
, 《 ： 令 、 n ‘ 、、“ ^ 'iK ‘‘
 f

‘ .
 f t

 “^* ！ t 乂- ‘. . .•. - . . - , . ： . . • • ‘ ； • •

An Object-Oriented
Methodology for Modern User

Interface Development

^^ Ci f I

： ： 广
: :

: /
: —.. v b y

LAM Sin Hong

A THESIS
V t

Submitted to
The Chinese University of Hpng Kong

in partial fulfillment of the requirements
for the degree of

MASTER OF PHILOSOPHY

Pepartment of Computer Science

May 1991

- ̂ - --:::..: .'I--.」.,':-. .
 ...::..'-::... ..:,. •. - 、，.-’.

. . f .. .

itisifF

^wmnM,

I«L養 JIJI

-//¾务\^\\\\

顿

 . r - . . .% .,: .. ,. •iif-• •

 f

snrn二

b‘9厂

s

『••3 ̂.

一 .. TOOS 绍

Acknowledgments

I would like to express my deep gratitude to my supervisor Dn Moon
and other M.Phil students in Computer Science Department for giving me
valuable advice and helpful criticism.

- ‘i • ‘ ., ‘ “ ； • ‘ . . -
 1

 .

. 、 , . — • ：.

• . . .* 1 . ‘ ‘ , • . . .

:• ‘- ,./:.”::...- V ., :;...':、： ，..::. “‘ ‘“ r . ,.'; • ‘. ..： ：. .. •.’’‘’ ... ， ： ‘..’. .‘.--

Abstract

In order to increase the usability of computer system, user interfaces

become more and more sophisticated and complicated. Some new user interface

features such as separating user interface from application, direct manipulation,

undo / recover and multi-thread dialogue are introduced into modern user

interfaces. These features are very attractive and interesting but they also cause

many technical problems during the modern user interface development life cycle.

These technical problems' include concurrency of dialogue control, multiple

continuous feedbacks, recovery of user interfaces at different abstract levels ...etc.

Due to these technical problems, the software development and maintenance cost

of modern user interfaces keep increasing in the past few years.

Focusing on the above problems, this thesis proposes an Object-Oriented

methodology for developing modern user interfaces so that much of the above

mentioned difficulties can be solved. Ideally, with this Object-Oriented

methodology, the development time of user interfaces can be reduced and the

development processes of user interfaces can be systematic and structured.

Modification of user interface becomes easy and efficient. An Object-Oriented

User Interface Model and a User Interface Framework whose design is based on

this model are proposed in this thesis so as to achieve the above objectives.

- :...,. .N .,:.. ,... ... ' ..." .' . ‘' '. �. • ‘ , .

An Object-Oriented Methodology for Modem User Interface
Development

Chapter 1
Introduction 1
1.1 Software Development Crisis of User Interface 1
1.2 Objectives and Scope of Interests 1
1.3 Overview of the Thesis 2

Chapter 2
Background and Problems 4

2.1 Categories of User Interfaces 4

2.2 Trends of User Interfaces 6
2.3 Some other Desirable Features and Problems of UI

Development ‘
2.3.1 Separating UI from Application 7
2.3.1.1 Benefits of Separable UIs and Applications 7

2.3.1.2 Requirements of Complete Separation 10
2.3.2 Instant Continuous Feedback 12

2.3.2.1 Problems of Linguistic Model on
World Model Type UIs 12

2.3.3 Undo and Recovery 15
2.3.4 Iterative Design through Rapid Protyping 16

Chapter 3
An Object-Oriented Model for Model World User Interfaces Development 18

3.1 Features of UIs to be supported by the Model 18
3.2 A Linkage Model for Separating UI from Application 19

3.2.1 Communication Messages Modeled using
an Object Oriented Approach 20

3.2.2 A Sample Message 22
3.2.3 Linkage in a Distributed Heterogenous Environment 24
3.2.4 Comparing the Linkage Model with the Application

Interface Model in Seeheim's UI Model 25
3.3 An Object-Oriented Model for Supporting Multiple Feedbacks

and Multi-thread dialogue 26
3.3.1 An Overview of the Model : 27
3.3.2 Objects on the Lexical Layer 28
3.3.3 Roles of Presentation Objects 29
3.3.4 : Syntactic Objects 31
3.3.5 Interaction Objects 32
3.3.6 Interaction between objetcs and Linkage Component 33
3.3.7 Multiple U-tubes Ladder for Supporting Multiple

Feedbacks 33
3.3.8 Recovery through a Generic UNDO stack 35

：；； 3.3.9 Dialogue Control in an Object 37
3.3.10 Interactive Objects 39

.,..'‘. ‘ : * • . • ' .1 •- , ... : , . ‘
• ； 、 • “ . : , , . ‘ ‘“ • “ - ‘ *.

• -

33.11 An Architecture for Supporting
Multi-thread Dialogue 40

3.4 Basic Object Structure 4 2

3.4.1 An Event Model for Dialogue Control 43
3.4.2 Maintain Consistency through e-rules 45
3.4.3 An Example of an Inner Object Specification 47
3.4.4 Pre and Post Condition of Action 49
3.4.5 Automatic Message Routing 49

3.5 Systematic Approach to UI Specification 50

Chapter 4
User Interface Framework Design 5 2

4.1 A Framework for UI Development 52
4.1.1 Abstract Base Class for Each Object Type 54
4.1.2 A Kernel for Message Routing 60
4.1.3 Interaction Knowledge Base 63
4.1.4 A Dynamic View of UI Objects 64
4.1.5 Switch Box Mechanism for Dialogue Switching 66
4.1.6 Software IC Construction 68

4.2 Summaries of Object-Object UI Model and UI Framework 70
4.2.1 A New Approach to User Interface Development � 7 0
4.2.2 Feautures of UI Development provided by the

Object-Object U I Model and UI Framework 71

Chapter 5
Implementation 73

5.1 Implementation of Framework in Microsoft Window …
Environment 73
5.1.1 Implementation of automatic message routing through

dynamic binding 73
5.1.2 A generic message structure 75
5.1.3 A meta class for object communication 76
5.1.4 Software component of UI framework in Microsoft

Window environment 76
5.2 A Simple Stock Market Decision Support System (SSMDSS) 77

5.2.1 UI Specification 81
5.2.2 UI features supported by SSMDSS 87

Chapter 6
Results ；

6.1 Facts discovered 89
6.1.1 Asynchronous and synchronous

communication among objects 89
6.1.2 Flexibility of the C+ + language 90

6.2 Technical Problems Encountered 91
� 6.2.1 Problems from Implementation Platform 91

6.2.2 Problems due to Object Decomposition in an
Interactive Object in SSMDSS 92

6.3 Objectives accomplished by the Object-Oriented UI Model
indicated by SSMDSS 93

Chapter 7
Conclusion 95

7.1 Thesis Summary 95
7.2 Merits and Demerit of the Object-Oriented UI Model 96
7.3 Cost of the Object-Oriented UI Model 96
7.4 Future work 97

Appendix
A1 An Alogrithm for Converting Transition Network Diagram to

Eveiit Response Language A1
A2 An Object-Oriented Software Development A4

A2.1 Traditional Non Object-Oriented Software Development A4
A2.2 An Object-Oriented Software Development A6

A3 Vienna Development Method (VDM) A8
A3.1 An Overview of VDM A8
A3.2 Apjply VDM to Object-Oriented UI model A10

A4 Glossaries and Terms A12

Reference

;
•； 、. ,； • , . ' 、 . ‘ . . . : . ， . … : : . ‘ ''': . •. .. ‘：

• > .-. . ‘ - . ‘ ... • ‘ _ • •“

Chapter!

Introduction

This chapter presents the basic motivations and objectives of our research.

An overview of this thesis is also presented in this chapter.

1.1 Software Development Crisis of User Interface

User Interface (UI) is a crucial factor determining computer system

usability. A good UI can encourage a user to make full use of a computer

application and hence the user can increase his/her productivity or efficiency in

using a computer. Although a good user interface is desirable, it is not easy to

develop. Besides such Human factors as psychology or culture that make the

specification of UIs difficult to write, many new UI features such as undo, direct

manipulation, and multi-thread dialogue, make modern UIs very sophisticated and

complicated. These new UI features also introduce many technical problems, such

as concurrency of dialogue control, multiple continuous feedbacks, recovery of UI

at different abstract levels …etc., to modem UI development. In order to handle

the above technical problems, codes of modern UIs are usually bulky,

unstructured and difficult to maintain. Consequently, UI development usually

occupies major part of a software product's development time and contributes

a bottle neck in software development cycle.

1.2 Objectives and Scope of Interests

The objective of this thesis is to propose a new approach to modern UI • - . ‘ ‘ 1 ‘ - • . •

1
x •. .； ... ••...+ •.. 丄..

development so that UI development time can be greatly reduced. Moreover, the

development of UI becomes more systematic and structured. According to this

new UI development approach, we can make UI maintenance work easy and

efficient. In short, with the help of this new UI development approach, the

software development and maintenance cost of UI can be reduced. An Object-

Oriented UI Model is proposed in this thesis so as to achieve the above

objectives. In the following chapters, we will show how the object-oriented

paradigm can provide us a comfortable and efficient environment for UI

development.

Although UI development also requires knowledge from different domains

such as psychology or ergonomics to construct a user model for UI requirement

specification [1,15,61,63], we assume that we ean get around this by iterative

designs through rapid prototyping as described in section 2.3.4. Hence, in this

thesis, we restrict our research interests only to the technical problems caused by

the new UI features described above.

1.3 Overview of the Thesis

Chapter 2 presents relevant background materials such as categories of Ills

and the trends of UIs. Some desirable features of modern UIs are identified.

Chapter 2 also presents the development problems of modern UIs.

An Object-Oriented UI model is proposed in chapter 3. How this model

can give solutions to such problems as separating UI from application, multiple

continuous feedbacks, undo/recovery ... etc, will be discussed. Chapter 3 also

introduces a new approach to specify the individual software components and

.、'... .2.. . . ‘

their dialogue controls in a UI.

Chapter 4 describes the design of a UI framework which is a basic blue

print for our UIs development. The design of this UI framework is based on the

Object-Oriented UI Model described tochapter 3. The objective of m fram

is to provide an easy and comfortable environment for UI development. Rapid

evolutionary prototyping of UI is also supported in this UI frame environment.

Chapter 5 presents the implenientatioii of the UI framework in the

Microsoft Windows environment. A Simple Stock Market Decision Support

System (SSMDSS), which is implemented according to the UI framework, is

presented. The implementation of SSMDSS is used as an example to illustrate the

properties of the Object-Oriented UI Model and UI framework.

Chapter 6 presents the results of SSMDSS. The difficulties and problems

of implementing this system are described. The accomplishments of the Object-

Oriented UI model indicated by this implementation of SSMDSS are identified.

Chapter 7 summarizes this thesis. It also points out the merits and demerits

of the Object-Oriented UI model., Finally, future works are suggested.

. . . ' • ; . “ • . “ “ ‘ { .* . . . ' - :� • • , . . • . • , • . , . ’ . . .

3 �

, ..；,；V" ,. ,」'./.«.:..+ ‘ ； ‘ ,. i . _ “ ： •,, ‘ _ .. ‘ ； , - ； ‘ ‘ ,
 r

 . , ‘ • . ‘ .. .

Chapter 2

Background and Problems

In this chapter, we identify the trends of modern user interfaces. The needs

and justifications of some desirable features of modern user interfaces are

discussed. However, these desirable features also introduce many new problems

and challenges to user interface designers. Finding a new user interface

development approach to cope with these problems is the primary goal of our

research.

2.1 Categories of User Interfaces (UIs)

Based on the interaction styles of UI, we can classify UIs into two main

streams 如

B̂MHMÎ HaHK̂ HBRHHIHimiM̂ HBaHHHBBnBmHmHaaBHHBmBaBHMBBaBaHMHamiDBaHB

C:\>
C:\>dir temp

Volume in drive C is S H LAM j
Directory of C:\

TEMP 51 11-07-88 2:22a
1 File(s) 2764800 bytes free

C:\>
C:\>del temp ___；

Figure 2-1 An example of conversational world style UI.

Conversational world style: An example of conversational world style UI

is shown in Figure 2.1. UIs that fall into this stream treat human-computer

interaction as human conversation in which each participant speaks in turn. A

user inputs a coiiimand line into a computer and the computer, according to the

4

、、 •‘ • - - : ,

.‘:.'_:':: ...‘..:.. .： • . ' . , . . :，'. .，../,.. .. • ‘ . : . : (‘‘ • •.‘..

grammar of the command language, interprets the meaning of the input command

and then acts upon the input command and produces some outputs to the user.

The user in turn interprets the output of the computer and gives another input

command, The cycle repeats until some goals are accomplished. The dialogue

between the user and the computer is sequential and is supposed to move in a

predictable manner which can be described by a finite automata. This style of

interaction is adopted by many conventional text-based interfaces and has been

well modeled by many linguistic models such as language parser and argument

transition network [29,32].�

； 滋 孩 ^ ¾ ¾ ¾ 欄 挺 先 涵 ： 顏 ^ ^ 漏

纖 娜 f c j 聽 圖 _ 糖 續 越 _ 漏

Draggin to the Trash, Recovering an item
R e m o v i n g a document from the Trash

F i g u r e 2 . 2 An example of Model world UI^

Model world style [32,33]: An example of model world style UI is shown

in Figure 2.2. This style of interaction tries to represent real world objects visually,

such as radio button and file's icon, so that a user can manipulate the objects
- • .P . ..,.，；， , 1 'v； ... ' , . . .:, (" •

directly through some input devices such as mouses or light pens. Unlike

. : . : . . : .、.，5

. , . .. •“‘；；... • .. ‘ . . “ ., . • .

conversational world style UIs, objects being manipulated are directly presented

to a user rather than remaining abstract. Model world style interaction also

provides instant continuous feedback to a user； For example, a file's icon moves

continuously when the icon is being dragged by a mouse.

Another important feature of model world style interaction is multi-thread

dialogue. This feature makes this style of interaction appear modeless. In essence,

a user may suspend a dialogue with an object at one time and switches to another

object to start a new dialogue with that new object immediately. After the user

has finished the dialogue with the new object, he or she can switch back to the

origmal object and resumes the dialogue from the point it is suspended. Because

of this multi-thread dialogue interaction, users can have dialogues with several

independent objects at one time. The dialogue between user and computer is

asynchronous as a user can switch to other object or task whenever he or she

wishes. Multi-windowing system is a good example of multi-thread dialogue

interaction.

Such style of interaction is adopted by most graphical UIs and windowing

systems such as the UI builder in NeXT and the MacApp in Macintosh [72].

2.2 Trends of UIs

With the advent of modern low-cost graphics hardware and popularity of

personal computers for laymen, more and more UIs are designed in the direction

of model world style interaction. As this style of interaction can simulate our real

world objects in graphical forms (e.g. the desktop environment in Macintosh), this

interaction is close to our daily life and hence can easily be captured by novices
.• ”•�,.’ •

 ;i'i .. ', * ‘ . .“ ：. • . 所.

. - . , • . 6 ..

who never have any experience with computers before. [23,32,61] have also been

pointed out that the interaction techniques (such as icon, menu and dialogue box)

used in model world interaction style, especially the direct manipulation, can

reduce the cognitive efforts of users who are required to use computers to

accomplish their tasks because users can manipulate the objects directly and they

do not need as much energy as conventional world style UI requires them to

interpret the computer output or translate their thoughts into commands that the

computer can recognize. Consequently, model world style interaction increases the

usability of computers for users.

Because of the advantages of model world style interaction to computer

laymen, many companies foresee the potential marketplace of this style of

interaction. Therefore, in the mid 80 and the beginning of 90，many commercial

software products have been developed using this style of interaction, for example

prototyping in Macintosh[79], Microsoft Windows and UI builder in NeXT

computer[23]. It is believed that most modern UI designs are oriented in this

interaction style.

2.3 Some Other Desirable Features and Problems of UI Development

Some desirable features and problems of UI development are identified

in this section.

2.3.1 Separating UI from Application

2.3.1.1 Benefits of Separable IJT and Application

Separation of UI and application is one of the key success of User

Interface Management System (UIMS) [23,82]. There are several benefits:

7
. . . ‘ � ‘ • . . ' ' " ‘ • . „ •

1) Independent development.

As UI and application do not depend on each other, they can be

developed separately without interfering with the other. We can develop

and iteratively refine our UIs without considering the constraints from the

applications. Therefore, we can accomplish the UI prototyping work more

efficiently and shorten our development time.

In the other way round, we can also develop and iteratively refine

our application core without considering its UI. By ignoring its UI, an

application programmer can concentrate his/her effort on the logistics of

the application. Hence, the capability and scope of the application can be

enhanced.

2) UI can be personalized to the user.

For a particular application, users can choose their preferential UIs

and "plug" them into the same application as shown in Figure 2.3

D i f f e r e n t u s e r i n t e r f a c e s f o r the s a m e a p p l i c a t i o n

Application .. Applio atioa Application

P e r s o n a l i z a t i o n of u s e r i n t e r f a c e
F i g u r e 2 . 3 P e r s o n a l i z a t i o n of u s e r i n t e r f a c e

...... . .-. ’i • ,. . ."’ ‘ ‘ ., ‘ • ‘'
 1

 ...

• / • . - • '. • • . .. - ‘ • - •

8

" 3) Reusability

VIs can be reusable when they are "plugged" into compatible

" applications.

4) UI and application can be installed in different machines.

Advanced distributed computing technique, like the client-server

model in many window systems., allow VI and application be installed and

run on heterogenous machines as it is shown in Figure 2.4. By such a load

balancing art, we c~ improve the efficiency and performance of the whole

system. [51,88]

Although separation of VI and application can offer the above advantages,

the following section shows that complete logical separation of UI and application

is extremely difficult if not impossible.

App1ication

APp1~cation 3

App1ic&tion 4

Communication through
Loca1 Area Network

Machine].

OX 2

OX 3

UX 4

Machine 2

Use~ inte~faces and applications
are installed in different machines

Fi~ure 2.4 UIs and applications are "installed in different machines

9

2.3,1.2 Requirements of Complete Separation

For a complete separation of user interface and application, we should

have the following properties:

1) The behavior of each component does not depend on each other.

2) The status or configuration of each component should not be affected by

each other.

3) Each component can stand alone without considering the existence of the

other.

In order to achieve neither of the user interface nor application can

have control over the other. If one has control over the other, then the one being

controlled will depend on the one who controls it. In this situation, we cannot
develop UI and its application separately.

In order to achieve 2，neither the UI nor the application can access the

data of the other (including referencing and changing the data of the other), that

is no data dependencies of two components are allowed. If one can access the

data of the other, status of one component can be changed by the other.

In order to achieve 3，UI and application should be mutually ignorant. It

is the extent of point 2. Because of point 2，each of them even cannot access the

other's status information. This point is crucial for independent development.

Without knowing each other, neither of the development of the two components

will be affected or constrained by the other.

Hie consequences of the requirements of complete separation is that the

UI and application cannot communicate, reference, control or affect each other.

Unfortunately, a system with such a complete separation of user interface and

；v；； 10

application, as shown in Figure 2.5, cannot do anything for us as they cannot be

integrated together to work for us.

A p p l i c a t i o n - i g i i o r a i i t A
 :

 U s e r i n t e r f a c e - i g n o r a n t A p p l i c a t i o n

User Inteiface /

: : 彳

•〈• \ / A p p i i c a t i o n |__

\ I n t e l f a c e \ /

H :
User , i n t e r f a c e knows / A p p l i c a t i o n K n o w s n o t h i n g a b o u t i t s

n o t h i n g a b o u t , u s e i i n t e r f a c e .

i 1 8 a p p l i c a t i o n

c o m p 1 e t e s e p a t a t i o n

F i g u r e 2 . 5 A sys tem wi七h complete s e p a r a t i o n of UI and a p p l i c a t i o n
~ can do npth ing f o r u s .

Although a complete logical separation of UI and application is almost

impossible, we can structure their designs at low level so that they can be

implemented separately and independently. However, the dependence between

UI and application at high level design specification is still inevitable.[57]

If we want to integrate the UI and application in an optimal way, we have to

put more constraints in the design specification so that they can co-operate in the

most efficient way. However, this will increase the dependence of user interface

and application at the low level development and hence the flexibility for each

component development will be decreased.

Therefore, there is always a trade off between

- the flexibility of component development,
• ； - the independence of user interface and application

,.......:.:/.‘...........:•.:...：彳::/.�:'.',�.'�. vs

• . . . 1 1

• :....‘； . 、 ： . . , - .. . •‘ ： “： .'•... . . '•‘ • . , , ‘ ： ， . . . -

....‘•.； .、••.'::• ： ^ ；:>. ; ： ‘ / . 」 -
:
. : . : : : : : . .

:
、 、 : , : '

:
: " . : ' 、 : ： ：

- the efficiency of integrating the separable components
- co-operation among component, hence indirectly affect the whole

system performance.

In short, we must maintain a balance between the system integration (at high

level of abstraction view) and independence of the UI and application (at low

level development view). In order to achieve this, we may need to find a

methodology to formulate the design specifications so that we can enjoy the

benefit of separable user interface and also the efficient co-operation between UI

and application in the system.

9^ ？/Tnstant Continuous Feedback

As mentioned in section 2.1, instant continuous feedback is one of the

features of model world style UIs. However this feature introduces new problems

to world model type UI development

2.3.2.1 Problems of Linguistic Model on World Model Type UIs

In a traditional linguistic model [23,32,40] for a conventional text-based

interface, the user interface is viewed as a dialogue between a user and a

computer. The model has three primary components at different levels as shown

in Figure 2.6.

1. The component at lexical level consists of all input that will be recognized

by a UI. It receives inputs from a user and checks if the input's tokens is

valid such as correct identifier format or keywords.

2. The component at syntactic level consists of the syntax of the input

command such as the number of arguments or the position of keywords

in the command.

1 2

. 气 •,. .. •, .:.. . , . • , .、 • . • .

' . " . • : . . » . . . , , , . ' ： - : ‘ . . 二 . .， ，. ’ � ,

3. The c o m p o n e n t at semantic level consists of the knowledge about the

meanings of the comxnand. This component should be handled by the

application and is outside the scope of the UI.

01 l n d a p e n d g n t o f A p p l i c a t i o n A p p l i c a t i o n

Cobband f
B v e n j c ^ ^ ^ ..

asei \Compon^^ K^ompon^y
" — — "

\ R e p l i c e s zesnlt
1 J

Figure 2 . 6 ~ T r a d i t i o n a l L i n g u i s t i c Model f o r Convent ional Text Based
I n t e r f a c e ‘

These three components are strictly separated and should be independent

of each other. The components at lexical and syntactic levels are embedded in UI

while the component at semantic level is embedded in application. As these

components are strictly separated, the feedback from these components are also

separated and independent. Although instant lexical feedback can be supported

by most operating systems such as echoing input characters, the syntactic and

semantic components have to wait for complete input before they can give any

feedback to the user.

Because of the above limitation, it has been pointed out that the linguistic

model has problems on interactive graphics and direct manipulation interaction

[51,57,82]. Usually, direct manipulation requires instant continuous feedback from

all these three linguistic levels (lexical, syntactic and semantic). For example, in

the Macintosh desktop environment, if we want to dispose a document, we need

, . : . ‘ . . . * %, ‘ ： . -

—'• . '
：
. ,.’':..:.-. : ... : •‘:....,: ..:• . . . 、 .,-. • •, ： • • ：• ,； ‘ • ：, • •• ' - . .

. ‘ ‘ ； • ,:.:. ..
:
.、;，. . .:‘,：.... . . ： • ,.,.._.., '.’•:.. ‘ , . ‘ , _； .

• \7'；-' ‘ _ ‘
:
 ‘ - • ？ . .

W.:-. 、..•；.••• “ • . ‘ .

V-； . ‘ • . ‘ •

to select an icon representing the document and drag it to a garbage can. This

action requires lexical feedback by constantly showing the cursor location,

syntactic feedback by changing the selected icon's position on screen, and

semantic feedback by deleting the document in the file cabinet and showing the

increased size of the garbage can. From the above example, we can see that in

order to provide direct manipulation interaction, the three linguistic components

should no longer be separated. They collapse into one single entity as each of

them requires help from the other in order to give immediate feedback to end

users. Continuous feedbacks from all linguistic components will be given to users

eVen though the users may not have finished their commands.

However, without the linguistic model, we may run out of an effective way

for describing the essential dialogue control and events sequence of UI. Hence,

in order to model the model world style UI, a new model is required such that

it can describe the instant-continuous feedback meehanism from the three levels

and at the same time can capture the dialogue control and events sequence of the

UI as well.

Instant semantic feedback also farther complicates the problem of

separating UI from application mentioned in section 2.3.1. If we consider

application as a kind of semantic server as most UIMS models do [18,40], in

order to have efficient semantic feedback, we may need to build more semantic

knowledge in a UI. However, this will increase the dependence between UI and

application at low level design. On the other hand, if we provide the semantic

feedback by establishing closer communication between UI and application, it will

increase the dependence between UI and application at high level design and also

14
• .,.....:,-:. ..、.. ： ... • .,. / . . . , . . : ..' . . . 、...•... ' ..,.....:. . . , : . .

. . . . , . . ' • . .. ：• -....,.. ' ： • • • . '.、.-..••. : . . .‘ . • • • . . • ； . , ' ' ' . . , . 、 . . .

! ' ; ' ' ， - 、 ’ ” ， f “ ‘ » , , ,{ ‘ ‘ ‘ , . ‘ •

the loading of comniunication between them. Therefore, there is also a trade off

between separable UI and efficient semantic feedback.

9 H TTnHo and Recovery

No one can guarantee that one will never make any mistakes when one is

using a computer. Therefore, it is better for users to undo their previous actions

and cancel the effects that they have just made. With this feature, UIs become

more friendly and forgiving to users. Users can also feel easier to operate their

systems as they can return to the original status in case they take a wrong action.

Sometimes users may also want to backtrack several steps in order to try

different paths to accomplish their tasks. Hence, the undo feature also gives users

more power to solve their problems by taking different alternatives.

Nevertheless, unlike conversational style UIs, the undo unit in Model world

style UIs is not as clear as conversational style UI. In conversational style UI, a

single character can be considered as an undo unit as it can be "back up" to the

previous state by using a backspace key. However, in model world UI, undo units

are not well defined. A single operation in model world style UI may involve

several actions. How many steps should be backed up in order to undo an

operation? In model wprld style UI, feedback is continually given to a user even

when they have not finished their input. When we undo an operation, all the

effects from the feedback which associate with the operation should also be

canceled. The situation is further complicated if the operation involves nested

closure which may cause difficulties when an undo action is required in the most

inward nested closure. Therefore, the overhead of a undo operation in Model

15
.；. . , 、 . . . ： . . �.....,.. • • . 、

World style UI is higher than a undo process in conversational style UI,

，^ d Ttfirativft Design through Rapid Prototyping

Ul bridges I N gap bet we«n user model and applicat ion mo d el

• ：• ^ ^ n r ^ T ^ r ^ 、 ^ ^ ^ ”
1

"
1

" " ^ ^ Appl i c a l l o n ^ v
^ …

1
 M . u r ^ y x F u n c t i o n a l Model V

： 八 � u t i ^ ^ i ^ ^ y :
COACipt Utt 一
Uvrl Q ； O 。

P 0 UI designs capture 〇。
L.val of ' Q c ” , u , — u … Q t)e application o
A b i l n c M o n V modiMhrougb . J A c t i o n a l model O

a . • —̂~~•* • ‘ � —
X commnuffli c«t ioi> wi t h 1 thrtiqli ««»«««1 e«t I on / X the end u«8r 八 … " " " " " 。 “ A

Ui»f ui D t t l sn i r ApplIei t i ot D*ti gn*i

Z g‘." d«si gn ml gi vs “sign.
S p a c l H c a t l o n , S p e c i f i c a t i o n

Sptc i f i e t t i on • ' '

Figure 2 . 7 UI d e s i g n e r has t o capture t h e u s e r model i n h i s UI
d e s i g n .

As a UI is considered as a physical bridge between users' world and their

computer system world (as shown in Figure 2.7), in order to design satisfactory

UIs for users, UI designers have to understand their client user models, so that

they can develop the right products that really fit their client needs.

The problem of capturing user models and mapping the models to

computer system world may involve several different disciplines such as cognitive
.. ' • . 、 .： . • . • , - . ‘ •

science, ergoriomic science^ human behavior and human-computer interaction. At

: : . . � . 1 6

." ：•'•?；•' .,、'.'. "•",'•',-•• .'.
:
V...i '.-..'、.

5
 • ， 广 . , . ' "• • ' .. : ... ,. , .: ...、'.-. • ‘' • ' ,....,, . ,'•' . ,-., . . . , '：; , ‘ ’ . . . ；, "？ . . • . .‘ - • - ..-•/•

dî A與玆‘ ‘.’’， ‘ 厂V '
J
、f《。w'、‘i 乂 ；’々、’. ‘

 s
 ‘

 4
 ., ., ,、-

:
 :、’_»〜-•

 y
 “''-'

6：
 •' '''

 ?
>"v‘ . ‘：、'*V.' ：‘ V,. ,•々 ..’、‘'̂i V ‘ ••• ‘ . .;、.、： “！；‘ ‘,'.,.'. ‘ .-.、‘” ‘‘,-..

the very beginning, users may express their original intentions and requirements

by drawing, typically on paper, scenarios of how the user interaction will look and

act. Then, by studying the acceptance test results of the UI prototypes and

feedback from users as shown in Figure 2.8, UI designers will be able to

understand their clients，desires better. Multiple iterations of design and

refinements of UI are, therefore, necessary before a satisfactory UI is built.

Bedsides helping UI designers to discover early design errors, prototyping

also help end users to discover their unknown needs. At the beginning, they may

not clearly know their actual needs of their system, they just have a coarse idea

of their needs. However, as they cope with the UI prototype, they can really

visualize their needs and make their requirement become more concrete. Hence,

prototyping also assists the requirement analysis in the UI development life cycle

In order to achieve rapid prototyping, a new software development

approach should be proposed for UI development so that the modification of UI

software becomes easy and efficient.

Interview/ C on suit a t'i o n / C o mp i o mi s e

Q acceptance Refine / Q
en user 八 ^ / % U 工 八 01 designer

入 test (modify 人

: : . : : 八 ::
-： f e e d ba c k / s u g g e s t i on / c o mm e n t s

F i g u r e 2 . 8 M u l t i p l e i t e r a t i v e d e s i g n may be n e c e s s a r y through t h e
u s e r feedback loop

17
〜 ‘,,. > • _ .、 . , ‘ 、 . ；. ‘ ；0 _ . ‘ ：. ... , ••... •；‘‘；.

Chapter 3

An Object-Oriented Model for User Interfaces Development

In this chapter, an Object-Oriented Model for UIs development is

proposed. This model tries to provide easy mechanisms for supporting separable

UI，multiple feedbacks, undo functions and multi-thread dialogue features in

modern UIs. A new notation for UI specification is also proposed in this chapter.

3.1 Features of UIs to be supported by the Model

In section 2.3, we have presented the desirable features of UIs and some

problems of their development. Based on these features and problems, the

proposed model should meet the following criteria.

1) Dialogue independence.

Dialogue independence is a UI design approach in which design

decisions affecting only the human-computer dialogue are isolated from

those affecting only application system structure [23,32,33]. That is an

application should know nothing about interaction styles (e.g. using menus,

buttons via mouse or command languages via keyboard) and appearances

(e.g, the presentation of data to users such as table, graph or chart) of a

UI. Conversely, the UI knows nothing about how the application processes

its requests. Dialogue independence is a basic foundation for separating UI

from application. Without this feature, the computation functions in

application will merge into UI and makes the separation of UI and

：application become difficult
... , . ； “ ‘ i" -1 • ' ； ‘ ； : , 、 . . ， ， ： . ‘ ； ‘. . .，. .

 1
 ’ ’ ’ • ‘ “ .-.:. , , , .

•• 18 .. .
. . . . 、 ， ， ’ . . . " ' . ： • * ：, •• ；•-.- ‘' . “ … : — — • ‘ - • • . • • 、•‘

:./. . . : 7 , . : . . : . . . : . . : . . : 、 ： • ‘ '；.• • / , , •' . '. , / ’ • . . ’ ， . . - , . . • -

. . ‘ . •.: . •• .： - . ,
；

> .
v
 ： / V:'；.：

;1；
> ：；?̂； '：>.'

:：
,>： •:., (： . ： / ' • � . . . " • 声 . ‘ ..； .'「..’ 、 : . 、 ’ '. ... ‘；.

 ;
、 : ， , v . ‘ ••”,' .

‘；>；•',/,�•:'•.y:f"./ ‘？力••‘伐'.，-V ‘' ； ； . x» • “ ‘ v V' ‘' '.‘‘ T. • ‘ •• • 八.'i； • ‘ • • ：‘''•'•：'•. •’、...： ；
：
 •. ‘ ‘ ： ： . . . :•’. . '• .:..• ••: . ‘ ；.".. .- '、.-,.!, '•

I • • . ‘ ‘ \ p , ‘ �• j. >- ‘ ‘ • . \

2) Multiple Continuous feedbacks from three linguistic levels (Lexic^,
� . V； •'./.：' •. :• • , . ' ' . . . , . . 、

Syntactic and Semantic). \
' ' . . ‘ \ .

The proposed model has to cope with the problem of merging the \

three linguistic levels described in section 2.3.2.1. The model should

provide mechanisms to give feedbacks to a user but at the same time

provides straightforward syntactic mechanisms for describing events \

sequence of UIs such as those provided by most linguistic models.

The model should also deal with the balance between UI separation

and communicatioii overheadbetween UI and application due to semantic

feedback as described in section 2.3.2.1.

3) Multi-thread dialogue.

The model should provide a new notation to describe multi-thread

dialogue control in model world style UIs. Besides, describing the events

sequence ;in Immaii-computer interactioi^ this new notation , should also

capture the mechanisms for communication and consistency among

different independent dialogues. v

4) Undo function.

The model should provide a simple and efficient mechanism to

handle undo functions iir UIs regardless of the abstract levels or the

complexity of the undo functions.

3 2 A Linkage Model for Separating UI from Application

It has been shown that in section 2.3.1.2, a complete logical separation of

UI 叩d application is impossible. However, we need to integrate them into a
,...V'.,...、

 ：
， . 、 - ' . . . / . . : ,，’.:- . '... ' ' f :>. '-'r ‘ : ‘

 {
-；- ‘

 !
 '

 : .:•�. ‘ • ; . .、 • . ' 、 , “ ; � ‘ • , . . ' . , ' v . “

19

香 港 中 文 大 學 圓 當 館 藏 當

贊〉、'• \ ^ •
 1

 . , : . . . f , “ ' ' :. “ f.;..:‘:

sys tem so that it can work for us and on the other hand we want to preserve the

independence of UI and application as much as possible. At least, the dialogue

independence can be achieved. Consequently, in order to solve the above

conflicts, a module called Linkage, which is shown in Figure 3.1，is introduced.

Linkage is used as a mediator to link up a UI and its application. As linkage has

knowledge about both the UI and the application, it can translate messages for

them and hence lets them communicate with each other indirectly through itself.

Application-ignoiant Linkage Usei interface-ignoiant
User Interface :(knov both sides): A p p l i c a t i o n *

I ^ I
• 飞 Usei / Application

Dser interface know jtingage | Application know
nothing about jlinks up two ； nothing about its

, , its application jseparate 丨 user interface :c o m p o a e n t s

L i n k a g e l i n k s up t h e two s e p a r a t e c o m p o n e n t s

Figure 3 . 1 A Linkage component

3.2.1 Communication Messages Modeled ming Object Oriented Approach

As Linkage is designed to preserve the mutual ignorant properties of UI

and application to a maximal degree, indirect communication between UI and

application is defined in a highly abstract fashion as abstraction helps the

developers of both UI and application to ignore the implementation details and

constraints due to their own interactions. Abstraction, of course, allows the

semantics of system objects to be embedded in messages too.

20

...、..：〜， ， ‘
4 . : . . . ,二 v. • • — * . - .. • - . ., . , . : .

，:.:“:、撰....：：..• ； •: , . ‘ .‘ ： ' , � .] • ; •.:.、::•,.、, •、：；

In [24,58,62], it has been pointed out that the mechanisms of

generalization, specification, inheritance, classification, aggregation, and

encapsulation of method and data in object oriented paradigm can help us to

capture the semantics of objects in a system. Therefore, in our Linkage model, we

define each message for communicating between the UI and the application to

be an order pair < O^M >, where O is an object to be manipulated and M is the

method that applies to O. The translation of a message is actually a mapping from

O and M to O，and M，according to the interface specifications of the UI and the

application.

<0,M> - — - — — — — — 一 — — - - — 一 > <0，，M，厂

Message Sending Translation by Linkage Message Receiving
Component Side Component Side

message message r ecogni zed
“ ” … u “ by \ U nkage / bv application

I ^ ^ ― - V - - r — p \ •
<q � y Vi \ t ansl at i on ！-,

X
 U s e r

 \ < ^ < 0 > t W > — < 0 , M> _ J A p p l i c . t l o n p

nt erl a c e / I—. r—1

< > • L - b
M Q s s a g t r s c e l vl ng e o m p o n t n t M e n a g e s e n d l ng componen t

Figure 3 . 2 Linkage t r a n s l a t e s message from <0,M> t o <0*,M'>

O is the object requested by a Message Sending Component (MSC) for

manipulation by a Message Receiving Component (MRC). UI or application can

either act as MRC or MSC exclusively. O should be organized and composed by
21

- . . 、 ： . . , 、 , ； . . : ‘ . , . ； 」 ; : 、 ' . , : . ' . : _〜..’•• : • " , 、. . .•. . . . ， . ： . ’ 、 . .

� . .., ‘ • - ‘ ‘' . . - : . .. •

the MSG in such a "favorable" way for easy or convenient manipulation by the

MSC. M is the method requested by the MSC for application to the object O by

the MRG.

As the MSG knows nothing about the MRC, message <O^I> can be

designed in a highly abstract manner. Actually, the order pair <0,M> can be

viewed as an "intention" (What to do), something that we want to do but not

"HOW to do", of the MSC. By conceptualizing a sending message as an intention,

the developer of the MSC can ignore the actual detail processes and

implementation in the MRC.

O，is the object translated from O by the Linkage. It can be recognized by the

MRC. Similarly, O，is in a form such that it is "favorable" for manipulation by the

MRC. M，is the. method applying to O，，It is translated from M by the Linkage

for recognition by the MRG.

Obviously, the mapping of <0，M> to < 0，，M，> may not be one-to-one.

It may be one-to-many or many-to-one. If the mapping is one-to-many or many-to

one, Linkage has to take actions to decompose or group message(s). These

actions may include filtering unnecessary information and collecting necessary

information for both sides before the Linkage sends the translated messages to

MRC.

3.2.2 A Sample Message:

MSC : Application

MRC :, User interface

Intention of the MSC : "Display a chart to user"

22
. 、 . . . ， -.....••: • . \ .. ,. ., . . ‘‘ . .. ； . • ...

. . . . • . ' • . Y.: v. ‘‘ ^ ― ； • , _ . .、.:. '•
 ：

<0，M> : < Table,Display >

cO，，M，> : < Table',Display'>

Mapping

(faTiT)̂ V has attribute has instance

. : T . A r r a ^ i /
7
" [Pr esent metho(j | T- Ar /ay |

I col or ^ ^

‘ ‘ L ^
f i l l e d by user oi UI i t s e l f

User 丨 nt erf ace side Applicat ion si de

Figure 3 . 3 Mapping of Table t o Table*

Table is an object containing an array variable, T一Array, which stores a

chart's data. Display brings out the intention of the MSC but the way to present

the chart is left to the UI. This is the concept of dialogue independence. In

addition to T Array, Table' object also contains some attributes for presenting the

chart as shown in Figure 3.3. Display，is the method applicable to the object

Table'. Its task is to handle the presentation of Table，. As the application has not

specified the way for presenting the chart, the UI can let users choose their own

presentations of Table，. According to the choice of user, Table' may be one of the

following objects:

PolyJTable， : present D a t a in polygon chart when receives Display'
•. i • ‘ • • 1

 t • . '. . . .' . . •
message

: 、 ： 一
 2 3

 . .

1

Hist Table， ： present Data in histogram chart

Bar Table， ： present Data in bar chart

Graph__Table' : present Data in graph

spd sh Table' : present Data in spread sheet

By making use of polymorphism in object oriented paradigm, different objects

present the chart differently with the same Display' message as shown in Figure

.3 .4. . .

L i — — \
rolyg«a t \

: n n \ … - 丨 I ‘ :
n \ Linkage :.

LoQmL \ > , — ^ “ - T i p .
lax Ch*»t \ / - ^̂ I ,. """)

I •？ 0«.r <f ““ “ � � * “ ^ oy p-U Xl>piic»tlon LI - / � \ int.rtac- \ 4i.,l”i … r — 1

� . <T e““ ij I_.
or aph / ： ：

- r a A i ‘
/ presentation of Table • can be selected by user

asei i a t e i £ a c e can proaent the sane data in d i f ferent way a

Figure 3 . 4 User i n t e r f a c e can presen t data i n d i f f e r e n t way

3.2.3 Linkage in A Distributed Heterogenous Environment

The Linkage model can be extended to a distributed heterogenous

environment in which each communicating component (UI or application)

possesses its own Linkage element, as shown in Figure 3.5. Message

communication between the two machines can be implemented by Remote

, 24
•.. • . ‘‘

Procedure Gall (RPC) [5]. Moreover, the concept of stub [3,25] can also be

embedded in the Linkages of both sides.

Since the architectures and data representations of machines at UI side and

application side are different in a heterogenous environment, the mapping of

messages must also include data format conversion capability. Therefore, the

Linkages of both sides also take eare of packing and unpacking of outgoing and

incoming data respectively.

M a c h i n e l |
 M a c h i a e 2

. y 、 d Bes
± < 4 : 广 「 ？

\ User 、 L i n k … • “ 丄 。 " ^ ^ I A p p l i c a t i o n [_
/ i n t e r f a c e <

 a L 1 0
 ；

 o x m
 i i c a t i o n L _ , , - J

; % y ； t i J _ _ _ b . .
B x t e i n a l d a t a r e p r e s e n t a t i o n v h i c h can be t e c o g n i a e d by t h e l i n k a g e

a t bo t h a i d e of BacJjina*
M a c h i n e l M a c h i n e 2

L i n k a g e i n d i s t r i b u t e d h e t e r o g e n o u s e n v i r o n m e n t

Figure 3 . 5 Linkage i n d i s t r i b u t e d heterogenous environment

3.2.4 Comparing the T.mkage Model with the Appl ica t ion TTiteiface Model in

vSeeheim's UI Model

The functions of Linkage is quite similar to the application interface model

in the Seeheim UI model [8,29,40], Both of them are considered as mediators

between UI and application and also support dialogue independence. However,

the Linkage model views the UI and application in term of objects rather than

application routines and data s t r u c t u r e s . The interaction style of UI and

: . . � . . 2 5

: . . . , . . . : . . . : " • . r • • ‘ , .

•.:.. 、..:-:. " 二 ：
;
. 、 - . . , . . : / . . . / . , : 厂 . : . ' ' . . , . : . • - ： : .-..

1
 . . ；. - ,. ‘ • ‘ •...

, ‘ ‘ i ‘ , ‘. . “ ； - /. 、 , •• • • ‘ •： (‘ • ‘‘ 、 ,' - “ "-“...

application in Linkage model is based on their message communication

mechanism rather than routine calls from each separate component. This

interaction style encourages mixed control structure in dialogue control in which

neither UI nor application has control over the other. Although the two models

view and interact with UI and application differently, application interface model

in Seeheim model actually provides a good model foundation for Linkage model.

U"r I >t «r i ict conpontnt

9 Pr t f in i t t ion Di il ogu< Application Application
/ \ t, t _ _ 、 <) I at irf act * ^

CoapoBiH Control Model

入 1 1 . ’
U s e r

Figure 3 . 6 The Seeheim model of user i n t e r f a c e

3.3 An Object-Oriented Model for Supporting Multiple Feedback and Multi-

thread dialogue

In order to satisfy the criteria of 2 and 3 mentioned in section 3.1, an

Object-Oriented model is proposed. This model is modified from the linguistic

model shown in Figure 2.6. However, unlike traditional linguistic models which

have only one set of lexical component, syntactic component and semantic

component, the proposed model allows several components to be located on a

linguistic level. Each component in the model corresponds to an object in Object-

26
� ' • - - . •. “ “ ••• ‘‘ � .

. . .� .• .. » ‘ - ‘ ‘ .‘ ‘' ‘ ‘ ： . . . , .，.、

Oriented paradigm. Objects in the proposed model ~

are no longer strictly separated and independent of , \
/ Int tr aelI on \

each other as traditional linguistic models do. In / ~ \

addition, some objects are located on ail , . ynt IC1ie i \
obj <ot

overlapped regions of two linguistic levels

(semantic, syntactic or lexical) so as to support \ 丨监f丨丨 JUfUf' | /

multiple continuous feedback and errors checking \ 丨” “ “�丨“ /
\ Object /

for each level. 乂
A set of objects which may be located at

F i g u r e 3 . 7 A n
i n t e r a c t i v e o b j e c t can

a n y one of different linguistic levels forms a n c o n s i s t o f a s e t o f
i n t e r a c t i o n , s y n t a c t i c

… , , , � / - r \ i and l e x i c a l o b j e c t s
interactive object (shown m Figure 3.7) with wmcn

a user can conduct a dialogue and apply direct manipulation. For example,

memos or invoices can be interactive objects as a user can manipulate them

directly and can conduct meaningful dialogues with them. Actually, in the multi-

thread dialogue paradigm, dialogue switching is performed among interactive

objects. The sections 3,3.1 to 3.3,5 explain the possible inner objects in an

interactive object The schematic representation of the relations among these

inner objects at each linguistic level in an interactive object is shown in Figure

3.8.

3.3.1 An Overview of the Model

A UI can contain several interactive objects and each interactive object in

turn can contain several other inner objects such as lexical objects, display objects,

presentation objects, syntactic objects and interaction objects.

27
• • 、 . . ‘ - • - " . , - ‘ _

.:....,,.... .# •‘ , i ‘ ...-

广 " ； : : : 、 . , 、 : : . . , . . ' 〜 ‘ (. . . • ’ » . . “ ' . 、 . : ， . . 、 ——.._: •••• . . ‘ . ‘ . • ； ‘ ‘ ‘ ,

- Lexical objects are responsible for lexical parsing of user's inputs. All the

user's inputs are supposed to be routed to these lexical objects first. They can also

give instant lexical feedback to the user through display objects.

-Display objects display information according to the messages from

lexical objects or presentation objects • They usually contain some standard

graphic library functions,

_ Presentation objects determine how information in an interactive objects

is to be presented to a user. For example, a presentation object determine the

display format of the information.

-Syntactic objects check the "grammar" of the user's input and give

appropriate feedbacks if necessary.

.Interaction objects determine how to interact with the user. The main

human-computer interaGtion dialogue is embedded in these objects. These objects

are also responsible for coimnuiiicatmg application through the Linkage.

Besides the above objects, a UI also contains an Interaction Knowledge

Base. This Interaction Knowledge Base contains all the current global states of

the UI such as which interactive object is activated or deactivated.

Communication between interactive objects can be performed through this

Interaction Knowledge Base.

3.3.2 Objects on the Lexical Layer

A Lexical Object at the lexical level is responsible for instant lexical

feedback and lexical parsing. The listener shown in Figure 3.8 receives all input

28

messages from input devices. It then passes them on to the appropriate Lexical

Objects according to the eurrent state of the system and the type of the message.

If the input message only requires a simple lexical feedback such as changing a

cursor shape, the listener will forward a message to a Lexical Object, The Lexical

Object will respond the received message by sending another message to a

Display Objects which will give appropriate feedback to a user through a set of

output drivers. Lexical Objects can only handle the message at lexical level. Other

message rather than at this level, such as syntactic checking, will then be passed

to Presentation Objects, ,

3.3.3 Roles of Pre^eTitation Objects and Display Objects

The responsibility of the Presentation Objects is to determine how

information in an interactive object is to be displayed to a user. As it is located

in both the lexical and syntactical regions, it can perform partial syntactic

checking before it forwards an input message to Syntactic Objects or Interaction

Objects. A combination of lexical and syntactic feedback can be preformed

through the Presentation Object. For example, using a mouse to select an icon

object and dragging that object to a certain valid position requires continuous

feedback from both lexical and syntactic level. Selecting an object may require a

lexical feedback to change the shape of the selected object so as to indicate that

the object is s u c c e s s f u l l y selected. Dragging the object through a window area may

require a syntactic feedback to show the current position of the selected object.

Using the above example, when a user presses a mouse button to select an

o b j e c t , t he "button pressed" message will be sent to a Lexical Object through the

29

. . ‘ . . / . •..‘._. ,； ；. • . ’ • • ’ •:
::
...... •..,. .

4
 ‘‘ • •• . ： “ • •. . . ： >. '.‘ ‘ . > , ：'•• ： • ‘' , ‘ • , -.：‘ '… '；, . V i i• , ‘ ；：:' •,

: . . . , 、 : • : •:.. ：•',. ‘''；.• ；r • ... • ： . . . ： . . , . ： ‘ . , : . .

,
^

 ̂

 I

 -

 .

——————.
 •

.

,

.

 -

 n—

 1

 i""""̂

 .

 I

 I
.

r
o
-
i
f
 B
u

 一
p
u
o
d
f
l
j
o
o
«
l
n

 l
n
*
p
i
i
 二

 u

 -
•
q
o
o
z
s
l
u
A
S
-
'
l
-
o
-
d
s

I
 •
'
"

•
；

J

O

«

l

 q

 o
 u
o

 I

 l
二
U
9
s
«
j
d

 “

 I
q
o
o
.

(
•
p
:
 U

。
I
H
。
二

 d
d
v

 1
二

 -
o

•
一
q

。
二
 t
u
l
*
s

 :

 一
。
l
q

。
l
s
l
*
»
'
_
I
"

 一
 t
-
_
l

’
 —

 l
o
o
j
q
o

‘
《

l

e

k

.

«

>

Q

“

 O
l
a

•
p
:
-

。
 一
-

」
-
0
0
7
0

 u
o
n
o
B
J
O
J
U
l

 :
^
0

 J
"

1
0
®

 h
o
°
z
e
«
E
«
c
o

“

 一
 q
o
l
u
u
c
o

n

0

.

•

.

•

 I

 •

 .
-
:

 i

9

B
5
U
I

—
I

I

r

e

.

i

.

r

.

u
o
z
-
o
l
l
t
^

 T

 5

 :
:

』
•

 J
U

 I

0

/

"

e

d

f

 1

 r

:

5

p

p

1

 .

 a

f

i

r

l

-

-

 V

1

 0

•
 -

 •

 .1

 e

 o

.-:…n
 v
v
l
^
T
/

 、
J

―

.

M

t

h

3

\
l

 二
、
)
z
'
z
 t

 /
/

 T

 上

 f
l
-
n
r
,

 •

 n

\

f

/
/

:

,
-
r

/

r
o
。
-
4
,
八

i

K
 \

 _
厂

 D
M
^

 F
A
T
/
U
,

 I

 :
-

 s

E
\

 /
\

 、
/
/

 B

『

,

:

「
 I
)

 y
/
r
h
p
^
L

 0

•

t

s

V
^
^
M
!

 y
/

 d

 /
0

一

。

-

^

的

e

c

.

.
•
•
•
•
"
I
.

 "f

 ！
L

1
 -
n
o
l
j

 1

 3

 »
1

 1

o

r

b

 ,

-
*
»
«
«
_
/
/
/
/

<
\
\

r
。
l
"
0
 1

J
l
f
e
^
L
―
T

J

O

1
r
,
:
T
 •
I
/
/
/

」
-
?

、
-
\
f

「

 :
>
:

 咖

/.—\
 s

一
 …I

 ̂

1
 _
«
0
1
x
e
_
i

‘
-

•
.
.

 」

 :

 I

 •

 .

 _
 8

I

 .

 一。：s

 ̂

A

«

l

o

n

e

«

e

e

w

r

e

•
,

 -

 ,

 u

 :.

g

-

 :
.

 i

 :

F

.
,

-
l
i
B
'
f

 r
f
 ：
 .、：

：—•：：：
 .

 .:

 .

 .

 •

 ‘
.

l is tener . Then the Lexical Object changes the shape of the selected object through

a Display Object. When a user moves a mouse to drag the selected object around,

the "mouse moved" message once again are forwarded to the Lexical Object but

this time the Lexical Object cannot handle this message alone as It requires

syntactic checking. Therefore, in addition to giving an immediate lexical

feedback, it also passes this message to a Presentation Object. The Presentation

Object checks the Valid mouse location, such as relative position to other object,

and shows the current object position through the Display Object The above

feedback is given to the user continuously until the user releases the mouse

button.

The task to present information is the job of Presentation Objects, The

duty of the Display Object is to display the information according to the message

from Presentation Objects or Lexical Objects. A UI can have more than one

Display Object. Display Objects can pass messages with each others and can form

an object hierarchy. Display Objects at the lowest level contain a collection of

some primitive functions such as erasing a screen, drawing a line, a circle etc.

Through these functions, Display Objects can utilize some standard graphic library

functions.

3.3.4 Syntactic Objects

At syntactic level, Syntactic Objects receive messages from Presentation

Objects for syntactic checking and feedback. If the "grammar" of the receiving

command is correct, such as selecting the right objects, moving them to valid

positions and making right connections with other objects, a Syntactic Object will

. . � � . • 31
• ；.. . • • : . . . _ ^ , . . , ,

- . ： ., ‘ ‘ ..•••'....., 」,...-.-.,".• •• .).. ..‘: ., . •. - , -. -
1,
 , . : . . 、 .

 r
 , • . •

^̂ ^̂ ^̂ ^̂ ^̂ ^̂ ^̂ 意̂̂ 鷇̂‘够分!̂/̂
1
^̂ ,—/,、、/ “ *’ , ： ‘.. ‘

 1
 , . ..

 1
 •...,' ' '..、

give immediate positive feedback, if any, and forward the command to an

In te rac t ion Object; otherwise, it gives negative feedback to user through the

Presentation Objects.

3.3.5 Tnteraction Objects

Interaction Objects receive messages from Syntactic Objects or directly

from Presentation bbjects and then perform semantic checking and give semantic

feedback if necessary. If Interaction Objects can handle the command without the

help of Semantic Objects in application, they will give feedback to a user through

the Presentation Objects; otherwise they will forward the command to the

Semantic Objects through the linkage component. Therefore, Interaction Objects

determine whether a UI needs to communicate with its application or not.

Actually, Interaction Objects can be considered as images of Semantic Objects on

the application side. They have some general knowledge of the application

semantics, but the implementation of these semantics rests wholly on the

application side and is hidden from the Interaction Objects.

Occasionally, Interaction Object can give semantic feedback to a user

through Presentation Objects without going through the Semantic Object at the

application side. For example, ail Interaction Object may send message to a

Presentation Object to give warning message if some input data values are out of

range or too low. Qf course this semantic information has to be embed in the

Interaction Object first.

..f • . . " ' ' •• , \ ‘.T . , I * ‘ ' . ' . ‘ � ‘ ‘ •‘

32
、.：

'*• . ： . : / ,〜..•.；. r, • ... ‘ ‘ . ‘ . ‘ , ‘ ,

••〜备 !̂裕:。:"，：：'‘、〜
4
 ‘ V； “

 : 1
 ‘ \ ‘，‘ ., \ ^

 1
 ‘

 f
 .. •.〈‘ ；. ； ‘ .•； ‘. ‘ V ： , • .'：'. ‘•,.

3.3.6 Interaction between Objects and Linkage Component

When an Interaction Object on the UI side want to pass a message to a

Semantic Object on the application side for services, the message will be passed

through a linkage Object which translates the message to a form recognizable by

the Semantic Objects on the application side. The Semantic Objects which receive

the message may continue to forward the message to other appropriate Semantic

Objects if necessary.

The Linkage object performs a mapping of Interaction Objects to Semantic

Objects and vice versa, so that the Linkage object can figure out which objects on

the receiving side should receive the message. The mapping may be one-to-many

or many-to-one. It is determined by the difference between the data structures

and object hierarchies on both sides.

In order to support dialogue independence, a message sent by Semantic

Objects to Interaction Objects should not contain any human-computer interaction

dialogue control information because Semantic Objects are supposed not to take

care of any interaction with a user. In the view point of an application designer,

the Semantic Objects only receive error free input data, work out correct results

and then send the results back to UI. How a user interacts with interactive objects

is the job of UI. After, the mapping by the Linkage component, it is the

responsibility of UI to take care of the dialogue with the user.

3.3.7 Multiple U-tubes Ladder for Supporting Multiple Feedback

A whole interactive object can be considered as a multiple U-tubes ladder

as shown in F igure 3.9. The inner objects are distributed in different U-tubes. The

33
x > , ..- «. • • ' . • -- . ‘ •

, : : . : . . ‘ '；'：• . : , . _.., ,, ‘ . 、.，’ .. , . ‘ . ‘::•.... . * •

f r ^ n
Sim.obi

/ s_m VAPPN Cati0n
ink obi feedback I ‘

Sia.ob] I
s«mant i c
feedback 丨“…丨 USeT I lit " f aC6

t 一 ^ ~ - t
Level ol

Syn.obi -+- ^；~~—^
abstraction Int.obj Xim «r jcH ! i

. ‘ ^^f Knowl edge J
syntactic \Bt»« 夕 ；
feedback I . ^

S y n . o b i

- 工 Tj >
synl act I ^ ^ \ 1 . . . �

r^feedback P-'
b
' ！

,Lexical L.obj ^
’f e 9 d b a c k "v j

r — S — ‘ p L — I

D ob] Li itmir

O/P Or i var «nd d>vl… t;p c*t 1

八 K
八 USER

L L J
Figure 3-9 Mul七iple l?—tubes ladder in interactive object

� • .

level of abstraction decreases from higher to lower portion along the ladder. The

upper portion of the multiple U-tubes ladder corresponds to Semantic Objects in

appl icat ion while the lower portion corresponds to the Lexical Objects in UI . A

f eedback can be given through one of this U^tubes. However, multiple continuous

feedbacks can also be given from objects located at different abstraction levels

simultaneously. In fact, feedbacks from different U-tubes can be given to a user

along the multiple U-tubes ladder simultaneously. If an object in the U-tube

cannot handle the input command, it will pass the command to its upper U-tube

objects and let them handle it. They may give immediate feedbacks or/and pass

them to their upper U-tube objects.

3.3,8 Recovery thrnnph a Generic “

UNDO Stack \

An UNDO operation in a —1 \
, /lindo obj 6ct\ t

modern UI is more expensive than 1 ^ J »

conversational world style UI . 二二丨二丨…。丨
~~“ are pushed into

because besides requiring the und()�b卜ct same stack

previous status of the operation to 丨

be restored, it also requires the / unda object \

effects from the feedback which [

associate with the pperation to be
A g e n e r i c UNDO r t a c k

canceled. Interactive objects can ^ 卯 伪 3 . 1 0 A G E N E R I C UNDO stack for
Recovery

restore their previous status by

retrieving the past history stored in a undo stacks which is updated constantly by

35
^ • . ；'• ‘ . •，.... • • • , •

�. . . : •， . . ： "... .，. •' : . . , • " •* • ...'•.,. .:. - ; * "•• V- ^ � • ,1 _ ' •： ： . . •…. ‘•， ‘ ., •' .. ‘ “― .: ‘ “ ‘ ‘ ‘“ � - „ • ‘ ；' 一 *. _ ‘ . . ,

their inner objects whenever they perform any reversible operations. However,

sometimes it may become complicated as a UI may also need to determine which

part of the previous status should be restored and which part should be kept

unchanged. In addition, restoring only the previous status may not be good

enough, as the effects caused by the previous operation have to be canceled out

too. For example, if an operation cause the side effect of displaying some warning

messages, these warning messages have to be erased as we undo the operation.

In these cases, fur ther actions have to be taken to cancel out these effects. Instead

of pushing the previous state.into the undo stack, an undo object is pushed into

the undo stack. Besides the previous state, an undo object also contains a series

of reverse functions necessary to cancel out the effects caused by the previous

actions. The undo object also determines which state should be restored and

which state should be kept unchanged according to the nature of the undo

operation. The content of an undo object is transparent to an interactive object.

Whenever a undo operation is required, the interactive object pops a undo object

from the undo stack no matter what type of undo object it is and then let the

undo object take care the rest of the job.

The undo stack should be shared by different types of undo objects

regardless the complexity or the abstract level of undo operations. Hence a single

undo stack is enough for different types of undo operations in an interactive

object. The polymorphism and dynamic type mechanism in object oriented

paradigm are used to construct this generic undo stack. The implementation of

this generic undo stack is further described in section 5.1.3.

Any UNDO operat ion that requires semantic knowledge in application will

36
. � • . , , ,- • r

. •» , . ,. , , . - . • ‘ " t _ . , ‘ . .

^ ： • ？、： ^ ' .
1
 • . ‘ .: ... - .. .: >|/, ' .

1 i • , . .:., • • •、‘

be passed to the Semantic Object at the application side through a Linkage

object.

3.3.9 Dialogue Control within Each Object

Unlike a traditional linguistic model which has only one large dialogue

control between a user and a computer system, the dialogue controls in this

model are distributed among objects on each level. As it has mentioned in 3.3.6,

in order to have multiple feedbacks, objects at different abstraction levels, have

responsibility to give feedbacks to a user. Therefore, each object should have its

own dialogue so as to respond to user inputs and give appropriate feedback to

users. For example, a lexical feedback for a toggle button may need a Lexical

Object to remember the previous state of the button. The dialogue control in

each object can be modelled by a finite state automata which can memorize the

user input sequence and is well described by a transition network.

Although the dialogue controls are distributed among objects, it does not

mean that they are independent of each other. The top abstract level dialogue

control is in an Interaction Object. This is the main dialogue control of an

interactive object is in the Interaction Object. If a transition network is used to

describe this level dialogue, then an arc label of the network may correspond to

a lower abstract level dialogue control which may be embedded in Presentation

Object or Lexical Object. That is an arc label in a higher abstract level dialogue

can be considered as pointer to another dialogue in a lower abstract level or vice

verse.

: ¾ : in Figure 3.11 are described by transition

37
. : . . . 、 ： . •• • . .

num“r n i T i I mpi i t*
SPREAD SHEET 1 NPUT: _ _

 N P U T
.抓…邮打丨_

C / ‘ _ ‘
nufflbar V / ^^ \

W SPREAD SHEET INPUT » /^N

9 /] X / ^
I c u r

»
o r
 J / show / J |how

\ ° u , , o r \ y \ y
CHART / \ ‘ \ \ / \ CHART INPUT

v _ 3 ； y
c u r s o r

D i a l o g u e c o n t r o l In 丨 ^1 (: 81 ob| act D l a l ogua c o n t r o l 丨 n p r e « e n t « t l on o b j e c t

MAI N：

copy , cu t

‘ z ~ ^ r^
^ DATA I NPUT Z U /

(V) - ： 0 / DATA i n p u t

DATA I NPUT \ / [J

\ »um, /
r /

\ / s u m ,

\ / "8

0

Dl al ogu« cont r ol In I nt t r act I on obi «ct

F i g u r e 3 . 1 1 D i a l o g u e c o n t r o l i n an o b j e c t . 3 8 .…

networks. Each arc label in the transition network corresponds to a token in the

dialogue control. A token is the smallest meaningful unit in the dialogue control. -

It can correspond to a single incoming message (indicated by lower case letter)

of an object or other level dialogue control (indicated by upper case letter) in

other object

From page 47, an application is designed to calculate the sum of sales in

a week and the average of sales each day. Its UI can present the sale data either

by chart or by spread sheet. A user can input the sale data either through

keyboard if the sale data are presented in spread sheet form or through mouse

if the sale data are presented in chart form. This UI also allows a user to copy

sale data into a clipboard and to paste them to somewhere else later when

necessary. Figure 3.11 illustrates some examples of dialogue control in Lexical,

Presentation and Interaction Objects.

3.3.10 Tnteractive Object

As mentioned in the beginning of section 3.3, an Interactive Object may

consist of clusters of inner objects induding Interaction Objects, Presentation

Objects, Lexical Objects and Display Objects. Moveover, an interactive object

must have at least o n e o r more Interaction Object. Besides the above inner

objects, an interactive object also contains a cluster controller to connect an active

message path among its inner objects according to the current states of the

interactive object. All incoming messages from a user to this interactive object will

be routed to the inner objects through this active message path as shown in

Figure 3.12. In addition, an interactive object can also have its own undo stack to

. , 39 ….
. . • • r . ‘ ‘

perform an undo action. Within a cluster of inner objects, there is only one

Interaction Object but the cluster can have several Presentation Objects or

Display Objects.

As an Interactive Object can have more than one cluster of inner objects

and each cluster of inner objects have their own dialogue controls, by connecting

di f fe ren t message path among the inner objects, it can support different

interaction styles.

3.3.11 An Archi tecture for Support ing Multi-thread Dialogue

Usually, in a world model UI, there are several items such as notepad or

memo, with which a user can choose to have dialogue. Each item that a user

interacts with corresponds to an Interactive Object in the UI. Dialogue switching

can be preformed among these Interactive Objects. As each Interactive Object is

a self contained entity, it has its own dialogue controls and can remember the

user input sequences. Hence, its dialogue can be temporary suspended and then

resumes later by recovering the previous state of the dialogue. Users can have

dialogue with several Interactive Objects independently.

If a user has chosen a particular Interactive Object, we say that the chosen

Interactive Object is activated. Subsequently, all incoming messages from the user

will be sent to this activated Interactive Object. An interaction knowledge base

in a UI contains the rules, constraints and current global states for each

Interactive Object in the UI. Therefore, it can monitor which Interactive Object

should become activated or de-activated. It directs all incoming messages from the

users to the activated Interactive Object according to its current states. The

40
‘； ‘'‘；•

 m
 t ...» ‘

 ：
 - . ' • ,

j

/ . : I hnt.obj 1 I | I | l n t - o b l 2 \\ \

. / 1 ¾ I I \
/ ； P obj 1 | j j P .obj 2 ! \ \

• I中I丨〒i\
i ’ :

 ！ ； I \
j . , ； ..1: j j j • j \
I ； 「 丨 ： I ! j \
j ‘ / L.obj 1 . j I] L.obj 2 , I \

\ / I D_obj 1 (/ D_obj. 2 / / D-Obj 3 \ / .

V I /L J . 7 — •

. . K � . z “ … — /

V An i n t e r a c t i v e o b j e c t /

' \ \ wi t h a undo s tock /
！ Message r ^ ^

path

S The above i n t e r a c t i v e o b j e c t nas
t h r e e c I u s t er s of i n n t e r o b j e c t s :
Int obj 1, P .obj 1, L.obj 1, D_obj 1 and

| I nt ob] 2, P_obj 2, L.obj 2, D.obj 2 and
I n t 一 o b j 2, P_obj 2, L . o b j 2, D，obj 3

j Hence, i t has t hr ee message pat hs but
o n I y o n e i s a c t i v e at a t i me .

I . I
Figure 3 . 1 2 A s k e l e t o n of i n t e r a c t i v e o b j e c t

. 41 ::
... • , ‘ .

interaction knowledge base can be considered as an extension of the cluster

controller in an Interactive Object. However, unlike the cluster controller in an

Interactive Object, interaction knowledge base connects the message path for

activated Interactive Objects rather than the inner objects within an Interactive

Object. Only the activated Interaction Object in the activated Interactive Object

can interact with the inteTaction knowledge base. The dialogue switching can be

facilitated by a switch box mechanism to be discussed in section 4.1.4.

3.4 A Basic Structure of an .Object

In this section, a new design specification is proposed to specify an object

in a UL This design specification notation also specifies dialogue control in an

object.

Each object in the Object-Oriented UI Model, including undo object,

Interactive Object and its inner object, belongs to a class and has the following

template:

1 O B J E C T {object一name} IS SUBCLASS OF { list of base classes }

#2 INCOMING MESSAGE

#3 { messages that can be handled by this object }

#4 OUTGOING MESSAGE AND ITS DESTINATION OBJECT TYPE

#5 { messages that will be send out and its destination object type }

#6 METHOD

#7 { functions used in this object }

#8 INSTANCE VARIABLE

#9 1 { instance variables used in this object }

. 42 . ,
‘ , ， • . . — — ‘ . . . ， . ‘ •• • . • ‘ ‘ ‘ . ：•,. . . • . . -

.. • •• • . . I ,’.. ... ‘‘ • .: ... •*.，:• 4 '
： •‘ “ ‘ '•-'• ‘ ‘ .. ''. ‘ \ _ ‘ ‘ • —.

 -
 ‘ ‘

 4
 •', - ‘ • . . •

 ：
' ‘ 1, • ‘： , . , • •••:• ‘ ： . ‘ •

#10 DIALOGUE SPECIFICATION

#11 { dialogue control described by event language notation }

l ine 1 specifies the name of an object and its base classes. Lines 2 and 3

specify the incoming messages that this object will handle. lines 4 and 5 specify

the outgoing messages and its destination object type. It is worth noting that only

the destination object type is specified rather than any particular instance object

itself. That is the object does not know the exact destination of the outgoing

messages but only a class of .objects that the messages may be sent to. This will

be discussed more in section 3.4.5, Lines 6 to 9 specify the functions and instance

variables used in this object and both of them can be inherited by its subclasses.

The implementation of the functions should be hidden from outside objects. Lines

10 and 11 specify the dialogue control which can be modeled by an event model

[23,29].

3.4.1 An Event Notation for Dialogue Control

In the event notation, a dialogue control is monitored by an Event Handler

(EH) which is described by a Event - Response Language (ERL) [23,29,32,37].

The main elements of ERL are incoming events, outgoing events and flags. An

event is a signal that something has occurred and it may carry data too. Event can

be considered as a kind of message that passed from one object (may be input

device) to another. Flags are variables used to encode the state of the dialogue

and to control execution in the event handler. Each incoming event has a rule

associated with it. A rule consists of two parts: condition and action. It has the

43

following form:

condition - > action

Condition can be a list of flags and/or an incoming event. Action can be

assignment statements (including raising flags), procedure calls and/or sending

outgoing messages to other object. Rules whose condition does not contain any

event are caHed e-rules; o t h e r w i s e called regular rule, e-rules are used for

consistency checking and execution control in the event handler. The action in a

regular rule can be executed only when

1) the incoming event is at the head of an event queue and

2) all flags in the condition are raised i.e the condition is "open"

As for e-rules, their actions will be executed only when their conditions are open.

Flags in a condition can be considered as guards to trigger action in a rule.

Regular rules for the incoming messages and e-rules are grouped together to

form an Event Handler which is used to monitor the dialogue control in an

object.

Regular rules are evaluated only one time per incoming message. But e-

rules can be evaluated more than one time as long as their conditions are open.

The evaluation of e-rules are repeated until all the conditions in the e-rules are

closed. Then the object i$ said to be stable.

In the Event Handler, there is usually a e-rule to send an incoming

message to its upper abstract level object as mentioned in section 3.3.7. The flags

in the condition of this e-rule will raise if the incoming message do not faU in the

incoming message list specified in lines 2 and 3. As mentioned in section 3.3.6，

any incoming message that cannot be handled by the object should be passed to

44
T . • . . , . . 、 ' • ： I , . . .

its upper abstract level object For example, as shown in Figure 3.9, if a Lexical

Object cannot handle the incoming message then the message should be passed

to a Presentation Object which is its upper abstract level object.

It has been shown that [23,29,32] event model is suitable for developing

graphical UI. However, we are difficult to capture user input sequences from

event notation; hence, it is not suitable for early dialogue specification.

Never theless , there is an algorithm [29] to convert the transition network notation,

which is more understood by human, to event notation. For more details about

this algorithm, readers can refer to Appendix Al.

3.4.2 Maintaining Consistency through 6-rules .

Unlike traditional conversational UI, model world UI always allows a user

to view the current status of an Interactive Object all the time. That is the UI may

have to update its output to make the output to be consistent whenever there is

a state change in UI. For example, after we have preformed a "cut" command, the

UI should enable the "paste" command item in the command menu to allow the

user choose this command. This updating operation should be done automatically

regardless if there is a user input.

As mentioned in section 3.4.1, the condition part in e-rules does not

involve any incoming event. The action of an e-rule is fired automatically as long

as its condition is open. When a user inputs a command and changes the state of

an Interactive Object, some actions may need to be taken to maintain the

consistency of the system. In such a case, some flags will be raised after

processing the input command so that the actions of e-rules which contain some

45

updating operations for maintaining consistency of the system can be fired. All e-

rules in an object are evaluated repeatedly until all the conditions in the e-rules

are closed. Then all updating operations should have been done and the object

is said to be in stable state.

Although most updating operations foHow some actions in regular rules

directly, we cannot just append the updating operations to the actions in regular

rules and eliminate the €-rules. Because several different changes of state may

require the same updat ing operation. For instance, in the above example, the

s a m e updating operation should a l s o be preformed for a "copy" command.

Therefore, it is better for us to factor out the common updating operations and

to group them into 6-rules. In addition, e-rules can also provide us a clear and

easy understand mechanism for maintaining consistency of a system. The

mechanism can be understood in the following ways:

1) a user inputs a command,

2) changes the state of the system,

3) disturbs the balance of the system.

4) the system becomes unstable, and some flags are raised,

5) e-rules are evaluated and at the same time performs updating operations.

6) repeat step 5 untU the system becomes stable (i.e. All conditions in the €-

rules are closed)

Dialogue switching between Interactive Objects also causes consistency

problem. If two Interactive Objects share the same window and when there is a

dialogue switching from one to another, the window has to be updated so as to

m a k e the display window consistent with current states of the activated Interactive

46
： . . ' ' . . . � \ . . • .. • .! ..‘.，.. ' ' * '•；••；•' ^ . . . , }. . " . . . ,

:• 、. : . " 「 、• . I' ^ , _

Object. As interaction knowledge base monitors dialogue switching, it has the

responsibility to raise flags to fire actions for updating window.

3.4.3 An Example of an Inner Object Specification

The following object specification is based on the transition network

diagram of an Interaction Object shown in figure 3.11.

#1 OBJECT Salejnt IS SUBCLASS OF Interaction Object
#2 INCOMING MESSAGE
#3 ‘ copy, cut, clear_clipboard, paste, sum, avg,
#4 DATA INPUT" — 们
#5 OUTGOING MESSAGE AND ITS DESTINATION OBJECT TYPE
#6 <sum,Lnk_obj>, < avg,Lnk__obj >
#7 METHODS 一
#8 EnableMenuItem(command type);
#9 DisableMenuItem(command type);
#10 GlearClipG；
#11 CopyCliptoBuffer();
#12 copyBuffertoClip()；
#13 ClearBuffer();
#14 UpdateData();
#15 INSTANCE VARIABLE
#16 Boolean Statel, State2, State3, State4,
#17 DIALOGUE SPECIFICATION
#18
#19 DATA一INPUT Statel _>
#20 一 UpdateDataQ;
#21 State2 T
#22
#23 DATAJNPUT Stat62 - >
#24 一 UpdateData();
#25
#26 DATAJNPUT State3 ->
#27 一 UpdateData();
#28
#29 copy State2 ->
#30 CopyBuffertoClipO；

#31 State3 t
#32
#33 cut State2 ->

…47 . . .

#34 CopyCliptoBuffer();
#35 ClearBuffer();
#36 State3 T
#37
#38 Clear_Glipboard State3 ->
#39 " ClearClipG；

#40 State2 I
#41
#42 paste State3 ->
#43 copyBuffertoClipO;
#44
#45 sum State2 - >
#46 <sum,Lnk_obj>!
#47 State4 1
#48 �
#49 avg State2 ->
#50 <avg,Lnk_obj>!
#51 State4 t
#52
#53 sum State3 ->
#54 <Sum,Lnk_obj>!

#55 State4 t
#56
#57 avg StateS ->
#58 <avg,Lnk__obj>!
#59 State4 t
#60
#61 State2 ->
#62 DisableMenuItem(Paste);
#63
#64 State3
#65 EnableMenuItem(Paste);
#66

Note, I denotes flag raising while ！ denotes message sending operator.

Except rules at line 61 to 65 are e-rules, all the above rules are regular

rules. The two e-rules are for menu items consistency maintenance. When the

condition of a e-rule is open, its action will be evaluated and then all the flags in

, : . : . 4 8 . .
. . - . 7 : : • ... • . , . , _ . '• V ‘ .. : . . � ， , 、 •

："_,,；' t •• •• •• ：• i- ••. •‘ ； .«. • ‘ “ ".•'• ..:. . ::,.'..,'. ",
 ,f

v • '•• ,'•.. ’.-.., : :: .,. . ‘ .+ •-，• “ •:...• «.,

the condition is lowered in order to prevent re-evaluation of the same e-rule.

The message in upper case (DATA一INPUT) corresponds to dialogue

control in other object. DATA_INPUT corresponds to the dialogue control in a

Presentation Object as shown in figure 3.11. When the Salejnt object receives

the "sum" or "avg" message, it sends the message to its linkage object. Through the

linkage object, the Sale一Int object requires the semantic services of "sum" and

"average" in the application.

3.4.4 Pre and Post Conditions of Action

Before we write down rules for the Event Handler, the Pre and Post

conditions can be used to specify each rule. A Pre-condition is the condition that

must be held before an action can be executed; while post-condition is the

condition that must be satisfied after the execution of the action. Pre-condition

of the action will just become the condition in the rule; while the post-condition

is the side effect of the action.

3.4.5 Automatic Message Routing

We have mentioned that when an object sends outgoing messages to an

other object, the object itself does not know the exact object to which the

messages will be sent. It only knows the type of object that the message may be

sent to. Actually, the routing of the outgoing message depends on the active

message path in the activated Interactive Object described in section 3.3.10. In

turn the active message path depends on the current state of the activated

Interactive Object and current global states of the UI. Message routing is totally

• • . » . ^ • . • . ‘

hidden from the message sending object. As the interaction knowledge base

contains all current states of UI including the sates in the activated Interactive

Object，it a c t u a l l y determines how the messages are routed to their destinations.

I n s h o r t , UI routes messages to their destinations according to the current states

in the interaction knowledge base.

Automatic message routing mechanism gives great contribution to flexible

UI modification and rapid prototyping. As objects need not care about their

outgoing message destinations, they can be easily reused in other UIs. In the

other way around, a UI can easily replace objects without rewriting the whole

program. In the Object-Oriented UI Model, the automatic message routing is

used to e n c o u r a g e S o f t w a r e ^ C construction which will be described in section

4.1.5.

This automatic message routing mechanism can be implemented by

dynamic binding feature which is one of the powerful feature of object oriented

programming and will be described in detail in section 5.1.1.

3.5 Systematic Approach to UI Specification

In order to support a systematic approach to UI specification based on our

model described above, the following steps are proposed.

1) Identify Interactive Objects

First we should figure out hbw many Interactive Objects a user may

manipulate.

2) Identify interaction style for each Interactive Object

Figure out the possible interaction between a user and Interactive Objects.

,.:..“..:.： 50 • •

H i e n we separate this interaction operations from application functions.

3) Identify inner objects within each Interactive Object.

Figure out clusters of inner objects within each Interactive Object based

on its interaction style.

4) Specify the cluster controller for each Interactive Object,

Specify the active message path for each cluster of inner objects at

different states of an Interactive Object.

5) Specify each inner objects in an Interactive Object

華 specify the dialogue control either by a transition network or an

event response language

- specify consistency checking for each change of state

- identify incoming message

- identify outgoing message and its destination object type.

- specify methods and variables in the object

6) Specify each rule in an event handler.

- identify regular rules and e-rules in event handler according to the

dialogue control and consistency checking specified in the object.

- specify the pre and pre conditions for each rule

7) Specify interaction knowledge base.

. identify global states for dialogue switching and messages routing

_ specify functions for updating current global states

Finally iterate steps 3 to 7 until all Interactive Objects satisfy the original

user requirement.

...、. .,.._、. . 51 ..

Chapter 4

User Interface Framework Design

This chapter describes a user interface framework design for the Object-

Oriented UI Model described in chapter 3. The UI framework is a basic

foundation for UI development. Any model world style UI can be developed from

this framework.

4.1 A Framework for UI Development

Our UI framework can be considered as a basic foundation for UI

development It contains some null methods and default values and can be turned

into a self-contained, complete UI. However, if we only use the UI framework

and do not extend the framework by overriding the null methods and default

values in the framework, the UI produced from this UI framework win do nothing

for us. The purpose of this UI framework is just to provide a basic blue print for

UI development. We start from this UI framework and extend it so that this

extended UI framework can generate a complete UI design that satisfies our

original objectives. The extension of UI framework should be easy and efficient

so that UI designers can develop their UIs quickly from the existing UI

framework. Fast development of UI from UI framework also encourages rapid

evolutionary prototyping in UI development life cycle.

We first look at the basic structure of the UI framework and then discuss

its implementation in the Microsoft window 3.0 and C+ + 2.0 environment in

• Chapter 5.；-； :； ：.:；' "-^： ；； ,;•；：•. ；/ ：；：,；''.

52
. . • . • ... ^ ; • ‘ / / ‘ . • : , , . . . : . ‘ + ‘ • ‘

,. . . . • ； . .. , ''••' _ ‘ . ‘ . . . “ V .乂 ， . . 、 . . . ： . • •

. ‘ ‘

r " 1

I I

_
 :

 _ : ： ： : �
I I 一 — ® o
I \ > O 一 � 0 3 一坊

/ \ 二：： / ” - . .丨 ！

： / M K : 1 ¾
i • « r \/ • / \ <D -O -TJ OT
I ® / \ 一 \ : > © — C "Q

y Y � 一 J , . _一

fM Z I
I o ； i \ <D N. r~] / •一 •一 "O caaa .1 ； i JK = — © o

- - ： O H - U > o , 、 、 i 0 o — 一 "O O > ‘
！ 5« i j ' ~Z ‘―1 o ca . — <i>
I •之 丨 丨 / % \ « « »-

: 零 准 神
— 乂 - u o — CO

j S / \ \ t i z i t 7 o ®

® ° \ U / - \ o 一 ！

<Z a / V "S'S- 0> O o hk V x̂ 二 I
U / \ r f ^ / 一 ： 。 ： •

I ^o. - 0> «0 —
— CO�C/>

. ' 1 \ zZtZ / 1-1 O � W
\SZJt J Z <D «

I vJIL^ * O o

• 1 ^ - 1
Figure 4.1 Define a b s t r a c t base c l a s s f o r each o b j e c t

53
- , . ‘ •‘ : '''. ' . . ' . , • , . . " '•• •“ , „

. ‘ ' ， 、 ：•； | .:. . : / . ••‘ .. - . .’. ,/•：. . ‘ 丨.：.• '.‘ •：•''' . • . •
 1 “ . . .

t̂ 1 1 Abstract Base Glass for Each Object Type

As the design of UI framework is based on the Object-Oriented UI Model

described in Chapter 3, the UI framework should also have such basic objects as

interaction objects, presentation objects, display objects, specified in the Object-

Oriented UI Model A set of abstract base classes of these basic objects is

defined in the UI framework as shown in Figure 4.1. The UI framework has the

abstract base classes for interactive object, linkage object, interaction object,

presentation object, syntactic object, lexical object and display object. The

objectives of an abstract base .class is to provide basic construction and standard

interface part for each object in the UI. Abstract base classes can contain some

default values and null methods. Default values in an abstract base class are only

used if the derived classes of the abstract base class do not override them. Null

methods in an abstract base class are usually overridden by the derived classes of

the abstract base class as these null methods do not perform anything at all. The

purpose of these null methods is to provide standard interfaces for derived class

objects during dynamic binding. The feature of dynamic binding in C+ + Object-

Oriented programming will be described in section 5.1.1.

The reason for overriding the methods in the abstract base classes is to

utilize the polymorphism feature in Object-Oriented paradigm. These abstract

base classes only provide a basic UI skeleton for UI development. In order to

develop a UI that is customized to our users' needs, we have to extend these

abstract base classes. One of the methods to extend these abstract base classes is

to override these abstract base classes by their derived classes. When we want to

modify some properties of the UI framework, we do not need to modify the

. . . . � . . . : • • ' . . ' . ‘

objects in the abstract base classes. Instead we only need to add derived objects

to override objects in the abstract base classes as shown in Figure 4.2. By

introducing proper derived objects into the UI framework, we can keep the basic

U i f r amework intact as we extend the UI framework for UI development.

The null methods in the abstract base classes also provide standard

interface part for the derived classes of the abstract base classes. Any derived

object which-overrides the nuH methods in their abstract base classes must have

an interface part specified in the null methods in their abstract base classes. For

examples in Figure 4.3, in order to override the method MA2 in the abstract base

class object A, MB1 method and MCI method in the derived object B and C

must has the same interface as MA2 method in the abstract base class object A.

Figure 4.3 also points out that a derived object can reuse any methods in its base

objects providing that it does not override these methods. By overriding and

reusing the properties of the base objects, we can shape the derived objects in

different ways so as to satisfy our design needs.

. , • • i ' • ' • " . • •‘

、， ：
11
 ‘‘ . - . 5 5 . •••*

. 1 A … ：
7 n 1 F o r f u r t h e r m o d i M e a t i o n

1 / a n d e x t e n s i o n ,
/ / / a n o t h e r d e r i v e d o b j e c t

/ / / c a n b e a d d e d

_ �

\ V r — • ~ ~ — j a n e w d e r i v e d
o t h e r o b j e c t 1 / \ > — 4 / o b j e c t N o v e r r i d e

丨 ™ / /7 :̂ ren, c,m

o t h e r o b j e c t \ /
i n t h 8 UI r~~ \ " " " V 1 7 �
f r a m e w o r k / r — i \ / / , ,

/ / I \) 7 / UI f r a m e w o r k
/ L j ~ J \ - ^ - 7 - ^ / (i t c a n b e k e p t

沖 ： 勵) l � - - �

a n o b | e c t e d i s o y e r r i d d e n
b y i t s d e r i v e d o b j e c t

Figure 4.2 Derived objects override objects in the abstract base

class.
 !

. . . . : . . 、 _ : : . : _ :
 5 6

 : .

. ：
 :

 • • ^ ., '• • _ • - ' ‘

,. " ,
 1
 ' � ,(' " ..• . , . . . •

I
Derived object C
subclass of B

a • If we use object C, then i
(r O , \ MCI overrides MB1 and i

, , w a Ilcfl fthiflM V I J reuse MB2 in objflct B,

MAI and reuses MA2, � ，,
MA3 u d m ' r Derived object B

v subclass ol A
Derived object X.Q

X subclass of A ^ ^ • | | ws u$8 object B, then
^ r MB1 and MB2 override I

f v / U 7 MA2, MA3 and reuse j
(p - — ^ T MA1 and MA4 in object A ！

； C g y :
； o b i e c i / O object A —

Figure 4.3 The basic methods in the abstract base classes provide

standard interface for their derived classes.

:.,:.�
:
'；；,:..:,,.、..;..:.，_:..:.‘.，.....:.,...’....，...- ‘ . . i； ’ ’’

；
 •. • “• •‘ .. . •• . ' .-. ‘.-. . , , • . .

I / An I nt ir tct I \ 1 / • \
I /U\ %\ • ” … * f ^ ^ ^ I
j / | « th« l n l * r « e H » « ofc,»et Lak.tkf \ \ | I / Ml At * t* > \ \

s T h « r a a r • t hr s t p o i t l b l • n « t s a g « p a t l u
I In t h« 1 n! «rtct I »• ob| tcl: , 、 … ！

#1 Lnk.obJ , tnt.obl, P„ob|, L.obj 1. O.ob l
！ 12 iBk.obi, Iflt̂ obi. p.obj, L_0b|2. D_0b 2] i! ttl^jro^lf^i'por：? Is^lS； ^ ^ C t . v obMct pouts to «h. .CMV.Ud fin.? ob|.ct«, th« eurr.nt .etlv. m.ti.g. ptth�t ih. «bov. IM.r.cllv.�bj.c丨

;5fl!d.^hPfl!.f%obJ.ct, so “ Uu IM.rac.lv.外…t lti-lf U 丨……• j
of \ der i el ass shown in fIjur« 1

Figure 4 . 4 Object pointers p o i n t to 七he activated inner objects

58
' ' • ' . • ' / . ‘ “ • • • . “ "... . . . ‘• .: • ‘ , , , • • • ., • . � : “ ‘ ‘ .

-.:.. -* • ” . ；‘ . . •‘ 、 .， ‘ .,.'.、... .， ..

〜…；f . .- ..>..-'.、>'/ .- 1: j - , . ， • _''......、'. • ； “ . . ； ..: . ： ‘ • . ‘ , “ 、 “ ‘ ... ： , , '• • .. • • •

八/.〜'..,’........ '. •..'...: ... I ：,•‘；；-...—-.『 ..：.、
V
,、:;..,-. ''• •“ • "''； , .. ‘‘ ... , ：‘ . - ‘ :•— . , "‘ ！ • ：‘ ‘ ... ‘V ’’ /

E a c h abstract base class at least has a null event handler which is supposed

to be overridden by its derived class as shown in Figure 4.1. As all incoming

messages will go to an event handler first, the null event handler in the abstract

base class provides a standard message communication interface for all derived

class objects.

In order to encourage code sharing, we extract all the common properties

of the derived classes into their abstract base classes and let these common

properties be inherited by their derived classes. For example, in an interactive

objects, there is a set of activated inner objects (linkage object, interaction object,

presen ta t ion object, syntactic object, lexical object, display object) at all the time

no matter what type of the interactive object it will be and how many inner

objects it will have. Hence, in the abstract base class of interactive object, there

is a set of abstract base class object pointers which is used to point to the

activated inner objects as shown in figure 4.4. This set of pointers, which are

declared in the abstract base class of interactive object, are used to Identify the

active message path in an interactive object and can be inherited by all the

derived interactive objects.

Abstract base classes provide an environment for object polymorphism and

inheritance which facilitate easy modification of objects. As a derived object can

inherit all properties of its base class object, the derived object can reuse all the

methods and variables in its base class object. Hence, inheritance encourages

reusability and sharing of codes. It also eliminates repetitive coding which usually

occurs in most UIs. Polymorphism helps us to modify software components more

easily. If we want to modify an object, we do not need to rewrite the object.

59

, - - . : ” 、 : . , :.:.、.' . . .• . ..、. : . . . / .' . - - . . > ,‘.•：.； ,- •：• . , , , , , ••"." . . . 厂 ' •. . .、 •： - , : \ ‘； ： .,• • . •； •. • / . . , : . . • ‘ •

Instead, we define a derived class of that object and use this derived object to

overr ide some of the original object methods and attributes so as to achieve our

modification. And at the same time this derived object can reuse its based class

methods and attributes that have not been overridden through inheritance as

shown in Figure 4.3. Easy modification of object can encourage rapid prototyping

for UI development which is also very important for UI development life cycle.

4.1.2 A Kernel for Message Routing

The framework also includes a kerael for handling message passing among

objects in a UL All message passing among objects is p e r fo rmed through this

kernel. Message package is first sent to the kernel and then the kernel enques it

at the tail of an event queue. While the event queue is not empty, the kernel

deques a message package from the head of the event queue and sends the

message to its destination according to the message type and the current state of

the UI. The kernel as shown in Figure 4.5 contains the event queue which holds

message packages received from objects. A message package contains the message

itself and a message type. The message type specifies the type of object which will

receive this message. The content of the message is totally transparent to the

kernel. The message type can be obtained from the message package; while the

current state of the UI can be obtained from the Interaction Knowledge Base. It

is worth noting that the, message type only specifies the type of object and not any

object instance. For example, in an UI there are several interactive objects and

each interactive object may contain several display objects. The message type may

specify that the message Mil send to an object belonging to a display object class

...,.〔： . , 6 0 .

丨 — ^ n
I Ev«nt Rttdy Ou»u» I
j (f r om ot her obj ac t t or I or m t ha u»®r «r •

W (. n q u “ i n t o i n " . n t r t a d y q u i u d

l—J^^./Vfl Each m»is»Q« ptcktgi cont tl nt two ptrt i:

. � v 1 — matsagt t ype tnd m«ssage cent int

• , . ^
r— 少 〇 1 n A sit of

I 2 r — ~ 1 ^^^ o-r——->UnKig»
1 0 z O 一 obiaet

0 frTi ~
1 0 I I nlijagt • ！

——— obj，” •
 J

-—— I ！ O CH———1 A set of
— i ^)>\ nteracti on

口 ： ^ ^ ^ = -
Ker na< doquis t| | nt act i on i : JJ . \
messagt pftckigej obj fct j f r om tht qutue J I |
and t e n d i t t o | ！ O - f — ， A s 8 t 0f
it» dettinition) ^r^ p SPres«nt &ti on

• \ i / ! 卜 乂 •’
！ \ / i Pr«s«ntati oh i ： J |

W丨…广 I Q | 一
I - I ^ - r ^ > 4 - ^ L e x i c a l

1

- I H — o - ^ — 广 丨 … ’
I f e x | i c a l | ! • �

_ j ..
V i 丨 : O - j — — - ^ > D i $

$; I a 7 f

\ 、一 1——O j Q j Q joM«ct
\ dlspl ” • , J
\ ob|»cl 1
\ I i 3>“5二?1 c I

y ?4:r
lc
 L � . . ，

！ TH« m « s s t g « i s t u t ornat i c a l I y r o u t »d t o t h« i

！冗
typa oi tn« m«»stge Th« f ouH ng 1 丨 I «pl am«nt «d

by dynami e bi ndi ng and hsnc» the txact ！
a d d r • s t of t h« ffl«ss*g* r »e«i »1 ng object j
i s u n i t B o w l o t h ® k » r n t l

1 I
Figure 4.5 A kernel for message passing

: . : : 人 : 61

but it does not specify any display object to receive this message.

The global current states of the UI are stored in the Interaction

Knowledge Base. They include a set of abstract base class object pointers.

However , objec t poin ter to b a s e class object is compatible to object pointer t o its

derived class object. As each object in the UI, no matter it is an interactive object

or inner object within an interactive, is a derived object of its abstract base class,

the set of abstract base class object pointers in the Interaction Knowledge Base

can also point to the activated interactive object and the activated inner objects

within that activated interactive object. The kernel, therefore, can send messages

to their destinations through this set of object pointers even though the

destinations is dynamic and determined at run time.

ActuaHy, the kernel in the framework acts as a listener object shown in

Figure 3.8. Its duty is to deliver incoming messages to appropriate objects.

As the kernel only uses abstract base class object pointers to send message

and the type of abstract base class object pointers is compatible with all their

derived classes (even though the types of object pointed by this pointers may vary

at run time), the code of kernel can be kept unchanged no matter what ldnd of

derived classes have been introduced in the UL Actually，the types of object

pointed by this abstract base class object pointers are transparent to the kernel.

Hence, no matter how many new types of object have been added into the UI, the

kernel is unaffected.

In the other way around, this kind of message routing mechanism can also

release the message sending objects from the inconvenience of deducing the exact

address of message receiving objects. This deduction usually requires knowledge

� 62
_.... .:: . ‘.:“,... .. -；； '； •, , . ..、• ..." ' " •..’ ‘:•. ,. . .. • ‘ . . .

 1
 • •. . . . : . . . , � ’ • • • ’ . "“：•

• • ‘ . .

；. ；• /••'•:; ‘ .、...
v
,.广：. ‘‘...、..• “ “： “‘ . . ： • . • 1

1--7' ； ‘‘ ‘ , ./ ,： • -
4
 % 一.

 1
 • ‘ “ ... ；

of global UI configuration. Under this message routing environment, the message

sending objects only have an intention to send a message to a certain class of

objects and need not know the exact address of the message receiving objects.

The addressing of the message receiving objects should be taken care by the

ke rne l and the Interaction Knowledge Base. Consequently, when we specify a new

interactive object and its inner objects, we can ignore global configuration of the

UI. Sueh information Hiding of the global configuration of UI encourages the

construction of software IC in the UI development process which will be discussed !

in 4.1.5. • t j

i \
4.1.3 Triteraction Knowledge Base

The Interaction Knowledge Base has a reservoir of pointers to all existing !

interactive object pointers as shown in Figure 4.6. It monitors which interactive

object is activated or de-activated based on the current state of UI. As different • j

UIs may have different number and/or different types of interactive objects, |
‘ , . i

Interaction Knowledge Base varies from UI to UI. Therefore, no universal

Interaction Knowledge Base for all UIs exists. Whenever interactive objects are 1

added or removed from ail UI, the Interaction Knowledge Base has to be

updated. However, this updating can be easily accomplished by just adding or

removing object pointers. In fact, the interactive objects can be even dynamically

created or deleted through the object pointers at run time.

The Interaction Knowledge Base can also be considered as a global

controller for the interactive objects. Without it we cannot develop a UI from the

UI framework. In order to make the UI framework self-contained and complete,

. 八：: 63

香 港 中 文 大 學 圓 當 館 藏 當

a minimum Interaction Knowledge Base should be maintained in the framework.

Through its object pointers, an Interaction Knowledge Base can provide

address for the kerne l to deliver messages. Besides the pointer to activated

interactive object, it also supplies the pointers that point to the activated inner

objects w i t h i n the activated interactive object to the kernel for message delivery

but it does not deduct the pointers to activated inner objects. Actually, it gets

them directly from the activated interactive object. As it has mentioned in section

4.1.1 above, within an interactive object, there is a set of object pointers which

point to the activated inner objects within each interactive object. The updating

of these object pointers within the interactive object is done by the interactive

object itself. Actually, the configuration of the activated inner objects should be

hidden from both Interaction Knowledge Base and kernel. That is the structure

of Interaction Knowledge Base and kernel can be kept unchanged, no matter

what configuration of the activated inner objects is. The Interaction Knowledge

Base only supplies the address of the activated inner objects to the kernel through

this object pointers declared in the interactive object.

4.1.4 A Dynamic View of UI Objects

In a UI, all interactive objects and their inner objects are created when the

Interaction Knowledge Base comes into existence. Although all interactive objects

are created at the very beginning, only one interactive object becomes activated

at a time. The initial activated interactive object can be set by a default object

pointer in the Interaction Knowledge Base. Once the activated interactive object

has been set up, all incoming messages from a user will be automatically routed

64
. ' . - . : . * • ： - .. . •. . , . •” ,’ . • 二 ,_ ‘ ’ ：i ... ,.. ‘

 1
 ：‘ ••• ‘ ： \ r ... ’,.：.’,,

- , 。 ; . - : . . - . . ： ： • . • ••••： “ ,.、.. - ： ： ..."、 • • • ； • ：(• ‘ .：• / ： •. _ • ‘ - • • , ： ； ‘ , ：; V ‘ . ‘ -v. ‘ “ ‘ •； ；•
：
 . . . , •"“

/ 丨•TMETJ/.I KB"I • … B … \

A p o i n t e r C ^ ^ 丨 丨 " • 计 “ 丨 ^ ^
p o i n t s 1 f 1 1 ^ 7
t o t h e A . r — ~ - / I
c u r r e n t f V \ Q f ？ 一f, / S e t o f a c t ’ v a t 8 d

a c t i v a t e d V " 1 … . • " V " T J / / o b j e c t p o i n t e r s .

I n t e r a c t i v e \ 1 / J X T h e y a r e
o b e j c t ^^LLJ^r e x p o r t e d t o t h e

t / / / / k e r n e l f o r
/ / / / / / m e s s a g e

_

v i w
i n n e r o b j e c t i n

Cur�ent a c t i v a t e d \ a n i n t e r a c t i v e D e a c t i v a t e d
i n t e r a c t i v e o b j e c t o b j e c t i n t e r a c t i v e o b j e c t

Figure 4.6 I n t e r a c t i o i v knowledge base keeps track the current

activated interactive object

65
./• ： '" ̂ .. , •

:‘'V '• ..‘‘ '•‘ ••...._.• : :,.. ••• .、:.' '•' •‘ • : . v" . ‘
 :
. ‘ _ ‘ ‘ .»•‘ .’•'：..... ‘ ‘ '•, •• ‘‘ ‘ .. . ； • ‘ ‘ ‘

 ：
 ‘ •, ‘ . . . , . ‘.‘

to this activated interactive object.

Actually, interactive objects or its inner objects can be dynamically created

or deleted at run time. Objects are created when they are allocated by new object

p o i m e r s in the toteraction Knowledge Base. Objects are deleted when they are

no longer pointed iDy the object pointers in the Interaction Knowledge Base. Ai

object receives a message when it is activated and the incoming message is a

member of its incoming message list which has been described in section 3.4.

An object sends out a message according to its dialogue control. When a

ru l e of t he object dialogue specMcation is t r iggered b^ its condi t ion and its ac t ion

part contains a message sending operator (!), a message is sent to another object.

The routing of the message among objects has been described in section 3.4.5.

4.1.5 Switch Box Mechanism for Dialogue Switching

With the help of Interaction Knowledge Base and kernel, dialogue

switching between interactive objects can become very simple and easy. As each

interactive object is a self-contained entity, it has its own interaction dialogue

control and hence has the capability to interact with a user on its own and needs

not bother any other objects outside. If a dialogue switching is required from one

interactive object to another, all the UI needs to do is to update the activated

interactive object pointer in the Interaction Knowledge Base. Then all incoming

messages from a user will automatically be forwarded to the new activated

interactive object. The message passing among the activated inner objects within

the activated interactive object is determined by the activated interactive object

itself and there is no need f o r t h e In teract ion Knowledge Base to t ake care of t he
" ' • , . •‘ • . . ' , • ；• ‘ •. • ‘'

 1
 "S.... ‘ . . • -

66
. ； • "K • •” • .. . , . . .

mall ag a
pat h
I nth e
Interactive

ob J e c t

Currenl
activated
i n t era c t iv e
obj eet "'"-
pointer ~

A ,witch to direct
me ss a gut 0 t h. cur r en t
act i vat ad i nt er act i ve obj eet

InterlctlH object 1 Interactive object 2 Interactive object 3

Figure 4.7 A sim~~eswitch box mechariism for dialogue 'switching

67

message passing among the activated inner objects. Under such an environment,

dialogue switching can be viewed as a simple switch box mechanism in which only

a single parameter is needed to be updated in order to reconnect all message

paths for a new activated interactive object.

4.1.6 ^nftware IC rnnstruction

In order to introduce sof tware IC concepts in our software construction,

software components in a system should be considered as self-contained entities

and should depend on each other as less as possible so that they can be easily

： ； ： a d d e d , removed and exchanged as hardware ICs do. But at the same time they

should be integrated together efficiently and can co-operate with each other so

as to give an optimal performance. Similar to hardware ICs, standard interfaces

for software ICs is needed for communication b e t w e e n objects. Communication

between software ICs is done by message passing between them. During

communica t ion , the roles of software ICs are considered as client and service

rather than caller and callee in a traditional routine call

In our model, each object is constructed as a self-contained and

independent object as each object has its own dialogue control and event handler

to process incoming messages. Specification of null event handler method in

abstract base classes can provide a standard communication interface for the

derived objects of the abstract base classes. As kernel and Interaction Knowledge

Base can provide an efficient automatic message routing mechanism for

communica t ion between objects, each object can ignore global configuration of

the system. Highly independence, standard interface and global configuration

� 68
. “ ， . • ' : , • . ' • , . , • ‘‘, , . '

I n n 6 r object
IC on t he

^ ^ Y interact ive
^ ^ / object board

/ ^ J The I nt er f ace bet wo en
An t nt er act I ve ^ J / \ the i nleracti ve object
obj ect boar d ^ / r ^ boar d and t h® UI

I / \ f r amewor k mot h«r
/ j board Is d ef I ned by a set
/ L-^ of abstract base c I a s»««

；rj^ P J ^
U I f r a m e w o r k

^ ^ ^ in teract ive
^ ^ X ' : _ ^ ^ obj ect

Z ~~ board
multiplexer f o r interact ive
obj ect bo at d

Figure 4.8 Software IC construction of UI framework

ignorance m a k e objects can be added o r exchanged flexibly without interfering

with other software component. In other way around, because of the above

advantages, an objects can be reused by other UIs with different global

configurations.

When we develop UIs from UI framework, we can view the framework as

a mother board with infinite number of slots. Each slot can hold an interactive

object board which can has several inner object ICs on it. The slot interface is

specified by the abstract base classes. Dialogue switching is performed as an

circuit switching among interactive object boards by a multiplexer in a controller

(Interaction Knowledge Base) on the mother board. Each IC has its own circuit

(dialogue control) to handle incoming signal (message). All ICs can communicate

with each other through a common bus (event queue in the kernel). Chip select

of each IC is controlled by a decoder (set of object pointers) based on the current

: 69

state of the mother board and the activated interactive object board.

However, there are some differences between the above hardware design

analogy and the actually software UI framework design. In hardware design, the

chip select control is completely determined by the current state of the system.

But in our framework design, beside the current state of UI, message type in a

message package also determines message routing between objects.

4.2 Summaries of Object-Oriented UI Model and UI Framework

4.2.1 A New Apprn^^h to User Interface Development

The following table summaries the differences between traditional UI

development and t h e one b a s e d on our Object-Oriented UI Model.

Development approaches based on Development a p p r o a c h e s b a s e d on
Object-Oriented UI Model traditional software development——
ReaHzation of specification through Realization of specification through
object decomposi t ion function d e c o m p o s i t i o n . _ _ _ — —
Multiple dialogue controls which are Only one single main dialogue control
specified by event response language and which is specified by transition
distributed among objects network _ _ -
Control of objects is by message passing Control of software components is by
which is dynamic, asynchronous and rout ine call which is stat ic a n d
automatic routed sequential
Provides structural design through UI No framework. Design is R e oriented
framework and speci^c to certain application

In fo rma t ion hiding for support ing Informat ion 贩 ” 加 = : 二 t 0

sof tware I C cons tmct ion s u p p o r t sof tware I C construct o n
'fable 6 1 The contrast ot UI development approaches between the tradiaonai UI

development and the one based on Object-Onented UI Model.

70
..', , 、 ： . ： … . . . / • , • ‘‘ . , ‘ .

42.2 Futures of ITT Deve lopment provided bv the Object-Oriented UI Model

and U I F r a m e w o r k

One of the o b j e c t i v e s of the Object-Oriented UI Model and UI Framework

is to provide methodologies and simple mechanism for UI development so that

the following UI development features can be achieved,

1) Support Separable UI through linkage component.

The linkage component in the model acts a mediator between UI

and application. It links up the two separate components arid provides a

channel for them to cdmniinute with each other at high abstraction level

so as to achieve dialogue independence.

2) Support Multiple Continuous Feedbacks

The purpose of decomposing ail interactive object into several inner

objects on d i f ferent levels is to let each inner object give its feedback at

its own level without disturbing other objects so that multiple continuous

f eedbacks to user at d i f ferent linguistic levels a re possible,

3) Support Multi-thread Dialogue

The model supports the multi-thread dialogue control through a

simple switch box mechanism.

4) Support Automatic Message Routing

The message destination can be unknown to a message sending

object. That is a message s e n d i n g o b j e c t d o e s not know the exact object to

which the message will be sent. The message will finally reach the • ' . • •• • . ‘ . .,

appropriate object according to the current status in the Interaction

Knowledge Base.

. . . 71 .
'..,'''. .::...::.1.:.. ‘' «. '

5) Support UNDO Mechanism

• Undo objects in a single generic UNDO stack in each interactive

o b j e c t s u p p o r t s UNDO functions for different operations even at different

abstract level.

6) Support Consistency Check Mechanism

Consistency Check can be made by evaluating e-rules in the event

handler. The flags m the e-rules can be raised by other rules within the

object or by other objects outside through message passing.

7) Support Software IC Construction

Mutual ignorance between objects such as information hiding of

object implementation, processing incoming messages by event handler and

au tomat ic message routing, makes objects become more independent and

hence can be easily interchanged with each other without interfering with

other objects. Standard interfaces provided by abstract base class

definitions for dynamic binding also faciUtates software IC construction.

8) Provide systematic methods to specify and develop UIs

The model provides systematic methods to specify and develop UIs

through object decomposition as described in section 3.5. The UI

framework also provides a basic standard structure for UI development.

The dialogue control in each object can be first specified by a transition

network which is more easy to be understood by human and then the

transition network is converted into an event response language which is

more easy to implement based on the Objec t -Or iented UI Model.

. : ' i ... ' , .,, . • . , • • ' '' •. •' •' •• • - . . . “
 1

 ‘ ‘

Chapter 5

Implementation

This chap te r p re sen t s t he implementa t ion of a U I f r a m e w o r k w h o s e design

has b e e n descr ibed In Chap te r 4 arid a Simple Stock M a r k e t Dec is ion Suppor t

System (SSMDSS) in the Microsof t Window 3.0 Envi ronment . T h e S S M D S S is

i m p l e m e n t e d based on the U I F ramework . Some desirable f e a t u r e s of m o d e l

wor ld style U I s such as mul t i - thread dialogue and u n d o funct ions which have b e e n

s ta ted in Chap te r 2 are also i l lustrated in SSMDSS. T h e results of t h e above

implementa t ions will b e discussed in Chap te r 6.

5.1 Imp lemen ta t i on of U I F ramework in Microsof t Window E n y i r o n m e n t

T h e U I f r amework was implemented according to t h e U I f r a m e w o r k

design descr ibed in Chap te r 4 and was wri t ten in Z o r t e c h C + + language

(Zor tech , vers ion 2.0). As the f r amework was developed in t h e M i c r o s o f t (MS)

Window environment , each U I p roduced f r o m the f r amework is a window process

scheduled by the window m a n a g e m e n t system in the M S Window env i ronment .

T h e M S Windows Sof tware Deve lopmen t Toolkit (version 2.0) Is also u s e d to call

Window rout ines in the MS Windows tooikit library.

� 1 1 Tmpl^m^ntntion of au tomat ic message routing thronph fiynamic b inding

As po in ted out in Chap te r 4； messages delivery in the ke rne l is d o n e by

dynamic binding through the null event handler interface specif ied in t he abst ract
.. •) / ‘ •

ba se class. E a c h abstract base class has a null event handler func t ion dec la red as

a vir tual fonction which is u s e d for dynamic binding and is supposed to b e

overridden by its derived objects. Actually, in the kernel, all message passing

among objects are implemented by an event handler function call of a message

receiving object Therefore/this virtual event handler function in the abstract base

. c lass provides a standard iriterface for message communication between its

derived objects. Although the message passing between objects is implemented

by an event handler function call, the function caH is dynamic (i.e the function

binding is determined at run time) rather than static.

The content of the abstract base class object pointer is supplied by the

interaction knowledge base and is determined at run time according to the

current state of UI. The abstract base class object pointer can point to any object

as long as this object belongs to the derived class of the abstract base class.

Kernel can call the event handler of a message receiving object which is pointed

by the abstract base class object pointer in interaction knowledge base providing

that

1) the message receiving object is a derived object of its abstract base class

and

2) the message receiving object also has its event handler function to override

the one defined in its abstract base class.

For example, the statement

CurlntPtr -> EventHandler(message)

will call the event handler function of an interaction object which is pointed by

the current interaction object pointer, CurlntPtr, in the interaction knowledge

base. The content of CurlntPtr is dynamic and is determined at run time.

Although the type of CurlntPtr is a pointer to the abstract base class of an

i n t e rac t ion object, it contains a pointer to a derived interaction object since the

base class object pointer and derived class object pointer are compatible.

Through dynamic binding/ the kernel, and the message sending objects,

send messages to their destinations without knowing the exact addresses of the

message receiving objects in advance because these addresses are determined

during run time.

In short, dynamic binding in object oriented programming gives us a

powerfal mechanism to defer the code binding of a procedure call until at the

moment of the call at run time.

.j . . ‘.

5,1.2 A generic n ^ 哪 e s t ructure

In order to have a flexible message structure and generic event handler

interface, message package is defined as two parts: a message type and message

content. Message type indicates the kind of object (e.g. Interaction Object or

Display Object ..etc.) to receive this message and is declared as an unsigned

integer. Message content is declared as a pointer to void which can be casted into

the desirable structure when it is passed to an event handler. The actual

parameters of the event handler in all abstract base class objects are declared as

the type of this message package.

The message package is defined as

class msgp^c { /* message package V
public: ？
unsigned msgtype; /* message type 7
void本 msgcnnt; /* message contents */

•：：/；'V：；/'^/：
 ；

} ； . ： ： ： ： ; 入 ： ； ； ： ‘：
/ . • , ‘

 1
 • ‘ . •• , ‘ ‘ • ；' ‘ ‘ ‘ . • . . • . .

.,.：‘ • • 75 ：： •

,...、,.：广.:..，.，./:.... ：...,._..-’., :. • ..‘.’, '，/ . ‘： .. v •' ‘ • - ,..、 .‘ , . .(‘ .., • . • ... " .. , • . ‘ . 1
 ... • ,

5.1.3 A m e t a class for object rnmmunica t ion

I n o rde r to have a universal in te r face for communica t ing all objects

through dynamic binding mechanism a meta general base class is defined and

t h e n a l l objects , including interactive objects, their inner objects a n d u n d o objects,

b e l o n g to subclass objects u n d e r this m e t a genera l base class. Consequent ly , t h e

man ipu l a t i on of objects, including the object comimmicat ion th rough event

h a n d l e r func t ion or pushing and popping of u n d o object in a gener ic u n d o stack,

c an b e achieved through this universal in ter face def ined in t h e m e t a class.

T h e m e t a class is def ined as

class m e t a obj { public:
一 vir tual long EventHandler (void* message) ;

j * Even tHand le r (vo id #) is def ined as a universal
s tandard in ter face for all object communica t ion
V

}；

5.1.4 k f t w 怖 c o m p o n ^ t nf TIT Framework in the M S Window env i ronment

In the MS window environment, the UI framework also Includes two

additional components: Windowclass object and Generic object. Windowclass

object defines all basic d e f a u l t v a l u e s f o r a window such as initial size of window，

pos i t ion of window, type of window ... e t c T h e defaul t values of course can b e

overridden by its derived object if necessary. The constructor of windowclass

object can be overloaded and can have default input parameters. By supplying

different sets of input parameters to the windowclass object constructor, different

types of window can b e created. T h e Gene r i c object contains all init ial ization

s t a tements tha t requires a window come into exist. It also includes some basic

code to deal with the M S window manager system. The Gene r i c object co-opera te

76
. ' . - . ’ 对,、 " . . . • ；. • . . . ' . ‘ ： ， • • . • -

 1
 ... • • • .

With the windowclass object and f o r m the basic skeleton of a window.

The UI framework in the MS window environment includes:

- WindowGlass Object for window default attributes.

- Generic Object for window initialization.

- Kernel for message passing.

- Gen Object for defining all abstract base class

_ In te rac t ion Knowledge Base for global control

The above components, except interaction knowledge base, together with

queue (for event queue m the kernel) and stack (for undo process) are complied

and linked into a C+ + library which can be used in future UI development.

5.2 A Simple Stock Market Decision Support System (SSMDSS)

A Simple Stock Market Decision Support System (SSMDSS) was

i m p l e m e n t e d according to the UI Framework in the MS window environment

SSMDSS is used as an example for iUustrating the features of the Oriented-Object

UI Model and the development methods described in Chapter 3. The application

and UI of the SSMDSS are implemented into two separate window programs and

communicate with each other through Dynamic Data Exchange (DDE) protocols

provided by the MS window environmeiit. The purpose of using two separate

programs to implement the SSMDSS is to stimulate a physical separation

environment for UI and application as shown in Figure 3.5. The software

hierarchy of the ŜSMDSS is shown in Figure 5.1. The level of abstraction

decreases from inner ring to outer ring.
The application of the SSMDSS only provides three simple application

. .. 77 ..

^ ^ HW

APP: Ap pi i ca t{ on
I n t : I n t e ra c t i v e o b j e c t s
F r m: F r a me wo r k 」 • .
DVT: Mic ro so f t window s o f t wa r e d Q v e I o p me n t

tool k i t • • „
WMG: Wi ndow Manager and g r a p h i c packages in

Mic ro so f t wi n d o w e n v i r o n me n t
OS: Ope r a t i n g sys t em
HW: Hard war e (I / 0 d e v i c es)

Figure 5.1 Software hierarchy of SSMDSS

functions: 1) - Update the current stock data base,

2) _ Retrieve current stock data from the data base and

3) - Predict the trend of stock market according to current stock

data and user input.

As we are only interested in the UI part of this system, function 3 was

implemented by some pseudo functions so that the detailed algorithms for

analyzing stock data are ignored.
..> . .. ： i -…..,-. • . . . ‘.. . • • •

 1
 ‘ . . .

In the UI of the system, the following functions are provided.

78
... ,.. .. • f .-. • . - n .

' . . _ . • • . ‘ . ,

• . “ ： - •. : - . 二 . / ! .
 5 • , • • . , ••

 ; .' ： .、. ‘‘ ‘ ‘ ‘

1 three separate working sheets for three different set of stock data

2 a user can switch to any working sheet at any time as he/she

wishes

3 e a c h working sheet can display its stock data either in bar chart,

polygon chart or spread sheet form

4 when stock data are displayed in bar chart form, the chart can be

viewed by month, by week or by stack

Stock data can be presented in one
/ of the following ways: Bar Chart,

Polyon or Table
^ ,... ..「"「【咖对應,̂ rrnnTrrTTnrrrrnriiiiTfTn.niirî rriraMTiTlttfftllttiyTfTfffittitSBPf̂ r

gfjggpHHHHKjiniSIIHIIKHHIHHÊ
I Fqiraat^^^j^pp Sheet ‘ ；__；

• . ' Pnlygnn I
I 193 Table |

E L u j i i L i L
titanTu«V«dThu Fri nô Tû dThuFri HgnTu* W«dThuFri MonTueM*dThuFn

,Auto-scaling for vertical axis
F i g u r e 5 . 2 The same s t o c k data can be d i s p l a y e d i n d i f f e r e n t ways
a c c o r d i n g t o end u s e r c h o i c ^ .

5 when stock data are displayed in polygon chart form, the chart can

only be viewed by month or by week.

6 If th^chart (bar or polygon) is displayed by week, a scroll bar is

provided for a user to scroll the chart week by week.

7 If the chart ^bar or polygon) is displayed by week, user can direct

: . . , 、 . . : . . :：.,79

input new stock data by using a mouse drafting on the chart. A

stock v^ue which is pointed by a mouse cursor on the chart can be

continuously shown to the user,

g A n auto-scaling of vertical axis according to the current stock values

is provided.
“ I

Stock value which is pointed by the
cross curcoe is continuously shown
to user whenever mouse moves

r ^ ^ —

i k k u w]
HonTueUedThuFxi HanTut VedThuFri HonTueHedThuFri HonTuefedThuFn |

I I 1

Figure 5.3 A continuous syntactic feedback to end user

9 If stock data are displayed in a spread sheet form, user can choose

a stock datum directly either by a mouse or cursor keys on the

keyboard and then input the new stock value through the keyboard.

10 The three working sheets can exchange data through copy and

paste functions.

11 Provides undo functions for the operations of

- data entry through mouse as the stock data is

displayed by week

1.,:. ,. 8 0 .
. - . ' . • ‘ t . / . - r. • • ‘ ... ‘

1
 •,. ‘‘ . ‘ \ j ‘

.
h
 . . / . , ：‘ , ‘；' • ..‘.'，，，'.，..• '• “',

 ；
. . . . : ' . 、 . - . ' “...

- data entry through keyboard as the stock data is

displayed in spread sheet form

- predicting the trend of stock market

- retrieving stock data from the stock market database

- copy and paste

Undo functions for other operations are not implemented as these

opera t ions , except updating stock data in the stock market data

base, can be "undo" by redoing other operations provided in the UI.

12 give warn ing signal if stock value is too low.

Format Chart App Sheet

1 7 3 I STOCK TOO LOW
UARHING ！

i Stun ctfiek ‘

ire to* lo* \ / \

HonTueWedThuFri HonTueUedThuFri Mon Tuc Ued Thu Fri Mon Tue Ued Thu Fn
L, , -

Figure 5 . 4 A w a r n i n g message i s g i v e n t o user when a s t o c k v a l u e
below a s a f e t y v a l u e

5.2.1 TIT Specification

In order to show a systematic approach specification of UI, the UI is

specified in the following steps as described in section 3.5.

、 ： / , . . ：玄 8 1

1) Identify the interactive objects.

As def ined in Chapte r 3, interactive object is an object with which

a user can conduct a meaningful step-by-step dialogue and the user can

apply d i r e c t manipula t ion on it. According to 'the above UI ' s description,

the objects that can be manipulated directly by a user should be the three

working sheets for stock data. In order to make the interactive object

b e c o m e m o r e self-contained and comple te for dia logue switching, each

interactive object has its own undo stack to process its undo objects.

2) Identify interaction style for each interactive object

According to the UI functions described above, the interaction style

for each working sheet is as follows.

. display s t o c k data in different form (bar, polygon and spread sheet)

. provide different input methods through mouse and keyboard.

3) Identify inner objects within each interactive object.

Based on the interaction style of an interactive object, the

interactive object can be decomposed into the following inner

objects.

- one interaction object

- one linkage object

- one presentation object

- three display objects (for bar chart, polygon chart and

:L spread sheet respectively)
: - two lexical o b j e c t s (one for bar chart and polygon chart, the

� j ; : other for spread sheet)

82
. '

j
 、

：
 . . . - •； .. •

''•； ' ; ,
 1

 - . • , . . , ' •.“ - . ' • • .：' '"：•- ？‘厂-一乂. . 、 ‘' . ‘ ., • ： ； . . -

�:....；'..'••. . ：‘ ‘ .•••..• ‘' ‘： •• ；>. . • . . . ‘ •‘ - - ‘ '“‘ . � ‘ ’

/ • .;. ：‘../ ‘ /'. V'' • ‘ ‘ . . :,、：_‘. • ‘ : ‘ “ ‘ r V： � “ . . . ‘ ； ‘ … . . • ,. • • , ' ： . ；‘‘ ‘' .

Hence, there are total eight inner objects in each interactive object

and the configuration of the activated inner objects depends on the current

state of the interactive object.

4) spec i fy the cluster controller for each interactive object.

There are three clusters of inner objects according to different

states of the interactive object.

Chart state Polygon char state Spread sheet state

_ interaction object - - interaction object - interaction object

-linkage object • linkage object - linkage object

-presentation object - presentation object - presentation object

-bar chart display - polygon char display - spread sheet display
object object 却 c t

-bar polygon lexical - barj)olygon lexical -spread sheet lexical

obi^t. object Qbject .丨
^ = ± = = = = � = = = � ^

There can be three possible clusters of activated inner objects but only

one at a t i m e . That is there can be three active message paths for the inner

objects in the i n t e r a c t i v e o b j e c t according to the internal current state of the

interactive object. The configuration of this three clusters of inner objects can be

shown in Figure 4.2，where L一obj 1 is spread sheet lexical object, L一obj2 is

barj)olygon lexical, D _ o b j l is spread sheet display object, D__obj2 is polygon chart

display object, D_obj3 is bar chart display object.

5) Specify each inner objects within an interactive object
... , - • .:. . . • . ' • ,

 ;
 ' ' . , - ： ‘ ••“ •• _

Interaction object -

As interaction object falls on the semantic layer, it has partial

semantic knowledge about an application. It is its duty to communicate

with the application through a linkage object. It handles the incoming

message for updating, retrieving and predicting stock data. As retrieve and

predict functions can be "undo", the interaction object need to push an

undo object for reversing this operations into a undo stack before it

performs these two operations.

A minimum safety value which is obtained form the application for

giving semantic feedback to user is stored in this interaction object too.

T .inkage object -

It translates the three command messages (updating, retrieving and

predicting) from the interaction object and then sends them to the

application side. In other way around, it also receives data from the

application and decomposes them into stock data and minimum safety

value and then sends them to the activated interaction object. All DDE

, c o m m u n i c a t i o n processes are done in the Linkage Object and are hidden

from other objects.

Besides for message translation, such as filtering out unnecessary

information and collecting necessary information for both sides, an

Linkage Object also helps to provide semantic feedback which is usually

ignored by application.

Application only sends stock data to UI on request. However due

to the semantic feedback, the U I a l s o n e e d t h e minimum safety value;

hence, the l inkage component at the application side also needs to pack

the minimum safety value together with the stock data and sends them to

. . . V L .

, . •• * . . , ； , • ••' . ; ••

Presentation object -

It stores all necessary syntactic and lexical information for

presenting the information in an interactive object to a user in different

views. It raises flags to inform display objects to give syntactic feedbacks

and also maintains auto-scaling of the chart vertical axis. It also

communica tes with the interactive object cluster controller so as to update

the activated inner objects. It maintains the consistency of enable and

disable commands on a pull down menu.

Rar__Polv lexical object -
It g i v e s l e x i c a l f e e d b a c k s to users. It changes the cursor shape when

it receives a m o u s e bu t ton pressed and mouse m o v e d signal w h e n the

stock data are displayed in a bar or polygon chart. Any other incoming

messages that cannot be handled by this object is passed to its upper level

object, presentation object.

Spread she户t lexical object -

Similarly to the above lexical object, it gives lexical feedback to

users. It shows current editing cell when it receives a mouse button

pressed, mouse moved and key pressed signal when the stock data are

displayed in a spread sheet form.

RarT pnlv and spread sheet display object -

They cpntain all necessary information and methods to display stock

data in ba^chart, polygon chart or spread sheet form. These objects only

display stock data in different form and are not supposed to handle any

incoming message from user.

85
• • ’ ‘、：,.， ‘‘. “ ‘：

6) Specify each rule in an event handler.

The pre and post conditions for each rule action are first specified

according to the dialogue control in each inner object. Then the pre

conditions are used to implemented the flags and events in the condition

part of a rule; while the post conditions is used to implement the actual

algor i thm of the act ion par t of a rule.

7) Specify interaction knowledge base.

The interaction knowledge base has three internal states for

monitoring which interactive object is activated or deactivated and hence

can provide message routing address for the kernel. It also contains a

clipboard for stock data and used as an exchange buffer for the three

interactive objects during "copy" and "paste" operations. It also raises flags

to inform each interactive object to maintain output consistency after each

dialogue switching.

ActuaHy the inner objects form a U-tube ladder as shown in Figure 3.9.

Any incoming message that cannot be handled by an object itself will be passed

to its upper level objects- The hierarchy starts from lexical object as the lower and

interaction object as the upper.�As lexical object only handles low level

operat ions , it should receive the user 's inputs first. In teract ion objects have par t ia l

semantic knowledge of the application and are supposed to perform high level

opera t ions . T h e inner objects can b e viewed in such a way tha t t he lower level

inner objects (such as lexical object and presentation object) filter out all

unnecessary messages for their uppe r level inner object (such as interaction

..•,:.〈:...… . ^ 86

objects and linkage objects) because all the unrelated messages are already

processed by the lower level inner objects. Therefore, the upper level objects can

ignore the m e s s a g e s that are handled by the lower level inner objects. In the other

way around, as the lower level inner objects will pass any unrecognized incoming

messages to their u p p e r l e v e l inner objects, they also ignore the messages that will

be handled by its upper level inner objects. For example, the lexical object never

needs to handle the messages for updating, retrieving and predicting stock data

and interaction object never knows about the mouse button pressed or mouse

m o v e d m e s s a g e . Besides releasing the loading of message handl ing fo r each inner

objects, such mutual ignorant mechanism also makes the inner objects become

more interchangeable and hence it encourages software IC construction.

5.2.2 TIT features supported bv SSMDSS

The UI of the SSMDSS can support the following features:

1) Separation of UI and application

Physically, UI and application are totally separated as they are

developed into two separate window programs and can only communicate

with each other through the DDE mechanism. Actually, an application can

serve several different UIs at the s a m e time. Logically, the application

i g n o r e s the interaction style between a users and the system. The linkage

object b e t w e e n them compromises the differences between them and try

to satisfy thefeeds of both sides by translating messages between them.

2) Multiple feedbacks on lexical, syntactic and semantic level.

Lexical feedbacks - give feedbacks for mouse button pressed, key pressed

and mouse moved signals by changing the cursor

shape and position.

lexical and syntactic feedbacks -

Continuously show the stoek value at the mouse

cursor position as the mouse is drafting around.

semantic feedback - A warning is given to a user when the stock data

below the minimum safety value.

3) Multi-thread dialogue among the three working sheet interactive objects.

4) Undo functions for different operations (retrieve, predict, copy, paste, and

stock data entry using mouse or keyboard) through a single generic undo

stack.

5) Provide different paths for a user to interact, (e.g. input stock value either

by keyboard or mouse)

6) Consistency maintenance.

UI can maintain the consistency of its output when the system

changes its state. F o r e x a m p l e s , the. UI maintains the consistency of

enabling and disabling command items on a pull down menu after each

change of UI state. It also maintains the auto-scaling of the chart vertical

axis according to the current stock values.

. : : . : : 、 : : . . : . . . : , . . . : : : : . , 、 .
8 8

 • .

“ • ,
!
 • . . , . . , - : ‘ ' . - •：. ‘ , - 、.’.".•.；. - . . ", _ “ •

Chapter 6

Results

Xn this chapter, some observations of the SSMDSS implementation are

presented. Some technical problems about the implementation in Microsoft (MS)

Window environment are stated. The accomplishments of the Object-Oriented UI

M o d e l indicated in this implementation are identified.

6.1 Facts discovered

6.1.1 Asynchronous and svncbrmious communicat ion b e t w e e n objects

In the UI framework, all message passing through the kernel is

asynchronous. A message sending object does not wait for the response of a

message receiving object and continues its operation after sending the message

to the kernel event queue. However, in some situations, the message sending

object has to wait for the response from the message receiving object before it

can continue its operation. This kind of communication is synchronous. In the

SSMDSS, as automatic message routing for the synchronous communication

canno t b e done through kernel , in order to support au tomat ic message rout ing for

synchronous conimunication, the m e s s a g e sending object has to access the object

pointer in the interaction knowledge base. Therefore, unlike the situation

described in Figures 3.8 and 3.9，besides interaction objects, other objects may

also interact directly with the interaction knowledge base for synchronous

communication between objects.

The above phenomenon occurs because of the limitations of MS window

- . ..、；；： •：-；；'.'• ；；•'>.； 8 9 , . .
, ‘ . . . ： . . ' : � . . . » •, . , . . . ,. . . / ..、）.. •:.. ... ,'' ’ .,.:':‘. . ： .•.. . .，.，�: r.v ，）.:.

environment. As MS Window cannot provide us a real concurrent environment,

synchronous communication can only be implemented as routine call rather than

rendezvous as ADA does. Through the dynamic binding feature provided by the

C+ + language, synchronous communication, which is also automatic message

routed, can be done by accessing object pointers in the interaction knowledge

base directly. However, each object has to deal with two objects for message

communication. One is the kernel object for asynchronous communication and the

other is the interaction knowledge base for synchronous communication. If a

system can be implemented in, a real concurrent environment，both synchronous

and asynchronous comnmmcation can be monitored by the kernel only. In such

case, each object can be m o r e interchangeable in deferent systems.

The p seudo concurrent environment in MS Window also requires each

object in a UI to have the responsibility to release execution control back to the

kernel of the U I f ramework . Therefore, the event handler in each object cannot

contain any infinite loop as most real concurrent objects do.

6.1.2 Flexibility of C + + language

As C+ + is a multi-paradigm language, a mixture of object oriented and

non-object oriented programming, a non-object oriented paradigm program can

be upgraded to an object oriented paradigm program in an easier and

comfortable way. For example in the development of SSMDSS, we need to use

MS Window Software Development Toolkit to call some window routines in the

toolkit library, However , the routines in the toolkit are in non-object oriented

parad igm. For instance, we cannot send a message to an object in the
： ‘ . , .,•..' . • ‘‘ ‘ ； ：. ‘ •； - , ._. , ‘' ‘ r ‘ \ .

：；：
:
.:::;.:/:.‘ ::.'. ’、. 90 .

...‘； ..、 . . • ‘ . . .
 r

 ‘,. . . '：.. 1 - • . . - . • ' . •

. • ‘ , . “

“ . ‘ . . ‘ . . . • ‘ . •, v .
 ；

 ； • . . .

development toolkit and require the object to do something for us. No

overloading or polymorphism can be applied to the window procedures in the

d e v e l o p m e n t toolkit. In order to use them, we have to call them in traditional C

programming paradigm； C + + language can provide us such a flexibility to deal

with this problem and at same time allow programmers enjoy the benefits of

programming provided by Object-Oriented Programming. However, the mixture

0f programming may introduce many ad hoc programming which makes the

software implementation cannot fully discharge the original object oriented

design. �

6.2 Technical Problems Encountered

6.2.1 Problem from Implementa t ion Platform

In the MS Window environment, the "constructor" of a global object cannot

be executed (a bug of Zoftech C+ + in MS Window environment). In order to

tackle this problem, all global objects, such as the kernel or the interaction

knowledge base, are declared as object pointers rather than objects themselves.

Then somewhere in the ma in execution code, these object pointers are explicitly

allocated. As all global objects are manipulated through pointers together with the

object pointers for automatic message rout ing through dynamic binding, the code

of UI may become clumsy and difficult to trace. In order to make the source code

easier to read and, trace, macro is u s e d to replace the clumsy pointer

manipulation syntax.

A 9 ? P rnh l em due to Objec t Decomposition in an Interact ive Object in vSSMDSS

Functionally, the SSMDSS implementation, the Presentation, Lexic^ and

Display Objects can be actually merged into a single object. However, in order

to demonstrate the feature of the Object-Oriented UI Model, we have

decomposed it into several objects as described in chapter 5. However, such

object decomposition may cause the following problem.

An object decomposition may cause the difficulty of determining how much

information should be embedded in each object and which objects should fall on

which linguistic layer. For example in the above case, Presentation Object is

supposed to contain all necessary information to present an interactive object.

However, Display Objects and Lexical Objects may also need this information to

display output and give feedback to a user. If this information is declared as

••pubHc" and we allow other objects such as Display Objects and Lexical Objects

to access it directly, information hiding will be lost and hence this object

decompos i t ion will cause an obstacle for sof tware IC constructor . However , if the

information is accessed through message passing, it will increase the loading of

event handler in each object Finally, if we duplicate the information in each

object , it may also cause informat ion inconsistent and upda t ing p r o b l e m . D u e to

above difficulties, in the implementation of SSMDSS, in order not to increase the

loading of event handle r in each object, the informat ion in P resen ta t ion Objec t

is declared as "private" but can b e accessed by the Lexical Objects and Display

Objec t s th rough" the "friend" fea tures in C + + . By doing so, we sacrif iced a

certain degree of software IG construction.

Hence, an object decomposition may introduce a trade off between

92

.....-. , ‘ . V •. . • ,. • ； ' . . / . , , .；. . ：‘ \ � }. . . : , . 7 .., .'.. ‘ ... ,. • • +. . - ‘ .'‘ • “ � . . ' - . . ' • . . � ’

'••• :..,.. V .： ‘ ’ ‘ ‘ • ：.. ...，.: •• • ' .. \ .、.. ,. .. ">• , . •、.;". ‘ , . ‘ • • ‘

information hiding which can encourage software IC construction and efficiency

of co-operation among objects. In order to resolve the above conflict, balance

between i n fo rma t ion hiding and co-operation among objects should be carefully

maintained.

6.3 Objectives accomplished by the Object-Oriented UI Model indicated by

t h e S S M D S S

Separating UT from application

SSMDSS is a good example to demonstrate the dialogue independent

concept because, through the Linkage component , application totally ignores the

computer-user interaction such as different presentations of data, different input

methods through mouse or keyboard, feedbacks from different linguistic levels

and undo functions for different reversible operations.

Multiple Continuous feedbacks

Multiple feedbacks are given to a user by objects at different level. Lexical

feedback that changes the shape of the cursor when a mouse button is pressed is

given by a Lexical Object; lexical and syntactic feedbacks that continuously

showing the stock value at the current mouse cursor position is given by a

Presentation Object.

Multi-thread Dialogue

Dialogue switching among the three working sheets in SSMDSS through

a s imple switch box mechanism described in section 4.1.4 demonstrates tne

feature of multi-thread dialogue.
..'-'.• '• ... ‘ v' ' ‘ 、‘'.、 . • ‘ >

； ： 、 … . - .： ...
:
.
:
.，- 93 …“

Automat i c Message Rout ing

Wi th the he lp of the kerne l and the interact ion knowledge base , each

objec t in t h e SSMDSS ignores the dest inat ions of its outgoing messages .

U N D O / Recovery

T ^ e single generic U N D O stack in each working shee t interact ive object

provides u n d o funct ions for retr ieve, predict , copy, paste, and stock d a t a entry via

m o u s e or keyboard operat ions in t h e SSMDSS. Note , this u n d o func t ions a r e a t

d i f fe ren t abstract levels bu t they a re all processed through a single U N D O stack.

Main ta in ing Consistency �

Consistency of t he c o m m a n d m e n u in the SSMDSS is ma in t a ined by the

e- rules descr ibed in section 3.4,2.

Sof tware I C Construct ion (not fully support)

D u e to the na tu re of the SSMDSS and the p r o b l e m descr ibed in sect ion

6.2.2, sof tware I C construct ion in t he SSMDSS is not fully suppor ted . Howeve r ,

au toma t i c message rout ing provides cer ta in amoun t of sof tware I C cons t ruc t ion

i n the SSMDSS. A t least, adding, or removing interact ive objects does no t

in te r fe re with o ther objects.

Systematic M e t h o d to Spe^^y 如H Deve lop UIs (not shown)

As our Objec t -Or ien ted U I mode l was continuously revised dur ing the

imp lemen ta t ion of SSMDSS, the re is no evidence to show tha t this object ive is

accompl ished in the implementa t ion of SSMDSS. However , the specif icat ion

app roach and steps described in section 3.4 and 3.5 may contr ibute this object ive

in some degree .

- . , • , � . . . “ • •• ‘ • . 1 ‘

... ‘ ； . . • ‘' • I • • . “ • .. . - -、， .‘‘ , ‘
 :<
"' “ . (

!
f
;
 '. ..•:•••、

94

： “ . ‘ » f. •‘ ‘ ‘ .'.. :、.：• ‘ ‘ . • ‘‘ ‘ • ‘ , ‘ • ‘ ’ . • . ‘ ' ：...

Chapter 7

Conclusion

7.1 Thes i s Summary

F e a t u r e s in m o d e r n UIs, such as direct manipu la t ion and mul t i - thread dialogue,

i n t r o d u c e n e w p rob lems to U I development . Tlie objective of this thesis is to p rov ide

solut ions to these p rob lems so tha t the sof tware deve lopment and m a i n t e n a n c e cost of

m o d e r n U I s can b e reduced . A n Objec t -Or ien ted U I M o d e l and a U I F r a m e w o r k whose

design is b a s e d on this concept a l e p roposed in this thesis. They prov ide a new

deve lopmen t approach to m o d e r n UIs such that the following deve lopment quali t ies can

b e accompl ished:

1) Separa t ing U I f r o m applicat ion

2) Mul t ip le Cont inuous feedbacks

3) Mul t i - th read Dia logue

4) A u t o m a t i c Message Rout ing

5) U N D O / Recovery

6) Main ta in ing Consistency

7) Sof tware I C Construct ion

8) Systematic M e t h o d to Specify and Deve lop U I s

A Simple Stock M a r k e t Decis ion Suppor t System (SSMDSS) is imp lemen ted based on

the Ob jec t -Or ien ted U I Mode l in MS window environment . T h e deve lopment of t h e

SSMDSS was studied. All of the above deve lopment objectives, except points 7 and 8，

are achieved in the deve lopment of SSMDSS.

• . 众 ； ： 八 々 9 5 .广. : . . . / • . .

、’ •广'•. ‘ ； \''1 ^ ‘‘ ^ u ,
 1

 ‘ • . •. ‘ [< “ / . “ • .•'• • ： ..,. ： - . ‘... • _ . ' , ： “：；
:
 •

; 1
 .,

 :
 ‘ ，.. ‘

7.2 Merits and Demerits of the Object-Oriented UI Model

Merits:

The UI Framework provides a basic blue print for UI development so as to

reduce the UI development time and hence encourages UI rapid prototyping. The

linkage component r e a l i z e s dialogue independence in an application. Dialogue switching

between interactive objects can be easily achieved by a simple switch box mechanism.

Multiple continuous feedbacks can be given automatically by inner objects in an

interactive object. The automatic m e s s a g e routing supported by the kernel and the

interaction k n o w l e d g e base encourages information hiding and hence facilities easy

modification of UI. The Undo / Recovery mechanism provided by the model releases

the inconvenience of the interactive objects for handling undo operations at different

abstract levels through a single UNDO stack. The model also proposes a new approach

t 0 specify objects in a UI so that the dialogue control and consistency maintenance can

be easily specified and implemented based on the UI framework. Demerit:

In order to reduce the loading of the Linkage component and to increase the

efficiency of the co-operation between a UI and its: application, both the UI and its

application should be developed using an object-oriented paradigm. Such limitation

restricts the flexibility of the application design. However, as object-oriented design

becomes more and more common and prevalent in software development, it is believed

that the above limitation can be gradually eliminated in the future.

73 Cost of Object-Oriented UI Model

Although the Object-Oriented UI Model can shorten the UI development time,

it degrades the UI run time performance. That is, a UI based on the Object-Oriented UI

' ' . ； ； . , : , - 96 .

../.. .‘.:,::::�:..:.:::. ” ..: .:..,: :• • ..." j'2 ‘ ； . ‘ ,:、.：；”/:(、.‘.•.”,’ .'...... “ ：、-. ‘ ：. ... , ‘.：_ ”. . ,.、. .， 、. ‘• ‘、 ‘ •. • . ,. . - . v • ,•：: .、’‘'-.、.--:

M o d e l certainly runs more slowly and occupies more memory than the one based on the

traditional software development providing that they both have the same UI capability.

T h e d e g r a d a t i o n is due to the overhead of au tomat ic message rout ing and message

t rans la t ion between UI and application through the Linkage component. In the view

point of machine execution, automatic message routing is much more expensive than a

direct routine call. The degradation becomes further severe when the application side

is not developed by using an object oriented paradigm as the Linkage component have

to need more computation power to perform the message translation.

Despite the above degradation, the Object-Oriented UI Model should be still

just i f ied. A l though t h e r u n t ime pe r fo rmance is degraded, this degrada t ion is insignificant

to human response. User can not tell if a UI slows down for several milliseconds. In

addition, as the price of graphics hardware is kept going down and on the contract the

software cost is kept going up, it is justified to shorten the UI development time on the

expense of hardware cost.

7.4 Future Work

In the SSMDSS implementation, the interaction knowledge base is mainly used

as a global controller for message routing between objects and dialogue switching

between interactive objects in UI. In the future, we can add more rules and constraints

in the interaction knowledge base so that it can increase the co-operations, linkage and

consistencies between interactive objects such as the copy and paste commands in the
SSMDSS.

One of the future work of the Object-Oriented UI Model is to include the Vienna

D e v e l o p m e n t Method (VDM) [34,47,48] so as to specify a UI in a formal, systematic and

: . / . . . : . � . . : . , : / 9 1 : .

matbematic approach. Based on this formal UI specification, a UI specification

interpreter can be developed so that UI specification can be executed under the

interpreter before the UI is actually implemented. The execution of UI specification is

also a key success of U I rapid prototyping.

‘ . . • ' , ' . . .

. - . ‘ ： , • 、 . • , • ‘ ： . , . ' ‘ . . . •
 v

' " •• ‘‘ ‘ .. . ‘ • ‘ •

, • ‘ • ‘- •, •； , , ’ ’ • • “ • . . • .
:
 •‘ “.

, . • “ v . .- • ‘ .' ,.‘.

. . ’ , • •‘‘‘ ‘“ ‘ .，,... ..…• *)< ‘ . 〈 . . . ‘ …；’• ： . • ‘ • •’ • ,.. , •“ \ ； . • , ；. t . , ’、: ：..
 1

 ‘： ， .. . ； • •

： ' . ： r- v . ！ ““ ‘ •• • v. ‘ •,• ：‘ ；•,•' . , • .-,，、.，，. . • , . .. ‘ •

Appendix

A 1 An Algor i thm f o r Conver t ing Trans i t ion Network D i a g r a m to Even t

Response Language

Event R e s p o n s e Language (ERL) is suitable for modeling dialogue control

in World Model style user interfaces because it can describe asynchronous and

multi-thread dialogue. However, as ERL is multi-thread in nature and hence it

is difficult for us to capture the user's input sequences from the ERL. On the

other hand, Trans i t ion Network Diagram (TND) can clearly describe the user's

input sequences but TND is not suitable for our Object-Oriented UI model.

Fortunately, there is an algorithm [29] to convert Transition Network Diagram to

ERL. Therefore, we can specify UI dialogue control in TND first in the early UI

specification and then we convert the TND into ERL which is easier to be

implemented under the Object-Oriented UI model environment.

M. Green [29,30] has proposed an algorithm to convert a TND into an

ERL and has shown that the description power of the ERL is not lesser than the

original TND. In this thesis, some notation and steps of the algorithm are

modified and simplified so that the algorithm can be applied to our Object-

Oriented UI model efficiently. For instance, subdiagrams in a transition network

corresponds to an event handler in other inner objects. After the conversion,

event handlers do not need "active" flags to indicate which event handler is

currently active because this problem has already been resolved by the switch box

mechanism and automatic message routing in our Object-Oriented UI model (see

section 3.4.5 and 4.1.4). Below we only list the modified algorithm used in this

A1

thesis. Readers who are interested in the original algorithm can refer [29].

Although some notations and steps of the original algorithm are modified and

simplified, the basic methods and concepts are unchanged.

1) The first step in the conversion algorithm is to calculate all LEADING

relations of each subdiagrams in the TOD. The relation LEADING can be

defined as:

LEADING(d) = {a| a € 2 and aS € L(d)}.

Where S - =，： input string

d = subdiagram in the TND

L(d) = set of strings in 2 that are recognized by d.

That is, every string in L(d) labels a path from the initial state to one of the final

states of d.

This LEADING(d) is used to construct outgoing messages in an event

handler template, (see section 3.4)

2) The second step is to construct all incoming messages in t he event handler by

collecting all input tokens that are labeled on eaeh arc in the TND. If the arc is

labeled by a subdiagram name, then all the tokens in the LEADING set for that

subdiagram are also collected.

The incoming messages = input tokens on each arc label

t +

LEADING for each subdiagram

The incoming messages are used to construct the CONDITION part of regular

rules in the event handler template.

A2

3) The third step is to construct all regular rules for each incoming message

obtained in step 2. TQie CONDITION part of each regular rule consists of an

incoming message and a triggering flag which corresponds a state in the TND.

The ACTION part of a regular rule consists of an action that will be executed

when a arc in the TND is traversed or/and a state updating process, if necessary,

for updating t h e t r i g g e r i n g flag of CONDIHON part in other regular rule.

There is set of regular rules for each state in the TND and within this set

of regular rules, there Is a regular rule for each outgoing arc label of that state.

Therefore, after the conversion, the number of regular rule in an event handler

will not be lesser than the number of arc in the corresponding TND.

CONDITION - - - - - > ACTION
I e R I Incoming I Triggering flag Actions State updating

L message P r o c e s s e s

~~Input token Current state Actions to be next state after the
D on arc label executed when arc is traversed

the arc is
traversed 1

Table Al.l Comparison of components for eacn no ta t ion .—

4) The fourth step is to construct all event handlers in each inner object according

to the above steps.

'•* ‘ , . ' . . “ • .:,,. . . . ‘

’ ‘ . . . ，• 〜 ‘ ： • ； . “ v L , • • . ‘

,,... • . \ ‘ ‘ , • • . . •

； • . .
 r

‘ ‘ ' - : � • . > : . , . , , ’ � • � ‘ -

:,.:'::‘}.‘/:‘、： ： •_...+ ' .+• • ；... . , . 、 。 ： -
 :

 、
 T

 , : . . ‘ . (‘ 1 ‘ ‘ ‘ ‘ . I 丨、,；丨
 1

 _ ‘ ‘ • . , ‘ ‘ , ‘

A2 An Object-Oriented Software Development

A2.1 Traditional Non Object-Oriented Software Development

In traditional non Object-Oriented software development, the software life

cycle, in general, consists of four phases: Analysis, Design, Implementation and

Testing. These phases are considered as some linear series of development

processes. Each of these processes must be completed before the next is

connnenced.
‘ * . . ’ . • • ,_； r ..

The Analysis phase initiates the software development. It defines user

requirements and identifies problem scope. It also includes feasibility of the

project development This stage figures out "WHAT' system should be built.

The Design phase covers system design, logical design and detailed design

for implementation. It tells system developers "HOW" to build the system.
The Implementation stage actually implements the system according to the

design specification obtained from the previous stages.

The Testing stage covers units testing, system testing, verification and

validation of the system. This stage makes sure the final product completely fulfil

our client requirements.

In traditional software development, the development processes emphasize

some identifiable activities and their functional decompositions. The system

analysis and design concentrate on "WHAT1 does the system do and WHAT is

its function. Functional decomposition is obviously a top-down analysis and design

methodology. Through function decomposition, the translation of the problem

space to solution space is based on an interdependent set of functions or

procedures.

A4
. • • • ‘ . . . • , . .» v . . . ' • • ； .

A N A L Y S E

< — ：
 :

 - ‘

Y

DESI GN

< ： ： r ~
—

 ； “ ,

V • ‘ • .

I MPLEMENTATI ON/

CODI NG

Y
. I

T E S T I NG

I I t e r a t i v e
d e v e I o p m e n t /

I Re f i n e me n t

� m 1 J
Figure A2.1 The traditional l i fe cycle

T h e drawback of this deve lopment approach is the high cost of system

r e f i n e m e n t / m a i n t e n a n c e . If some evolutionary changes occur a t low level func t ion

design phase may cause great changes at the top level system design p h a s e or

even a t system analysis phase . As a result, a small change at low level

deve lopmen t stage may cause the deve lopment life cycle start over again f r o m the

• - x • ' -A5

; -./. I ,...... ‘ ，.，， ：..、.... . . .：. “’ ： 气

very beginning.

A? r Ari Ohject-Orientf tf i vSoftware Deve lopmen t

Unlike traditional software development, which stresses on functions or

procedures, Object-Oriented software development emphasizes objects — entities

that encapsulate both data and procedural features together. Systems are viewed

as a collection of objects rather than functions. The system decomposition is also

done by object decomposition. The relation between objects can be specified by

an E-R model. The control of a system is monitored by a message-object model

in which messages are passed between objects and invoke procedures than

embedded in objects. Objects communicate with each other through messages and

play the roles of client or server rather than caller or callee in ordinary routine

call. A server object responses the request of a client object according to its

internal procedures. Services that the server object can provide are visible to the

client object bu t H O W the server object responses the client objec t r e q ues t is

h i d d e n f r o m the client o b j e c t This kind of in format ion hiding can al low us to

d e f e r detai l design, such as p rocedure a lgor i thm implemen ta t ion a n d specif icat ion

of d a t a structure, during systems design. O n the other hand , changes of detai l

des ign a t low level do not in te r fere with the systems design at high level.

T h e r e f o r e , object or iented sof tware development facilities system r e f i n e m e n t in

a sof tware deve lopment life cycle.

Bopch [6] identifies five ma jo r stages for Ob jec t -Or ien ted sof tware

deve lopment :

1) Identify objects and at tr ibutes

:.,.::/ A6

V:... ..::..+ ‘ . :. ‘ V ‘ .. - ‘ • ； . ： . ： ‘ •：'； • . .: . • . . ” - . ；

- ， ： ； • • ‘ . ， : , ‘ 、 . . • ， , . . ： ， - , - . " . � - . • f, “ ‘ , • • ； . . . • . . . 乏 ：

2) Identify operations affecting objects

3) Es tab l i sh visibility

4) Establish interface .

5) Implement each object

O u r Objec t -Or ien ted U I mode l p resen ted in this thesis also appl ies t h e

above software development methodology. Step 1 corresponds to the identification

of interactive objects and its inner objects in a UI. Step 2 corresponds to the

identification of rules of an event handler in an object. Steps 3 and 4 correspond

to the identification of incoming messages for each event handler in an object.

Step 5 corresponds the implementation of rules in each event handler. The above

Object-Oriented software development steps have been demonstrated in section

3.5 in this thesis.

.. - • . � , � ‘

v.:::/.....:.::.-../- A7
....' • � _ ' • . . • i

. / . .. ‘• . ,-V‘. ’.. . . � � • > ’ . : ..1 • .‘ ；” ,.,. . ,, . '.' . , : • , • . 、 . ： •• . : : . ‘“ , , ‘ “、.： ” - . . , . . :•

A3 Vienna Development Method (VDM)

A3.1 An Overview of VDM

VDM has been applied to traditional software development for a long

time. It provides b o t h a specification notation and proof obligations which enable

a designer to establish the correctness of design steps. It can give a formal,

systematic and mathematic approach to specify and to develop software system

so that the implementation of the system can fully discharge the original

requirement specification. In brief, under the VDM, a system is developed

according to the following steps:

1) Specify the system formally.

The system is specified by a set of operations applying to a set of (or a

class of) valid states. The operations are further specified by pre-condition

predicates and post-condition predicates; while the states is defined by

data type invariant. By using this form of specification, the initial

specification only captures abstract concepts of the system and avoid

implementation details.

2) Implementability proof obligation.

Prove that individual operation can be implemented from the pre and post

condition of the operation. (Implementability proof obligation)

Do

3) Real iza t ion of specification.

The specification is refined by including implementation detail. This

step can be done by either data reification or operation

/ decomposition.

A8

4) Prove that the realization satisfies the previous specification.

Until the realization is as concrete as program.

Under the VDM, there are four proof obligations for software

development:

i) Implementab i l i ty proof obligation

Vâ Epre-OP(a") =>3oe-post-OP(a*", a)

Where pre-OP = Pre-condition of operator OP

post-OP = Post-condition of operator OP.

o" = initial state before the operation OP.

a = state after the operation OP.

� ； This proof obligation is to check if the operator OP can be implemented.

If the operator can be implemented, then there must exist a final state such that

the post condition of the operation can be satisfied,

ii) Adequacy proof obligation

Va€A-3rei?-ret (r) - a

Where A = Abstraction set

R = Represen ta t ion set

r e t = ^ Ret r ieve funct ion to t r ans form represen ta t ions of

type R to representations of type A

This proof obligation asserts that every possible state value in the abstract

model has at least one representation in the reified model.

• A9 � .
• .• " . i* .

• . .'. •• . .. , . '... •‘ •； -
r
‘ •. . . : . : . .

iii) Operation modelling proof obligation - domain rule

VreR-pre-OPA (ret (r)) =>pre-OPi? (r)

Where OPA . = abstract operation

OPR = reified operation

This proof obligation asserts that the pre-condition of the abstract

operation should satisfy the pre-condition of the reified operation.

iv) Operation modelling proof obligation - result rule

Vr: reR-

pre-OPA(ret (r^)) Apost-OPR(r^~ t r) ->post-OPA(ret(rn ,ret(r))

This proof obligation asserts that the initial state satisfies the pre-condition

of the abstract operation and that the state pair satisfy the post-condition of the

reified operation then the two states will produce a state pair that will satisfy the

post-condition of the abstract operation.

For more literatures about VDM, readers can refer [34,47,48].

A3.2 Apply VDM to Object-Oriented UI model

As we can see, the software development under VDM starts with operators

and states. Data reification and operation decomposition can be refined

separately. This development environment is not matched with the object-oriented

paradigm which encapsulates data and methods into a single entity called object.

In order to include VDM in object-oriented design environment, the above

A10
•‘ • • » . � ‘ • , • • .. “‘ . • .• . _

d e v e l o p m e n t steps may have to be modified into the following steps:

1) Specify the system formally.

The system is specified by a set of objects. The objects are further

s p e c i f i e d by a set of attributes (or states) and methods (operations) on

them. Pre and post condition can still be used to specify each method

within objects. The object relation and hierarchy should be specified in this

step too.

2) Implementability proof obligation,

Now, the proof concerns not only about the pre and post conditions of

methods within the object itself but also concerns about the pre-condition

of the object instantiation and the ones in its superclass too. The situation

is further complicated if the object is allowed multi-inherent.

Do

3) Realization of specification.

The refinement should be done by object decomposition and

specialization. Data reification or operation decomposition which

can be applied to the attribute and methods within an object should

be done for each object decomposition or specialization.

4) Prove that the realization satisfies the previous specification.

Until the realization is as concrete as program.

We also need to add some simple syntax into the VDM so that it can
. "O ‘ …• - -

represent some basic object oriented features such as inheritance and

polymorphism. —

: : ‘ \ • ‘ , . . .

A l l

A4 Glossaries and Terms

Abstract Base Classes 、 饥 , ,
一 “ They define all the basic components in a framework. They also detine
t h e s t anda rd interfaces for their der ived class objects. Po lymorph i sm a m o n g
objects is done through this standard interfaces defined in the abstract base
classes. See section 4.1.1.

Apgregatirm rcompo^tinr i mechanism) •
. O n e of the abstraction mechanism of Object-Oriented paradigm.

Aggregation refers to how certain model constructs may be viewed as collections
or aggregates of the other model constructs. Relationships between low-level types
can be considered a higher level type.

Attr ibutes �

— - E a c h object can have cer ta in n u m b e r of at t r ibutes (s tates of a n objec t)

a n d each at t r ibutes can b e an object of o ther types.

Automatic Messape Routing • � ” .
- I t is a mechanism that the message routing is automatically done by the

UI kernel and is transparent to an message sending object. See section 3.4.5.

Const ruc tor .
- A feature of C+ + programming. Each object can have its own

constructor in which all the statements in the constructor will be executed when
t h e object comes into existence. Const ructor can accept input p a r a m e t e r s dur ing
the object instantiat ion. Constructor can b e overloaded.

Conversational World Style User In te r face .
_ This kind of user interface treats human computer interaction as human

conversation in which each participant speaks in turn. This style of interaction is
usually adopted by most conventional text-based interfaces. See section 2.1,

Hass Hierarchy
_ Each class has one or more subclass/superclass. Superclass defines more

general behavior of the objects while the subclass defines more specific behavior

of t he objects.

Classes

~ . A clas? defines the behavior of similar object. Every object b e l o n g to a
class has the same method and data structure. Every object is an instance of a
class (or a member of a class).
Classif ication

- O n e of the abstraction mechanism of Object-Oriented paradigm. Most
objects have a similar structure and share a common set of properties.
Classification allows one to ignore the details of particular objects by using a

•/：；;.• . ;.： / A 1 2 � , . :

construct which represents a set of objects with a similar structure.

Dialogue Independence •
- A requirement for separating user interface from application. It is a

design approach in which application should not depend on any human-computer

dialogue style in its user interface. In the other way "around, the interaction style

in a user interface should not depend on the computation algorithm in the

application. See section 3.1 and 3.2.

Dynamic Binding • •
， - A feature of C+ + programming. Through dynamic binding we can defer

the code binding of a procedure call until at the moment of the call at run time.
Dynamic binding is a realization of polymorphism in Object-Oriented paradigm.

Fncapsu la t inn fbindin^ nf data and methods) •
-Data and methods (procedures) are encapsulated in an abstract unit call

OBJECT. You cannot apply any method to the data of an object, you can only
require the object to manipulate its data through its own method.

Event
-An event signals a change (something has happened) in human computer

interaction. A user can monitor the interaction through some input devices.
Therefore this input devices can be considered as sources of events. New events
generated from this sources are first put into an event queue and then they are
delivered to their proper destinations. In this thesis, the delivery of events is done
by the kernel in the UI framework through the automatic message routing
mechanism.

Event Handler
- A basic method in an object. It handles all incoming messages. Event

handler is constructed by rules and is modeled by Event Response Language.

Event Response Language •
- A notation for describing human-computer dialogue. The main elements

of Event Response Language are inGoming events, outgoing events, and flags.
These elements can be used to build rules in an event handler.

Framework
- I t provides a basic foundation for a software system development. See

section 4.1.

Generalization/Specialization .
_ One of the abstraction mechanism of Object-Oriented paradigm.

Generalization refers to the formation of a single class by combining two or more
distinct classes. Differences among similar objects in the classes are ignored to
form a higher order class in which the similarities can be emphasized.
Specialization is the inverse of generalization, which is used to generate new
classes.

Generic UNDO Stack
一 - A stack which contains UNDO objects for UNDO operation or system
recovery. This generic UNDO stack can contains any type of UNDO objects
regard less of what their UNDO operations are. See section 3.3.7. *

Inheritance -
一 Every object can inherit all properties of its superclass (including the

superclass method and data)

Tnteract ior Knowledge Base

畤 A reservoir of all global states in a user interface. It monitors which

interactive object is activated or de-activated. It also helps the kernel to conduct

automatic message routing. See section 4.1.3.

Tnte崖tive Qbiect .
- One of the basic components in our Object-Oriented UI model. It is an 1

object that a user can conduct a meaningful step-by-step dialogue and user can
apply direct manipulatioii on it. Dialogue switching in multi-thread dialogue is
done between these interactive objects. An interaction object may consist of
several inner objects, such lexical objects, display objects, mete.

Linkage •
- I t is a intermediary between an application and its user interface. It

translates messages for both sides. With the help of Linkage component,
application and user interface can be developed separably. Linkage model is a
realization of separating user interface from application. See section 3.2.

Model World Stvle User Interface •
———_ 奶 ^ 0f i n t e r a c t ion tries to represent real world objects visually so

that a user can manipulate this object directly through some input devices such
as mouses or light pens. See section 2.1.

Multi-thread Dialogue
-One of the features of model world style interaction. A user can interact

with several objects at a same time. The user is free to switch from one dialogue

to another at any point in the interaction. See section 2.1.

Multiple Continuous Feedbacks .
— - I t is a kind of human-computer interaction in which feedback are given
to a user from different levels (lexical, syntactic and semantic) continuously. The
multiple feedbacks are continuously given to the user even the user has not
finished hi$ command. See section 3.1 and 3.3.6.

Object •
.Object is the basic component in Object-Oriented paradigm. Object la ail

entity that encapsulates both data and procedural features together. Object
responds incoming message according to its internal data and procedures.

Polymorphism •
.-Different objects can respond to the same message with their own unique

behavior differently. As a method in a subclass can override the same name
method in its superclass, a subclass object and a superclass object can respond the
same message differently.

Software IC • J t T
- O n e of the objectives of Object-Oriented software development. In

Object-Oriented paradigm, each object can be considered as an Integrate Circuit
(IC) in hardware design, in which anIC can be easily replaced by other IC without
interfering with other components in a system. Software IC concept facilities
iterative design and software maintenance.

Specialization
-See Generalization.

Specification interface�and implementation of an object

-There are two parts in an object:
i) Specification part ‘ This is the visible part of the object. It tells a user what
kind of methods and data that he can request or access. This part is public to all
other object. .
ii) Implementation part - This part is only visible to its object itselt. All the

methods and data declared in this part are only accessed by the objects itself. This

part is private to all other object.

Switch Box Mechanism
^ ^ -八 m e c h a n i s m f o r dialogue switching in multi-thread dialogue. Through

this mechanism, only a single parameter is need to be updated in order to switch

a dialogue control between interactive objects.

� / “ - :,.-,. • ,. . ' ,, , ..X:. ..'. . ' / :1: ..: V ： '•"； ...,. . �
 � ’ ,: — ,

• . . :,. . : : . . 、 / . . . “ . : : . ' : " ， . ' : 、 ： � v , • :.. . : . • . .、, ？ ’ . . ,
:

. - . • i ' ' • . . '""" : . - ‘ . . . •• .

•., ： ； ：• , , . , "r' ' : ' . .、.. . • • ‘ _ : 、 ， ， ， - 0 . . - , , ， . : 够 ： ' . ； : . + . . �- f - . … . , . , , , , • 广 : : ‘ . :

： . A15 .
. . ’’ . ‘ .： ,

. . • . . . ‘ • ‘ . ： • ‘ - ‘ ； ‘ ： ' “ ； • ‘ ： ‘ ‘ . . 一 ， . . , . * - : . ： •

Reference

[1] Allen, R.B. Cognitive Factors in H u m a n Interaction with ComputQis. Directions
1 in Human Computer Interaction, edited by A. Badre and B.Shneiderman. Ablex

,New Jerser, 1982, 1 - 26.

[2] Barth, P.S. An Obejct-Oriented Approach to Graphical Interfaces. ACM
Transactions on Graphics. Vol. 5, No. 2, April 1986, 142 - 171.

[3] Bershad, B.N., and Levy, H.M. A Remote Computation Facility for a
“ Heterogeneous Environment. Computer, (May 1988), 50-60.

r4i Bershad, B.N., Ching, D.T., Lazowska, E.D., Sanislo, J., and Schwartz, M. A
Remote' Procedure Call Facility for Interconnecting Heterogeneous Computer
Systems. IEEE Transactions on Software Engineering，Vol. SE-13, No. 8 (Aug.
1987), 880-894.

[5] Birrell，A.D.，and Nelson, BJ. Implementing Remote Procedure Calls. ACM
L J Transactions on Computer Systems, Vol 2，No. 1，(FEB. 1984), 39-59.

[6] Booch, G. Object-Oriented Development. IEEE Transactions of Software
L " Engineering, Vol.SE-12, No.2, February 1986，211 - 221.

[7] Coad, P. and Yourdon, E. Object-Oriented-Analysis. Prentice-Hall. 1990.

[8] Cockton, G. Interaction ergonomics, control and separation: open problems in
' user interface management, /w/owzaft'on an^ Software Technology, Vol29, No. 4，

May 1987, 176 - 191.

[9] Cockton, G. A New Model for Separable Interactive Systems. Human-Computer
" Interaction - INTERACT87, edited by H.J. Bullinger and B. Shackel, North-

Holland, 1987, 1033 - 1038.

[10] Cockton, G. Where do we draw the line? - Derivation and Evaluation of User
” Interface Softwarre Separation Rules. People and Computers: Designing for

Usability, edited by M.D. Harrison and A.F. Monk, Cambridge University Press,
(1986), 417 - 431.

[11] Coutaz, J. The Construction of User Interfaces and the Object Paradigm. ECOOP
‘ f 8 7 European Conference on Object-Oriented Programming, edited by Bezivrn,

(1987)，121-130.

[12] Coutaz, J. Abstractions for User Interface Design. Computer, September 1985,21
. V -34.

[13] Cox，BJ: (?Z?/ec广on.enreci pAp^^m/叩 . Addison-Wesley，1987.

R1

[14] Cox, B. and Hunt, B. Objects, Icons, and Sotfware-ICs. BYTE. August 1986, 99 -
108.

�151 Dillon A A PSYCHOLOGICAL VIEW OF "USER-FRIENDLINESS". Human-
Computer Interaction - INTERACT 87, edited by HJ. Bullinger and B.Shackel,
North-Hol land , 1987, 157 - 163.

[16] Durant, D., Carlson, G. and Yao, P. Programmer's Guide to Windows, SYBBX,
1987.

[17] Eckel, B. Using C+ +. McGraw-Hill. 1989.

�181 Enderle G Report on the Interface of the UIMS to the Application. User
Interface Managment System, edited by G. E. Pfaff, Springer-Verlag, (1983)，21-29.

rim Farooq M.U. and Dominick, W.D. A survey of formal tools and models^for
[1 9] H ^ S i l ^ s e r interfaces. Journal of Man-Machine Studies. 29，1988，479 - 496.

r201 Fischer, G. and Lemke, A.C. Constrained Design Processes: Steps Towards
Convivial Computing. Cognitive Science and its Application for Human-Computer
interaction, tdhcd by R. Guindon. Lawrence Erlbaum Associates, New Jersey,
1988，1 - 58.

[21] Foley, J., Kim, W.C., Kovacevic, S. and Murray,K. Defining Interfaces at a High
L j Level' of Abstraction. IEEE Software, January 1989, 25 - 32.

[2 2] Foley, J. Transformations on a Formal Specification of User-Computer Interfaces.
^ J Computer Graphics, Vol.21, No. 2, April 1987, 109 - 115.

[23] Foley, Van Dam, Feiner, Hughes. Computer Graphics Principles and Practice.
J Addison Wesley, 1990.

[24] Gibbs, S. An object-orinted office data model. Technical Report CSRG-154,
1 J University of Toronto (1985).

[25] Gibbons, P.B. A stub Generator, for Multilanguage RPG in Heterogeneous
L Enivronments. IEEE Transactions on Software Engineering, Vol, SE-13, No. 1，(Jan

1987), 77-87.

[26] Gimnich, R and Ebert, Jurgen. Constructive Formal Specifications for Rapid
Prototyping. Human-computer Meracddn - INTERACT 87, edited by HJ .
Bullinger and B. Shackel, North-Holland, 1987，1047 - 1052,

[27] Goodwin, M. UserMerfaces in C++ and Object-Oriented Programming. MIS
Press,, 1989.

[28] Gray, P.D., Kilgour, A.C. and Wood, C. A. Dynamic reconfiguawbility for fast

R2

prototyping of user interfaces. Software Engineering Journal November 1988, 257 _
262.

[29] Green, M. A Survey of Three Dialouge Models. ACM Transactions on Graphics.
Vol. 5: No.3, July 1986，244 _ 275.

[30] Green, M. The University of Alberta User Interface Management System.
SIGGRAPH'85. Vol.19, No.3, 1985，205 - 213.

[31] Grossman, M. arid Ege, R.K. Logical Composition of Object-Oriented Interfaces.
OOPSLA^V Proceedings. October 4 - 8, 1987, 295 - 306.

. • ‘�

[32] Hartson, H.R. and Hix, D. Human-Computer Interface Development: Concepts
and Systems for Its Management. ̂ 4CM Computing Surveys. Vol.21, No.l, March
1989，5-92.

[33] Hartson, R, User-Interface ̂ Management Control and Communication. IEEE
Software. JmxidiTy 1989, 62 - 70.

[34] Hekmatpour, S. and Ince，D. Software Prototyping, Formal Methods and VDM.
Addison-Wesley, 1988.

[35] Henderson-Sellers, B. and Edwards, J.M. The Object-oriented Systems Life Cycle.
^ " Communcication of the ACM. Vol. 33, No.9, September 1990，143 -159.

[36] Hill，R.D: Some Important Features and Issues in User Interface management
J Systems. Computer Graphics. Vol. 21, No.2, April 1987，116 -119.

[37] Hill, R.D. Supporting Concurrency, Communication, and Synchronization in
� H u m a n - C o m p u t e r Interaction - The Sassafras UIMS. ACM Transaction on

Graphics. Vol. 5，No3, July 1986, 179 - 210.

[38] Hu, D. Object-Oriented Environment in C+ +. MIS Press, 1990.

[39] Huang, K.T. Visual Interface Design Systems. Principles of Visual Programming
System, edited by S.K. Ghang, Prentice-HaH, 1990，60 - 143.

[40] Hudson, S.E. and King, R. Semantic Feedback in the Higgens UIMS. IEEE
4 �Transactions on Software Engineering. Vol. 14，No. 8，August 1988，1187 - 1206.

[41] Hudson, S.E. UIMS Support for Direct Manipulation Interfaces. Computer
Graphics, Wo\2l, No.2, April 1987，120 - 124.

[42] Hudson, S.E. and King, R. A Generator of Direct Manipulation Office System.
ACM Transactions on Office Information Systems. Vol.4, No.2, April 1986，132 -

163.

.‘•• . . , . , ... # ‘‘ . . . •；

[43] Hurley, W.D. and Sibert, J.L. Modeling User Interface-Application Interactions.
IEEE Software, January 1989，71 - 77.

f44] Jacob, R.J.K. A Specification Language for Direct-Manipulation User Interfaces.
ACM9Transactions on Graphics, Vol. %, No. 4，October 1986，283 - 317.

[45] Jacob, R.J.K. An Executable Specification Technique for Describing Human-

Ed. Ablex, Norwood, N.J., 1985, 211 -242.

�461 Jacob R J K. Using Formal Specifications in the Design of a Human-Computer
Interface. Communications of the ACM, Vol.26, No.4, April 1983, 259 _ 264..

[47] Jones, C.B. and Shaw R.C. Case Studies in Systematic Software Development.
Prentice Hall, 1990.

[48] Jones, C3. Systematic Software Development using VDM (2nd edition). VxtnticQ
Hall, 1990.

[49] Jones, W.P. "As We May Think" ？: Psychological Considerations in the Design of
a Pe r sona l Filing System. Cognitive Science and its Application for Human-
Computer interaction, edited by R, Guindon. Lawrence Erlbaum Associates, New
Jersey, 1988,235 - 288.

[50] Jordan, D. Implementation Benefits of C++ Language Mechanisms.
: Communications of the ACM. Vol.33, No.9, September 1990，61 -64.

[51] Kamran, A. Issues Pertaining to the Design of User Interface Management
L J System. User Interfae Management System, edited by G.E. Pfaff, springer-Verlag,

1983，43 - 48.

[52] Koivunen, M” and Mantyla, M. HutWindows: An Improved Architecture for a
J User Interface Management System. IEEE Computer Graphics & Applications.

(Jan 1988), 43 - 5 2 �

[53] Korson, T. and McGregor, J.D. Understanding Object-oriented : A Unifying
‘ ^ Paradigm. Communications of the ACM. Vol.33, No. 9, September 1990，40 - 60.

[54] Kurtz, D. B., Ho, D, and Wall. T.A. An Object-Oriented Methodology for System
"Ana lys i s and Specification. Hewlett-Packard Journal, April 1989，86 - 90.

[55] Lantz, K.A. Multi-process Structuring of User Interface Software. Computer
1 J G r a p h i c s / V o l M ^ N o ^ Apri l 1987, 124 - 130.

[56] Lam, S. H. R a p i d Prototyping of Interactive User Interface. Term Paper of
Department of Computer Science, CUHK (1990).

R4-

[57] Lam, S H. Separation of User Interface and Application in Object-Oriented
Approach. Term Paper of Department of Computer Science, CUHK (1989).

[58] Lam, S.H. An Overview of Multimedia Message Handling in Office Automation.
Term paper of Department of Computer Science, CUHK (1989).

[59] Ledbetter, L. and Cox, B, Software^Cs. J5YTE. June 1985, 307 - 316.

[60] Linton, M.A., Vlissides, J.M. and Calder, P.R. Composing User Interfaces with
Interviews. Computer. February 1989, 8 - 22.

r61i Maguire, M.C. A Review of Human Factors Guidelines and Techniques for the
D e s i g n of Graphical Human^Computer Interfaces. Computer cmd Graphics, Vol.
9, No, 3, 1985,221 - 235.

[62] Martin, TP. A communciation Model for Message Management System.
L Technical Report CSRG-157. University of Toronto, April 1984.

r63] McDonald, I.E. and Schvaneveldt, R.W. The Application of User Knowledge to
“ J Interface Design. Cognitive Science and its Application for Human-Computer

interaction，edited by R. Guindon. Lawrence Erlbaum Associates, New Jersey,
1988，289 - 338,

,[64] Meyer, B. A. User-Interface Tools: Introduction and Surver. IEEE Software.
January 1989, 15 - 23.

[65] Meyer, B. Object-oriented Software Construction. Prentice Hall, 1988.

[66] Myers, B. and Doner, G. Graphics Programming Under Windows. SYBEX, 1988.

[67] Meyer, B. Resuability: The Case for Object-Oriented Design. IEEE Software,
‘ M a r c h 1987，50 - 60.

[68] Mullin, M. Object Oriented Program Design. Addison-Wesley, 1989.

[69] Notkin, D” Black, A.P., Lazowska, E.D., Levy, H.M., Sanislo, J.，and Zahorjan,
j . Interconncetion Heterogeneous Computer Systems. Communication of the
ACM, Vol 31, No. 3, (March 1988), 258-273.

[70] Olsen, D.R., Dempsey, E.P. and Rogge, R. Input/Output Linkage in a User
Interface Management System. SIGGRAPHf85, Vol.19, No.3, 1985，191 - 197.

[71] Pascoe, G.A. Elements of Object-Oriented Programming. BYTE. August 1986,139
_ 144."

[72] Peatroy, D,B. and DATATECH Publications. Mastering The Macintosh™ Toolbox.
i McGraw-Hill, 1986.

R5

.-.,、-._ .._•- 、 �-.. .，:/. 、 .. '/ • '• . - . . 、 ''f••“ ‘ , '.."“_.. .•• .. ."' - •, ..." * -..,_.,‘ •

1731 Poison, P.G. The Consequences of Consistent
. • 1 •. i i

Cognitive Science and its Applkatim for Human-C0S=n^wn^ditcd by
R. Guindon. Lawrence Erlbaum Associates, New Jersey, 1988, - 1U».

丨741 Rathke, M. Dialogue Issues for Interactive Recovery - an
[� F r a m e w o r k . HurrLcomputer Interaction - INTERACT8Z M by H.J.

Bullinger and B. Shackei, 1987, 745 - 750.

[75] Rhyne, J., Ehrich, R., Bennett, !., Hewett, T., Sibert, !. and Bkser^. ^ l s ^ a n d
Methodology for User Interface Development Computer Graphics. Vol,21, No.2,
April 1987，78 - 87.

1761 Rosson, M. B., Maass, S. and Kellogg, W.A. The Designer as User: Building
Requirements for Design Tools from Desgin Practice. Communication of the
ACM. Vol 31，No. 11，November 1988，1288 - 1298.

[77] Sakkinen, M. On the darker side of C+ +. ECOOF88 ？ m f on

Object-Oriented Programming, edi ted by , Nor th-Hol land, 1988, 162 - 170.

[78] Schmucker,K J . MAGAPP: An Application Framework. 5YTE. (August 1986), 72 -
7 5

[7 9] Schmucker,KJ. Object-Oriented Programming for the Macintosh™. Hayden, 1986.

[80] Shneiderman, B. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley, 1987.

[81] Shneiderman, B. Direct Manipulation; A Step Beyond Programming Languages.
IEEE Computer. August 1983，57 - 69.

�821 Sibert, J., Belliardi, R and Kamran, A. Some Thoughts on the Interface Between
User Interface Management System and application Software. User Interface
Managment 办烛m，edited by G.E. Pfaff, Springer-Verlag, 1983，183 • 189.

[83] Sibert,J.L., Hurley,W.D. and Bleser, T.W. An ^ t - O r i ^ n t e d ^
Management System. Computer Graphics, Vol 20, No. 4，August 1986，259-268.

[84] Simoes. L.P. and Marques, J. A. IMAGES - An Object Oriented
Computer Interaction ^ INTERACTSZ cdittdby HJ . Bullmger and B. Shackei
1987, 751 - 756.

[85] Solso, R.L. Cognitive Psychology. Allyn and Bacon, 1988.

[86] Stroustrup, B. Multiple Inheritance for C++. Computing System. Yol 2, No. 4，
? Fall 1989, 367 - 395.

[87] Stroustrup, Bjarne. The C^ Programming Language, Addison-Wesley, 1987.

• R6 . ,

[88] S u m m e r s , R.C Local-area distributed systems. /BM System Journal, Vol 28, No.2,
1
 (1989)，227-240.

[89] Takala, T. Communication Mediator - A Structure for UIMS. User Interface
J Management System, edited by G.E. Pfaff, Springer-Verlag, (1983), 59-66.

[90] Tanner, P.P. Mulit-Thread Input, Computer Graphics. Vol.21, No.2, April 1987，
1 142- 145.

[91] Tanner，P.R，MacKay，S.A., Stewart, D. A. and Wein, M. A Multitasking
Switchboard Approach to User Interface Management. SIGGRAPH，86，Vol.20

No.4, 1986，241 - 248.

[92] Tesler, L. Programming Experiences. BYTE- August 1986，195 - 206.

[93] Urlocker, Z. Object-oriented Programming for Windows. BYTE. May 1990, 287 -
L ? . 294....

[94] Weber, H.R. Meditation on Man-machine Interfaces or Our Personal Role in
Graphics Dialogue Programming. Computer and Graphics. Vol. 9，No. 3,1985，237

,245.

[95] Welch, K.P. Using Object-Oriented Methodologies in Windows Applications.
" Microsoft Systems Journal. May 1990, 63 - 66.

[96] Wiener, R.S., Pinson, L.J. An Introduction to Object-Oriented Programming and
“ C + + . Addison-Wesley, 1988.

�971 Woelk D.，Kim, W., and Luther,W. An Object-Oriented Approach to Multimedia
Datab^ses. 7n Proceedings of the ACM SIGMOD CONFERENCE (1986). ACM,
311-325.

•：丨 - . R7 :.. ..:,/ .

I.

,

 u

 .
.

 .
.
.
.

 ,
.

 •

 ‘

 .
,
.

 .

 .
•
“

 .
“

.

.

,

.

.

.

.

.

^

f

-

,

,

《
 ,

p

•

,

:

,

,

,
 、

,

.

»

'

.

 i

 ‘

 f

.

.

 V

 ，

-

%

.
 .

 t
f

 B

 .

 —

.

.

.

f

.
 ̂

 ,

 >

 .

.

.

•

'

,
 〜

•
 ‘

 ̂

一

一

.

二

％

_

 .

 .

•

/

"

,

.

V
 4

於

‘

,

,

a

^

 «

洛

.

.

¾

,

,

V

!

<

 »

 ：

，

-

.

.

.

.

:

•

.

.

.

 •

 .

 .

 »

 ®

 •

 -

•
4
.
:s
J
.
 a

 •

 u

 .

 i
"

 s

 .
.
.

 .
-

 .

 .
.

 〜
^

 根

 .
.
.
-
-

.

-

.

“

；

,

 -

^

¾

r

«

•

 3

 ̂

 •
 ̂

 /

 ‘
 ,

 -

 r

 J

 1
 -

 «

.
 .

 .

 .

 -

 t

 •

 r

 •

 .

 -

»

S

i

 .

 ?

 *

 -

•

s

;

.

.

,

,

I

s

:

•

 ̂

•

:

•

>

•

.

V

•

«

s

..

-

g

<
 .

 ,

 .

.

V

.

.

.

 ,

 ,

 -

 •

f

'

•

•

;

t

r

.
 ,

 .
.
.

 •
"
.

 .
.

 “

 .

 .

 ‘

 .

 :

/

,

,
 .

 ,

 .

 r

 .
.
.

 -
V

 I、
.

：

 .
.
.

 ‘

 .
.
.

 V
,

i
 -
.
-
.

 .

 必

 ‘
.
.
1

 V

-
 .

 .
，
，

 .
.
.

 二
.

•
、

 ̂

 .
.

 .
.

 •

 .
.
.

 .

 .
.

 々
.

 ，

；
.

—
—
—
,

、
.

 •

«
 \
 •

 •

 •

 *

 r

费

.
 r
t

 .
^
1
.

 、
.
'
-

 .

 ：

 ••••',

 .
,

1
 •

%
:
.
.

 -

 .

 ,

j
.
 .

 .

 .
-
,

 -

 ,

 ,
•

 •

 •

 «
•

 \

 -
.
.
.

-
.
:
1
-
.
.
:
.
.
.
.
1
-
-
r:
'
:
:
.
.
.

.

.

f

t

.

-

-

¾

-

 -

 .

 •

.

a

-

.

.

.

一

 ̂

 ,

y

'

»

•

'

»

.

.

#

-

1

:

,

/

»

•

s

-

.

.

,

*

:

'

:

-

.

. A-.-'-rs.J:,

•

0
«

.

.

•

M

l

r

，
 _

_

_

I

'

 ̂

 I

S

I

 .

S

H

«

.

.

«

-

•

-

?

?

 S

.

.

.

,

.

 8

 •

l

_

s

s

.

.

r

•

:

«

"

M

:

:

 "-
:
/
'
'
^
-
¾
^
^
¾
^
¾

.

.
:
 •

 .

d
d
y
-
,
!
-
 .
^
-
.
.
:
/
:
.
 .

 -
 -

 •
•
•
•
'
.

 -
.

 .
.
,

 •

 •

 .

 ,

 .

....

 .

 ,
•
:

•
:
.

 V
.
.
.
.

 •
.

 :

 .

 •

 .

 .
.

 .
.
.

•
.

 •

 :

 .

 .

 .
:

•
.

•

 .
.

 -
•
•
•
.

--

CUHK L; bra r; es

11I

000325481

" .~

