n
l

11

n

[

)

l

u

II. Oregon Speedcode Universe (0.S.U.)

A. Integration of UIMS and CASE

O.S.D. combines a DIMS with a structured design facility which

allows a programmer to quickly prototype the user interface of a given

application and then connect that interface to program design tools

traditionally found in most CASE systems.

The DIMS · allows a programmer to create and directly manipulate

icons, menus, windows, dialogs, alerts, and user-defined procedTires. It

consists of three parts: 1) a resource editor called RezDez (Resource

Designer) for WYSIWYG creation and editing of icons, menus, windows,

dialogs, and alerts; 2) a graphical sequencer, which allows a user to

"train" the application to behave the way it should when the application

is used by an end user; and 3) a program generator that writes a Pascal

source code program for implementing the behavior specified by

"sequencing". For a complete discussion of DIMS and rapid prototyping

in O.S.D., see [Lewis 89].

With its DIMS alone, O.S.U. is able to create the complete user

interface portion of the application. In most other DIMS's, functions are

added by writing code in the traditional manner. O.S.D., however, has

chosen CASE as the approach to add functionality to applications.

CASE is the automation of software development. The basic idea

behind CASE is to provide a set of well-integrated tools, linking and

automating all phases of the software lifecycle. Different CASE tools

focus on the support of different phases of the software lifecycle or on

the development of different types of software systems. There are 3

-27-

rl

n
11

n
D
[]

l
~ I

11

I I
11

u
I J

[J

J

basic categories of CASE tools: CASE toolkits, CASE workbenches, and

CASE methodology companions [McClure 89].

CASE toolkits are a set of integrated tools that automate one type

of software life cycle task, such as system design, program maintenance,

or one type of job class, such as system analyst. A dataflow

diagramming tool, for instance, is an example of a system analysis

toolkit.

CASE workbenches are composed of a set of integrated tools that

automate tasks across the entire software lifecycle, namely, an-alysis,

design, and implementation. The tools are integrated to the level that

the output of one lifecycle phase is directly and automatically passed on

to the next phase. The final product of a CASE workbench is an

executable software system and its accompanying documentation.

A CASE methodology companion is either a CASE toolkit or a CASE

workbench that structures the software development process according

to the steps and rules of a particular structured methodology.

Information abouf the methodology is embedded into the methodology

companion by means of help panels, menu choices, forcing functions,

and quality assurance checks.

CASE tools provided by O.S.U. are design/implementation toolkits

integrated together as one. The Structure Chart Editor and VIGRAM are

modular design and detailed design tools used to design user-defined

procedures/functions as well as to access reusable software

components. Unlike most CASE design toolkits, Structure Chart Editor

and VIGRAM are also implementation toolkits in that they generate

Pascal source code automatically from design specifications.

-28-

I

n
n
n
[J

n
I

n

u

I
I

J

u

B.

1.

a.

Components of O.S.U.

User Interface Management System (UIMS)

RezDez

RezDez (Resource Designer) is used to graphically create and

edit all user interface objects -- menus, icons, dialogs, windows, alerts,

error messages, prompts, and associated information [BOSE 88]. These

objects are "painted" on the screen exactly as they initially appear in

the finished application. Figure 2 illustrates how a dialog is created by

direct manipulation of its size, shape, and items.

,.
Oiolog

(Previous) (Next

Control Items

@Enobled 0 Disobled

(OK) 0 Rudio Button
(Push Button)

(Cancel) □ Check BOH

I Edit TeHt

Stotic TeHt ~
~

.,

Figure 2. A Dialog in O.S.U. is created by dragging items from

the tool palette onto the new dialog.

RezDez not only creates each object, but it also defines the initial

internal state of the object. The description of the object, in its initial

state, is stored as a separate resource in the application's binary file

called the resource fork.

-2 9-

n
n
n
n
D
n
I
I

11-

1

I
[

I
u

Li

b. Graphical Sequencer

The graphical sequencer is used by a programmer to specifying

the sequencing information of the user interface objects created in

RezDez. It allows the programmer to "play out" the application by doing

rather than writing instructions in the form of a script or textual

language.

When the prototype under construction is shown in action

(simulated), such as pulling down a menu to make a menu selection, the

graphical sequencer "calls" the appropriate behavior defined for the

menu. The behavior carries out the operation, thus changing the state of

the object, and the configuration of the user interface. Figure 3 shows a

directed graph representation for a simple sequence involving a menu

selection and two dialogs.

-3 0-

r
r

l
n
n
n
0

II
.I

u
l
l I

D

l

One Menu Item Sequence

. -~~-;

H1t Dfelog lt~m2
Ask Whot ResourceE

c:!::::!:J

Fini stied Wl th
this DiBlog

fli n is he d\vt th~=·•··~
I This Menu Item I
~ Sequence ~
9i::1::i::::::o,:;:::::;:::1:::.;:,:::::::;:;:,=,:::,::::::=·

-- .. ~•..__., --a-~ ·-· o,,..--0.. •
0-
0- CiiiiiJ

Choose Dialogs -----~--........,._ -
Choose .. Open Dielog"
The Dielog is Displeyed

Hit Dielog ltem1
Ask Whet Resources

---=-~·
~

Choose A 1 erts

Choose .. Note Al ere
The Alert is Disple~ed

Hit Dialog ltem1
Ask Whet Resources

------· ---· _,.

-.:, •;-:l••••••••••••••••••••••••••••••••••'=--••·, .. •••• .. ••••••••••••••·•••••••••••••• .. •••••••••1••••••••••••••••••:

ii Fi n i shed with th i s A 1 e rt .ii
._&::::::t:::::< 0 : 0:-:0M-:♦:-: 0!❖1•S-:❖>:•1•►M•:.-:•1•t-:•1•t-¢•1❖4•1❖(•M<•:•1•::1:::::::::::::I•

Figure 3. An Example of a Sequence from the Graphical

Sequencer of O.S.U.

-3 1-

I

l
n
n
n
0

11

I j

j

D

c. Code Generator

Using the sequencing information gathered by the graphical

sequencer, the code generator is able to generate user interface code

automatically. The sequencing information is stored in a sequence

command language format [Armstrong 88]. The source code generated

is in Pascal, and can be complied and linked by the Lightspeed Pascal

compiler.

2. CASE tools

a. Structure Chart Editor

A_ structure chart is a tree or hierarchical diagram that defines the

overall architecture of a program through its call graph [DeMarco 78].

Structure charts are the graphical representation of functional

decomposition. The basic building block of a program is a module, and

structured programs are organized as a hierarchy of modules.

It is important to distinguish between a program module and a

program function/procedure. A module is a separately compiled unit of

code consisting of function/procedure definitions along with interface

specifications. In O.S.U., the separate compiland called a Macintosh

Pascal unit is used to form modules. Every unit consists of an interface

part and an implementation part, · very similar to modules in Modula-2,

and packages in Ada™.

A structure chart is a call graph showing the interconnections

among procedure/functions. Interconnection is shown by arranging

procedure/functions in levels and connecting them by arcs. An arc

drawn between two modules at successive levels means that at

execution time program control is passed from one module to another m

-3 2-

r
I

n
n
I

n
□
n
l
l
rl
I

[J

J

]

the top-down direction. ·· Modules are not procedures, and because a

structure chart only shows procedure/function interconnection, the

structure chart is only 1one of several architectural points of view. We

can, for example, render a program in terms of other points of view,

such as its uses relation, which consists of a graph showing what units

are used by each unit in the program or an object-oriented rendering

showing both call graph and uses relations.

In O.S.U., rectangular boxes represent procedure/functions and

arcs connecting the boxes represent invocations or calls to eac--h

procedure/function. The unit name and procedure/function name is

displayed in each box _;to allow combination of functional decomposition
~· i

and object-oriented design methodologies.

The structure chart in Figure 4 shows a call graph for a file input

routine. All the file related routines are grouped in a unit called FILE.

Macintosh provides some standard file routines for opening, reading

and writing files. All of the Macintosh ROM-based routines are

coHectively called the TOOLBOX routines. ErrorCheck is a reusable

routine from the GrabB ag reusable component. DIA_show Alert is a

general alert routine in the DIALOG u~it, which is called in case of a file

open error.

-3 3-

·7

n
n
n
[J

n
.l

[I
]

I I
[]

l
LI
j

UNIT: FILE

GetfileName

UNIT: TOOLBOX

SFGetfile

UNIT: FILE

Read I nputfile

UNIT: FILE

Openfile

FSOpen

UNIT: Grab beg

ErrorCheck

UNIT: DIALOG

DIA-3 how Alert

ReedContent

UNIT: TOOLBOX

FSReed

Figure · 4. A sample structure chart created by O.S.U ..

Data / Control Transfer
Flow

Date/Control Neme · TJ:Jpe · Direct.

FiieNamei I Str255 IN fO -1----------+--------+----1

ErrorCode OSError OUT

Reply SFReply BOTH

(OK J (CANCEL J

Figure 5. A dialog for displaying data/control transfers
b e(ween procedure/functions.

-3 4-

I

~

n
n
n
D
n
l

! I
l

11

I
u
J

Data and control . (flags, error code, etc.) transfers between

procedure/functions are · usually in the form of parameter passing.

Conventional methods of displaying the structure chart draws the

parameters next to the arc that connects the two procedure/functions,

but for the purpose of readability, O.S.U.'s structure chart editor hides

the details of the parameters. The programmer must double-click the

arc to display the parameters as shown in Figure 5. This dialog displays

parameter information in the form of data and control flow in_and out

of the function/procedure. For each data item, the name, data type and

flow direction is required. IN flow means . the information is coming

into the module. 0 UT flow means the information is returned from the

module. B OT H means the information is both coming in from and

passed back to the calling module. In generating PASCAL source code,

IN data are the value parameters, OUT data are the variable

parameters that do not need to be initialized upon calling the

procedure, and BOTH data are the variable parameters that need to be

initialized before calling the particular procedure.

• Object-oriented view.

Object-oriented development is an approach to software design m

which the decompositi<:>n of a system is based on the concept of an

object [Booch 86]. An object is an abstract data type entity with the

ability to inherit properties from classes of other objects. An object has

state and function -- state in the form of data, and function in the form

of function/procedures. In Macintosh Pascal, an object is defined as a

unit. Units cannot inherit functions from other units, so our approach 1s

not pure. Instead, units are used to encapsulate state m the form of

-3 5 -

n
n
I

n
El

ll
I

u

l I
11

d
j

J

u

u-

constants, types, and variables, and function m the form of functions

and procedures. An object hierarchy is established as a uses graph -­

one more architectural point of view of interest to us.

Syntactically, Pascal units are connected by the "uses" clause

which is a mechanism for import/export of constants, types, variables,

procedures, and functions that are visible from outside of a unit. Thus

modules are connected via their interface parts and access procedure

invocations.

Rather than factoring the system into modules that denote

operations, we structure the system around its objects, or units. Each

object is represented as a rectangular box with its name at the top, and

all operations defined on the object are listed within the rectangle.

Interconnections between objects are shown as arcs and represent

function invocation just as in the structure chart view. Objects are

arranged hierarchically
1

based on their uses relations.

Figure 6 shows the object-oriented representation of the

ReadinputFile pr9cedure of Figure 4. There are 4 units, FILE, TOOLBOX,

GRABBAG, and DIALOG. Units are arranged in a hierarchical fashion.

TOOLBOX and GRABBAG units are directly called from the FILE unit, so

they are arranged 1 indentation from the FILE unit. The DIALOG unit is

called from the GRABBAG unit, so it is arranged 1 indentation from the

GRABBAG unit. The visible procedure/function names of each unit are

displayed in the small rectangle inside each unit.

This representation differs from other proposals for displaying

object-oriented designs · [Booch 86]. In particular, our representation

does not distinguish between an object and its class. In object-oriented

terminology, our model does not show instantiated classes, but instead,

-3 6-

[

~

n
n
n
D
n
I

f I
I

11

I
I

shows only the concrete objects actually used. This is partly a result of

weaknesses in Pascal, and partly our desire to simplify the

representation.

Why is the object-oriented view important? According to Booch

[Booch 86], the object-oriented approach to design mitigates weaknesses

in functional decomposition such as lack of data abstraction and

information hiding. Object-oriented design is generally thought to be

more responsive to changes in the problem space.

-3 7 -

1
n
l

n
n
n

l
[I

[j

I
I
u
j

FILE

ReadlnputFile

GetFileName

OpenFile

Read Content

TOOLBOX

SFGetFile

FSOpen

FSRead

Grab Bag

ErrorCheck

DIALOG

DIA_ show Alert

Figure 6. An · object-oriented view of Figure 4.

-3 8-

n
n
n
n
D
n

I
[I

! I
I
l I

• Uses Graph.

The problem with object-oriented design 1s commg up with an

object-oriented rendition of the entire system. Unlike other forms of

representation, object-oriented designs do not incorporate hierarchical

structure. To reduce the clutter of an un-leveled object-oriented view, a

simplified uses graph can be generated as shown in Figure 7. The uses

graph suppresses the connections in the system stemming from calls

and shows only the import/export properties of the objects.

The graph in Figure 7 shows only the uses relation among units.

Again the units are arranged in an hierarchical fashion based on their

uses order.

FILE

TOOLBOX

Grab Bag

DIALOG

Figure 7. Unit Uses Graph for Figure 6.

-3 9-

l
n
n
n
0
n
I -
l
11

. I

u
I
I

[]

. I

b. VIGRAM

A major drawback of the structure chart method as a design

representation is that control structures such as repetition, sequence,

and alternation are not easily represented. Instead they are regarded as

details which are shown by a different technique, such as pseudocode,

flowcharts, etc. Such details can be rendered by a detailed design tool.

Detailed designs are visually constructed in O.S.U. using VIGRAM,

which is a graphical. tool for editing Pascal source code [Hsieh 88]. A

procedure or function can · be created by either reading an exi§ting

procedure of function from a reusable unit and modifying it, or · by

creating_ an entirely new unit. In either case, the programmer designs

the procedure from visual building blocks. See Figure 8.

Once the detailed design specification is provided, Pascal source

code is automatically generated from VIGRAM. The VIGRAM serves

also as an understandipg tool and a maintenance tool through two

techniques: Program s~icing and complexity metrics [Yang 89].

-40-

n
n

n
n
n
I

11

I
Li
I
l
j

CDHst TYPE TYPE YAA VAA YAA VAA YAA ~ m

00] 00] 00] 00]
r

Assignment Statem:ent
..

_i

left UBriBble right ualue

.__Te_m_p o_ra_ry __ := I OrderedRrray I Curren ti

OK (Cancel)

Legend:

Figure 8. VIGRAM view of a Bubblesort procedure.

-41-

n
n
n
n
D
n
]

I
[I
I I
]

I

3. Software Accelerators

Current work is underway m design and implementation of

domain-specific tools called software accelerators. These software

accelerators will allow more functionality to be added to resulting

applications. Areas under investigation are: database, data structures,

graphics, text, mathem'-1tics, sound and animation [Lewis 89].

-42-

I

n
n
n
n
0
n

I
11

I
IJ
I

J

III. Design of Structure Chart Editor
Three design decisions had to be made before the Structure Chart

Editor was implemented: 1) How to integrate structured design

methodology with user interface design, 2) How to create and reuse

software components, and 3) How to combine functional decomposition

with object-oriented methodology. These decisions were influenced by

the development environment and programming language used,

namely, Think Technology's Lightspeed Pascal.

A. Integration of UIMS and CASE

The Structure Chart Editor can be combined with UIMS by

integrating the user interface specifications with the functional

specifications as follows. All user interface objects are designed and

stored along with the "sequence" information needed to make the user

interface "simulate" the final application. (See Section II). These objects

and their sequence information are called a user interface prototype in

O.S.U., because they specify the user interface, but none of the
. . ~

application's functionality.

In the process o{ sequencing through the user interface,

functionality of the application can be added in the form of:

1) User procedures. The Structure Chart Editor will be invoked from

the Graphical Sequencer to allow a new code produced by hand, or

reusable components taken from a library of reusable modules, or

Macintosh toolbox calls to be added to the system.

2) Software accelerator reusable components. The extended

graphical sequencer will handle modules which are automatically

produced by one of several software accelerators [Raghu 89].

-43-

l
l

n
n

n
El

n
I

11

I

l I

l

LI

As shown in Figure 9, when the programmer selects Do a

Procedure in the graphical sequencer, control is transferred from

graphical sequencer to the structure chart editor. A structure chart

window comes up along with the structure chart menu. The

programmer 1s asked to define the complete modular structure of the

user structure.

Indicate Resources off ected by

theMenu •Demo·,

theltem 'oDialog'

□ Windows

D Dialogs

D Alerts

D Curso_rs

D Menus

~ Do a Procedure

D Set theltem 'aDielog·
as the 'Quit' command

·OK.) · (Cancel

Figure 9. Selecting of DO procedure from the graphical
sequencer

The newly inserted procedure/function is called an active object

in O.S.U., and is added to the sequence in the form of a DO routine. The

sequence of user interface interactions and active objects is recorded

and written in a sequence language script. When the Pascal source code

IS generated from the recorded sequence language script, a place-holder

IS inserted for each of the programmer-defined active objects.

All User procedures are combined into one structure chart to

allow the user to view the entire modular structure of the whole

application.

-44~

n
n
D
0
Fl

n
I
l

11

I
I J

d
. I

LI

LI

B. New and Reusable Software Components

In order to create a new module or reuse a reusable component,

the Structure Chart Editor must be integrated with VIGRAM. Because

neither alone provides enough detail for implementation.

To create a new procedure, the user first uses the Structure Chart

Editor to layout the modular structure or call graph of the new

procedure. VIGRAM is then called to specify the detail of each

structure chart box. Pascal source can be generated automati£ _ally,

because VIGRAM specifies detail down to the statement level.

In order to reuse a component, VIGRAM is called to read and
'· . .

parse the source code of the reusable component, extract the modular

structure of the component, and display the component in VIGRAM's

graphic format as shown in Figure 8, for ease of understanding [Yang

89]. In addition to the visual display, VIGRAM also computes a number

of metrics: Barry-Meekings, Halstead, and LOC. These are related to the

"complexity" of ~he component, and may be used to related to the

complexity of the component and may be used to understand and

modify the component .

The modular structure information that VIGRAM extracted will

be passed to and displayed by the Structure Chart Editor.

-45-

7
n
n
n
D
n
I
l
[I
r I

ll
11

[

LI

C. Combination of Functional decomposition and

Object-oriented Methodology

In Lightspeed Pascal, objects are units. The structure chart

of functional decomposition provides both the unit name and routine

name as seen in Figure 4. Thus, to render the object-oriented view

requires simply a re-construction of the structure chart view by

grouping all routines from the same unit together. Similarly, construct

its uses relations from the call structure. Significant amount of error

checking is required to detect errors such as circular uses rel~tions or

circular call references.

-46-

l

7
n

n
8
n
I

[I

u
u

IV. Evaluation & Enhancements

A. Evaluation and Enhancements of Main User

Interface.

1. Menu.

a. Old menu.

The original O.S.U. menu, as shown in Figure 10 contained items

that were unclear or unused by the O.S.U. application, thus changes

were necessary for the purpose of clarification. For instance, 2-ll items

under File and Edit were unused by the system except for the Quit

option. Items in the Speedcode menu were unclear as to what each

one does. In particular, the Create Resources on Screen carried 2

meanings. It served both as a new and an open option depending on

whether the resource file already existed or not. Prototype an

Application graphically performed the same operation as Explore

Graphical Sequencer; except in the first case, the source code was

generated automatically, and in : the second, code generation was not

performed.

-47-

L

n
n
n
n
8
n

11

11

u
J

I J

LI

'"
File Edit Speedcode

New Create Resources on Screen

Open Prototype an Application Graphically

Save Use [Histing Command Files

Saue As ... EHplore Graphical Sequencer

Quit

Figure 10. The original O.S.U. Main menu.

b. New menu.

In order to clearly separate prototype operations from resource

file operations, the new menu bar separates the two into 2 separate

menus.

le Prototype Resources I
New

Open

Open [Histing Command File

Quit

Figure 11. The new O.S.U. Prototype menu.

Under the Prototype menu (Figure 11), the New item will start a

new prototype. It will allow the user to select a resource file and go

into graphical sequencer for specifying the sequence of resource objects.

-4 8-

~

n
~

n
El

n
. I
l

f I
11

11

[I
I J

[]

The user will be asked to save the prototype's sequencing information,

and/or generate the source code before leaving the graphical sequencer.

See [Chia 89] for implementation details.

The Open item allows the user to load and work on an existing

prototype (see Functionality below). The Open Existing Command

File item automatically generates Pascal code from sequencing

information previously saved. The Quit item exits the O.S.U.

application .

Prototype Resources

Create

Edit

Figure 12. The new O.S. U. Resources menu.

The new Resources menu (Figure 12), clarifies creating a new

resource file vs. editing an existing one. The Create item creates a new

resource file with .RSRC file extension as required by Lightspeed Pascal,

and the Edit item allows an -existing .RSRC file to be read and modified.

Any existing · .RSRC file can be read regardless of whether it was created

by O.S.U. or not.

-4 9-

n
n
n
n
n
n
I
l

11

I
J
r J

11

n

2. Functionality ·,

The · original O~S.U. did not provide ways to save and load a

. . previously pr~totyped application. The only way to change an

application was to specify the whole application over again. Therefore,

the ability to save and read in an existing prototype is an essential

enhancement [Chia 89].

B. Evaluation and Enhancement of RezDez

The original RezDez [Bose 88] had several shortcomings as well as

nonstandard Macintosh conventions.

1 . Main Selection dialog

a. Old main selection dialog.

The original main selection dialog with a radio button for each

resource object type is awkward (Figure 13). It required the user to

make 2 clicks in order to make a selection. A better method of

interaction is desired. Also as the system grows, the need for more

resource types also grows with it. Therefore a new selection dialog is

needed.

-5 0-

n
n
n
n
0
n
l

11

11

d
r J

I

j

WELCOME TO REZDEZ

Choose the object to be designed.

O Window O Icon

OMenu O I con and Mask

0 Dialog 0 Proo~dun~

0 Alert 0 He<ldinfJ

(Design) (Quit)

Figure 13. (?riginal RezDez main selection dialog.

b. New main selection dialog.

The new main selection dialog is shown in Figure 14. The radio

button selection . technique is replaced by the more convenient and

standard one-step push button technique. Additional selection choices

are added to include resource types, such as cursors, pictures, and

design of graphical palettes. Notice that Icon and Icon and Mask are

collapsed as one in the new dialog. The distinction between and icon

and an icon with a mask is made in · the icon editor itself rather than at

the main level.

-51-

I
l

l
n
I

n
D
n

I
11

I
J

J

I
1

u
I

Choose the object to be designed:

(Window J (I con J
(Menu J (Cursor J
(Dialog J (Palette J QUIT RezDez

(Alert J (Pictures J
(H (~ <} d <ff-) (S trint_;)

Figure 14. New RezDez main selection dialog.

2. File 1/0

Original RezDez made no distinction between create and edit files

because of the ambiguity in the main O.S.U. menu (See Section IV-A-l­

a). This is corrected along with the main menu change. In keeping up

with the new standards of Macintosh programming, RezDez was made

HFS (Hierarchical File _: System) compatible.

3. Menus in each resource editor.

a. Old menu

The menu in each of the individual resource editors did not follow

the standard Macintosh guidelines in that it provided no support for

Desktop Accessories (DA's). Figure 15 is an example of the menu bar for

the window editor.

-52-

r
I

I
l

n
n
I

n
D
n

I
11

I
I

I Window I
New

Open

Saue

Saue As ...

Quit

Figure 15. Original RezDez menu for window editor.

There are other shortcomings in this menu setup. First of all,

deleting or disposing a_ user interface object was impossible once the

object was created. Second, the Operi item is ambiguous. There are 2

ways that RezDez can open a resource: from the resource file that

RezDez is currently working with, or from other applications and

resources. Distinctions should be made between these two opens to

avoid any confusion for the user.

b. New menu

The standard file menu in Figure 16 clarifies the RezDez interface.

This standard menu is used for all resource types, thus eliminating the

need for 6 or 7 different menus for each resource type.

-5 3 -

n
n

n
D
n

l I

u
11

J

J

u

u

le file ; Edit

New

Open

Get Resources From •...

Close

Delete

Save
- ·

Save As •••

. ,.
Ouit .. ,

Figure 16. New RezDez standard File menu.

Under the File menu, the New item allows the user to create a

new resource object; Open allows the user to get an existing resource

item from the current resource file that RezDez is working with; Get

Resources from.... allows the user to get existing resources from other
-f

applications or resource files, i.e. reusable resources. Close closes the

current resource while ~Delete removes existing resources from the
_i.?

current resource file. '·save & Save As ... saves the resource in the

resource file and Quit will take the user out of the resource editor, and

return to the main selection dialog.

-5 4-

[

n
n
[J

n
D
[]

I
1
! I
]

IJ

" I
'J

u
u

4. Preview capability

The original RezDez did not allow prev1ewmg of a . resource object

before it opened it. This proved to be a limitation, because often times,

user can't correctly identify the resource items desired simply by its

resource ids.

The new RezDez allows the resources to be accessed by id or

name. The preview capability allows the resource items to be

previewed before they are opened. (See Figure 17). Preview means the

resource is displayed on the screen before it is read into RezDez.

(Open)

(Preuiew)

(Cancel)

@id

OName

Figure 17. RezDez Open Resources Dialog.

5. Enhancements to Windows.

RezDez's window editor didn't handle the zoom box option for

document windows. Figure 18 shows the new window info dialog that

has been added to allow the user to specify whether a goAway and/or

zoom box are desired for a particular window. The window info dialog

1s displayed when the user double clicks in the window's content reg10n.

-55-

I

~

n
n
n
D
n

I
f I
' I
11

I
I

Window Type: Standard Doc

Top Left Bottom Right

jlsa 11170 11266 . 11470 I
~ GoAway flag D Zoom BoH

(OK J (Cancel J

Figure 18. RezDez's Window Info Dialog.

6. Enhancements : to Menus

a. Old menu entry dialog.

The original RezDez's menu entry dialog was not user-friendly

(Figure 19). ReiDez forced the user to perform certain actions in an

order that the user could not control. For instance, in order to add a

keyboard equivalent to a menu item, the user was farced to select the

keyboard equv option in the option list, push the Add Option button

immediately followed by typing a character in the item name box,

fallowed by clicking the small o k button appearing at the bottom of the ·

option list. This is not only awkward, but it takes control away from the

user. Therefore, a better user interface is needed.

-5 6-

7
n
n
n
n
n
I

11

I
u
I

n

Menu Title U~t~ Hpph S~Jmtlol)

Item Nome I [I: n1 <ff] [(honqt~)
] ((fl<~ rn O l• <~ Swap)

Items
Checkmork Plain

Bold
Disabled Italic

Shadow
(Hdli Option] Underline

Outline

H ti l1 S 1 B l <~]

(Cmio~f)

Figure 19. Original RezDez menu entry dialog.

b. New menu entry dialog.

In the new menu entry dialog (Figure 20), all of the options and

styles are listed as check box items. This not only allows more than one

style or option to be added per menu item, but it gives the user the

freedom to check any box desired at any time. Also included in this

dialog is the ability to'.'attach icons to menu items by its With _ Icon

option.

-57-

l
I

n
n
n
f1

n

11

I l

J

I

I

J

Menu title

Style

D Plain

[8J Bold

DI talic

D Underline

D Shadow

D Outline

I me
New ~N
Open ~o
Close

Saue As ••••

Quit ~Q

I tern Name I s_a_u_e __________ ___.

Keyboard Equ ~ □

(Close)

[Use c)

Options

["8J Checked

[81 Enabled

D With icon

IC~N ._, __ _

([Ente-r ~
(Change)
(Remoue)

Figure 20 New RezDez Menu Entry Dialog

7 . Enhancements to Dialogs

One limitation of'' the original dialog editor was that it allowed only

2 kinds of windows fo~ dialogs, when in fact, Macintosh allows any of

the 6 standard kinds of windows to be used for dialogs. Therefore, the

following dialog is added to allow the user the choice of any of the 6

standard window types (Figure 21).

-5 8-

~

n
n
n
0
n
. I

J
r j

Title I ___________ ___.

Do
Do
Do

(Ok] (Cancel)

Figure 21. RezDez Selection Dialog

Also added to the dialog editor is the ability to include pictures m

dialogs. Pictures from the system's clipboard can now be added.

Current work is underway to also include . pictures from a MacPaint

format or a PICT format.

C. Evaluation and Enhancements to Code Generator

The code generator [Armstrong 88] handles only the user

interface portion · of th~ source code. As user-defined procedures and

reusable components are added to an application, additional information

is required for the code generator to incorporate those routines

correctly. In order to do this, a third USES relation file was added m

addition to the sequence command file and the control list file that

already existed. The USES file is a text file that contains a list of the

-5 9-

I
l

n
n
n
n
D
n

11

11

I
]

~ I

j ·

user-defined units and reusable component units m the order that they

are to appear in the project, i.e. their compiler build order. This

information is inserted in the project build order file for the application

and in the uses clause of the generated user procedure unit.

DLOG_ABOUT
CALCULATOR
DLOG_CALC

Figure 22. Sample Uses Relation File

ITEMHIT = INIT; . . '
ITEMHIT = MENUBAR; __

ITEMH IT= ~ [256=0] ;

. . '

ITEMH IT = ab out calculator [256= 1] ;

. . '

DO [DLOG_ABOUT_DO_DLOG_200_DLOG_ABOUT]; . . '
ITEMH IT= CALCULATOR [257=0] ;

ITEMHIT = Calculate .•• [257=1];
DO [DLOG_CALC_DO_DLOG_128_DLOG_CALC]; . . '

ITEMH IT= Quit [257=2] ;

. . '

OU IT; . . '

Figure 23. Sample Sequence command file.

-60-

l

I
[

7
n
D
~

n
I

11

I
11

The DO clauses in the sequence command file are the user

procedures. The format of the parameter i!1 the DO clause is the unit

name of the procedure, followed by 3 underscores, followed by the

procedure/function · name.

{List of Units in Build Sequence for Project: calcApp}
{ 1 : D e c I a ra ti on s_c a I c App}
{2: Globals_calcApp}
{3: SystemCalls_calcApp}
{4.1 :DL0G_AB0UT}
{ 4.2:CALCULAT0R}
{ 4.3:DL0 G_CALC}
{ 4.4: UserProcedures_calcApp}
{5: Simple Alert_ca lcApp}
{6: SimpleDialog_calcApp}
{7: no dependant group units in this project}
{8: MenuProc_calcApp}
{9: MenuCase_calcApp}
{ 1 0: GoAway_calcApp}
{ 11: I nitia_lize_calcApp}
{ 12: Procedures_calcApp}
{13: MainEuent_calcApp}
{14: Main_calcApp}

{The Resource File to use with this project is: Unknown }

Figure 24. · A sample project build order file.

-61-

I

n

o·

11

11

]

I

{-- -------}
{ Copyright 1988, Oregon State University. .}
{
{ This file is the UNIT for theUser generated procedures created
{ the DO verb commands. They are empty stubs at present
{--}
UNIT UserProcedures_calcApp

INTERFACE
USES

. }
by .}

}

Declarations_calcApp, DLOG_ABOUT,CALCULATOR,DLOG_CALC ;

PRO CED URE DLOG_AB OUT_DO _DLOG_200_DLOG_ABOUT {parameters};
PRO CED URE DLOG_ CALC_DO _DLOG_l28_DLOG _ CALC{parameters};

IMPLEMENTATION
{ User Generated Procedures/Functions}

PROCEDURE DLOG_ABOUT_DO_DLOG_200_DLOG_ABOUT {) ;
BEGIN
{USER CODE IS IN ANOTHER UNIT)

DO_DL00_200_DLOG_ABOUT
END; { DLOG_ABOUT_DO_DLOG_200_DLOO_ABOUT }

PROCEDURE DLOG_CALC_DO_DLOG_128_DLOG_CALC { };
BEGIN
{USER CODE IS IN ANOTHER UNIT}

DO_DLOO_l28_DLOG_CALC .
END; { DLOG_CALC_DO_DLOG_l28_DLOG_CALC }

END. {UserProcedures_calcApp }

Figure 25. A Sample of User procedures unit generated by

o.s.u.

-62-

l

I
L

1
n
D
n
D
n
I

r I
I

11

11

V. O.S.U.: The solution?
A. Liinitations

Direct manipulation user interface management systems such as

O.S.U. largely overcome the problem of use difficulty, but even O.S.U.

requires knowledge of the Macintosh software architecture. O.S.U. is for

programmers, not end-users. Although aimed at wide-spectrum

prototyping, O.S.U. in its current state, is too limited in functionality.

O.S.U. cannot, for example, generate itself.

O.S.U is intimately connected to the Macintosh, and would require

extensive re-writing to be ported to another system such _ as X-Windows.

It is doubtful that portability is a desirable goal of such systems, but

availability should be made a high priority. O.S.U. is available to a

limited number of researchers.

B. Conclusion

Though our . preliminary results may be informal and small, we

believe it's an indication that O.S.U. can increase the programmer

productivity dramatically, as well as -improve the quality of applications

produced. Integration of CASE with UIMS is certainly another major

leap for UIMS. We anticipate that eventually with the merger of

software accelerators, we can achieve our goal of a 100 - 1000 fold

mcrease m programmer productivity.

-63-

n
n

n
El

. J

I
l
[I
' I
[I
J

I

J

Appendix
l

A. Project Statistics

1. o.s.u.
• Application size - 553K

• Lightspeed Pascal Project

• 109 units

• over 487K of executable source

• over 59,000 lines of source code

2. Structure Chart Editor

• 9 units

• over 27K of executable source

• over 4,000 lines of source code

3. Enhancements & Modifications

• 17 units modified

• over 6,000 lines of new code written

-64-

n
n
□
n
n
n
I

11

I
11

11

I

B. Dataflow Diagram of O.S.U.

Dataflow diagram for

· Oregon Speedcode Universe

Re3ource3
Programmer

Re~ource file I
Programmer Input

Call Structure

Pascal Source Code file3

-65-

~

n
n
n
D
n

·l

[J

11

u

References

[Armstrong 88] Armstrong, James, "Code Generation In The Oregon

Speedcode Universe", Dept. Of Computer Science Tech. Report 88-60-

15, Oregon State University, Corvallis, OR.

[Booch 86] Booch, G., "Object-Oriented De_velopment," IEEE Trans. on

Software Engineering, Vol. SE-12, No.2, Feb. 1986, pp. 211 - 221.

[Bose 88] Bose, S. RezDez, "A Graphical Tool for Designing Resources in

OSU", Dept. of Computer Science Technical Report 88-60-2, Oregon

State University, Corvallis, OR.

[Buxton 83] Buxton, W., Lamb, M. R., Sherman, D., Smith, K. C., "Towards

a Comprehensive User Interface Management System," Computer

graphics : SIGGRAPH '83 Conference Proceedings. Detroit, Mich.

Vol. 17, no. 3. July 25-29, 1983. pp. 35-42.

[Cardelli 85] Cardelli, L. and R. Pike, "Squeak: A Language for

Communicating with Mice", Computer Graphics, July, 1985, pp. 199-

204.

[Cardwell 87] Cardwell, Gilbert F., "A Good Interface Is Difficult To

Design," Computer Graphics, March 1989, pp. 105-109.

[Chia 89] Chia, Shyang-Wen, Master paper, Dept. of Computer Science,

Oregon State University, Corvallis, OR., 1989.

-6 6-

l
n
u
n
fl

I
l
11

I
I
I
IJ

I

[DeMarco 78] DeMarco, T., Structure Analysis and System

Specification, Yourdon Press, New York 1978.

[Flecchia 87] Flecchia, M.A. and R.D. Bergeron, "Specifying Complex

Dialogs in Algae," Proc. SIGCHI + GI 87, ACM, New York, 1987, pp.

229-234.

[GIIT 83] Graphical Input Interaction Technique (GIIT) Workshop

summary. Computer Graphics, vol. 17, no. 1, January, 1983, pp. 5-30.

[Hayes 85] Hayes, P.J., P.A. Szekely, and R.A. Lerner, "Design

Alternatives for User Interface Management Systems based on

Experience with Cousin," Proc. SIGCHI 85, ACM, New Your, 1985, pp.

169-175.

[Henderson 87] Henderson, D. A. Jr., "The Trillium User Interface Design

Environment," Proc. SIGCH'86: Human Factors in Computer

Systems, Toronto, Ont~, Canada. April 5-7, 1987, pp. 279-284.

[Hill 86] Hill, R.D., "Supporting Concurrency, Communication, and

Synchronization in Human-Computer Interaction: The Sassafras UIMS,"

ACM Trans. Graphics, July, 1986, pp. 179-210.

[Hix 89] Hix, Debroah, "Generations of User Interface Management

Systems: Their evolution and relationship to software engineering,"

submitted to IEEE Software, Feb. 1989.

-67-

I

n
n
n
0
0
n

I
[j

f]

11

[I

11

J

[Hsieh 88] Hsieh, Chia-chi, "A Graphical Editor for Pascal Programming

on Macintosh," Dept. Computer Science Technical Report 88-60-4,

Oregon State University, Corvallis, OR. 97331.

[Hudson 86] Hudson, S.E. and R. King, "A Generator of Direct­

Manipulation Office Systems", AC:M Trans. Office Systems, April,

1986, pp. 132-163.

[Jacob 86] Jacob, R.J.K, "A State-Transition Diagram Language For Visual

Programming,", Computer, Aug. 1985, pp. 51-59.

[Kasik 82] Kasik, D.J.\"A User Interface Management System,"

Computer Graphics, vol 16, no. 3, 1982, pp. 99-106.

[Lewis 89] Lewis, T.G., Handloser III, F.T., Bose,S and S. Yang,

"Prototypes From Standard User Interface Management Systems,"

Computer, vol. 22; no. 5, May, 1989, pp. 51-60.

[McClure 89] McClure, Carma, CASE Is Software Automation,

Prentice Hall, New Jersey, 1989.

[Musa 85] Musa, J. D., Software Engineering: The Future of a Profession,
IEEE Software, vol. '2, no.I, January 85, pp. 55-62.

[Myers 87] Myers, B.A., "Creating User Interaction Techniques by

Demonstration," IEEE Computer Graphics and Applications, vol. 7

no. 9, Sept 87, pp. 51-60.

-6 8-

I
r

7
n

A

0
n

I I

I
I
I
·1

[Myers 89] Myers, B.A., "User Interface Tools: introduction and survey",

IEEE Software, vol 6, no. 1, Jan. 1989, pp. 15-23.

[Olsen 83] Olsen, R.D. Jr., and E.P. Dempsey, "Syngraph: A Graphical User

Interface Generator," Computer Graphics, July, I 983, pp. 43-50.

[Olsen 85] Olsen, R.D. Jr., -E.P. Dempsey, and R. Rogge, "Input-output

Linkage in a User Interface Management System," Computer

Graphics, July, 1985, pp. 225-234.

[Pfaff 85] Pfaff, G., ed. User Interface Management Systems,

Springer-Verlag, Berlin, 1985.

[Prototyper 87] SmetherBames Prototyper User's Manual. P.O.Box 639,

Portland, Or. 97207.

[Raghu 89] Raghu, J., -' "Adding Functionality to a Vacuous Prototype",

Dept. of Computer Science Tech. Report 89-60-4, Oregon State

University, Corvallis, OR. 97331.

[Schmucker 86] Schmucker, K.J.,"MacApp: An Application Framework,",

Byte, Aug. 1986, pp. 189-193.

[Sibert 86] Sibert, J.L., W.D. Hurley and T.W. Bleser, "An Object-oriented

User Interface Management System", Computer Graphics, Aug. 1986,

pp. 259-263.

-6 9-

l

□
n
D
□-

I
n
17
r ,
l

J

[Yang 89], Sherry Yang, T. G. Lewis, & C. Hsieh. "Integrating

Computer-Aided Software Engineering . and User Interface

Management Systems", Proceedings of the 22nd Annual

HawaHan International Conference on System Sciences, Vol.

II, 1989.

-7 0-

I
I

	Yang_Lewis_89_60_21_A
	Yang_Lewis_89_60_21_B

