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Summary

We present a survey of existing research on user interface design and interactive 

graphics programming. Next we argue that existing software methodologies are not 

suitable for developing interactive graphical applications. Using this as a basis of our 

research, we have identified control constructs which are suited to developing such 

applications, in addition, a new interaction model has been designed. This new model 

is a refined version of the traditional repeat.until loop commonly found in interactive 

applications. The combined model and control constructs provide a methodology for 

constructing well structured applications.

The new model has been implemented by a preprocessor and a specification 

language. The language is used to specify the interaction requirements of the 

components that make up an interactive graphical application. The specification 

incorporates the new control constructs. The preprocessor, uses such an interaction 

specification to generate the interaction ’C’ code in the form of the new model.

Applications designed and prototyped in this manner have been used to identify typical 

problems in interactive graphics design. Finally, the model has been critically 

compared with a number of other interaction models.



To Ravi



B S Barn Graphical Interaction Management

Contents

Chapter 0. Introduction 1

Chapter 1. User Interface Design 4

1.1. Interactive graphics programming 4

1.2. Building user interfaces 9

1.3. Specification aspects of user interfaces 20

1.4. Modelling the user design process 29

1.5. Window systems and user interface toolkits 30

1.6. This work 31

Chapter 2. The New Interaction Model 34

2.1. Existing models 34



B S Barn Contents

2.2. The New Interaction Model 38

2.3. Formal and informal approaches to user interaction 47

2.4. Summary 53

Chapter 3. Implementing the New Model 54

3.1. The need for a design language 55

3.2. System design 57

3.3. An example application 60

3.4. The SIDL syntax 62

3.5. SIDL program structure 62

3.6. Code generation 68

3.7. Summary 70

Chapter 4. Using the New Interaction Model 71

4.1. Task synchronisation 71

4.2. Parameter collection 75

4.3. Task management 83

4.4. Multi-button pucks 87

4.5. Window management 88

4.6. Summary 89

Chapter 5. Comparison of SIDL with Other Models 90

5.1. The state diagram method 90

5.2. The object oriented approach 97

5.3. Summary 105

Chapter 6. Conclusion 107



B S Barn Contents

References 111

Appendix A. The SIDL Syntax 119

Appendix B. A SIDL Program 125

Appendix C. Publication 132



Acknowledgements

I would like to take this opportunity to thank my supervisor Phil Willis for his 

considerable support and guidance during the research. My thanks also to Geoff 

Watters for the many useful discussions, Russell Bradford for solving some of the 

typesetting problems and to GEC Software for providing the document production 

facilities.

I wish to record a special note of thanks for my parents who have consistently 

encouraged me during these last few years. I owe them more than I could ever 

express in words.



B S Barn Graphical Interaction Management

0. Introduction

The advent of the bitmapped high resolution graphics workstation has led to a trend of 

developing graphics interfaces for existing applications. More importantly, interactive 

graphical applications have become widespread. Unfortunately, the attendant 

problems of scheduling mechanisms; interpreting mouse/tablet input; screen layout 

and interrupt handling associated with such applications have all been dealt with in a 

very unsatisfactory manner, each programmer solving the problem in an individually 

stylised fashion.

Research in graphical interaction has concentrated on the study and development of 

user interface management systems (UIMS), ranging from theoretical studies to 

practical systems. Automatic generation of user interfaces has relieved the 

programmer of some of the problems mentioned above, but still fails to ease the 

complexity of programming the basic building blocks of these applications. These
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building blocks include the fundamental interaction techniques such as picking, 

dragging, and rubberbanding. The asynchronous, multiple-processes nature of 

graphical programs continues to be a major hurdle that consumes a programmer’s 

effort.

Software development in most other computing fields follows some sort of 

methodology. There is however, no equivalent technique for specifying the building 

blocks of graphical programs.

We present a methodology for programming the interaction techniques used in 

graphical programs. The methodology was derived by examining a number of 

interactive graphics applications and it was tested by developing a software tool to 

produce improved versions of those applications. The results of this research have 

subsequently been published[7].

Thesis structure

In chapter one we introduce the notion of interactive graphical programming. We 

indicate the nature of the problems associated with such applications and show how in 

an attempt to solve such problems a new genre of software tools has arisen. The 

architecture of these tools is described together with examples. We touch on the 

problem of modelling the user thought process and and we conclude with a section on 

how the research in this thesis fits in with work done earlier.

In chapter two we describe the basic scheduling strategy used to implement 

interactive systems. This scheduling strategy is termed the Interaction Model. We 

then go on to describe the shortcomings of existing models. The second half of the 

chapter is a detailed description of a model which more closely fits the characteristics 

of this type of software. This model draws freely from both operating systems design 

and compilation theory. Finally the model is compared with a formal description of an

- 2 -
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earlier model proposed in some closely related research.

Chapter three describes the practical realisation of the interaction model. The 

Language SIDL and its pre-processor GRIP are described in detail.

In chapter four, we discuss some of the problems that are typically found with 

interactive graphical programs. These problems are discussed from the baseline of our 

interaction model proposed in chapter 2. The solutions for these problems are 

presented. In addition, we look at some additional problems which arise because of 

our model. These can be regarded as the inherent disadvantages of using our model. 

The discussion is illustrated with a mixture of example code generation and pseudo

code.

Chapter five is a detailed study of two methods mentioned in chapter one. Emphasis 

will be given to a specification language for interface design based on transition 

diagrams and secondly to object-orientated techniques for user interface design. 

These methods will be compared with the approach taken by the Interaction Model 

described in chapters three and four.

Finally, in chapter six we outline the measure of success of this work and present 

some possible future directions.
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1. User Interface Design

In this chapter we introduce the notion of interactive graphical programming. We 

indicate the nature of the problems associated with such applications and show how in 

an attempt to solve such problems a new genre of software tools has arisen. The 

architecture of these tools is described together with examples. We touch on the 

problem of modelling the user thought process and and we conclude with a section on 

how the research in this thesis fits in with work done earlier.

1.1. Interactive graphics programming

Interactivity is a mode of execution of an application. For teletype terminals an 

interactive program is characterised by the dialogue (typically prompts and responses) 

between the user and the application. We are concerned with interactive graphical 

programs. In these applications the application communicates via graphical entities on 

the screen whilst the user directs the control of the application via a number of
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physical input devices.

1.1.1. Characteristics of interactive graphical 

programs

A graphical application can be described as interactive if we can observe the following 

characteristics.

1. User interaction is composed of input/output. The user inputs data to the program 

which then proceeds to use this data to execute some action. The program 

communicates with the user by displaying objects on the screen. Data flow is bi

directional and the communication between user and program is closely coupled.

2. Interaction is composed of a number of input techniques. These are typically 

determined by the available hardware and they are described in section 1.1.3 of this 

chapter.

3. The user controlling the input devices and the computer process are independent of 

each other except when the program needs data from the user or the user needs a 

response from the computer. Thus there is both logical and physical concurrency. This 

necessitates the need for synchronisation to effect information transfer.

4. The passage of time is of significance. Many interactive input techniques are based 

on sampling some device for a particular parameter. Some common examples are 

rubberbanding and dragging objects. It is important to note that the actions of the user 

affect the program in real time and hence synchronisation is needed.

1.1.2. Input devices & interaction techniques

An application’s "interactivity" is constrained by the number of physical input devices 

it has available for the user and also the way they are used. Physical input devices
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include: joysticks, lightpens, puck and tablet, keyboards and so on. These devices 

need to be used in a structured manner so that the design of an application is 

straightforward both to implement and to change. Both the European Graphical Kernel 

System (GKS) standard[27] and ACM Siggraph Core standard have proposed the 

following stnjcture for implementing the interactive components of graphics programs. 

Terminology has been adapted from the GKS standard because the GKS proposal is 

now the accepted ISO and ANSI standard.

Graphical input uses the concept of logical Input classes. Physical input devices 

operate under these classes.

Locator provides a position in cartesian coordinate system.

Stroke provides a sequence of positions.

Valuator provides a real number.

Choice provides a non-negative number indicating a particular list item.

Pick provides a pick status, a graphical object name.

String provides a character string.

Each logical input device can be operated in three modes. At any one time, an input 

device is in exactly one mode. The modes supported are given below. The 

relationship between logical and physical input devices is explained using the concepts 

of measure and trigger[51]. See Figure 1.1.

Each logical input device contains a measure, a trigger and an initial value. A 

measure is the state of an active process which is available as a logical input value. 

The measure process is in existence while an interaction with the logical input device 

is taking place.

The trigger of a logical input device is a physical input device, with which the operator 

can indicate the significant moment of time to take over the measure value. At these 

moments the trigger is said to fire. A trigger can be seen as an active process
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sending a message to one or more logical input devices when it fires.

Request Mode

The device only supplies data when requested. The application ceases computation 

until the data has been supplied.

Sample Mode

The device is continually supplying data at set intervals. There is no trigger action. 

Event Mode

When a device is triggered, an event report is issued, and if there is data it is either 

used or queued. The program does not stop as in request mode.

Physical devices fall into one or more of these classes. Thus examples of locators are 

puck and tablet, mouse. For most applications the interactivity can be extended 

quite dramatically by simulating different logical classes using devices which do not 

belong to that logical class. Thus the locator can be simulated by arrows on the 

keyboard. Choice can be implemented by using light buttons on the screen and a pick 

device.

1.1.3. Interaction techniques

A good user interface usually means that the appropriate interaction technique must 

be used for the job in hand. A brief overview of some the common techniques used is 

given below. These tasks directly modify the graphical image. They are classified as 

controlling techniques! 18] because their purpose is to form and transform visible 

objects, usually by continuous modification.
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Stretching

A target object (such as a line or circle) has its shape distorted by forcing one of its 

points to coincide with some specified position. Positioning is a key component and 

locator simulation is used. Generally this technique is more usefully employed using 

continuous rather than discrete feedback.

Some examples are:- Stretched lines. The stretched or "rubberbanded" line is a task 

that maintains a line from some fixed reference point to point specified by a locator 

position. As the latter point is moved the line is modified to follow. The resulting effect 

is similar to a rubberband being stretched. Some refinements include constraining the 

rubberbanding effect to horizontal and/or vertical lines.

Other variations of stretching include rubber rectangles, rubber circles and rubber 

pyramids.

Sketching

This task involves the specification of a curved line. The significant characteristic of 

this task is sampling, since this task depends entirely on continuous feedback. The 

application determines either time sampling or space sampling. A line can be 

sketched using a lightpen or mouse, or it may be shaped between fixed points by 

adjusting the curvature using splining techniques, such as B-splines.

Manipulating

Operations are performed on a visible object such that the appearance of the object 

remains the same but the position and orientation are altered.

Dragging occurs when a user picks or locates a graphical object and causes it to 

coincide with some position on the screen determined by him. For example a circle on
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the left hand side of the screen may be picked and moved across to the right hand 

side.

Twisting occurs when an object is caused to rotate along a pre-determined axis. The 

degree of twist is specified by a valuator device.

Scaiing occurs when a valuator scale is manipulated causing the object selected to 

alter its size.

Shaping

The task moulds an object until it reaches a desired shape. In interactive graphics 

systems shaping is dependent on information held internally. For example lines may 

be internally represented using control points as in the case of B-splines. Thus the 

shaping relies on manipulation of these control points. Control points may be dragged 

to new positions and smoothing functions applied.

Other techniques

Some other techniques which do not fit so well in the above schema include:

Gravity fields. Here lines or other objects have an area around them which is sensitive 

to selection. Thus selection of the endpoints of a line is made easier, because the 

area of error is that much greater. This illustrated in figure 1.2.

Gridding. Here a grid is drawn over a region. Subsequent actions such as selections 

and sketching are constrained to lie either on the points where the grid lines cross or 

the regions between the grid lines. Gridding is useful for diagram editing for example.

1.2. Building user interfaces
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The increasingly widespread use of personal workstations by non-computer trained 

professionals has led to the need to develop user interfaces for advanced applications. 

User Interfaces are one example of interactive graphical applications. They show the 

characteristics discussed earlier and their internal structure is composed of the 

interaction techniques described earlier in section 1.1. User interface design is a well 

researched area and the need for some classification and definitions of the needs and 

issues arising from user interface study must be met. The following report on existing 

work attempts to meet this requirement.

1.2.1. User interface definitions

The User Interface (Ul) is the component between the user and the rest of the system. 

The rest of the system may be just an application or include the overall system 

hardware. Figure 1.3 highlights the main features of a User Interface.

Software Engineering principles dictate that the user interface should be a separate 

module which handles all the interaction between the user and the application. This 

separate module has been termed the User Interface Management System (UIMS) 

in 1982[36].

There are several advantages to defining a Ul as a separate entity from the 

application and the graphics package. Firstly, development, maintenance and future 

extensions are made easier if the systems are defined in a modular layered fashion. 

Secondly, device and application independence is useful in that the same interface 

may be used across a variety of different hardware and applications. Finally, both the 

application and the user interface can be developed independently of each other.

Writing interactive graphical programs using conventional programming languages is 

both awkward and time consuming. A UIMS is designed to overcome these 

shortcomings. Its purpose is to support the design/specification, implementation and

- 1 0 -
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evaluation of human-computer dialogues. Adapted from Olsen et al[46] the goals of 

UIMS designers are typically:-

1. reduce the duplicity of code across applications;

2. use a common module to make a uniform interface both within and across 

applications.

The design of existing UIMS have largely been based on the following princip!es[54] in 

addition to those mentioned above.

1. All variations of dialogue styles should be supported.

2. Ul design is an iterative process based on design-implementation-evaluation.

3. Design should be ideally carried out by experts in human factors rather than 

programmers[19].

4. The effect on the application for which the interface is being developed 

should be minimal.

5. The Tools should render complex interfaces maintainable, extendable and 

easy to use.

Tools that are typically provided by the UIMS include:-

- a graphics package;

- standardised graphics communication protocols;

- a runtime support environment for the user dialogue;

- dialogue creation tools.

1.2.2. An abstract model for UIMS

A UIMS is essentially composed of two modules, a preprocessor to design and build 

the user interface and a run-time support package providing the framework within 

which the user interface will execute. The Ul definition file will contain the state

-11 -
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transition information[54]. Figure 1.4 illustrates the basic requirements of a user 

interface.

A UIMS goal is that it should be separate from the application but the framework within 

which the UIMS will operate is largely affected by the relationship between the user 

and the application. Three frameworks have been identified. They are the External, 

Internal and Concurrent[23] frameworks. They correspond to the event, sample and 

event/sample modes of graphics standards such as GKS.

External

Application procedures are invoked in response to user inputs. Thus the user is 

in control.

Internal

The application has control, it requests various abstract devices when required 

by the application.

Concurrent

This has a mixture of the internal and external frameworks.

Figure 1.5 illustrates the various frameworks for UIMS design.

We have already outlined the basic structure of a UIMS. Workshops have since 

identified a more detailed structure of a UIMS. From a study of existing UIMS, Tanner 

& Buxton present a notional model based on ’Glue Systems’ and ’Module Builders’.

1.2.3. Glue systems

In glue systems interactive dialogues are created by prepackaged tools; suitable 

dialogues are selected by the user/programmer from a library. The UIMS provide 

access to the library and a general support environment to bind the modules for 

creation of the Ul. The power of these systems lie in the size of the library. An

- 1 2 -
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example of such systems is MENULAY[9] and Dialogue Cell[26].

1.2.4. Module builder

These UIMS are concerned with the specification and implementation of the low-level 

interaction primitives used in a dialogue (module). The modules are collected together 

to form a library. Typically they are based around some special purpose programming 

language and because of that they have greater expressive power but are that much 

harder to learn. Examples include SYNGRAPH[47] and TIGER[36J. In Systems such 

as the Mackintosh Toolbox and most Window Managers the routines are the library 

portion. See section 1.5.

A novel approach to building the interaction has been put forward in Squeak[11]. 

Squeak is a user interface implementation language that exploits the essential 

concurrency among multiple interaction devices. The language is based on concurrent 

programming constructs that are compiled into conventional C. Squeak programs are 

composed of processes executing in parallel. A process typically deals with a 

particular action or external device. Communication between processes is achieved by 

sending messages on channels. Channels are either primitive or non-primitive. 

Primitive channels are predefined and provide access to external devices. Non

primitive channels are for ordinary message based communication.

A Squeak program is compiled by analysing all the possible execution sequences of 

the program and expanding them into C code. There is no scheduling on the user 

channels: scheduling and communication is translated into sequential code interleaved 

with random choices and calls to the underlying event manager.

Parallel sequences are decomposed by advancing one of the processes by one step 

and considering all the possible continuations of that and all the other processes. The 

entire system state is then returned to the initial and the step repeated for another

- 1 3 -
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path. There is some ’pruning’ and ’flattening’ to avoid deadlocks and redundant paths. 

The remaining available paths are compiled as a dynamic random selection of which 

path to take. Young et al[59] rightly point out that Squeak

"...suffers potentially explosive expansion when compiled into C code, effectively lim
iting its usefulness to the lowest levels of input processing. ”

Glue Systems and Module Builders can exist together. A UIMS that falls into that 

category is PERIDOT[43]. Figure 1.6 shows how glue systems and module builders 

can be combined together.

1.2.5. The Seeheim Model

This model for UIMS design was a result of working discussions held at the Seeheim 

Workshop on User Interfaces and is discussed in detail by Green[23]. Members of the 

group were Jan Derksen, Ernest Edmonds, Mark Green, Dan Olsen and Robert 

Spence. It is now the main model which has been put forward for future design of 

UIMS because of the advantages of modularity and the incorporation of design 

concepts arising from experts in human factors. A description of the model is given 

below.

The User Interface is divided into three components as shown in figure 1.7 below. 

They are the Presentational Component, Dialogue Control and the Application 

Interface Model.

The transformation of the communication between the user and the application across 

this model can be discussed in terms of the language model introduced by Foley[19]. 

The language model is a convenient representation of the levels of interpreting or 

transforming from the external to internal representation and vice versa. The model 

regards a transformation as a process which can be broken down into a sequence of 

steps: lexical analysis, syntactic analysis, semantic analysis, and conceptual analysis.

- 1 4 -
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It is useful to provide a brief description of these terms.

Lexical Analysis determines how input and output tokens are formed from the 

available hardware primitives (lexemes). Input and output lexemes are produced by the 

input and output primitives respectively. Lexemes are the smallest units of input which 

can be processed by the computer.

Syntactic Analysis deals with the syntax of the dialogue and defines the sequence of 

allowed inputs to and from the application. The syntax is the set of rules used to 

organise and order input and output lexemes. Abstract Syntax is a generalised 

abstraction which can be represented by state transition diagrams for example. 

Concrete Syntax is the set of concrete objects actually used in the syntax, for 

example menu buttons, etc.

Semantic Analysis is a description of the functionality of the application. For example 

it will define what information is needed for each operation on an object, how semantic 

errors are to be handled and other similar context sensitive interpretations.

Conceptual Analysis defines the more abstract aspects of the interaction. It defines 

the key concepts which must be mastered by the user. For example it will define which 

interactive graphical objects will exist and also their relationships to each other.

Presentational component

The Presentational Component describes the physical appearance of the interface. It 

reads the physical input devices and converts the raw data to a form usable by the 

other components. The menus are a special aspect of the presentation component. 

When a selection from a menu is made, the presentation component generates the 

appropriate token to be used by the other sections. Thus we can observe that the 

presentation component effectively carries out the lexical processing undertaken by the

- 1 5 -
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UIMS. The notion of a separate module for presentation makes porting to different 

display devices simple. The component can be easily changed to allow for a variety of 

input devices. The screen layout can be altered to suit the user, for example switching 

from a lefthand screen layout to a righthand layout.

Dialogue control component

The Dialogue control contains information relating to the dialogue between user and 

the application. It converts tokens generated by the presentation component to 

execute commands or passes back tokens from the application interface model to the 

presentation component for visual feedback.

Only the dialogue component has access to what is essentially the dictionary 

component. The dictionary is used to convert the lexical tokens received from the 

presentational component to tokens which the application interface model can 

understand.

This area of UIMS design has been the recipient of considerable research effort. As a 

consequence there is considerable expertise in this area. A number of notations for 

representing the user-computer dialogue have been developed. They tend to fall into 

three basic categories:-

-Context Free Grammars;

-Recursive Transition Networks;

-Event Notations.

These notations will be described in more detail later on in this chapter and some 

examples given.

- 1 6 -
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Application interface model

The application interface model describes the interface between the UIMS and the rest 

of the application. It holds the semantics of the application, the procedures of the 

application which are available to the UIMS. This component exists only implicitly in 

UIMS built before 1984. It is also in this module that the framework in which the UIMS 

is to operate is defined. The external or internal model of execution is normally 

proposed as an acceptable framework. Also at the Seeheim workshop a third 

framework Mixed was proposed. There are essentially two communicating processes 

for the user and the application. Some method of interleaving the execution of the 

interface or the application is required. It could be implemented by co-routines or 

multiple processes.

1.2.6. Examples of UIMS

A brief description of a number of key UIMS is given below. The list of UIMS is not 

exhaustive but is meant to give a flavour of what a UIMS entails beyond the theoretical 

structure discussed earlier.

Menulay

This is part of a UIMS[9] which aims to aid the design and implementation of menu 

driven programs. It consists of two modules.

The first module, Menulay and Makemenu, is essentially a preprocessor to design and 

specify the graphical layout and functionality of menu-driven programs. It allows the 

construction of networks/hierarchies of menus and provides hooks for application 

specific procedures. Menulay is itself menu-driven. It creates textual items such as 

light buttons and icons and allows their size and colour, for example, to be modified 

interactively. It generates a metacode which is input to an ancillary program

- 1 7 -
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Makemenu which generates C code which will allow the incorporation of user supplied 

function procedures.

The second module, the runtime support package, handles events, hit detection, 

procedure invocation and management of the display. The code executed by this 

module is generated automatically from the preprocessor.

It can be observed that this UIMS falls neatly into the simple model of a UIMS. 

However it must be noted that there is no formal description of the input. The input 

language is specified by selecting interactive techniques from a library and 

incorporating them to form an interactive application. Thus Menulay is an example of a 

Glue system.

SYNGRAPH

The SYNGRAPH tool[45,47] supports graphical applications. The input language is a 

special form of BNF grammar. The menu and graphical valuator simulation is 

automatically formatted and all prompting, echoing and error reporting is also 

automatically generated. The modified BNF grammar has made possible a very 

powerful undo/rubbing out facility. Additionally, the system is designed within the 

framework of Conceptual, Semantic, Syntactic and Lexical levels as described in 

earlier sections. The conceptual level (i.e. the thought process of the designer leading 

to the initial design of the user interface) is not addressed. The semantic level is 

represented by the commands available in the interface. However the influence of the 

syntactic and lexical levels is greatest. At the lexical level there are the tokens which 

represent user input, for example button presses. At the syntactic level, a sequence of 

specific lexical tokens corresponds to a dialogue. A Pascal program is produced and 

there are no evaluation tools provided.

- 1 8 -
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The University of Alberta UIMS

The goal of this research was to build a UIMS following the abstract model proposed 

at Seeheim. The UIMS[24] is divided into three components. The presentation 

component which is concerned with the lexical level of the user interface is 

implemented by a window based package WINDLIB. Screen layout, interaction 

techniques and displaying are supported by an interactive layout program. The 

Dialogue component supports all notations. However to achieve this flexibility the 

underlying format is event notation as it has greater descriptive power. There are tools 

to edit transition diagrams but at the moment there is no facility for going from BNF to 

event form. This is the subject for current research. The application interface model 

currently supports only one mode (User initiated).

Other UIMS

Other UIMS research efforts include the information display project at George 

Washington University. The Abstract Interaction Handler{35] (AIH) has a number of 

components:- an interaction language adapted from augmented transition networks; an 

interpreter for that language; a set of ’style’ modules to handle interactions which are 

style dependent, for example levels of prompts; a library of user profiles and 

interaction techniques; and finally a logical screen handler.

User interfaces have been built using the ’programming by example’ paradigm as in 

Tinker[39] and Peridot[43] In case of the latter, a variation on the theme is used - 

’programming by demonstration’. The Higgens system[28] has concentrated on 

efficient recovery and reversal in user interfaces, a hitherto under-researched area. 

They have developed a special model which together with algorithms they have also 

developed makes undo very cost effective. An object oriented approach to user 

interface design has been developed by Lieberman[40] and in the GWUIMS[53].
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Objected oriented design will be considered in greater detail in later chapters. The 

concurrency aspects of User Interface design have been utilised in Squeak[H] and the 

formal semantics of these aspects described.

1.3. Specification aspects of user interfaces

Formal Specification is now widely used in the field of software engineering because it 

allows the designer to describe the external characteristics of system without going 

into its internal structure. Formal specification of a system provides a source of 

reference for both implementors and users. It is implementation independent and 

provides a basis for proofs of correctness. In addition it allows the precise formulation 

of queries and answers. In the traditional software cycle of :-

Requirements - Specification - Design - Implementation - Testing - Maintenance

formal specification covers requirements, specification and design.

Computer Graphics in general, has been the subject of a number of formal studies. 

GKS is an example of an attempt at formalising graphics using English. Mallgren[41] 

has formally specified hierarchical picture structures and user interaction using 

algebraic techniques. His interaction specification will be the subject of further 

discussion in chapter three. Duce[17] uses VDM to formally specify the user interface.

Formal specification methods have been applied to user interface design in a quite 

comprehensive manner. In terms of the UIMS models described earlier, the dialogue 

component has been the subject of most study. Broadly speaking most dialogue 

specifications have fallen within the categories mentioned earlier. These are :- BNF, 

state transition diagrams and event notations. Sections 1.3.1 to 1.3.3 describe the 

three techniques in detail.
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1.3.1. Context free grammars (BNF)

The theory of these grammars will not be discussed as it can be found in any standard 

compiling theory text[2]. The underlying motivation for this model is that human- 

computer interaction is a dialogue as in human-human communication. For both 

cases there must be an agreed syntax if communication is to be effective. However, in 

the latter case only one common language is used whereas in the case of the former 

the human uses one language to describe the user’s actions while the computer use 

another language to respond to the user’s actions. Thus the model attempts to unify 

these two different approaches to communication.

The terminals in these grammars are the input tokens from the presentation 

component. These tokens represent the user’s actions. The non-terminals and the 

productions represent structure or syntax of the dialogue. There could be a command 

associated with each non-terminal. Each production with the non-terminal on the left 

hand side defines the syntax of the command. For example a BNF grammar for a 

login command (shown in Figure 1.8a) could be:-

login ::= userid password

userid ::= ccharacter string>

password <character string>

This does not cover the response generated by the computer. As we shall see later, 

program responses for state machines are attached to the arcs so, correspondingly, 

program actions can be attached to each of the productions in the grammar.

One problem with this approach is the time when the production is used (R.H.S). 

Bottom up parsing uses the production when all the symbols on the right hand side 

have been used, top down parsing uses the production when the first symbol on the
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right hand side is met. in the examples presented here we assume a top down parse. 

The second example describes the context-free grammar for a rubber band line. The 

productions have been augmented by program actions which take place at certain 

places during the dialogue. This modification has introduced three additional rules (d1, 

62, d3).

line ::= button d1 end_point

end.point move 62 end.point
I button d3

d1

62

63

{ record first point}

{ draw line to current position }

{ record second point}

Reisner[49] provides an example of how BNF can be used to describe a user 

interface. One problem with this technique is still unresolved. Sometimes it is difficult 

to determine when something will occur, consequently it is not easy to handle how 

the output tokens are to be produced. Thus error messages, prompting etc. are only 

possible with the inclusion of largely unnecessary non-terminals and productions. 

Olsen and Dempsey[47] have used BNF grammars for the construction of the user 

interface for SYNGRAPH. They have allowed the designer of the dialogue to specify 

an error recovery mechanism allowing for more natural and graceful error recovery.

1.3.2. State transition diagrams

This is the oldest notation used and its history can be traced back to Conway[12]. He 

did not address the problem of interactive user interfaces. Parnas in 1969 proposes
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the use of state diagrams for describing user interfaces[48]. Newman[44] in 1968 

however, had already put this into practice in the seminal work The Reaction Handler’. 

Jacob[30] used this technique for a military message system in 1983 but in this case 

there was no interactive graphics requirement.

A State Transition Diagram is a collection of directed graphs. Each graph contains a 

set of nodes (states) and a set of arcs (state transitions) representing the actions a 

user can perform at a given stage of the interaction. A dialogue goes from one state to 

another if a user performs the appropriate action (the arc label). The computer's side 

of the dialogue is described by adding actions to the states. Figures 1.8a and 1.8b 

provide some examples of state transition diagrams. The number of arcs/states 

needed to represent all the states an interaction can go through can be quite large. 

This problem has led to a number of partitioning schemes, typically subnetworks. An 

extension of this is the use of recursion giving Recursive Transition Networks (RTN). 

Partitioning and recursion make the RTN equivalent in power to BNF but they also 

introduce non-determinism which should be treated with care in interactive systems 

design as usually it is not possible to retrace a path that has generated output for the 

user.

Another problem with this approach is handling unexpected user actions. The easiest 

course is to ignore the user input. This is obviously not suitable. A second method is 

to introduce a wild card. This matches all user actions not catered for. Such an action 

leads to a state where error recovery can be attempted.

Kamran uses a variant of the RTN, the Augmented Transition Network (ATN) for the 

model on which he bases his dialogue control[35]. An ATN is a network with a global 

data structure attached to it. Functions can be assigned to arcs and their results 

stored in the data structure. An ATN has significantly more computational power than 

a normal transition network. It is important because it can implement context sensitive 

dialogue, for example the data structure could hold information concerning a database
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and thus if a file is already open an appropriate message is given.

1.3.3. Event notations

This notation is not as well known as the notations described earlier. Each event has 

a name and a collection of values that characterize the event. An event originates from 

one or more input devices available to a graphics package or it can be generated by 

the application. These events are processed by a number of event handlers. An event 

handler is a special procedure which performs a set of actions based on the name of 

the event it receives. These actions could be calculations, output of tokens or newly 

generated events. Mallgren uses event algebra to describe user interfaces[41].

The procedural form of an event handler makes notations for events very similar to 

programming languages.

A major advantage of the event model is its ability to describe multithreaded dialogues. 

This is where a user is involved in more than one dialogue at the same time and is 

also free to switch between dialogues. The multiple dialogues are possible because 

all event handlers execute concurrently. Event models are commonly used to 

implement window management systems. In an abstract form, once an event handler 

has been created it is active until it is destroyed and only while an event handler is 

active can it process events.

The user interface is described by all the event handlers it uses and a special event 

handler serving as the main event handler in the user interface. The expressive power 

of event notations allows other dialogue control models to be expressed in some event 

notation. Green[25] takes advantage of this when providing multiple format dialogue 

component construction. The following example is drawn from Green[25].
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Eventhandler login is

Token 
keyboardstring s;

Var 
int state = 0; 
string userid: password;

Event Init {
print "login";}

Event s: string { 
if (state == 0) { 

userid =s; 
state= 1; 
print "password";

}
else { 

passwords s; 
state= 0;
process_login_cmd(userid,password);

}

In addition to specification methods for the dialogue component, a number of 

abstractions for both the user interface and interactive graphical applications have 

been developed. These abstractions attempt to model the user interface in terms of 

the user’s view and behaviour towards the user interface. Sections 1.3.4 to 1.3.6 

describe some examples.

1.3.4. BOX: A layout abstraction

Coutaz[13] identifies the need for dialogue independence and the expression of 

object-orientated I/O. He makes the assumption (based on current cognitive science 

theory) that applications reason in terms of specific abstractions (or objects) to perform 

a task. An object is made concrete by views of this object by specific agents. Thus an 

object on a screen is viewed by two agents, the user and the application which owns 

the object. Some views may be suitable for one agent and not the other, so an 

additional view, that of the Box, is introduced. This represents an intermediate view
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that both agents are happy with. The box view contains a specification of the object 

which is used to format the object on the screen.

The box is only concerned with high level I/O. The application is only concerned with 

manipulating the object and not by the process by which the manipulation is done. A 

structural and spatial relationship is a second requirement. Thus objects may be 

composed of other objects. Dynamic modification of a box must also be possible. A 

box is specified by spatial and adornment attributes which determine the size and 

appearance of a box.

The method of specifying the box is left unclear, the examples given in the paper 

being insufficiently complex, and it seems that this particular tool is suitable only for 

the expression of relatively simple objects such as menus, slots and forms.

1.3.5. The dialogue cell

Another abstraction has been provided by ten Hagen and Derksen[26]. A new 

programming language construct called a Dialogue Cell is presented. It allows the 

separation of algorithms from the dialogue design and makes use of the extensive 

parallelism in user interface design. A dialogue cell is a unit which can completely 

specify one step in a dialogue. It has four components.

Prompt

Initialises sub-dialogues and informs the user it is ready to accept input.

Symbol

Specifies the syntax of the input sentence, and how the input monitor will treat input 

words.

Echo

The acceptance of an input by a dialogue cell. This is the method by which graphical 

objects are dynamically maintained on the screen. There are two types of echo. Local
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Echo: Objects disappear once the dialogue cell is no longer active. Global Echo: 

Graphical objects persist on the screen.

Value

A value is associated with each symbol and thus attribute grammars can be 

accommodated.

Dialogue cells can either be activated via direct calling as in the Request mode in 

GKS, or as sub.cells by other dialogue cells. Input tokens can be collected for all 

active cells and thus there is a multi-stream parser which processes input against each 

syntax component for each dialogue cell. It does not matter in which order the inputs 

arrive because the parser can dynamically add and remove syntax rules from the 

currently active grammars. This allows for very flexible parameter collection.

The examples discussed so far have been mainly concerned with the dialogue 

component. The following examples again are related to this aspect, but they are also 

concerned with modelling graphical interaction at a more general level.

1.3.6. The device model of graphical interaction

The device model of interaction as discussed by Anson[4,5] describes an interactive 

system (or device) in terms of its component devices and data paths (channels). There 

are two views of a device. The outside of a device is composed of a visible state, 

events and actions, while the inside contains details of variables needed to implement 

the outside. Devices communicate with each other by reference to some aspect of the 

outside view. The binding of events to actions is a channel. A channel is an ordered 

pair with the source-event given first and the destination-action given last. For a 

simple user interface manipulating keyboards, lightbuttons, cursor position, the devices 

would be:-
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1. tablet;

2. function keyboard;

3. cursor;

4. display.

Examples of Inputs and actions i.e. the channels are:-

(Tablet.PenPosition, Cursor.location)

(Tablet.PenDown, Cursor.Engage)

(Tablet.PenUp, Cursor.Disengage)

The extended notation described in the paper has been implemented as a functional 

equivalent in UCSD Pascal.

Gangopadhyay[20] has similarly provided a set of programming language constructs 

as an extension to Pascal. The constructs are based around events and event reports 

with associated actions. Physical devices are not a priori grouped into logical classes 

as in GKS. Instead an event of a certain type may be generated from any tool 

depending how the operator uses it. A set of event types is defined:

Selection Event;

Location Event;

Button Event;

Value Event;

Keyboard Event;

Clock Event.

The application program declares expected events and their expected interpretations. 

The procedural structure makes graphical programming straightforward. 

Gangopadhyay observes that a single operation on a tool can generate many 

invocations of several action processes. This can either be regarded as advantageous,
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as he does, or it can introduce the notion of ambiguity. Since the application program 

declares expected events, dis-ambiguating facilities are available and hence the 

advantageous nature.

1.4. Modelling the user design process

Throughout this chapter human factors considerations have been implicit. It has been 

long recognised that research in modelling the interactive processes needed by the 

user will help the developer of a user interface make more informed specific design 

decisions regarding presentation and dialogue language. Coutaz[14] calls for advice 

from experts such as psychologists and graphics artists who have a better 

understanding of human behaviour than have computer scientists.

Card, Moran and Newell[10] have attempted to model the knowledge a user must 

have when carrying out tasks through the interface. The formal modelling of the user 

knowledge process seeks to develop a representation and method for constructing the 

representation so that early evaluation of user interfaces will allow economically 

feasible changes to interfaces. This type of study is currently at a very early stage[33]. 

However Green[22] made an early attempt and a brief description of this work is given 

below for completeness.

1.4.1. A methodology for user interface design

In Green’s methodology there are two components, the first, the User Model, is a 

description of how the user views the task domain (the problem to be solved), and the 

second is a formal description of the user interface.

In the User Model, the informal task analysis (working out the requirements), is 

formalised using the concepts of objects (the entities in the problem to be solved), and 

operators (the operations that can be performed on the objects to manipulate them).
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The formal description is called the task model and is the basis of the methodology. It 

is this aspect which is one of the earliest attempts to model the user thought process. 

Also part of the User Model is the Control Model. The Control Model uses the same 

notation but instead of describing the tasks to be performed it describes the 

commands that are available to perform them.

The control model provides a high level description of the user interface, but a detailed 

description is also needed. This is a specification language based on state machines. 

The more pertinent aspect of this work is the fact that the various levels of 

specification can be used to evaluate the interface. If there is no mapping between 

specifications then there is something missing and more detail needs to be added 

somewhere within the specification.

1.5. Window systems and user interface toolkits

Window Systems originated with Smalltalk at Xerox PARC. They have since been 

developing in two basic directions, for the UNIX environment (powerful, bitmapped 

graphics workstations) and for the lower end PC based systems.

PC-based systems include the Macintosh Environment and MS-Windows. These 

systems provide the illusion of multiple independent processes, when in fact there are 

not. Synchronisation is implicit in the single thread of control.

A window system is software that utilizes a graphics workstation by allowing a number 

of applications to run concurrently thus increasing the productivity of the user. It does 

this by dividing the screen into a number of regions or windows, where each window is 

controlled by one application. The system maintains the windows. The user is allowed 

to create and position windows at will.

The windows are laid out on the screen by one of two metaphors, desktop style or
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tiled. The desktop metaphor more closely mirrors the working habits of a user as 

windows are allowed to overlap over each other, rather like pieces of paper on a desk. 

The tiled system does not allow overlap of windows, the windows are organised so 

that they make maximum use of the screen and thus windows will vary in size (but will 

still be rectangular).

Supplied with most window systems is a user interface toolkit. This is normally a 

library of pre-defined procedures to which a user can link to create interactive graphics 

applications. The facilities available with a toolkit vary with the type of window system. 

For example, a kernel based window system such as SunWindows has available with 

it the Suntools Toolkit[1]. the X window System has the Xtoolkit[50]. The essential 

feature of all the toolkits is that they contain interaction objects such as scrollbars, 

menus, button objects. Further, they contain facilities for the management of these 

objects. Thus they fall into the module builder category discussed earlier. However 

they do go a bit further in that some of the glue is also provided.

A common problem with such toolkits, is that they do not allow the sort of control and 

uniformity that is required when building complex applications. Further, there is lack of 

portability between toolkits even allowing for the common principles and thus an 

application developed under SunWindows will not work under X.

1.6. This work

Writing interactive graphical programs is notoriously difficult. Generally, this difficulty 

can be attributed to the asynchronous nature of user input; the lack of existing 

"structured" programming techniques; and not ensuring that the synchronisation of 

actions with user events is done within time constraints imposed by what is deemed 

"user friendly".
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The research in UIMS and interactive language constructs has demonstrated that 

there is still as yet no ideal methodology. User toolkits commonly available with 

window systems allow easy construction of applications but introduce additional 

problems of portability and suitability of design procedures. Programming language 

constructs as exemplified by Gangopadhyay are not powerful enough, but at least he 

clearly identifies a need for programming techniques for these type of applications.

Recent years have finally seen the maturation of research in Integrated Project 

Support Environments (IPSEs). Typically, such an environment will include a number 

of software tools and it is essential that the tools have a standard user interface to 

reduce effort in learning new tools. A number of IPSEs embody this basic principle of 

consistency.

In the field of Software Engineering, the ideas of ’structured programming’ have been 

with us for some time[15,16]. Various methodologies have been advocated, but they 

all rely on the premise that there exists a set of standard or conventional programming 

language control constructs which can be used to write a program. These constructs 

are:-

i f ... then ... else; 

while... do; 

repeat... until.

It has been shown that such restriction has resulted in a significant improvement in the 

quality and cost of code produced. Figure 1.9 gives an indication of the ’effort 

multiplier’ factors for software utilising various levels of modern programming 

practice[8]. It is assumed that such practices are employed across the software cycle.

Methodologies which have proved their worth include Jackson Structured 

Programming[29] and Structured Design[61,42]. Identification of similar constructs
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which embody the concurrent, and largely event driven nature of graphical programs is 

a prime consideration. This work identifies such constructs and it utilises and builds 

upon the experience gained in UIMS design. In addition it attempts to provide a 

prototype software tool which implements the constructs so derived.
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2. The New Interaction Model

In this chapter we describe the basic control strategy used to implement interactive 

systems. This scheduling strategy is termed the Interaction Model. We then go on to 

describe the shortcomings of existing models. The second half of the chapter is a 

detailed description of a model which more closely fits the characteristics of this type 

of software. This model draws freely from both operating systems design and 

compilation theory. Finally the model is compared with a formal description of an 

earlier model proposed in some closely related research.

2.1. Existing models

Elsewhere we have stated that an interactive graphical program is essentially an event 

driven activity, where an event is a user action supplied via some physical input 

device. Typically the program responds to events and then waits for other events to 

occur. More often than not, the major portion of an application’s execution time is
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spent waiting for events to occur. This wait time corresponds to the user "Think Time"

i.e. the user is thinking of some action to perform[19]. The typical schema for an 

interactive program reflects this wait time.

repeat
Wait for an event; 
case event device of

1: action 1;
2: action 2;

n: action n; 
end; 

until exit;

Await Event routines such as this allow several input devices to be in use at the same 

time. The program could be receiving input on some device and still be waiting for 

events on another device. Thus events will need to have their status preserved and so 

typically there is some queueing data structure. The result is a need for complex 

event-decoding logic. We will need to determine which event device generated the 

event and then search the queue for the event information.

Many applications however require input from only one device at a time. Also some 

time-sharing systems prohibit the simultaneous use of several devices so the 

generality of the event queue becomes a needless overhead. This leads us onto a 

slight variation of the above scheduling loop. Instead of waiting for an event on any 

device, there exists an event handler for each device attached to the system. Within 

each event handler the scheduler waits on the data rather than the device. The 

schema could be shown as:-
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For a device A. 

repeat
wait for an event from device A 
case data from device A of 

1: action 1;
2: action 2;

n: action n; 
end; 

until exit;

This basic schema is implemented for all devices used by the application. An 

example illustrating an event handier for each device is now described.

Example

An interactive menu-driven program to draw boxes and lines at user supplied 

positions on the screen. The basic input/output hardware configuration is:- display 

device, tablet and mouse. The user’s actions are composed of the following sequence 

of events: a button press in the menu area (corresponding to selection of a menu 

option) followed by button presses in the drawing area (defining the opposite corners 

of a rectangle or the vertices of a line).

For the program to carry out the required function, it needs to monitor the interactive 

element by:-

1. checking for events in the menu area;

2. checking for events from the point device, in this case the mouse.

Finally the raw input data needs to be processed into useful information. The user 

and program actions defining the interaction are summarised below.

User actions are:-

- a menu event;
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- a point device event. 

Program action are:-

- check for menu events;

- read menu event data;

- check for point device event;

- read point device event data.

An implementation of this is;-

program example; 

var
r  declarations */

begin

Initialise picture area;
Initialise the interface I_f.

while true do 
begin

while test_menu(IJ)= empty do; 
cmd= readmenu(IJ); 
clr_menu(l_f);

while test_point_device(l_f)= empty do; 
positionjl = read_point_device(l_f); 
clr_point_device(l_f);

while test_point_device(Lf)= empty do; 
position_2 = read_point_device(l_f); 
clr_point_device(l_f);

case cmd of
line: drawline(position_1, position_2); 
box: drawbox(position_1, position_2); 

end;

end;
end.

There are two basic design faults with this model. Firstly, basing the design of the 

scheduler around the data means that a separate function to clear data, unused or 

used, needs to be provided. Ideally the event handler should simply return the new
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data, calling clear operations as required and update the interface at the same time. 

Secondly, all synchronisation to maintain user action fluidity is performed by the 

sample program. The result is unstructured looping of the While statement before 

each read to ensure that data is available.

Finally as there is concurrent access to the interface by both the application and the 

user, there is a need for additional synchronisation requirements. These requirements 

are sufficiently complex to indicate the provision of special purpose interaction 

primitives in which the synchronisation needs of the user and the application are 

embedded. The design of a suitable scheduler and its primitives is now described.

2.2. The New Interaction Model

To develop our new model we start with the premise that graphical interaction is 

essentially an input-event driven activity. Generally interaction offers a rich set of 

options, most of which will not be in use at any given time. A small number may be 

intensively used (e.g. reading the tablet; updating the cursor position). Some will 

occasionally start other actions. Also, most actions require a rapid response to 

maintain fluid interaction.

Some definitions and associated terminology will now be introduced.

Application

A menu-driven graphical program.

Interaction

An application defined as tasks.

Window

A user defined area set within the screen of the display device.
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Task

Within the constraints of graphical applications, a task can be defined as an object that 

provides a means of performing an action specified by the user.

2.2.1. The scheduler

The first component of the new interaction model is a scheduler. We can develop the 

scheduler by examining the role of tasks. A task can be seen as the conceptual unit 

of all graphical applications in that all such applications can be defined in terms of 

tasks. If an application is composed of tasks, a study of the interaction in the 

application can be undertaken by a study of the interaction of its tasks. A typical 

structure of an interaction application is given in figure 2.1.

Here f1...fn are functions which a user may wish to execute. They are made active by 

appropriate selection of the function from the menu-window. Further, interdependence 

of functions is indicated by directed arrows. For example a task which sketches lines is 

dependent upon a task which allows the user to select inks. In terms of tasks, there is 

a one to one correspondence between a function and a task. More significantly, boxes 

labelled cursor-tracking and menu are also considered tasks, but they have a higher 

priority as they occur earlier in the hierarchical structure.

These observations suggested that interaction can be handled by a fixed scheduler 

scan with associated tasks. A large pool of worker tasks will typically be used, but 

most tasks will lie dormant until needed and expire once used. Further, parameter 

gathering should be separated from invoking the worker task, to maintain flexibility of 

interaction and simplicity of workers. In outline, the Scheduler is:
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repeat

for task:=1 to numtasks do 
if active[task] 

begin
If not runnable[task] then Try (task,gather); /* Collect parameters */ 
if runnable[task] then Try(task,perform); /* Perform the action 7  
end;

until exit;

During a single scan of the task pool, the scheduler attempts to collect the necessary 

parameters for any task t which is active but not runnable. If all the parameters for 

task t have been collected the task is made runnable. In the same scan, if task t is 

runnable, the task is performed.

This completes our introduction of the scheduler.

2.2.2. Tasks

The second component of the new interaction model is the Task. We require a Task 

to have two components. The first is a parameter-gathering section and the second is 

the code which performs the actions required of the task. It is immediately clear that 

the first component corresponds to the user interface, i.e. it contains the interaction 

requirements of the user and models the actions of the user. The second component 

is clearly the the application interface. Correspondingly we need a mechanism for 

switching between these two components.

To implement this we use a procedure Try both to collect parameters and to execute 

the appropriate application-specific procedures. In outline Try is:-
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procedure Try(t,op: Integer); 
begin 

case t of
1: case op of

gather: ...
perform: ...

end;
2: ...

n:
end;

end;

Each case on t introduces a section of code specific to the parameter gathering needs 

of the task. When called as Try(t,gather), any parameters for the task are identified, 

but no interpretation is made of them. For example, a task to draw a straight line 

requires two pairs of (x,y) coordinates which will later be interpreted as the vertices of 

the line.

Try(t,perform) runs task t to completion by binding the parameters to a call of the 

appropriate worker task. We use this arrangement for convenience: the gather and 

perform sections of a given task are lexically adjacent, making for easier maintenance.

2.2.3. Task progression

The third component of the new interaction model is a pair of mechanisms to control 

the progress of tasks. The first of these controls the macro-behaviour of the task (the 

way the scheduler treats it) while the second controls its micro-behaviour (how the 

task executes).

For the macro-behaviour we note that, typically, most tasks are dormant until needed. 

Even when needed they usually pass through a parameter-gathering phase before 

completing and once more becoming dormant. We envisage a system (Figure 2.2) in 

which tasks progress from frozen (no need to do anything); to suspended (lacking 

enough parameters to run); to runnable (having a complete set of parameters and only
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awaiting scheduling). We provide a task progression mechanism to reflect this. To 

implement this progression we provide appropriate control booleans and trusted 

primitives to manipulate them. For example, a task initiated from the menu progresses 

from frozen to suspended, remaining in this state until its parameter needs are met, 

when it subsequently becomes runnable. After being scheduled it might run to 

completion and then return to its former frozen state. Transition between macro-states 

is accomplished by the primitives used to label the arcs in the diagram in figure 2.2.

The primitives are of the form:-

procedure Run (task: Integer; progression: stage); 
begin 

runnable[task]:= true; 
which[task]:= progression; 

end;

procedure Suspend (task: integer); 
begin 

runnable[task]:s false; 
end;

procedure Freeze (task: Integer); 
begin 

active[task]:= false; 
runnabie[task]> false; 

end;

procedure Thaw (task: Integer); 
begin

active[task]:= true; 
end;

Now we consider the micro-behaviour of a task. Not every task which reaches 

runnable state will run to completion when it is scheduled. It may simply have reached 

a stage where a certain parameter may be collected. Progression to a later stage 

would then depend on that parameter being collected and any associated actions 

being performed. Hence we can impose a degree of sequentiality within a specific 

task. Thus we separate the perform section into three logical phases which we call 

start, middle and finish. The table which holds the current stage value for each task.
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Typically this is useful because a new task has set-up actions which can be assigned 

to the start phase. The middle phase is used for the main part of the task and then 

the finish phase can be used to tidy up. To give an example, the outer phases can be 

used to change the cursor pattern back and forth to give feedback to the user, with the 

actual task being invoked in the middle phase. In the definition of Run there is an 

additional parameter progression which indicates the next stage of the current task to 

be processed.

Tasks do not have to freeze when completed. It is in the nature of some that they will 

gather one set of parameters, perform work and then repeatedly do the same thing. 

Such tasks can be suspended rather than frozen, as the diagram makes clear. In this 

way they continue to gather parameters as long as required.

This resemblance to finite state automata is fully documented in the case of user 

interface specification. This characteristic has been further used in systems where 

graphical programs are generated using interactive finite state machine editors.

Delineation into stages makes some housekeeping intricacies relatively easy to 

implement. If a task requires variables to be initialised prior to the task running, the 

necessary code can inserted into the start stage. Also, menu window management 

problems such as menu highlight synchronisation (ensuring the correct menu box is 

highlighted according to the current task) can be set up as start and finish actions.

Examples of task progression

We can give a better idea of how a task will progress from a frozen state to execution 

of its primitives. As we stated earlier, some tasks are active ail the time and are 

continually scheduled, some tasks run to completion on selection from the menu and 

some run to completion only when their parameters have been collected.

Following figure 2.3, all tasks reside in the task pool. Some of the tasks in the pool are
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frozen, while others are suspended.

Example 1. Cursor Tracking.

A common function in interaction is that of updating the screen cursor position to that 

of the puck on the tablet. There is no user interaction required to do this and it takes 

place continually. This task is always needed and so it alternates between suspended 

and runnable. When the task is first scheduled it will be in the suspended state. The 

scheduler executes a Try (task .gather) but, as no user-input parameters are required, it 

immediately executes a Try(task.perform). The "perform" section of the task consists 

of the code to update the cursor position and the task is then suspended in readiness 

for its next call.

Example 2. Menu Management.

This is a task that detects button presses in the menu region. It is also always active. 

The task is first scheduled to gather its parameter, a button press. If there has been 

no button press it is not scheduled to perform, instead it is returned to the task pool 

until the button press event occurs. At that point, it has gathered enough parameters, 

it becomes runnable and it is scheduled to perform the primitive associated with the 

menu task. This is usually to thaw the task associated with the menu button pressed. 

On completion it is suspended, awaiting a further button press.

Example 3. A Menu Initiated task.

This task is always frozen until it has been initiated by the menu management task. 

Once the task has been made runnable it follows the same route as the menu 

management task with one significant difference. Once the application-specific 

procedure has been performed the task is returned to the task pool in a frozen state.
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2.2.4. Event detection

We have already mentioned that we expect interactive programs to be event driven, so 

the fourth component of the new interaction model is a mechanism for detecting 

events. It is commonly the conjunction of a button press (or release, or holding down) 

with a specific area of screen/tablet which needs to be distinguished. We therefore 

adopt:

procedure Event(butstate: button; region: area): boolean;

as an enquiry function. The function Event is required to test the puck state to see if it 

corresponds to that named (e.g. button 1 just pressed) and also the region (e.g. 

command menu). Event has to be sufficiently general to allow for pop-up menus, 

overlapping menus etc. Butstate is defined to cover new, pressed and released where 

new defines a button press, pressed represents a button held down and finally 

released indicates a button has been released. It thus defines both level (held down 

or remaining released) and transitory (just pressed or just released) states, an 

important distinction. Region is used to identify the area on the screen/tablet where 

the button action occurred.

2.2.5. Well-formed constructs

For the fifth component of our new interaction model we identify a number of well- 

formed constructs. Structured programming uses a modest number of well-formed 

constructs, where each construct displays some simple property. These are 

repeat...until, while, for loop and if... then... else. Such constructs are satisfactory for 

sequential programs but they are of less value for interactive programs as they do not 

adequately reflect the asynchronous, fluid behaviour of such applications. This is 

because interaction is typically used to direct the flow of control along a multitude of
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paths.

This section contains details of some of the more suitable control constructs we have 

identified up to the present time. These constructs are not sufficient in themselves for 

complex interaction requirements, but when used in conjunction with additional type 

declarations they are adequate. ( Some of the type declarations are described in 

section 4.4.)

Continual update

There are many applications in which part of the interaction requires a continual 

update of program variables. Typically such variables are associated with control of 

the displayed image. For example, a screen cursor may be continually updated under 

program control to indicate the puck position. This is expressed as:

gather_n : Readpuck(x.y); Run(n); { Puck monitor )
perform_n: MoveCursor(x,y); Suspend(n); { Cursor update}

Continual update is also needed in such cases as thermometer scales, rubberbanded 

lines and boxes and the dragging of windows.

Point and do

A simple form of interaction is the "point and do" action such as selecting "clear 

screen” by pointing to a labelled menu box and pressing a puck button. There is then 

an immediate effect which proceeds, out of further control, to completion. Such a task 

will be permanently active and will run whenever a particular puck button is pressed 

within a certain area on the screen. Other examples are deleting graphical objects, 

pulling down a menu, scrolling a window and selecting an icon. There is also a 

degenerate case in which the position of the puck is not relevant, corresponding to 

using a puck button for a dedicated action such as menu pop-up. All such permanent
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tasks can be coded in the form:

gather_n : if Event(button,viewport) then Run(n);
perform_n: execute(n);

Event recogniser

In principle menu-selection could be implemented as a number of point-and-do tasks, 

treating each menu entry as a separate area of the screen. In practice this can be 

cumbersome for all but very short menus. A conventional top-down approach to 

manage this interaction has been adopted. At the top level, it is sufficient to identify 

that a relevant event has occurred, namely that a new button press has just happened 

in the menu. We thus get:

gather_n : If (Event(new.menu)) then Run(n); { Menu monitor}
perform_n: Thaw(Comm); Suspend(n); { Action the command }

The monitor component is already familiar. The action component uses procedure 

Comm to decode the puck position and return the task number needed for that 

command. This task is then enabled by Thaw. The event recogniser task takes no 

further action until the next new press of a button in this menu. It has, however 

caused a non-permanent task to spring to life (the one associated with the menu item) 

and this will have its own Gather/Perform entry.

This particular construct is important as it can be used as the basis for a number of 

interactions. Thus we can have an event recogniser task for detecting events in a 

number of different windows.

2.3. Formal and informal approaches to user 

interaction
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Our new model has been derived pragmatically with the emphasis on the needs of the 

practicing programmer. This approach can usefully be compared with formal 

specification, for example as described by Mallgren in his thesis[41].

In this work he too has identified the need for synchronisation primitives. However his 

work has concentrated on their algebraic specification rather than their utilisation. For 

the example of section 2.1, the program can be simplified by defining interaction 

primitives which combine the test, read and clear operations for each device. The 

operations wait until the device has data and then return the data and clear the device. 

This method will result in more readable programs (contrast the program below with 

that in section 2.1). The waiting performed by the while statement still exists but now 

at a lower level. This problem will exist while the scheduler is of this style and is based 

around the sequential data type.

Program operations:

getmenu;

getpen.

User actions:

menuevent;

penevent.

The new sample program thus becomes:-
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program example2; 

var
r  declarations 7  

begin

Initialise picture area;
Initialise the interface I.

while true do 
begin

cmd <- getmenu; 
pos <- getpen;

case cmd of
line: drawline(position); 
box: drawbox(position); 

end; 
end; 

end.

A sequential datatype is a collection of unchangeable objects that are accessed from a 

sequential process via some well defined operations. These objects can be 

manipulated by creating new objects or by assigning them to variables.

Our own model is again a sequential datatype model, but the nature of the data 

structures used, i.e. the booleans representing the states of the task, is such that each 

task is uniquely identifiable. Therefore the sharing of data and state is not a problem. 

The only data that is shared is that data input by the user and that particular problem 

is described in detail later in this section.

At this point it is useful to discuss those aspects of our model which are related to the 

issues raised in Mallgren’s thesis. As we mentioned earlier, unstructured looping is still 

unresolved in the ’beautified’ program given above. The actions getmenu and getpen 

are essentially event handlers which loop until an event occurs. In our model those 

particular actions and similar ones are given a permanently active state and the single 

structured loop, the while statement, ensures that these actions get scheduled.

Mallgren also assumes, once a command from the menu has been selected, that it 

then enters its own controlling structures. Again this is undesirable because of its
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unstructured nature. In the Interaction Model we propose, all control of the tasks 

remain external.

Mallgren argues the concept of the shared datatype with internal states and 

restrictions which can be imposed on those states is more suitable for the interfaces 

we are concerned with. The interface is itself treated as a shared object. The problem 

of ensuring data objects are available to one or more operations is overcome by using 

a special event algebra to identify the states in which shared data variables can exist.

The event algebra is sufficient for describing the transfer of data through an interactive 

interface, the synchronisation between the user and the application, but it does not 

adequately model the user actions by which data is entered. User behaviour is 

modelled by defining the set of user actions, where each action corresponds to a 

specific user activity. A sequence of user actions is represented by a special program 

called user description. For our earlier example, a user description is given below.

user example2;

begin 
while true do 
begin

menuevent;
penevent;

end;
end.

As well as primitive synchronisation operations, there also needs to be a set of low- 

level operations for controlling user input. Mallgren identifies the following low-level 

operations:-

Wait (device! ,device2,device3...device_n);

Test (device);

Read (device).
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The Wait operation waits until any of the devices in its parameter list has data and 

then returns the device name. The Test operation returns true if a particular device 

has data available. The read operation returns the data available at a particular device.

The formal specification of low-level input primitives raises some questions, these 

problems are identical to the ones that are also addressed by the informal Interaction 

Model we propose. These problems are given below.

1. The Testdev operation makes it clear when data is available but is not clear when 

data should be made unavailable. When should it return False?.

In the Interaction Model, when the Event(button,vlewport) primitive is used It 

contains button state information which is subsequently available to all tasks bwer 

down the scheduling loop. For example, some active task may have as part of its 

gather section:-

If event(new,window) then 
run(t,start);

Assume the function returns True. The task becomes runnable and executes the 

appropriate portion of its perform section. However, tasks lower down the scheduling 

bop, which are also active may require collection of the same parameter, so should 

the same data/parameter be bound to the second task? Clearly, in some cases the 

nullifying of data is desirable, but there are instances where we would wish data to be 

available for all active tasks. The current (x,y) coordinates of the puck position is one 

such case.

2. The Waitdev operation has the ambiguity of (1) and an additional one. If there are 

more than one device ready which one should report back to the applbation?

3. The Readdev has its own problem. If additional data has arrived at a device, should 

the data be ignored or queued?
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Mallgren makes the following assumptions and it is pertinent that these assumptions 

are not dissimilar to the ones made by the author during the design of the Interaction 

Model when the author was unaware of this work.

Assumptions

1. Testdev returns False only after data has been read.

2. Conflicts in Waitdev are resolved according to a pre-determined priority amongst 

devices.

3. Input is not queued; newly arriving data is discarded.

The scheduler design in the Interaction Model largely resolves the related problems 

associated with test and wait. The scheduler is essentially composed of a cyclical scan 

through a pool of active tasks. The nature of the data structures ensures there is a 

natural ordering of these tasks. Thus parameters/data become available to active tasks 

in a specific order. It should be mentioned that in our case the Waitdev problem is 

much simpler because there is only one physical input device which we are continually 

sampling.

We can conclude that the Interaction Model described in this chapter is very similar to 

that independently derived by Mallgren. While the convergence is not a proof that our 

approach is correct, the fact that Mallgren and the author developed similar models 

from very different starting points, using dissimilar techniques is striking. Mallgren has 

formally specified an essentially complex problem which suggests that our model is a 

viable one for programming the user interface for graphical problems.

It is also apparent that although Mallgren has concerned himself with the design of a 

suitable scheduling mechanism and the appropriate synchronisation constructs arising 

therefrom, he has not defined any ideal programming language constructs. Thus our 

model improves on Mallgren’s model and in addition identifies some important 

programming language primitives.
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2.4. Summary

Starting from simple forms of interaction we have developed a new model based on 

the pragmatics of programming user interfaces. This model consists of five major 

components:

1. a scheduler;

2. a task model;

3. mechanisms for task progression;

4. an event detection primitive;

5. three well-formed constructs.

We have compared our own model with that formally developed by Mallgren and have 

found several satisfactory parallels which reinforce our confidence.

In the following chapter the new model is used as the basis for an implementation of a 

tool to assist the interface designer.
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3. Implementing the New 

Model

For the new model to be of use to the interface designer it needs to be embedded in a 

programming language. Such a language has been implemented by the author and 

given the name SIDL (Simple Interaction Design Language).

In order to create the language in a reasonably efficient way it was decided to build it 

on C. This was done by writing a pre-processor to convert SIDL programs into C. The 

pre-processor is called GRIP (Graphical Interaction Pre-processor).

This chapter first describes the reasons for developing the new specification language 

and then continues with a section on how the language is implemented. A detailed 

description of the syntax and some of the semantics of the language is provided.

- 5 4 -



B S Barn Implementing the New Model

3.1. The need for a design language

Natural language mirrors the thinking habits of people using the language. People are 

constrained to think and express themselves in that language. If there is difficulty in 

this, the language must be further developed by the invention of new idioms and the 

like. This characteristic also applies to programming languages. A programming 

language will typically influence the user in at least the following manner.

1. The language will determine how a particular problem will be solved and also the 

range of problems that can be solved;

2. The basic programming constructs will affect the style of programming;

3. Portability and efficiency issues will vary according to the language used.

Traditional high level language design reflects these points and also the change in 

computing technology. Thus we have had the development of static imperative 

programming languages such as FORTRAN and COBOL. These languages reflect 

their usage, FORTRAN in its suitability for numerical computation and COBOL with its 

orientation to the data processing requirements of the business community.

Systems implementation languages evolved from assembly languages and their most 

significant characteristic is that they allow the programmer direct access to machine 

operations and addresses. Examples of these languages include BCPL and C.

Block structured languages are derived from static languages. They typically contain a 

selection of control constructs and possess the ability to classify program objects to be 

of a particular type. There is a limited amount of dynamic storage allocation called the 

block structure. Languages of this class include Algol, Pascal and Ada.

Dynamic high level languages such as Lisp and Prolog have all storage management 

performed dynamically and tend to be tailored for specific applications. Thus Lisp is 

used for list processing applications.
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3.1.1. Fourth generation languages

The 1970s and early 1980s saw the advent of a new generation of languages, the so- 

called application generators and fourth generation languages (4GL). Their 

development has arisen from the need to overcome the problems associated with 

traditional software development.

The advantages of 4GL can be simply stated as :-

1. developers need not be professional programmers;

2. the tools are easy to use;

3. there is a high level of productivity.

Application generators are normally interactive and either generate third generation 

high level language code or tables which drive the application directly. The 

applications are very specific and there is virtually no flexibility.

4GL are mainly non-procedural, thus they do not require complex programming skills. 

Applications created by 4GL take longer to develop than those by application 

generators but the target problem environment is unrestricted.

So what are our criteria for a design language and where will our language reside in 

the brief classification described above?

Our primary reason for designing a suitable language is to utilize the Interaction Model 

defined in the preceding chapter. It is clearly inadequate to expect software designers 

to follow some methodology and then fail to provide the tool environment to support 

the methodology. Constraining the designer to use a language such as SIDL will 

ensure that the subsequent design is consistent (in this case, with our methodology).

Our criteria for our language will now be briefly described and details amplified in later 

sections as the need arises.
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1. The language should reflect the Interaction Model such that the functions and the 

objective of the program should be obvious from a static study of that program. Thus 

the language may serve as an informal specification of the application being developed 

allowing the design of an application to be discussed in detail.

2. The language should incorporate non-procedural elements so that the designer can 

describe what is required without having to list the detailed steps on how it should be 

achieved.

3. Interactive graphics programs are complex so some procedural elements will have 

to be included so that flexibility is not lost. Thus at least some standard programming 

constructs will have to be provided.

4. The language is primarily intended for use by programmers, thus it would be helpful 

and it would ease the transition to use of this language if the language bore 

resemblance to existing programming languages.

5. Interface design is an area which has considerable scope for discussion and 

variation. Research is still trying to identify the factors that constitute an ideal interface. 

In an attempt to define such an interface considerable effort has been put into the post 

evaluation of interfaces and a number of tools are currently being developed. SIDL, as 

well as being an informal specification of an application should also form the basis of 

tools for late evaluation of interfaces.

6. The language should be expressed by a context free grammar so that construction 

of the parser is simplified.

3.2. System design

Modern programming’s key concept for controlling complexity is abstraction - the 

notion of emphasising particular detail. To this end, the design of SIDL is no different. 

We have identified the requirements of interactive graphical applications as exemplified
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by the Interaction Model and we allow the SIDL language to express only those 

abstractions which are concerned with the interaction element.

In this section we are concerned with the philosophy behind the design and the 

implementation of the language and its associated interpreter GRIP.

SIDL and GRIP are in essence a front end to the UNIX C compiler. A program written 

in SIDL is used to generate a C program which contains the complete interaction 

needs of an interactive graphical application. Thus we can immediately note that SIDL 

falls into the category of 4GL in the simple classification outlined in section 3.1. 

Further, because the language is targeted onto a very specific application area we can 

associate it more closely with application generators.

3.2.1. Implementation approach

In this section we will first discuss the choice of development language, then we will 

then go on to consider the first implementation and conclude by describing the final 

implementation.

The development system was an HLH Orion 32 bit superminicomputer running UNIX 

4.2 BSD. Suitable languages were essentially C and Pascal and, of these, C was 

preferred. This was because, firstly, C forms a more coherent aspect of UNIX than 

does Pascal. Secondly there are a large number of software tools available. The 

availability of the following software tools affected the decision.

yacc and Lex : compiler construction tools, 

adb, dbx: interactive debugging tools, 

make and sees: configuration management tools, 

cb: general purpose tools.

These two factors were of considerable importance when choosing the development 

language.
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Early attempts at implementation are now described for historical reasons. An 

experimental syntax for SIDL was defined. The syntax was formally expressed using 

BNF. The grammar rules were then used to construct a recursive descent syntax 

analyser. As we were attempting to generate approximate C code quickly, the simplest 

means of generating the code appropriate to the SIDL specification was by including 

the code generation within the analyser.

Very briefly, syntax trees of the SIDL program were constructed, these data structures 

were then used to generate C code. The SIDL syntax was however going through a 

rapid metamorphosis: each change meant a change in the analyser which made 

alteration to the syntax both difficult and unwelcome. Clearly a new approach was 

required.

On the Unix System, several tools are available which allow the non-specialist to 

define and process rich input languages. These tools were originally intended for the 

development of classical compilers, but have proved useful in a wide variety of 

applications as well.

One such tool is yacc[34] "Yet another compiler compiler". Yacc generates parsers 

from an input specification language that describes the desired syntax. Each rule in a 

yacc input is associated with a fragment of C code. As a rule is recognised the 

appropriate code is invoked. The parsers generated by yacc consist of a finite state 

machine and a stack. Yacc is based on the theory of LALR(1) parsers[2], and it 

permits controlled use of ambiguous grammars, with disambiguating rules making it 

much easier to handle traditionally difficult problems such as operator precedence and 

the dangling else.

A similar tool Lex is used to generate lexical analysers[38]. Figure 3.1 indicates the 

dependencies between various Unix tools and the interpreter derived from them.

As with the original attempt, it was decided to continue with the basic policy of 

incorporating the code generation within the analyser. Within yacc this meant that for
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each syntactic structure successfully parsed the action part associated with that rule 

invoked C code, which in turn generated the interaction C code.

3.3. An example application

To illustrate the syntactic structure of a SIDL program, a substantial example will now 

be described. The full SIDL code for this application appears in Appendix B. We will 

refer back to this example later in this chapter and also in Chapter 4. Vecfnt[6] is an 

interactive graphical bitmap font editor which has been programmed in SIDL. The 

application allows a user to create and edit bitmaps representing characters in a font. 

The characters can be saved and retrieved from font files.

Figure 3.2 describes the layout of the screen. There are four screen regions: a 

character edit region, a menu region, a font grid region, and the remainder of the 

screen can also be considered as a separate region. The character edit region is 

divided into a grid, each grid box representing a pixel. The font grid region is used for 

storing the current font on the screen. The menu region is composed of a series of 

buttons which the user selects to perform various editing functions. To aid the font 

designer in laying out the character baseline, height etc a number of graphical objects 

called "handles” are provided. These are movable rules superimposed on the 

character edit region, shown as thick lines in Figure 3.2.

The standard input devices used are a puck with four buttons (however, they behave 

as one logical button) and a keyboard for entering text strings.

The following functions are available.

There is a general purpose task which is independent of the menu, used for editing the 

character area with the current colour.

All other tasks are initiated from the menu. They are:-
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Black, White and Complement.

These tasks set the ink with which the character is edited. Thus each time an edit grid 

cell is selected using the puck, the cell is filled with the current ink. In the case of 

Complement, if there is a black cell, it is replaced by a white cell and vice versa.

SelChar and SaveChar.

These tasks are used to select characters from the font grid area for editing purposes 

or to save the current character in an appropriate font grid cell.

Left, Right, Up and Down.

These functions shift the current character in the edit area in the direction selected. 

Line.

This function draws a line in the edit area with the current ink, between two user 

selected points.

SaveFont and SelFont.

These functions either save the currently displayed font in a file or load a new font into 

the font grid area.

As an example of its use, consider the following sequence of actions. The user 

selects SelFont from the menu and enters a file name when prompted. The font is 

displayed in the font grid area. The user next selects SelChar from the menu and then 

selects a character from the Fontgrid area by a point and click. The character is 

displayed in the edit area, where it is subsequently edited. The character can finally 

be saved using the SaveChar function.

The purpose of this application was not to implement a fully blown font editor, although 

that was an offshoot from the work, but was to create a test vehicle for the Interaction 

Model. In the following sections we use this example to illustrate the SIDL syntax. In 

addition we provide examples of some of the C code that is generated.
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3.4. The SIDL syntax

The syntactic structure of SIDL is similar to that of most programming languages in 

that it can be described by context free grammars. A grammar is context free if the left 

hand side of every production consists of a single non-terminal and the right hand side 

consists of any non-empty sequence of terminals and non-terminals. For example.

A -> x B y ;

B -> z ;

The context free elements of SIDL are described using an extended BNF notation. A 

full BNF definition is given in Appendix A. However to describe a language adequately, 

the semantics and those aspects which are context dependent (such as type checking) 

also need to described. We discuss these secondary aspects informally in the 

following sections.

3.5. SIDL program structure

There are three sections to a basic SIDL program: a type section; window definitions; 

task definitions. There can be none or any number of window or task definitions.

The syntactic form of SIDL closely follows that of Pascal. Thus, commas and semi

colons appear in similar positions as in Pascal. There were two reasons for adopting 

this approach. Firstly, a more precise BNF definition could be obtained by making use 

of the Pascal Language definition. Secondly, similarity to a high level language was 

bound to be useful in the early experimentation with this language. All SIDL keywords 

are in bold font.
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INTERACT vecfnt;

TYPE
{ Type and Variable declarations } 

ENDTYPE

WINDOW

END

TASK selchar;
TYPE
ENDTYPE

DO
END

3.5.1. Types

This section is loosely based on the Pascal Type and Var sections. Its purpose is to 

declare and specify some of the global variables which will then be used to produce 

tables for code generation. It is also used to specify the environmental/presentational 

aspects of the application.

SIDL declarations are used to specify the number and names of windows (screen 

regions) which will be required. An additional SIDL declaration is used to identify the 

window to be used as the menu. The total number of tasks that will be operating in 

the interaction is also specified.

NUMTASK 13;
WINDOWS = (menu,gridlfontgridlhand1lhand2>hand3);
MENU menu;

Colour maps can be defined in a variety of ways. Colours can be declared as specific 

entries in the look up table with the required red, green and blue values, or they can 

be specified as a range of colours occupying a number of entries in the look up table. 

The start and end colours can either be default system supplied colours such as the
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primary colours, or they can be user supplied r,g,b values, or a mixture of the two. A 

few examples are shown below.

In example 1, the offcol is at entry 13 in the colour table and its red, green and blue 

values are given by 0, 120 and 0 respectively. Example 2 uses a SIDL keyword 

definition of RED to enter default system r,g,b values at entry 20. Examples 3 and 4 

are used to specify a range of colours at certain positions in the look up table. Thus in 

example 3, a range from colour (0,100,0) to white is specified. The range begins at 

position 100 and is interpolated over 40 look up table entries. Example 4 specifies a 

sunset between RED and YELLOW over 100 entries in the look up table.

COLOUR offcol(13,0,120,0); /* 1 7
COLOUR red_offcol (20, RED); r  2 7
COLOUR redjrange (100, 0,100,0) 40, WHITE; /* 3 7
COLOUR sunset (50, RED) 100, YELLOW; /* 4 7

The most important type declaration is that used to specify the mutual exclusion 

tables. The function of the tables are described in detail in Chapter 4 but here we are 

only concerned with the syntactic structure of the specification.

Each group of tasks is specified as a row together with its task type. The levels for 

tasks describing Vecfnt are shown below.

MUTEXL- (backgmd,foregrnd,compment) OF TYPE 3;
MUTEXL= (selchar,savechar) OF TYPE 1;
MUTEXL= (line) OF TYPE 1;
MUTEXL= (left,right,up,down) OF TYPE 2;
MUTEXL= (clear,clearfnt,vmirror,hmirror) OF TYPE 2;
MUTEXL= (exit) OF TYPE 2;

The tasks are enclosed in parentheses and the types are indicated.

In addition to a general type section at the head of a SIDL program, there are also 

type sections in window block and task block declarations. In the case of windows they 

are used to describe the type of window being defined. Windows can be of the 

following types.
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STATIC windows are those which remain fixed in their position, MOTILE windows are 

those which can be picked and dragged to a new location on the screen. VARIABLE 

windows are those which can shrink or increase in size. There is an additional window 

of type BITMAP which has bitmapped properties, thus scrolling can be implemented.

All window types are declared in the following manner. If there is no window type 

declaration, it defaults to STATIC.

h an d le j: OF MOTILE;

This is a type definition for one of the handles in Vecfnt. The handles can be selected 

and moved to a new position and thus it is of type MOTILE. Logically, the menu and 

font grid area are fixed in their locations and are declared accordingly.

Type declarations for Tasks are currently limited to one type, at least in terms of 

semantics. In section 4.2 we discuss aspects of parameter collection in detail, here we 

are concerned with how to specify the parameters that a task has to collect before it 

will run to completion.

In Chapter 2 we defined a parameter to be a combination of a button press and a 

screen region, where button types are new, pressed and released. In complex task 

specifications, a number of parameters are typically collected. In the example shown 

below, the task Line requires two button presses in a window region to mark the two 

ends of a line.

gridop: [NEW,grld,2] OF PARAMS;

The variable gridop is used to store the value of the current parameter being counted. 

The information enclosed in the square brackets tells us that two NEW button presses 

are required in the grid area.
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3.5.2. Windows 
«

When designing an interactive application using SIDL, the screen region is considered 

as a composition of distinct regions where events can occur. These regions have to 

be given certain attributes which will decide their presentation and their functionality. 

The type definitions described in the earlier section give the reader an idea of some of 

the functionality that is currently implemented.

SIDL differs from a (JIMS in the emphasis placed on appearance. In that respect it 

does not provide the expressive power that a typical (JIMS would give. SIDL is more 

concerned with specifying the behaviour of interactive applications and also of easing 

the task of programming such systems. Thus windows are defined in a very simple 

manner. A window definition is simply the bottom left (x.y) coordinates and the width 

and height of the window. Initially, the user coordinate system is identical to that of 

the screen coordinate system. If the rectangular region (for we are only concerned with 

rectangular windows) is going to be composed of sub-regions (also rectangular) then 

an automatic grid facility is available. The window definition for the font grid is given 

below.

WINDOW fontgrid;
DO 

HT: 331;
WIDTH: 539;
XBOT: 661;
YBOT: 110;
GRID: NUMH = 8;
GRID: NUMV =16 

END

Note that the window is defined within a DO END block in a manner that is similar to 

Pascal.
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3.5.3. Tasks

As we have stated earlier, tasks are the basic building blocks of an application. They 

are specified so that they implement both the user interface and the application 

interface (See section 2.2.1). The SIDL language constructs closely model the 

Interaction Model. Consider the following task specification examples taken from 

Vecfnt.

In the first example there is a type declaration indicating that this task is to be initially 

active, it is also not activated from the menu. Both examples display the two sided 

nature of a task definition. The Gather section shows how the user’s behaviour is

communicated to the application and what action should take place. For the savechar

example, we can read the task as follows. If there is a button press in the menu button

associated with savechar then carry out the first stage, in this case it would be task

synchronisation activities (section 4.1). When the user finally presses button 2 while

TASK edit;
TYPE

INIT= ACTIVE;
ENDTYPE
DO

GATHER;
IF NEW(2) BUTTON IN grid THEN 

runjt,start)
ELSE
IF PRESSED(2) BUTTON IN grid THEN 

run(t,middle);
PERFORM;

DO
START:

DO
fillcell(xcoord.ycoord); 
suspend(t)

END;
MIDDLE,FINISH:

DO
fillcell(xcoord.ycoord); 
suspend(t)

END
END;

END

- 6 7 -



B S Barn Implementing the New Model

TASK savechar;
DO

GATHER;
IF NEW(2) BUTTON IN menu THEN 

run(t,start)
ELSE
IF NEW(2) BUTTON IN fontgrid THEN 

run(t,middle);
PERFORM;

START:
DO

bsync(t);
suspend(t)

END;
MIDDLE,FINISH:

DO
findentry(fontcomm);
savechar();
esync(t)

END;
END

over the font grid area, then perform the application primitive which saves the 

character in that position. Note that the PERFORM section is the application interface. 

When carrying out prototype activities, procedure stubs will usually be placed here. 

Also note that once the task has completed it freezes until it is initiated again, whereas 

the edit task simply suspends and is always waiting to collect its parameters.

3.6. Code generation

Code generation was accomplished by use of tables and pre-written files. As a SIDL 

program is parsed, the type definitions are used to generate constants. All the window 

definition information is collected into a table, whose structural definition closely 

matches the structure definition in the final C program. The task definitions are 

likewise collected into a table structure. Specific data declarations such as the mutual 

exclusion groups and parameter information are also collected into tables.
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Part of the overall system includes a skeletal C program. This contains the basic 

primitives required by the interaction model. These are the event detection procedures, 

procedures for identifying the menu box selected, all the primitives used to maintain 

task progression and finally skeletal table structures.

As well as producing tables during the parse, a merge of the skeletal program and the 

code tables is performed. The merge is done in the following manner. Throughout the 

skeletal program a number of markers are embedded in the text. The basic operation 

of the merge is to copy the skeletal file to a new file until a marker is met. Each 

marker is uniquely identifiable and, according to the marker reached, the appropriate 

code generation is carried out and subsequently inserted into the file. Thus for 

example, when generating all the task #defines the task table is scanned and the code 

generated at the position of the marker. Once the code has been generated, the 

program continues to copy the skeletal file until it reaches another marker.

The first copy occurs when the SIDL program name is parsed. Other copies of the 

skeletal file occur once all the window definitions have been processed.

During a parse of a Task definition, all the syntax encountered is translated into C. 

The nature of the SIDL language ensures that the code generation is straight forward. 

Only when certain control constructs peculiar to SIDL are met is there recourse to the 

use of tables. Once all the task definitions have had their appropriate code generated, 

that code is copied to the output C program and the merge continues.

The end result of the parse is a SIDL program listing which will contain any syntax 

errors reported. If there are no errors then a C program containing the prototype 

interaction is produced. Application specific procedures can then be added and the 

resultant program is ready for compilation.
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3.7. Summary

In this chapter, we have presented the reader with the reasons for the design of a 

language for graphical interaction programming. The language and its implementation 

have been presented. Examples showing its syntactic structure have been described.

In the following chapter we look at some of the issues which arise from interaction 

management. We show how these are resolved by using the new interaction model 

and its implementation.
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4. Using the New Interaction 

Model

In this chapter, we discuss some of the problems that are typically found with 

interactive graphical programs. These problems are discussed from the baseline of our 

new interaction model proposed in chapter 2. The solutions for these problems are 

presented. In addition, we look at some problems which arise because of our model. 

These can be regarded as the inherent disadvantages of using our model. The 

discussion is illustrated with a mixture of example code generation and pseudo-code.

4.1. Task synchronisation

All good interfaces must allow unrestricted asynchronous activity from the user. This 

freedom, however, makes the menu management a less than trivial problem. It is easy
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to envisage the case where the user makes ad hoc selections from the menu buttons 

thereby initiating various functions and so losing any idea of what is happening. 

Where initiated tasks require additional parameters (such as selections from another 

menu), the problem is even more acute. The user must be able to select another task 

while the current task is waiting for a parameter, and still be able to return to the 

earlier task with the current state of that task intact. Furthermore this facility must be 

provided in a manner that is user friendly.

These objectives have to a large extent been achieved in the new model by enforcing 

a sub-structure over the tasks initiated from the menu.

An examination of menu-driven applications at Bath indicates that tasks initiated from 

menus can be divided into three categories:

tasks which run to completion when selected;

tasks which require one or more parameters before running to completion;

tasks which, when selected, set parameters to be used by other tasks.

Furthermore, tasks can be assigned to Mutual Exclusion Groups, such that at most 

one task from a group can be active at any time. In addition, the mutual exclusivity for 

a group extends to any preserved tasks. We can infer three rules to control these 

groups.

Rule 1:

Each group can have an active task, so suppose task A is in a different group 

from active task B. If the user now selects task A, then task B has to be 

preserved. It can therefore be re-instated later.

Rule 2:

Suppose tasks B and C are in the same group. If B is active and C becomes 

active, then B has to be killed because the user has indicated a preference for C.
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Rule 3:

Suppose B has earlier been preserved and that C is in the same group. If C now 

becomes active, then the preserved state of B has to be discarded. This is 

because this rule has essentially degenerated into Rule 2, thus the user has 

again indicated a preference for C.

4.1.1. Task management algorithm

The task management rules are implemented by a set of tables, a stack and two 

primitives which are accessible to the SIDL designer. Each task definition includes a 

call to these primitives. The Bsync(t) primitive is called as the first action in the start of 

the Perform section and the Esync(t) primitive is called as the first action of the finish 

stage.

The Bsync function identifies the type of the task and the group within which the task 

has been specified. Tasks can be of the types described earlier in section 4.1. In our 

implementation the groups are simply a set of arrays. The function then performs the 

following task management (related to the menu) according to the task type.

if the task is one where a parameter has been set, then the function simply kills the 

task which is active in this group (there is implied mutual exclusion) and carries out 

menu management activities i.e. switching on and off the appropriate menu buttons.

if the task is a run to completion type then the function searches all the groups. If 

there is any active task its state is preserved in the stack and the menu management 

activities are executed. Usually, only tasks which require additional parameters will be 

affected.

Finally, when the task is one which requires additional parameters then the process is 

more complex. Firstly, the tables used to store the status of a task are searched for ail 

active tasks. If an active task is a member of the same group as the current task then 

that task is killed, if the active task is a member of another group then the status of

- 7 3 -



B S Bam Using the New Interaction Model

that task is preserved on the stack. Secondly, the stack is searched for any tasks 

which also belong to the group of the current task. Such tasks are also killed. This is 

to maintain the mutual exclusivity of the group. The standard menu-management 

activities are again performed.

The Esync(t) primitive is much simpler in operation. Similarly it determines the group 

and task type of the current task, then according to the task type it performs some 

basic operations.

For tasks which set parameters to be used by other tasks, it simply freezes the task. 

The menu button light is not switched off, because it is used to indicate the current 

parameter that will be used by other tasks. Run to completion tasks and tasks which 

require additional parameters are processed in the same manner. Firstly, the menu 

button light corresponding to this task is switched off and the task frozen. Secondly, 

the top of the stack is popped and the task now available is made active, its menu 

button light is put on and to all intents and purposes this is the current task.

4.1.2. Grouping tasks

The exact manner in which the tasks are collected into groups is determined by the 

application designer. Typically the procedure is as follows. By and large, apart from 

some low-level details, the functionality of an application is determined by the number 

and type of menu options available. Thus menu options which perform similar tasks 

are put in the same group, menu options which require the same number of 

parameters or the same type of parameters may also be classified in one group.

If we look at an example the classification method will be clarified. Consider the 

Vecfnt Graphics editor developed at Bath (section 3.3). The menu options are:- White, 

Black, Complement, Selfont, Savefont, Left, Right, Up, Down, Horline, Verline, 

SelChar, SaveChar. White, Black and Complement are examples of tasks which, 

when selected, set a shared parameter to be used by other tasks. In this case they
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set the ink or mode of action in which the editing task operates. The editing task 

simply fills in a box (pointed to by the user) in the edit grid area with the current ink. 

Because of their similar function they can be put in the same mutual exclusion group.

Tasks Left, Right, Up and Down shift the character currently being edited in one of 

four directions. They are examples of run to completion tasks. They can also be put in 

one group.

Selchar and Savechar are tasks which allow the user to select a character from the 

font area for editing or to save the current character in the font. They require a 

parameter (button click within the font grid) before running to completion. They are put 

in one mutual exclusion group.

We can now demonstrate how this method allows relatively unrestricted use of the 

menu.

Suppose the user has created a character in the edit grid area, and they are now 

ready to save the character in the font grid area prior to storing on disk. The user 

selects the task SaveChar. This task requires a button press over the font grid area 

before it runs to completion. The user has not yet supplied the button press and during 

the next few seconds decides to shift the newly created character towards the left. 

They do this by repeated selection of the Left task from the menu until a satisfactory 

position is reached. The user then supplies a button press in the font grid area and the 

character is saved in that grid accordingly.

Hidden to the user, task SaveChar was suspended and, because task Left was of a 

different type and therefore in a different group, Left executed and control was 

returned to SaveChar.

4.2. Parameter collection
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The collection of parameters (detection and decoding of button activity) is a problem 

encountered in most graphical interaction problems. In this section we look at some of 

the problems and their solutions (if any).

4.2.1. Parameter counting

Typically, task definitions require the user to specify the events necessary for a task to 

run to completion. Where these events are unique there is no obvious difficulty. 

However serious problems arise when two or more identical events need to be 

detected. Events are considered identical if both the button type and the region are the 

same.

In the painting system developed at Bath[58,57] there is a command Vwipe to paint a 

rectangular region on the screen with a graded range of colours. The user specifies 

the rectangle by clicking two diagonally opposite vertices in the drawing region. The 

two extreme colours are specified by clicking two entries on the palette region. The 

operation completes by interpolating colours as it draws horizontal lines to fill the 

rectangle.

To avoid constraining the user, collection of the parameters can be done in any order. 

The action to be taken when a particular parameter is collected therefore depends on 

its sequence number within a particular region. For example, the first event in the 

drawing region marks the first comer of the rectangle. This results in a rectangle being 

rubberbanded on the screen from the marked position. The receipt of a second event 

in the same region results in the second comer of the rectangle being marked. The 

user selects the range of colours by two events in the palette region. Provided that a 

count is kept for each region the colour and the rectangle parameter collection can be 

interleaved. Thus the user can point to one corner, then to its colour, then to the 

second corner and finally to its colour. Alternatively the user could indicate both 

corners of the rectangle and then both colours, or even both colours and then both
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corners.

A critical observation is that each event, although not unique, may have actions 

associated with it which depend upon the count. We can decide when to call worker 

task for this command by keeping a total count of the number of parameters collected.

Example

For the task Vwipe (from UltraPaint), the interaction requirements are two window 

regions Palette and Drawpad; two button presses to mark the region and two button 

presses to select the colour range.

The actions to be associated with the parameters as they are collected are as follows:

Menu:
1: Make the task active;

Palette:
1: select first colour;
2: select second colour;

Drawpad:
1: fix first corner
2: rubberbox rectangle from the first comer to current cursor position.
3: fix second corner and draw rectangle.

Thus for these requirements, the first new button press in the Drawpad area fixes the 

first comer of the wipe region. The next stage (2) is actually a dummy button press 

used for breaking up the interaction into convenient sections. The second button press 

(stage 3) is the second comer of the rectangle and results in the wipe region being 

marked out. The interaction for the Palette region operates in a similar fashion.

We can now describe the implementation of this example interaction. Firstly, the 

relevant window region counters are initialised. The Gather section attempts to collect 

the various events as the user supplies them. The task is initiated by a button press in 

the menu region. The start section carries out any necessary menu synchronisation
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and the task suspends. When any of the other required events occur, the appropriate 

window counter is incremented and the middle section is executed. Also during the 

Gather, the current window variable is set. The middle section then performs the 

application procedures specific to the current event being processed. Thus if the first 

event in the palette region is being processed, the current window is palette and the 

first event is that associated with selecting the first colour. Again the task suspends. 

The Gather section also checks if all the parameters have been collected. If this is so, 

the finish stage of the perform section is executed. This contains the application 

procedure to perform the wipe.
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initialise palette_counter to 0 
initialise pad.counter to 0 
Task VWIPE:

Gather:
begin
if Event (new, menu) then Run (t, start); 
else

if Event (new, palette) then 
begin
increment palette_counter; 
set current_window to palette;
Run (t, middle); 
end

else
If Event (new, drawpad) then 

begin
increment pad_counter;
set current_window to drawpad;
Run (t, middle); 
end

else
begin
Run (t, middle);
if complete set then Run (t, finish); 
end;

end;
Perform: case stage of 

start: begin
Bsync (t);
Suspend (t);

end; 
middle: begin

case current_window of 
palette:case pa!ette_counter of 

1: select first colour;
2: select second colour; 
end;

drawpad :case pad_counter of 
1: fix first vertex,
2: rubberband.
3: draw rectangle; 
end;

end
Suspend (t);

end;
finish: begin

wipe_region (vwipe);
Esync (t);
Freeze (t); 
end;

end;
end;
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4.2.2. Parameter anullment

In section 4.1 we looked at how tasks initiated from menus are synchronised using 

similar tasks grouped together into tables and a set of rules which operate on these 

tables. This method presumes that, if two tasks are in different mutual exclusion 

groups and they require the same parameter, only one collects the parameter because 

the other task is inactive. However, this does not actually happen, consider the case 

below.

There are two tasks T1 and T2 in groups 1 and 2 respectively. Their order in the 

scheduling loop is:-

procedure try (t, op: Integer); 
begin 

case t of
T1: action;
T2: action;

end;
end;

1) Task T2 is made active, the system then cyclically executes the T2 gather section 

and attempts to collect its parameters.

2) T1 is selected (made active); this results in T2 being killed and its current state 

being stored for future reactivation according to Rule 1 as stated in section 4.1.

3) T1 is now active and periodically attempts to collect its parameters.

4) The user provides the parameter which T1 collects and it runs to completion. The 

primitives, operating on the tables, then re-initialise T2. These primitives are called 

after the T1 has run to completion, but since T2 is lower down the scheduling bop and 

the parameter just collected for T1 has not been cancelled , it is reused for T2.
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There is an obvious method by which we can solve this particular problem but it is also 

clear that the solution would remove advantages of the system we may wish to keep. 

The solution is to anull all parameters when a task is re-initialised by the mutual- 

exclusion primitives. Thus in the example above, at step 4, prior to re-initialisation of 

T2 the parameter is anulled and so T2 would be forced to wait at least one scan of the 

task pool.

A disadvantage of this solution is that it prevents the sharing of parameters between 

tasks (section 4.2.4). This disadvantage is overcome by an simple extension to the 

proposed solution. We can either introduce an additional attribute for a task 

specification which indicates whether a task may or may not share parameters or we 

can introduce a similar attribute for a parameter declaration. This would indicate if the 

particular parameter is to be reusable. This second extension is preferable.

4.2.3. Binding parameters with a particular task

The method of choosing to which task a parameter should be bound needs attention. 

Consider two tasks, T1 and T2, which require two pairs of parameters (x,y 

coordinates). They have the same interaction requirements and perform the same 

function i.e. drawing a line between two user selected endpoints, with one subtle 

difference. T1 operates in Window W1 and T2 operates in Window ANY. See figure 

4.1. The user interacts as follows:-

(1) T1 is made active; The first (x,y) pair for T1 is collected by a button press in W1. 

This results in that point being fixed and rubberbanding ensuing. The rubberbanding is 

restricted to W1.

(2) T2 is made active; the first (x,y) pair for T2 is collected, however this does not get 

decoded as the second (x,y) pair for T1 because the Event occurred outside W1. 

(Remember, an event/parameter is a combination of a buttontype and a window
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(1): Rubberbanded line in W1

(2): Rubberbanded line in ANY

Figure 4.1. Binding Parameters with a Particular Task.
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region.) Rubberbanding for T2 also commences.

We now have T1 and T2 both active, both having collected their first parameters and 

both are rubberbanding. We should note that T2 can rubberband over W1 because 

W1 is contained within window ANY. Therefore a button press in the W1 area will 

serve as the second (x,y) pair for both the tasks.

This scenario assumes that T1 and T2 exist in different mutual exclusion groups: it is 

this property that allows them to be active simultaneously.

Clearly, it is desirable in some cases to collect the second set of parameters 

separately for each task. This can be done at the application design stage. When the 

designer is allocating the groups to which tasks will belong, they can decide that in this 

case, T1 and T2 are essentially the same, so they can be assigned to the same 

group. Thus according to Rule 2 the above scenario is not possible, and the problem 

disappears.

4.2.4. Binding parameters with more than task

The converse of the above problem, for a parameter to be matched to more than one 

task, is often a requirement. This is easily done and again it is specified at the design 

level.

The designer puts the tasks with similar parameter requirements (where they have 

also decided that parameter sharing is an advantage) in two different groups. The 

natural hierarchy enforced by the scheduler ensures that the parameter gets used 

twice. Again with reference to the painting system UitraPaint we can illustrate this case 

with an example.

The Blend task is an editing operation on the colour palette in UitraPaint. Using the 

RGB colour model, the colour palette entries between two user-selected colours are 

blended to give a range of colours between them. The granularity of the blending
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operation depends upon the number of entries between the two colours. Blend, like 

Vwipe (in Section 4.2.1), uses two button presses in the palette region.

Consider the following scenario. Task Vwipe is currently active and it has two of its 

four parameters collected, namely those which mark the rectangular region which will 

subsequently be painted. Task Blend is selected and so, following rule 1, Vwipe is 

saved. The user then supplies the Blend parameters, Blend is performed and 

subsequently freezes. Task Vwipe is initiated and since it has been specified so that it 

is executed after Blend, the parameters are used for this task as well. The fact that 

there is an inbuilt dependency between tasks could be construed as a disadvantage 

but in practice it reinforces the notion of a top-down structure. Thus in this particular 

example, Vwipe can reuse parameters originally collected for Blend but not vice versa.

4.3. Task management

This section emphasizes some of the ideas put forward in section 4.1 and presents 

discussion of some thoughts that arise from problems in task management.

4.3.1. Aborting tasks

There is often a requirement to abort a task. This may be for a number of reasons. 

The user may have inadvertently selected an undesirable parameter. For example a 

line may have had its first vertex positioned incorrectly. Or the user may simply no 

longer require that task. Whatever the reason, the actual mechanics of task abortion 

depends upon the type of the task and the problem environment. We are dealing with 

highly interactive applications, where the vast majority of the user’s time is spent on 

waiting rather than doing things, thus there is no great overload on the user. It is 

reasonable to expect the user to carry out additional interactive activity and apply the 

existing facilities to return to the desired state.
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The simplest method of implementing task abortion is via the menu. We could have 

allocated a specific task to abort other tasks but this would mean adding a hierarchy to 

the menu structure. Remember, that our menu items are already in a group structure. 

Instead, the mutual exclusion groups are used to implement the task abortion facility. 

Note that our meaning of task abortion is restricted to aborting those tasks which have 

not yet completed collection of their parameter set. Thus run to completion tasks 

cannot be aborted. Task abortion is quite distinct from ’Undo’, in that ’Undo’ is 

something that the designer would include in his or her design if it was necessary.

Tasks can be killed via the following methods. Selecting an alternative task will abort 

the first task if both tasks exist in the same mutual exclusion group (From Rule 2). 

Re-selecting the same task can have one of two effects. If part of the parameter set of 

the active task has been collected then the task remains active, but it returns to a 

stage where no parameters are available (The start stage of the task). If no 

parameters have been collected then the task is killed.

4.3.2. Run to completion tasks that are slow

An interactive application will often contain a run to completion task which takes more 

than thirty seconds in completing its purpose. Thirty seconds or more can be 

considered a long time in a highly interactive application because feedback about the 

progress of the task is desirable. Moreover, the user will not wish to be tied to that 

task, they may want to perform some other interactive task.

In the painting system UitraPaint, the Fetch command gets a picture from disk and 

puts it in the painting region. Disk access can be slow so a long delay is possible. 

We can show how to implement this function with the interaction model as follows.

Firstly, the Fetch procedure is designed so that it delivers portions of a picture from 

the disk. Each invocation of the Fetch procedure brings in a new portion of the picture. 

Thus the data structures holding the picture need to be of such a design to allow that.
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Secondly, the Fetch procedure has to send some information back to the interaction 

model about its status. Thus when the final portion of the picture has been sent it 

returns a value via its function parameter.

case fetch:
switch ( o p ) {
case Gather: If ( event (new, menu)) run (t, start); 

else
if ( Signal) run (t, finish) 
else run (t, middle);

break; 
case Perform:

switch ( stage) { 
case start: Bsync (t);

readfile(); r  1 7  
Suspend (t); 
break; 

case middle:
If ( fetch () )  Signal (ON);
Suspend (t);
break;

case finish:
Freeze (t);
Esync (t); 
break;

}
break;

)
break;

Thus this task behaves in the following manner. The task is first initiated by a button 

press in the menu. The procedure readfile is invoked to carry out the basic 

housekeeping for the Fetch procedure, such as opening files and setting the Signal 

flag.

On the second and subsequent cycles of the scheduler, Fetch is executed, this brings 

in portions of the picture. A check is made to see if all the picture has been fetched
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and if so, a flag, is set. This flag is used to perform final task synchronisation.

By making it easier to break up a task into smaller sections it is possible to interleave 

long running tasks with other tasks the user may wish to perform. With this scheduler, 

other tasks can easily be set up and parameters collected easily.

4.3.3. Task hierarchies

There are essential two types of task hierarchy. There is a hierarchy between tasks 

defined within the same interactive application and there is a hierarchy over 

applications embedded within one another. In the first instance some tasks are 

permanently scheduled because they are required all the time: cursor tracking and 

menu management are good examples. Secondly, there may be a requirement to 

have nested graphical programs. For example, during the development phase of an 

application there will be a need to perform debugging operations. These operations 

may require the use of an interactive graphics debugging aid. Typically the debugging 

aid will have to be invoked by a menu option within the application currently being 

developed.

During the development of UitraPaint an interactive graphics debugging tool 

DEBUG[55] was produced. DEBUG is itself an interactive program, it has its own 

tasks, menus, and its own control of the puck. The tool was subsequently redesigned 

using our new interaction model.

This simple inclusion of an Interactive program within another maintains the inherent 

topdown nature of the scheduler design but it does mean that there are some 

duplicate tasks. For example, the cursor will be read twice, once by the main 

application and secondly by the DEBUG program. There will also be two scheduling 

loops. Obviously, control will return to the outer scheduler once DEBUG has been 

terminated.
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4.4. Multi-button pucks

Using the New Interaction Model

Discussion in this and earlier chapters has centered around pucks which have only 

one button. Pucks with more than one button are modelled to behave as if they have 

only one. This restriction was chosen because it was felt that most interactive 

programs can have a satisfactory user interface with only one button. Only 

occasionally is it desirable to have more than one button.

Even so the interaction model must allow for this, and the model implements multi

button pucks in the following manner.

We can consider the press of a specific button as a special task, a primitive task in the 

same group as that of moving the cursor or detecting button presses in the menu. 

The following sample of C code is an example of the typical code that is generated 

when multi-button pucks are specified.

The task is specified in SIDL but it is given special attributes so that it is initially active, 

and is independent of being initialised from the menu. It is also an example of a task 

that does not freeze on completion of its associated primitive.

case leftbut:
switch (op) { 
case Gather:

If ( event (button (new, 2 ))  run (t, start); 
break;

case Perform: 
cursorsize (up);
Suspend (t); 

break;

}
break;

Figure 4.2 Monitoring a specific button.
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In the above example derived from the graphics debugger, a specific button press is 

detected and in this case the result is an increase in the size of the rectangular cursor. 

There is a corresponding task for decreasing the cursor size and this is associated 

with another button.

4.5. Window management

Typically, windows provide an environment for task interaction. Many applications 

however, also include interactions where the window itself is an active member. The 

interaction needs of such windows vary and we have broadly classified the following 

requirements.

1. Picking and dragging of objects/windows.

2. Resizeable windows.

3. Invisible Windows.

4. Overlapping Windows

5. Static or movable windows.

All these cases are required when implementing the user interface of window 

management systems. The user interface to such systems can be built using SIDL 

definitions, constructs and special primitives previously defined.

In Chapter 3 we described some the window types available. The general approach 

taken is as follows. Windows which can be resized or re-positioned (cases 2 and 5) 

have special regions generated for them. The interaction model has been extended to 

detect events in these regions and there are pre-defined tasks which carry out the 

required functionality. The Bitmap primitives used for scrolling purposes have been 

developed at Bath[56]. These tasks and regions are only generated if such windows 

are declared. Windows which are invisible can not have events associated with them.
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4.6. Summary

In this chapter we have discussed some of the issues that arise in interactive graphical 

applications.

We have shown how our new interaction model overcomes menu synchronisation 

problems by enforcing a sub-structure over the elements in the menu.

We have described a number of interaction problems associated with parameter (user 

input event) collection. In particular, problems concerning multiple identical events, 

parameter reuse and binding of parameters have been highlighted.

The natural hierarchy of tasks within an interactive application has been described. In 

addition we have shown how multi-button pucks and their interaction requirements can 

be utilised by our new interaction model.

This chapter has indicated how the abstractions presented in our new interaction 

model effectively illustrate the problems and issues that surround graphical interaction 

management.

In the next chapter we will look at a number of alternative models for interaction 

management. The models will be presented and a comparison with our own model 

made.
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5. Comparison of SIDL with 

Other Models

We need to place the interaction model and the specification language SIDL described 

in chapters two and three in the context of related models and techniques. This 

chapter is a detailed study of two methods mentioned in chapter one. Emphasis will 

be given to a specification language for interface design based on transition diagrams 

and secondly to object-orientated techniques for user interface design. These 

methods will be compared with our own approach.

5.1. The State diagram method

The use of state transition diagrams has a long history stretching back to Newman’s 

"reaction handler" and they have also been used to provide a visual programming
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metaphort31]. However, for the purpose of this chapter we will concentrate on the 

recent work of Jacob[32].

In this work, direct manipulation user interfaces are discussed. A direct manipulation 

user interface is characterised by an interacting collection of active and/or responsive 

objects. These objects are graphical in nature. Once an object has been selected by 

the user, a dialogue associated with that object begins. Thus the user sees a multitude 

of small dialogues each of which may be interrupted or resumed under the control of a 

master dialogue. Note that this is similar to the behaviour of co-routines.

Traditionally, user interfaces are highly moded, which has made them eminently 

suitable to be represented by state transition diagrams in which the various modes are 

described by a particular state. Direct Manipulation or interactive interfaces however 

appear modeless. Many objects appear on the screen and the user can apply a 

standard set of commands to any object. Thus the system always appears to be in 

some "universal" or "top-level" mode. However a closer study reveals that there is in 

fact a number of distinct modes. For example, moving a cursor over a pixel object 

results in a mode change, because the set of possible user actions has altered. The 

user may or may not select the object, but at least the choice is there. While the 

cursor was not on the object, that choice did not exist.

If direct-manipulation interfaces are not really modeless why do they appear to 

possess the advantages of modeless ones? The main stumbling block to moded user 

interfaces normally occurs at the mode change boundary. If the mode change can be 

made transparent to the user then the interface will appear modeless.

The specification language can now be described by focussing on a number of points.

1. It is generally accepted that a direct-manipulation interface is comprised of a 

collection of objects[52] and thus the specification language is centered around a 

collection of individual objects called interaction objects. Each such object has its own 

dialogue specification. Such an object is also the smallest unit with which the user
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conducts a meaningful dialogue.

2. The individual dialogues relate to each other as a set of co-routines, where each 

interaction object can suspend and resume from a retained state. There is also a 

master executive co-routine.

3. Despite the surface appearance, there is a definite set of modes or states and thus 

state transition diagrams are a suitable notation for describing the dialogue for 

individual objects. Each individual object conducts a single-threaded dialogue with 

serialised input and retained states whenever the dialogue is interrupted by that of 

another object.

The specifications of individual objects are combined into an outer loop by the use of a 

standard executive which operates by collecting the state diagrams of all the 

interaction objects and executing them as a collection of co-routines, assigning events 

to them and arbitrating between them as they proceed.

5.1.1. Tokens and component objects

A collection of low-level inputs and outputs which can be invoked by state diagrams is 

defined by Jacob. Examples for input are button clicks and moving into specific 

regions. For output they include highlighting, rubberbanding or other continuous 

feedback. The internal details of these tokens are specified in some other distinct 

manner.

Interaction objects may also be defined as a combination of other objects. They are 

automatically instantiated whenever the enclosing object is created. They are 

essentially instance variables.

Before we proceed with a discussion on the two models, it is helpful to give an 

example. The example below is derived from Jacob[32].
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5.1.2. An Example specification

A common interaction found in graphical interfaces is that of the ScrollBar. The 

specification of ScrollBar is shown in figure 5.1. To use it the user points to it and 

presses a mouse button; then as the mouse is moved, the bar on the screen drags to 

follow it. When the button is released, the display is scrolled in proportion to the new 

position of the bar. From contains a list of other interaction objects from which this 

one inherits elements. Ivar is a list of instance variables and their initial values. 

Methods are procedures unique to this object which are essentially the semantic 

component of the interface. Tokens are definitions of each input and output token 

used in the syntax diagram. Syntax is the input handler for this object. The diagram 

specifies the sequence of the dialogue. States where the dialogue can be suspended 

are shown with"+".

In this particular Interaction object, the diagram explicitly handles the unusual case 

where the user depresses the button and, while holding it down, exits the scroll bar, 

possibly performs other interactions, reenters the scroll bar with the button still pressed 

down. This object will resume dragging when the cursor enters the scroll bar. For 

comparison the scroll bar specification in SIDL is presented below.

Jacob’s specification has particular states where the interaction can be suspended. In 

the scrollbar specification, these states are: prior to the scrollbar interaction being 

initiated; the cursor entering the scrollbar region; during the update of the scrollbar 

position and finally when the interaction has been completed. Similarly, the SIDL 

specification also has states: prior to the task being initiated; during a scrollbar update; 

and finally on completion of the task.

A clear difference between the two scrollbar specifications is that the SIDL 

specification does not allow for the unusual case described above. In the paper, 

Jacob has not made it clear if the user performs other actions with the button pressed
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INTERACTION_OBJECT Scrollbar is

FROM: Genericltem;
IVARS:
position;
legend; := ’’Scroll” ;

METHODS;

Draw 0  { DrawBar (position, legend, scrollOffset); }

TOKENS;

iMove { —Any mouse motion within boundaries of position,
—return scaled X coordinate of mouse in scrollOffset—}

iLEFTDN { — Overloads standard definition of iLEFTDN with one that accepts 
— same click then sets scrollOffset;= scaled X coord of mouse— }

oSHOWBAR { — Fill or erase bar up to location corresponding to scrollOffset —}

SYNTAX:
main

Act: ScrollDisplayEntries (scrollOffset )

iENTER iLEFTDN oSHOWBA: iLEFTUP

iMOVEiEXIT iEXIT

iENTER iLEFTUP

Act: ScrollDisplayEntries (scrollOffset)

end INTERACTION_OBJECT

Figure 5.1. Specification of a Scroll Bar. (From [Jacob 86]
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down. Other user interaction may require the button in a released state, thus handling 

this unusual case is unnecessary complication. For example, the user may need to 

manipulate another object. On completion of the second interaction, they return to the 

scrollbar interaction. The suspended state of the scrollbar interaction requires the user 

to enter the scrollbar region with the button pressed. If the scrollbar is entered with the 

button in an up state then the scrollbar interaction is re-initiated from the first state. 

The provision of the additional state is unhelpful to the user and is not provided by 

SIDL.

A useful advantage of the SIDL specification is that the scrollbar can be adjusted by 

keeping the button pressed with the cursor anywhere on the screen. Thus it is not 

necessary to maintain the cursor over a small region and perform intricate interactions. 

Jacob’s specification restricts the interaction to the scrollbar region.
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Interaction test;

Type

Endtype

Window scrollbar_region;
Do

I* scroll bar size and current position */
End

Task scrollbar;
DO

Gather;
If New Button(l) In scrollbarjregion Then 

run(t,start);
Else

If Pressed Button(l) In any Then
run(t,middle);

Else
If Released Button(l) In any Then

run(t,finlsh);
Perform;

Start: grab_scrollbar;
suspend(t);

Middle: move_scrollbar();
suspend(t);

Finish: position_scrollbar(); 
scroll_region(); 
suspend(t);

End
Fig 2. SIDL Specification of a scroll bar.

5.1.3. Discussion of the state diagram method

The State Diagram model describes the main interaction in the graphics area as a 

single thread dialogue with a main command loop. The command loop is implemented 

as a "super co-routine". Our interaction model also has the same basic structure. As 

described in chapter three, it is composed of cyclical scan of a task pool. Each active 

task enters its own dialogue and suspends according to its state and the number of 

events it has processed. In the interaction model the suspension of tasks is controlled 

by primitives embedded within task bodies whereas in the state model all such control 

is determined by the executive.
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A direct manipulation interface is described as a collection of interaction objects, each 

object being implemented as a co-routine. In the interaction model, an interactive 

graphical application is also decomposed into individual tasks through which the user 

conducts a dialogue. Here the principles are the same with just alternative terminology.

A co-routine goes through a number of states depending on the complexity of the 

dialogue. It only suspends on those states where it expects input. Similarly Tasks go 

through a number of states. However in the interaction model there are initially only 

three states: start, middle and finish. If a dialogue is sufficiently complex to require 

further states then the middle stage is sub-divided. This will only occur when there is 

a large number of events to be processed, in which case the criterion for sub-division 

is determined by the parameter count mechanism as described in chapter four. The 

state diagram model simply includes additional states as necessary, but in a less 

structured way.

When a co-routine does suspend, the executive retains the state of that co-routine. As 

additional input tokens arrive, they are arbitrarily supplied to other co-routines currently 

suspended and waiting for that token. If there is more than one co-routine waiting for 

that same token a random choice is made. Jacob claims that in typical designs there 

will only be one co-routine waiting. Similarly in the interaction model, events/tokens are 

only supplied to active tasks (this is analgous to a suspended co-routine). In the case 

of menu-driven applications the problem of more than one task waiting for the same 

event is abstracted out by use of an enforced structure over a menu. This is explained 

in detail in section 4.1. In simpler cases the cyclical scan of the scheduler determines 

which active task receives the token.

The single threaded nature of the dialogue is inherent in both models: in one it is 

represented by state transition diagrams; in the other it is described by procedural 

statements.
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In both models, cases of invalid events/tokens can easily be handled. In the state 

model, this normally requires an additional state and arc within the diagram. In our 

model the invalid events are removed at the procedural level. In both cases 

input/output primitives are specified separately typically by the use of an orthodox 

programming language. In the state model the presentational component is handled 

separately whereas in the interaction model the presentational component is specified 

within the interaction program albeit in a separate section.

There is no distinction made between the user and application interface in the state 

model. Both interfaces are embedded within the syntax section. In the interaction 

model the dichotomy is clearly visible and manifests itself by the Gather and Perform 

sections.

Finally, Jacob has only specified simple interaction dialogues are. No attempt has 

been made to indicate how tasks requiring multiple identical events can be catered for.

Concluding, there are basic similarities between the two models. Differences appear 

to be cosmetic apart from the decision to implement as a set of co- routines or as a 

fixed scan.

5.2. The object oriented approach

In this section we present a brief overview of the history and underlying concepts of 

object oriented programming (OOP), we show how it has been used to design user 

interface management systems and more significantly we show how OOP has been 

used to study the interactions in graphical programs .

5.2.1. History and basic concepts

The history of object oriented programming has its ancestory in the programming 

language Simula. However the term became first associated with Smalltalk[21].
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Smalltalk is a sufficiently general instance of an object oriented programming language 

that a treatment of it will suffice for both.

The Smalltalk programming environment was one of earliest products from the 

Learning Research group at the Xerox Palo Alto Research Center. Smalltalk is 

comprised of four pieces, a programming language kernel, a programming paradigm, a 

programming system and a user interface model. There is not however a set of clean 

cut boundaries.

The syntax and semantics of the Smalltalk compiler are provided by the programming 

language kernel. The programming paradigm is the style of use of the kernel. The 

programming system is the set of system objects and classes that provide the 

framework for using the kernel and the paradigm. The user interface model is a 

combination of the given user interface and the tailored user interface. It is the use 

and usage of the systems building materials.

5.2.2. Basic concepts

Objects

The Smalltalk world (figure 5.2) is populated by items seen uniformly to be "objects”. 

These objects are the sole inhabitants of a universe. In the diagram, the objects and 

classes referring to the programming paradigm and the language kernel are the object 

oriented aspects of Smalltalk.

Objects are uniform in that they all have the following properties:- inherent processing 

ability, message communication and a common appearance, status and reference. 

Further, no object is given any particular status, thus a "primitive” object such as 

integer has the same class and properties as a user defined object. An object is also 

referenced as a whole. An object cannot act as if it has been opened unless it has 

been given the means to display that type of behaviour. Thus an object can behave
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Figure 5.2. The Smalltalk World
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like a Pascal record type if it has been given the methods to do so.

The individually accessible components of an object are called the instance variables. 

They can be both named and indexed. For example.

1. An object of class Point has named instance variables x and y which identify the 

coordinates of a point.

2. An object of class Array contains only indexed instance variables. These are 

identified by the integers 1 to the number of instance variables of the array.

Objects are self-describing, they include sizing information (number of instance 

variables) and the class to which they belong.

Classes are the program modules of Smalltalk. Like the abstract data types provided 

by the modules of Modula-2 and the packages of Ada[60], a class specifies the 

instance variables contained in the objects of that class and the methods (functions) 

that operate on the objects.

Smalltalk Classes are organised into a hierarchy with the class Object at the top. 

Superclasses are more generic; sub-classes are more specialised. A class inherits the 

named instance variables and methods of its superclasses.

Consider part of the Smalltalk hierarchy for the class Magnitude.

Magnitude
Character
Date
Time
Number

Float
Fraction
Integer

The class Magnitude contains methods for calculating the maximum and minimum of 

numbers using comparison operators. The class Date will compare two dates, the 

class Float will compare two floating point numbers.
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A Smalltalk terminology translation adapted from Anderson[3] is given below:-

Method

Message

Protocol

Object

instance
variable

Class

a function definition

the invocation of a method i.e. a 
function call

the specification of how a message 
is sent to a method including the 
method name and parameters

a record of fields

a field of a record

a record type and all the functions 
that may be applied to record type.

Processing and Communication

In Smalltalk all processing activity takes place inside an object since an object is 

responsible for providing its own computational behaviour. While an object is carrying 

out some processing it may be independent of other objects but at other times it must 

have a means of communicating with them. This is achieved by the mechanism of 

message passing.

If a user wants an object to carry out some computation, they send that object a 

message. If that object requires data or some further sub-computation to be performed 

by another object it sends that second object a message.

Message sending is uniform in that the same mechanism is used for both a simple 

addition and for a complex file service operation.

Although a message is very similar to that of a function call, there is a subtle 

difference in that the caller of the function is not in control as in orthodox programming 

systems. In OOP the sender relinquishes control both philosophically and actually, so 

the interpretation of the message is left entirely up to its recipient.
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5.2.3. OOP in user interfaces

In this and subsequent sections we will describe some applications of using OOP in 

the design and implementation of user interfaces. Note that OOP has digressed from 

its original meaning (described above with respect to Smalltalk) and it has now come 

to mean abstract data types, data encapsulation, modularisation. This section will 

utilize some of the newer meanings.

5.2.4. OOP for studying interaction

OOP techniques have been used to prototype video game design [37]. Designing 

video games is an extremely expensive and complex process. The user interaction 

functions are particularly complex because of the real-time components of a video 

game. The low-level visual effects are also a difficult element. In the first instance, 

however, the designer must conceptualize his design and in a ideal situation prototype 

this design. To this end, Larrabee and Mitchell have designed and implemented a 

special purpose language which has made the designers’ job easier and therefore 

more creative. In the following section an outline of their approach is described and a 

comparison with the author’s work is also presented.

A game in the special language (Gambit) is different from games in other languages. 

In most languages the objects on the screen are considered as part of the game’s 

global state (possibly as entries in large table) with the games controller maintaining 

the table and performing any necessary calculations. In Gambit however, an object 

oriented model is employed. Objects on the screen are not simply entries in a global 

table, instead, they are described as objects in their own right, with each object 

possessing its own local state and the necessary intelligence to maintain that state.

In most object-oriented languages a rigid chain of control is defined, with one object 

controlling the game and sending messages to subordinate objects as necessary. In
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Gambit this hierarchy is hidden from the user, ail programmer defined objects are 

equal, they ail interact with the system and with other objects. A Gambit object is an 

instance of user-defined classes that are in a class definition module. Each class 

definition contains a specification of what messages an object of that class can receive 

and send and what actions to perform on receipt of a particular message.

At runtime, the objects are instantiated and they interact with the system facilities and 

communicate with other objects via messages.

Space

Objects usually have a display of type picture and a location of type point. Together 

these definitions describe the appearance and position of the object. Objects overlap 

by being layered (similar in analogy to the desktop metaphor in window management 

systems). Objects can also have an interaction boundary and when the interaction 

boundaries of objects overlap the system detects this and notifies the objects if so 

required. Note not all objects will be interested in this condition. For example, an 

interaction may occur between a ball and a wall, but only the ball needs to be notified 

of the collision.

Time

Time is modeled as a master clock that ticks at preset intervals, thus time is relative 

rather than actual. This forms the basis of a scheduler. At each tick a fixed cycle of 

activities is performed.

1. All new user input is detected and the appropriate objects 
notified.

2. Objects that have requested *wake up’ times are sent messages after the 
appropriate number of ticks.

3. Collisions are detected.

4. Objects requiring collision information are notified.

5. The display is updated.
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Events

Asynchronous activity such as a button press is defined as a constant. Event 

constants belong to classes defined by EventNames. Any object can declare an 

interest in an event by the simple inclusion of the event constant in its definition.

The syntax of Gambit is designed in such a way that comparisons with Pascal and 

Smalltalk are meaningful. Pascal-like syntax is used for constructs having the same 

semantics as Pascal. Inter-object communication is borrowed from Smalltalk.

5.2.5. Discussion of the object oriented approach

The particular relevance of this implementation is that object oriented techniques have 

been used to model a highly interactive environment.

Both Gambit and SIDL use Pascal-like syntax for operations which have the same 

semantics. For semantics which can not be represented by existing language forms, 

Gambit uses a Smalltalk adaptation whereas SIDL introduces its own.

Both languages introduce discrete objects into the interactive model. The operations 

that each object can perform and the conditions under which they are performed are 

explicitly declared within the object.

Gambit’s representation of objects is definitely OOP, whereas SIDL tasks are token 

representations of the concepts. Also the design of the SIDL language is closer to the 

procedural block structured model. This essential difference needs closer examination 

and is discussed below.

The OOP model does not require a scheduler in the form used in SIDL. But the 

operation of the clock provides the same semantics. A specific number of activities are 

performed at each tick. We can consider a tick to be equivalent to a single cyclical 

span of the tasks defined in a SIDL program.
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One of the activities in Gambit monitors all user events. In SIDL a number of tasks 

will monitor events that can be considered global; i.e. events that are of interest to all 

tasks. Events which are specific to particular tasks are monitored by those tasks 

themselves. In Gambit, a separate activity informs objects of events just received. 

This bears comparison to a task monitoring events in the menu region of a menu- 

driven program. The task detects a menu button task and then activates (informs) the 

task associated with that button. Further, Events are user defined as constants. 

Objects which will use these events are defined so that they see these event 

constants. This is advantageous as duplication is avoided, however some clarity is 

lost.

The ’detonate’ command normally sends a message to an object when either the 

correct number of ticks has passed or when a specific event which the object is 

interested in has happened. This is similar to the behaviour of a task which has been 

suspended until it receives the event information it needs to proceed. The number of 

ticks could be counted by an additional task which is always active and is therefore 

always scheduled.

The advantages of a proper OOP model become obvious in the case where collisions 

between objects are detected and the objects are subsequently informed. This is a lot 

simpler and cleaner with the OOP model when we consider how we would implement 

something similar using SIDL. We need tasks which simply update the screen with the 

current position of the object. This can either be implemented as separate tasks for 

each object, or one task for all the objects. The tasks will be permanently active and 

thus be scheduled with every cycle of the scheduling loop. An additional task is 

necessary to detect collisions using global information.

Interactions between objects are not easily implemented in SIDL because there is 

usually a need for additional task definitions and the use of complex data structures. 

Gambit achieves this by the message passing paradigm indigenous to OOP.
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If we consider Gambit a bona fide example of Object-Oriented design then the 

preceding discussion has indicated the concepts which SIDL can and cannot easily 

implement, thus the discussion has served as a barometer informing us to what extent 

SIDL is object oriented. In particular all the scheduling and asynchronous user event 

monitoring can be implemented and it is only inter-object communication which poses 

problems.

A general conclusion is that object-oriented design can be mimicked by use of large 

global tables which represent the status of objects.

5.3. Summary

In this chapter two contrasting methods for interactive systems design have been 

described. A comparison between these models and our own interaction model has 

also been presented.

Firstly, an established dialogue design method (state machine) was described. We 

have shown how this dialogue method, when extended for visual programming 

purposes, bears a number of similarities to our own model. A typical interaction 

dialogue has been illustrated using both Jacob’s method and ours. Some of the 

weaknesses in Jacobs’s method have also been indicated.

Secondly, an overview of the fundamental concepts of OOP using Smalltalk-80 have 

been provided. This is important because an increasing number of user interface 

design methodologies display object oriented characteristics. We have described an 

object oriented system for Video Game design (Gambit). This system has been 

compared to our interaction model and the comparison has provided us with a 

measure of the extent of the ’object oriented’ nature of our interaction model.

In the final chapter we give an indication of the success of this research and we 

provide some pointers for future research in this field. We place particular emphasis
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on the software engineering aspects of user interface design.

- 1 0 6 -



B S Barn Graphical Interaction Management

6. Conclusion

The automation of the production of user interfaces has been the main focus of 

research in this field. To this end, a number of models for user interface specification 

have been developed. The automation of user interface production, however, has 

successfully evaded the real and more important issue of constructing user interfaces 

which are based on sound software engineering principles. Even more importantly, 

the ubiquitous nature of interactive graphical software, like that of concurrent software, 

requires the extension of basic software engineering principles.

It was the author’s aim to identify the interaction requirements of interactive 

applications. To be able to perform this task successfully, a number of such 

applications were evaluated. The exercise was undertaken by considering a number of 

significant issues. Firstly, the evaluation had to place the typical design structure of 

interactive applications in relation to existing software engineering methodobgies. 

Thus, software could make use of structured programming techniques but the resulting
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programs were not necessarily well structured.

At a lower level, the construction of individual components of typical applications was 

also studied. In this case it was very clear that the existing methodologies were not 

sufficient. In a wider context, user interface research has not adequately addressed 

the issue of providing mechanisms of constructing those low-level interaction blocks 

which give interactive graphics programs their unique characteristics. The general 

approach has been to provide these blocks as libraries and the developer has no idea 

as to how these blocks have been engineered. Where such details are available, the 

over-riding impression is a lack of visible software engineering methodology.

Having identified the interaction requirements the next step was to provide a new set 

of control constructs which were capable of being used alongside more traditional 

constructs. Further, the fundamental ’repeat ... until' loop commonly found in 

interactive applications was one of the principle sources of problems when considering 

the issues of maintainability and extendibility. Thus a new basic interaction model was 

designed. This new model allows the designer to place both the user and the 

application code in small object-like units. The control constructs can be applied 

consistently so that maintenance and extension of applications constructed with the 

new model are not major problems.

The new model was tested by implementing some interactive graphical applications to 

examine the feasibility of the model as a new design tool. Although the results were 

successful, some additional tool support was still necessary: the final result was a 

specification language SIDL and its preprocessor GRIP.

Future Work

There are a number of points where improvements can be made. We can continue to 

identify additional higher level constructs which are geared towards particular types of
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graphical interaction. However, the author believes that these additional constructs will 

essentially be comprised of the constructs identified in this thesis.

The early evaluation of an interface design is an important area of research and there 

is potential for a number of software tools for this area. Evaluation tools operating on 

SIDL specifications could conceivably perform the following operations.

- Detection of Task Deadlock. This is the case where a task remains in an active 

state because the event it is waiting for cannot be collected.

- Detection of Windows defined outside the screen area.

- Reporting of all overlapped windows, so the user has at least the option of deciding 

whether the specification meets its requirements.

- Comparing specified events with events that are actually possible. For example, an 

event may have been specified but it may not be possible for it to occur (perhaps 

because the window with which the event is associated is outside the screen area).

- Human factors. Here we could look at the colours which have been specified, the 

position of the menu and the typical puck movement across the tablet, for example. 

This particular type of evaluation is currently subject to much research and some of 

the anticipated results are suitable for inclusion in such software tools.

Research into integrated project support environments (IPSEs) has now finally come to 

fruition. IPSEs provide a total software environment for all phases of the software 

cycle. In addition the environment is highly structured and provides both security and 

control over all objects within the environment.

Typically, an IPSE will include a number of software tools: a design methodology tool; 

editors; language compilers; configuration management tools and project management 

tools. It is now a basic requirement of all IPSEs that the user interface across all tools
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and indeed across the entire IPSE should be consistent. SIDL and GRIP could both 

provide a consistent user interface and also be considered as a suitable tool for 

integration into an IPSE. SIDL specifications could form part of design document 

deliverables and the generated programs could be code deliverables.

The science of Software Metrics is now successfully used on conventional software. 

Tools are available which perform complexity analyses on source code. This same 

approach could now be applied to graphical software designs based on the New 

Interaction Model. The analysis would be performed at the design specification level 

rather than the source code level.

In this thesis, the author has identified the shortcomings in existing interactive software 

design. Standard programming constructs are not powerful enough to fully express 

the complexities of an interactive graphics application. This basic inadequacy has 

been successfully translated into a number of interactive programming constructs 

which, combined with the New Interaction Model, provide a means of constructing user 

interfaces which embody sound design technique.

The New Interaction Model and the programming constructs have also provided us 

with a vehicle to discuss the complex issues that surround graphical interaction. In 

chapter 4 we provided a detailed discussion of such issues. Further, this work also 

advances the possibility of a more quantitative approach to examining the needs of 

graphical application.
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Appendix A. The SIDL Syntax

YACC Grammar

Note:

The following symbols are meta-symbols belonging to the extended BNF formalism 

and not symbols of the language SIDL.

::= I { }

The curly brackets denote possible repitition of the enclosed symbols zero or more 

times.
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I DENT and INTCONST are higher level representations for identifiers and integer 

constants respectively.

SIDL keywords are in bold upper-case. 

program ::= restofprogram

restofprogram ::= programheading block END 7

programheading INTERACT IDENT

block ::= optdefnpt optwindandtaskpt optstatpt

optdefnpt ::= emptyj TYPE doblk ENDTYPE

definitions ::= typekeywd IDENT
| MENU IDENT
j typekeywd INTCONST | typekeywd ’=’ types 
j partype OF PARAMS 
| IDENT 7  OF VARIABLE 
| IDENT 7  OF MOTILE 
| MUTEXL mutype OF TYPE 3INTCONST 
| INIT V  ACTIVE
j COLOUR colconst rgbvalue lutentries limitcol 
j constraintdec 
j constraintuse 
j IDENT 7  OF bmaptype 
j parstatustype

parstatustype ::= PARSTATUS pspars

pspars '(’ psblk ’)’
9

psblk ::= { 7  IDENT }
9

bmaptype ::= POPUP | STATIC

colconst ::= IDENT;

rgbvalue ::= ’(’ lut_entry 7  redv 7  greenv 7  bluev')'
»

lut_entry ::= INTCONST
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redv ::=

greenv

bluev

lutentries

limitcol ::=

colours

mutype

mutypeblk

types

typeblk ::=

typekeywd 

constraintuse : 

constraintdec : 

regionorline

conid ::=

INTCONST

= INTCONST

INTCONST

empty | INTCONST

empty | colours

BLACK
| WHITE 
| RED 
| GREEN 
| BLUE 
| MAGENTA 
| CYAN 
| YELLOW

:= ’(’ mutypeblk ’)’

{ 7  IDENT }

’(’ typeblk y

{ 7  IDENT }

::= WINDOWSSY | NUMTASKSY

CONSTRAINT 7  IDENT

:= CONSTRAINT IDENT regionorline

REGION 7  IDENT
| LINE 7  horvertline conid

r  null 7  | *(’ conidblk ’)’
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conidblk ::= xylevel | xylevel leftvert rightvert
»

xylevel ::= INTCONST
9

leftvert INTCONST
9

rightvert :>  INTCONST
9

horvertline ::= HORIZ | VERTICAL
9

optwindandtaskpt::= empty | windtaskdecpt
9

optstatpt ::= empty | statementpt
9

windtaskdecpt ::= windortaskdec | windtaskdecpt windortaskdec
9

windortaskdec ::= windowdec | taskdec
9

windowdec ::= windowheading block
9

windowheading ::= WINDOW IDENT
9

taskdec ::= taskheading block
9

taskheading ::= TASK IDENT
9

statementpt ::= compoundstment;
9

compoundstment DO doblk END
9

doblk | statement | doblk statement
9

statement ::= empty
| simpstatement 
j structstment 
j winassnstment 
j c_statment 
j definitions
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c_statment 

c_body ::=

winassnstment 

horvert ::= 

winkeywd

simpstatement :

procstatement : 

procidentifier 

parblock ::= 

identconst ::= 

labelstment ::= 

startstment 

middlestment 

finishstment ::= 

structstment

empty

::= winkeywd INTCONST
| GRID horvert INTCONST ;

NUMH | NUMV

| WIDTH 
| YBOT 
| XBOT

:= GATHER
| PERFORM 
| VARIANT
j procstatement 
| STUB 
| COLLECT
j INTCONST statement

:= procidentifier | IDENT ’(’ parblock

IDENT

{ 7  identconst}

IDENT | INTCONST

startstment | middlestment | finishstment

START

= MIDDLE

FINISH

compoundstment
| condstment 
j stagestment
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parsdatablk

parsdatastment

stagestment

labelstmentlst

condstment

withpart 

usecondstment 

partype ::=

expression 

optbutid ::=

buttonpart ::=

windowpart 

empty

| usecondstment 
j parsdatablk;

parsdatastment | parsdatablk parsdatastment
9

::= PARSDATA IDENT statement
i

= labelstmentlst statement
9

labelstment | labelstmentlst 7  labelstment
f

= IF expression THEN statement
| IF expression THEN statement 

ELSE statement 
| withpart IF expression THEN statement 
j withpart IF expression THEN statement 

ELSE statement
9

WITH IDENT
9

USE ’(* IDENT INTCONST ’)’ statement
9

IDENT *[’ buttonpart 7  IDENT 7  INTCONST *]’
9

buttonpart optbutid BUTTON IN windowpart
9

empty | ’(’ INTCONST ’)'
9

NEW | PRESSED | RELEASED
9

= ANY | IDENT
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Appendix B. A SIDL Program

The following is a SIDL program for the font editor Vecfnt. The functionality of the 

editor has been described in Chapter 3. The first type section contains the 

presentational definitions and also the specification of the mutual exclusion tables. The 

subsequent blocks define the various screen regions that will be required. The final 

section contains the task specifications implementing the functionality of the program.

INTERACT vec;

TYPE 
MENU menu;
NUMTASK 13;
WINDOWS = (menu,grid,fontgrid,hand1,hand2,hand3);

COLOUR bg (11,200,80,70);
COLOUR dl (12,225,221,225);
COLOUR off col (13,0,120,0);
COLOUR oncol (14,150,150,0);
COLOUR offcol (13,0,120,0);
COLOUR mtext (15,200,200,200);
COLOUR ccol (16,255,255,255);
COLOUR redink (17,200,0,0);
COLOUR blueink (18,0,200,0);
COLOUR greenink (18,0,200,0);

MUTEXL= (backgrnd,foregrnd,compment) OF TYPE 3;
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MUTEXL= (selchar.savechar) OF TYPE 1;
MUTEXL= (line) OF TYPE 1;
MUTEXL= (left.right.up.down.clear.clearfnt.vmirror.hmirror) OF TYPE 2; 
MUTEXL= (exit) OF TYPE 2;

ENDTYPE

WINDOW grid;
DO 

HT: 500;
WIDTH: 450;
XBOT: 100;
YBOT: 400;
GRID: NUMH=32;
GRID: NUMV=32 

END

WINDOW fontgrid;
DO 

HT: 331;
WIDTH: 539;
XBOT: 661;
YBOT: 110;
GRID: NUMH=8;
GRID: NUMV=16 

END

WINDOW scratch;
DO 

HT: 300;
WIDTH: 300;
XBOT: 200;
YBOT: 100 

END

WINDOW menu;
DO 

HT: 489;
WIDTH: 350;
XBOT: 750;
YBOT: 400;
GRID: NUMH=8;
GRID: NUMV=3 

END

WINDOW handl;
TYPE 

handl: OF MOTILE;
ENDTYPE 
DO 

HT: 20;
WIDTH: 20;
XBOT: 400;
YBOT: 400 

END
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WINDOW hand2; 
TYPE 

hand2: OF MOTILE; 
ENDTYPE 
DO 

HT: 20;
WIDTH: 20;
XBOT: 500;
YBOT: 400 

END

WINDOW hand3; 
TYPE 

hand3: OF MOTILE; 
ENDTYPE 
DO 

HT: 20;
WIDTH: 20;
XBOT: 600;
YBOT: 400 

END

TASK backgmd;
DO
GATHER;

run(t,start); 
PERFORM;

DO
bsync(t);
selectop(bground);
esync(t)

END;
END

TASK foregmd;
DO
GATHER;

run(t,start); 
PERFORM;

DO
bsync(t);
selectop(fground);
esync(t)

END;
END

TASK compment;
DO
GATHER;

mn(t,start); 
PERFORM;

DO
bsync(t);
selectop(cment);
esync(t)
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END;
END

TASK selchar;
DO
GATHER;

IF NEW(2) BUTTON IN menu THEN run(t,start)
ELSE

IF NEW(2) BUTTON IN fontgrid THEN 
run(f, middle);

PERFORM;
START: DO bsync(t); suspend(t) END;
MIDDLE.FINISH: DO findentry(fontcomm); 

selchar(); esync(t)
END;

END

TASK savechar;
DO
GATHER;

IF NEW(2) BUTTON IN menu THEN run(t,start)
ELSE

IF NEW(2) BUTTON IN fontgrid THEN 
run(t, middle);

PERFORM;
START: DO bsync(t); suspend(t) END;
MIDDLE.FINISH: DO findentry(fontcomm); 

savechar(); esync(t)
END;

END

TASK line;
TYPE

gridop : [NEW.grid.2] OF PARAMS;
ENDTYPE
DO

GATHER;
IF NEW(2) BUTTON IN menu THEN run(t,start)
ELSE 

WITH gridop
IF NEW(2) BUTTON IN grid THEN STUB 
ELSE 

DO 
$ { $ ;
run(t, middle);
USE (gridop = 2) run(t,finish);
$ ) $

END;
PERFORM;

START: DO on(); $ gridop = -1; $; suspend(t) END;
MIDDLE: DO

$ switch (gridop) { $;
$ case 0: bsync(t); savcod; gridop++; suspend(t); break; $; 
$ case 1: rubberit(xcoord.ycoord); suspend(t); break; $;
$ case 2: suspend(t); break; $;
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$ case default: break; $;
$ } /* switch */ $

END;
FINISH: DO line(xcoord.ycoord); esync(t) END;

END

TASK left;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); procleft(); esync(t)

END;
END

TASK right;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); right(); esync(t)

END;
END

TASK up;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); procup(); esync(t)

END;
END

TASK down;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); procdown(); esync(t)

END;
END

TASK vmirror;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); vermirror(); esync(t)

END;
END
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TASK hmirror;
DO
GATHER;

run(t, start);
PERFORM;

DO
bsync(t); mirrorQ; esync(t)

END;
END

TASK clear;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); cleargrid(); esync(t)

END;
END

TASK clearfnt;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); clrfnt(); esync(t)

END;
END

TASK exit;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t);
finishit();
esync(t)

END;
END

TASK handmon;
TYPE 

handl: OF MOTILE;
ENDTYPE
DO

GATHER;
IF NEW BUTTON IN any THEN run(t.start)
ELSE

IF PRESSED BUTTON IN any THEN mn(t,middle) 
ELSE

IF RELEASED BUTTON IN any THEN run(t,finish); 
PERFORM;

START: DO bsync(t); suspend(t) END;
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MIDDLE:DO suspend(t) END;
FINISH:DO esync(t) END;

END

TASK edit;
TYPE 

INIT= ACTIVE;
ENDTYPE
DO
GATHER;

IF NEW(2) BUTTON IN grid THEN 
run(t,start)

ELSE
IF PRESSED(2) BUTTON IN grid THEN 

run(t,middle);
PERFORM;

DO
START: DO fillcell(xcoord,ycoord); suspend(t) END; 
MIDDLE.FINISH: DO fillcell(xcoord.ycoord); suspend(t) END 

END;
END

END.
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Appendix C. Publication

The following paper "Graphical Interaction Management co-authored by P.J. Willis 

was presented at Eurographics(UK) in March 1987. It was published in Computer 

Graphics Forum.6, 119-124. 1987.

- 1 3 2 -



119

Graphical Interaction Management

Balbir S. Barn and Philip Willis f

Abstract
Graphical interfaces and interactive graphical pro
grammes are awkward to write because of a lack of 
top-down structure. A methodology for constructing 
graphical programs will be described, together with a 
system that generates the basic interaction requirements 
for such applications.

1. Introduction
The advent of the bitmapped high resolution graphics 
workstation has led to a proliferation of graphics inter
faces to existing application programs and, more 
importantly, has resulted in an increasing number of 
interactive graphical applications. Unfortunately, the 
attendant problems of scheduling mechanisms; inter
preting mouse/ tablet input; screen layout and interrupt 
handling associated with such applications have all 
been dealt with in a highly unsatisfactory manner, each 
programmer solving the problem in an individually 
stylised fashion.

Research in graphical interaction has concen
trated on the study and development of user interface 
management systems (UIMS), ranging from theoretical 
studies1 to practical systems such as TIGER2, MENU- 
LAY3 and SYNGRAPH4. Automatic generation of 
user interfaces has relieved the programmer of some of 
the problems mentioned earlier, but still fails to ease 
the complexity of programming the basic building 
blocks of these applications. These building blocks 
include the fundamental interaction techniques such as 
picking, dragging and rubberbanding. The asynchro
nous, multiple-processes nature of graphical programs 
continues to be major a hurdle that consumes a 
programmer’s effort

Software development in most other computing 
fields follows some sort of methodology. Typically we

This paper was presented at the EUROGRAPHICS 
(UK) Conference, Norwich, April 13-15 1987

 ̂ School of Mathematical Sciences 
University of Bath 
Claverton Down 
Bath, Avon,
BA2 7AY 
England

North-Holland
Computer Graphics Forum 6 (1987) 119-124

have JSD and HIPO charts for commercial applica
tions, and data flow diagrams for systems/scientific 
applications. There is however, no equivalent tech
nique for specifying the building blocks of graphical 
programs. Instead each application is re-designed, with 
implementations varying only slightly. The methods 
used are ad hoc leading to future problems of mainte
nance and portability.

We present a methodology for programming the 
interaction techniques used in graphical programs. In 
addition, we provide details of a tool we are currently 
developing which uses this methodology to generate the 
basic interaction code for such applications. We first 
describe the interaction model on which the methodol
ogy is based. Then we discuss some well-formed con
structs which help the designer of interactive systems. 
Next we discuss our approach to implementation using 
a preprocessor. Finally we describe in detail the result
ing language.

2. Interaction Model
In this section we describe the basics of our manage
ment system. We have conservatively assumed that no 
special kernel support is available. In particular we 
make no special assumptions about interrupts. The 
resulting software should thus be easier to port across 
systems supporting our chosen base language, C.

2.1. The Scheduler
We start with the premise that graphical interaction is 
essentially an input-event driven activity. Generally 
interaction offers a rich set of options, most of which 
will not be in use at any given time. A small number 
may be intensively used (e.g reading the tablet; updat
ing the cursor position). Some will occasionally start 
other actions. Also, most actions require a rapid 
response to maintain fluid interaction.

These observations suggested that interaction can 
be handled by a fixed scheduler scan with associated 
tasks. A large pool of worker tasks will typically be 
used, but most tasks will he dormant until needed and 
expire once used. Further, parameter gathering should 
be separated from invoking the worker task, to main
tain flexibility of interaction and simplicity of workers. 
In outline, th; Scheduler is:

i
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repeat
for task: *  1 to num tasks do 

if active[task] 
begin
if not runnable[task] then Try(task,gather);

/* Collect parameters */ 
if runnableftask] then Try(task,perform);

/* Perform the action */
end; 

until exit;
During a single scan of the task pool, the scheduler 
attempts to collect the necessary parameters for any 
task t which is active but not runnable. If all the 
parameters for task t  have been collected the task is 
made runnable. In the same scan, if task t is runnable, 
the task is performed.

2.2. Tasks
We require a Task to have two components. The first 
is a parameter-gathering section and the second is the 
code which performs the actions required of the task. 
Correspondingly we need a mechanism for switching 
between these two components.

To implement this we use a procedure Try both 
to collect parameters and to execute the appropriate 
application-specific procedures. In outline Try is:-

procedure Try(integer: t,op); 
begin 

case t of
1: case op of 

gather: 
perform: ...

end;
2: ...

n:
end;

end;

Each case on t  introduces a section of code specific to 
the parameter gathering needs of the task. When called 
as Try(t,gather), any parameters for the task are 
identified, but no interpretation is made of them. For 
example, a task to draw a straight line requires two 
pairs of (x,y) coordinates which will later be interpreted 
as the vertices of the line.

TryfUperform) runs task t  to completion by bind
ing the parameters to a call of the appropriate worker 
task.

23. Task Progression
Typically, most tasks are dormant until needed. Even 
when needed they usually pass through a parameter-

gathering phase before completing and once more 
becoming dormant. We envisage a system in which 
tasks progress from dormant (no need to do anything); 
to active (lacking enough parameters to run); to runn
able (having a complete set of parameters and only 
awaiting scheduling). We provide a task progression 
mechanism to reflect this. Tasks correspondingly pro
gress from frozen to thawed to runnable and we pro
vide the appropriate control booleans with trusted 
primitives to manipulate them. For example, a task 
initiated from the menu is thawed, it remains in the 
thawed state until its parameter needs are met, when it 
subsequently becomes runnable. After being scheduled 
it might run to completion and then return to its 
former frozen state. Transition between states is accom
plished by the primitives used to label the arcs in the 
diagram below.

thaw(t) nin(i)

SUSPENDED RUNNABLE

frceze(t) suspend(t)

Figure 1. Transition of tasks between states

Not every task which reaches runnable state will 
run to completion when it is scheduled. It may simply 
have reached a stage where a certain parameter may be 
collected. Progression to a later stage would then 
depend on that parameter being collected and any asso
ciated actions being performed. Hence we can impose a 
degree of sequentiality within a specific task. Thus we 
have the perform section logically separated into three 
phases start, middle and finish. Typically this is useful 
because a new task has set-up actions which can be 
assigned to the start phase. The middle phase is used 
for the main part of the task and then the finish phase 
can be used to tidy up. To give an example, the outer 
phases can be used to change the cursor pattern back 
and forth to give feedback to the user, with the actual 
task being invoked in the middle phase.

Tasks do not have to freeze when completed. It 
is in the nature of some that they will gather one set of 
parameters, perform work and then repeatedly do the 
same thing. Such tasks can be suspended rather than 
frozen, as the diagram makes clear. In this way they 
continue to gather parameters as long as required.

This resemblance to finite state automata is fully 
documented in the case of user interface 
specification**6. This characteristic has been further 
used in systems where graphical programs are gen
erated using interactive finite state machine editors6*7.
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Delineation into stages makes some 
housekeeping intricacies relatively easy to implement. 
If a task requires variables to be initialised prior to the 
task running, the necessary code can inserted into the 
start stage. Also, menu window management problems 
such as menu highlighting synchronisation (ensuring 
the correct menu box is highlighted according to the 
current task) can be set up as start and finish actions.

2.4. Event Detection
We have already mentioned that we expect this style of 
interactive program to be event driven, so we also need 
a means of identifying such events. It is commonly the 
conjunction of a button press (or release, or holding 
down) with a specific area of screen/tablet which needs 
to be distinguished. We therefore adopt:

Event(butstate: button; region: area): Boolean:

as an enquiry function. The function Event is required 
to test the puck state to see if it corresponds to that 
named (eg. button 1 just pressed) and also the region ( 
eg. command menu). Event has to be sufficiently gen
eral to allow for pop-up menus, overlapping menus etc. 
Butstate is defined to cover new, pressed and released 
where new defines a button press, pressed represents a 
button held down and finally released indicates a but
ton has been released. It thus defines both level and 
transitory states, an important distinction. Region is 
used to identify the area on the screen/tablet where the 
button action occurred.

3. WeO-Fonned Constructs
Structured programming uses a modest number of 
well-formed constructs, where each construct displays 
some simple property. These constructs are satisfactory 
for sequential applications but they are of less value for 
interactive programs as they do not adequately reflect 
the behaviour of such applications. This section con
tains details of some of the more suitable control con
structs we have identified up to the present time. These 
constructs are not sufficient in themselves for complex 
interaction requirements, but when used in conjunction 
with additional type declarations they are adequate. 
Some of the type declarations are described in section
4.4.

For each construct we will typically need to 
describe the code needed at both the Gather and Per
form labels (see sections 2 and S.l) for a task n entry.

3.1. Continual update
Commonly, a screen cursor is continually updated 
under program control to indicate the puck position. 
This is expressed as:

gather_n : Readpuck(x.y); Run(n); ( Puck monitor }
pcrform n: MoveCursor(x,y); Suspend(n); { Cursor update)

3.2. Point and do
A simple form of interaction is the "point and do" 
action, an example is selecting "clear screen" by point
ing to a labelled box and pressing a puck button. 
There is an immediate effect which proceeds, out of 
further control, to completion. Such a task will be per
manently active and will run whenever a particular 
puck button is pressed within a certain area on the 
screen. There are also degenerate cases corresponding 
to using a puck button for a dedicated action (indepen
dent of screen position). All such permanent tasks can 
be coded in the form such as:
gather_n : if Event(button,viewport) then Run(n);
perfonn_n: execute(n);

33. Event recogniser
In principle menu selection could be implemented as a 
number of point-and-do tasks. In practice this can be 
cumbersome for all but very short menus. A conven
tional top-down approach to manage this interaction 
has been adopted. At the top level, it is sufficient to 
identify that a relevant event has occurred, namely that 
a new button press has just happened in the menu. We 
thus get :
gather_n: if (Event(new,menu)) then Run(n); (Menu monitor) 
perform n: ThawfComm); Suspend(n); (Action the command)

The monitor component is already familiar. The action 
component uses procedure Comm to decode the puck 
position, returning the the task number needed for that 
command. This task is then enabled by Thaw. The 
event recogniser task takes no further action until the 
next new press of a button in this menu. It has, how
ever caused a non-permanent task to spring to life and 
this will have its own Gather/Perform entry.

This particular construct is important as it can 
be used as the basis for a number of interactions. Thus 
we can have an event recogniser task for detecting 
events in a number of different windows.

4. The SIDL Language
In the implementation, descriptions of the interaction 
model are encoded in the abstract high-level 
specification language SIDL (Simple Interaction Design 
Language). The salient features of typical graphical 
interaction methods have been incorporated as struc
tures of this language. Some of the features have been 
provided as a result of studies of existing window

i
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management systems. Typical component parts of 
SIDL are described below.

4.1. Tasks and Windows
An application is considered as a set of tasks, with the 
user generating events via the puck in specified regions 
on the screen/tablet (window). We can observe that 
our language must provide means of specifying the 
interactions of tasks in terms of events in windows.

A SIDL program is composed of program 
blocks, each of which is either a window or a task 
definition. Both definitions vary in complexity accord
ing to the interaction requirements. Window 
definitions typically specify size, position on the screen, 
borders and other external features. There are various 
types of windows but, for the purpose of this discus
sion, we can simply say a window is a uniquely 
identifiable area on the screen where an event can 
occur. The command menu is a special case of window 
which is pre-defined in the skeletal program as it is 
integral to the applications we are concerned with.

Task definitions are more complex. Their SIDL 
structure closely follows that of the interaction model. 
This similarity aids code generation and the structure is 
relatively straightforward without being ambiguous. A 
task definition is broadly divided into three sections:- 
Type definitions, Gather and Perform. Type definitions 
will be ignored for the moment

The Gather section is primarily concerned with 
the collection of parameters (events). The Perform sec
tion executes application-specific code on the collection 
of a particular event Together these sections display 
the control constructs described earlier. A number of 
tasks are predefined and are largely concerned with 
either low-level details or monitoringother tasks.

Task definitions are directly translated to C code 
and form case entries in the main scheduling procedure 
Try as described in the IM (see section 2).

4.2. Task Synchronisation
All good interfaces must allow unrestricted asynchro
nous activity from the user. This freedom, however, 
makes the menu management a less than trivial prob
lem. It is easy to envisage the case where the user 
makes ad hoc selections of menu buttons thereby ini
tiating various functions and so losing any idea of what 
is happening. Where initiated tasks require additional 
parameters (such as selections from another menu), the 
problem is even more acute. The user must be able to 
select another task while the current task is waiting for 
a parameter, and still be able to return to the earlier 
task with the current state of that task intact. Further
more, this facility must be provided in a manner that is 
user friendly.

These objectives have to a large extent been 
achieved by enforcing a sub-structure over tasks ini
tiated from the menu. A study of two menu driven 
applications developed at Bath indicates that tasks ini
tiated from menus can be divided into three categories: 
tasks which run to completion when se lec ted ta sks which 
require one or more parameters before running to comple
tion; and finally tasks which when selected set parame
ters to be used by other tasks. Furthermore, tasks can 
be assigned to Mutual Exclusion Groups , that at most 
one task in a group can be active at any time. We can 
infer three rules to control these groups.
Rule 1: Each group can have an active task so sup

pose task A is in a different group to active 
task B. If A now becomes active, then the 
state of B has to be preserved. Task B can 
therefore be reinstated later.

Rule 2: Suppose tasks B and C are in the same group. 
If B is active and C becomes active then B has 
to be killed.

Rule 3: Suppose B has earlier been preserved and that 
C is in the same group. If C now becomes 
active, then the preserved state of B has to be 
discarded.

The groups are represented aa rows in a table and 
primitives are provided which carry out the rules 
described above.

43. Window Management
Typically, windows provide an environment for task 
interaction. Many applications however, also include 
interactions where the window itself is an active 
member. The interaction needs of such windows vary 
and we have broadly classified the following 
requirements
1. Picking and dragging of objects/windows
2. Stretching Windows
3. Invisible Windows
4. Overlapping Windows
5. Static or Movable Windows
Case 1 is an example of a common interaction; we have 
extended the definition of windows to include the 
specification of pixel objects. Cases 2, 3 and 4 are typi
cal of facilities found in window management systems. 
Although we are not directly concerned with the 
development of such applications, their interaction is of 
interest, and providing some of their facilities within 
SIDL is justifiable.

For S, the following window types are currently 
implemented:- static, motile and variable. Static win
dows remain fixed in their originally specified position.
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Motile windows are those which can be selected and 
moved to some new location. They are commonly used 
to represent screen objects. For example: a paddle in a 
simple ball/paddle game. Variable windows can be 
moved to a new location and have their size altered. 
Windows default to static unless otherwise indicated.

Most interactions are based on the detection of 
events in a region. The region varies with the type of 
window and also with time. For example, to alter the 
size of a window requires the detection of an event in 
one of four regions, where each region specifies a 
comer of the window to be stretched.

Using control constructs similar to that used for 
menu selection (see section 3.3), pre-defined window 
monitor tasks (one for each window type) are used to 
identify a button press in a window. As there may be 
more than one window of the same type, the appropri
ate window is identified and the task containing the 
interaction code for operations on that window is ini
tiated. This task will have been specified by the user.

4.4. Parameter Collection
The collection of parameters (detection and decoding of 
button activity) is a problem encountered in most 
graphical interaction applications.

Typically, task definitions require the user to 
specify the events necessary for a task to run to com
pletion. Where these events are unique, there is no 
obvious difficulty. However, serious problems arise 
where two or more identical events need to be detected. 
Events are considered identical if both the button type 
and the region are the same.

In the painting system at Bath8*6, there is a com
mand to paint a rectangular region on the screen with a 
range of colours. The user specifies the rectangle with 
two diagonally opposite vertices in the drawing region. 
The two colours are specified by indicating two entries 
in the palette region. The elements in each pair are 
identical. To avoid constraining the user, collection of 
the four parameters can be done in any order. The 
action to be taken when a particular parameter is col
lected therefore depends on its sequence number within 
a particular region. For example, the first event in the 
drawing region marks the first comer of the rectangle. 
This results in a rectangle being rubberbanded from 
that marked position. The receipt of a second event in 
the same region results in the second comer of the rec
tangle being marked. The user selects the range of 
colours by two events in the palette region. Provided 
that a count is kept for each region the colour and rec
tangle parameter collection can be interleaved. A 
critical observation is that each event, although not 
unique, may have actions associated with it which 
depend on the count We can decide when to call the

worker task for this command by keeping a total count 
of the number of parameters collected.

5. The GRIP Preprocessor
In this section we describe the basic structure of the 
preprocessor and its use of UNIX| software tools.

The basic scenario of the preprocessor is as fol
lows. The user describes the interaction model for an 
application in a specification language. This descrip
tion is then used to generate a program containing the 
interactions in our target high-level language C. The 
generated program will contain facilities to include 
application-specific procedures. This approach is 
orthodox and displays many of the characteristics of 
current UIMS.

In the implementation, the abstract high-level 
specification language SIDL is used to describe the 
interaction needs of the application. The GRaphical 
Interaction Preprocessor (GRIP) generates the C code 
contained within a skeletal program which also holds 
the necessary information to set up the display.

5.1. System Outline
The development of GRIP and SIDL is UNIX depen
dent, because of our desire to utilize the rich library of 
software tools available. Yacc is a program that gen
erates a parser from a grammatical description of a 
language9*6. The class of specifications accepted is very 
general: LALR(1) grammars with disambiguating rules. 
We use it both to parse a SIDL program and to gen
erate code. Cb is a program that pretty prints a C pro
gram. We use it to beautify the code generated from 
the preprocessor.

GRIP

. Yacc

Generated

Program
Skeletal
Program

Application

Procedures

SIDL
Program

Executable
Program

Syntax
Errors

Figure 2. System Structure

t  UNIX is a trademark of Bell Laboratories.



124 B.S. Bam et al. / Graphical Interaction Management

The bulk of the preprocessor is contained within 
the file used to drive yacc. The file contains both the 
lexical analyser module and the code generator module: 
experimental requirements have dictated this structure. 
Once a satisfactory language design has been imple
mented, the production of a special purpose syntax 
analyser and code generator will remove the depen
dence on yacc. Figure 2 shows the system.

6. Concluding Remarks
In this paper, we have discussed the basis of the design 
of our hybrid UIMS. We have presented a methodol
ogy which we think aids the design of multi-process 
event driven graphical applications. We have also out
lined the practical aspects of some of the integral com
ponents of the language which we use to represent our 
model. We are still currently in the development phase 
of GRIP: our language is still undergoing significant 
design changes and we are trying to identify more 
well-defined control constructs.

We envisage fundamental design changes in the 
preprocessor, as at the moment error reporting is res
tricted to syntactical errors in SIDL source programs: 
there is only minimal error recovery (performed by 
“yacc”). The semantics of interaction specification 
need to be statically analysed in the preprocessing stage 
and errors reported. However, given that no language 
definition can be complete, postfix semantic error 
reporting seems viable, with interaction errors being 
reported with reference to both the SIDL program and 
the generated C program.

Even at this prototype stage, the system has 
shown that it is possible to specify complex interactions 
and automatically generate C code that is both easily 
maintainable and extensible, hence reducing the 
development cost of such applications. Additionally, 
rapid prototyping facilities will produce better quality 
user interfaces.
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