

University of Bath

PHD

Graphical interaction managment

Barn, Balbir Singh

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

Graphical Interaction Management

submitted by

Balbir Singh Barn

for the degree of Ph.D. of the

University of Bath

1988

Attention is drawn to the fact that the copyright of this thesis rests with its author. This
copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the prior
written consent of the author.
This thesis may be made available for consultation within the University Library and
may be photocopied or lent to other libraries for the purposes of consultation.

Balbir Barn

UMI Number: U01889B

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U018893
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

£ ‘o ' i ' c,^ 7

Summary

We present a survey of existing research on user interface design and interactive

graphics programming. Next we argue that existing software methodologies are not

suitable for developing interactive graphical applications. Using this as a basis of our

research, we have identified control constructs which are suited to developing such

applications, in addition, a new interaction model has been designed. This new model

is a refined version of the traditional repeat.until loop commonly found in interactive

applications. The combined model and control constructs provide a methodology for

constructing well structured applications.

The new model has been implemented by a preprocessor and a specification

language. The language is used to specify the interaction requirements of the

components that make up an interactive graphical application. The specification

incorporates the new control constructs. The preprocessor, uses such an interaction

specification to generate the interaction ’C’ code in the form of the new model.

Applications designed and prototyped in this manner have been used to identify typical

problems in interactive graphics design. Finally, the model has been critically

compared with a number of other interaction models.

To Ravi

B S Barn Graphical Interaction Management

Contents

Chapter 0. Introduction 1

Chapter 1. User Interface Design 4

1.1. Interactive graphics programming 4

1.2. Building user interfaces 9

1.3. Specification aspects of user interfaces 20

1.4. Modelling the user design process 29

1.5. Window systems and user interface toolkits 30

1.6. This work 31

Chapter 2. The New Interaction Model 34

2.1. Existing models 34

B S Barn Contents

2.2. The New Interaction Model 38

2.3. Formal and informal approaches to user interaction 47

2.4. Summary 53

Chapter 3. Implementing the New Model 54

3.1. The need for a design language 55

3.2. System design 57

3.3. An example application 60

3.4. The SIDL syntax 62

3.5. SIDL program structure 62

3.6. Code generation 68

3.7. Summary 70

Chapter 4. Using the New Interaction Model 71

4.1. Task synchronisation 71

4.2. Parameter collection 75

4.3. Task management 83

4.4. Multi-button pucks 87

4.5. Window management 88

4.6. Summary 89

Chapter 5. Comparison of SIDL with Other Models 90

5.1. The state diagram method 90

5.2. The object oriented approach 97

5.3. Summary 105

Chapter 6. Conclusion 107

B S Barn Contents

References 111

Appendix A. The SIDL Syntax 119

Appendix B. A SIDL Program 125

Appendix C. Publication 132

Acknowledgements

I would like to take this opportunity to thank my supervisor Phil Willis for his

considerable support and guidance during the research. My thanks also to Geoff

Watters for the many useful discussions, Russell Bradford for solving some of the

typesetting problems and to GEC Software for providing the document production

facilities.

I wish to record a special note of thanks for my parents who have consistently

encouraged me during these last few years. I owe them more than I could ever

express in words.

B S Barn Graphical Interaction Management

0. Introduction

The advent of the bitmapped high resolution graphics workstation has led to a trend of

developing graphics interfaces for existing applications. More importantly, interactive

graphical applications have become widespread. Unfortunately, the attendant

problems of scheduling mechanisms; interpreting mouse/tablet input; screen layout

and interrupt handling associated with such applications have all been dealt with in a

very unsatisfactory manner, each programmer solving the problem in an individually

stylised fashion.

Research in graphical interaction has concentrated on the study and development of

user interface management systems (UIMS), ranging from theoretical studies to

practical systems. Automatic generation of user interfaces has relieved the

programmer of some of the problems mentioned above, but still fails to ease the

complexity of programming the basic building blocks of these applications. These

B S Barn Introduction

building blocks include the fundamental interaction techniques such as picking,

dragging, and rubberbanding. The asynchronous, multiple-processes nature of

graphical programs continues to be a major hurdle that consumes a programmer’s

effort.

Software development in most other computing fields follows some sort of

methodology. There is however, no equivalent technique for specifying the building

blocks of graphical programs.

We present a methodology for programming the interaction techniques used in

graphical programs. The methodology was derived by examining a number of

interactive graphics applications and it was tested by developing a software tool to

produce improved versions of those applications. The results of this research have

subsequently been published[7].

Thesis structure

In chapter one we introduce the notion of interactive graphical programming. We

indicate the nature of the problems associated with such applications and show how in

an attempt to solve such problems a new genre of software tools has arisen. The

architecture of these tools is described together with examples. We touch on the

problem of modelling the user thought process and and we conclude with a section on

how the research in this thesis fits in with work done earlier.

In chapter two we describe the basic scheduling strategy used to implement

interactive systems. This scheduling strategy is termed the Interaction Model. We

then go on to describe the shortcomings of existing models. The second half of the

chapter is a detailed description of a model which more closely fits the characteristics

of this type of software. This model draws freely from both operating systems design

and compilation theory. Finally the model is compared with a formal description of an

- 2 -

B S Bam Introduction

earlier model proposed in some closely related research.

Chapter three describes the practical realisation of the interaction model. The

Language SIDL and its pre-processor GRIP are described in detail.

In chapter four, we discuss some of the problems that are typically found with

interactive graphical programs. These problems are discussed from the baseline of our

interaction model proposed in chapter 2. The solutions for these problems are

presented. In addition, we look at some additional problems which arise because of

our model. These can be regarded as the inherent disadvantages of using our model.

The discussion is illustrated with a mixture of example code generation and pseudo

code.

Chapter five is a detailed study of two methods mentioned in chapter one. Emphasis

will be given to a specification language for interface design based on transition

diagrams and secondly to object-orientated techniques for user interface design.

These methods will be compared with the approach taken by the Interaction Model

described in chapters three and four.

Finally, in chapter six we outline the measure of success of this work and present

some possible future directions.

B S Barn Graphical Interaction Management

1. User Interface Design

In this chapter we introduce the notion of interactive graphical programming. We

indicate the nature of the problems associated with such applications and show how in

an attempt to solve such problems a new genre of software tools has arisen. The

architecture of these tools is described together with examples. We touch on the

problem of modelling the user thought process and and we conclude with a section on

how the research in this thesis fits in with work done earlier.

1.1. Interactive graphics programming

Interactivity is a mode of execution of an application. For teletype terminals an

interactive program is characterised by the dialogue (typically prompts and responses)

between the user and the application. We are concerned with interactive graphical

programs. In these applications the application communicates via graphical entities on

the screen whilst the user directs the control of the application via a number of

B S Bam User Interface Design

physical input devices.

1.1.1. Characteristics of interactive graphical

programs

A graphical application can be described as interactive if we can observe the following

characteristics.

1. User interaction is composed of input/output. The user inputs data to the program

which then proceeds to use this data to execute some action. The program

communicates with the user by displaying objects on the screen. Data flow is bi

directional and the communication between user and program is closely coupled.

2. Interaction is composed of a number of input techniques. These are typically

determined by the available hardware and they are described in section 1.1.3 of this

chapter.

3. The user controlling the input devices and the computer process are independent of

each other except when the program needs data from the user or the user needs a

response from the computer. Thus there is both logical and physical concurrency. This

necessitates the need for synchronisation to effect information transfer.

4. The passage of time is of significance. Many interactive input techniques are based

on sampling some device for a particular parameter. Some common examples are

rubberbanding and dragging objects. It is important to note that the actions of the user

affect the program in real time and hence synchronisation is needed.

1.1.2. Input devices & interaction techniques

An application’s "interactivity" is constrained by the number of physical input devices

it has available for the user and also the way they are used. Physical input devices

B S Barn User Interface Design

include: joysticks, lightpens, puck and tablet, keyboards and so on. These devices

need to be used in a structured manner so that the design of an application is

straightforward both to implement and to change. Both the European Graphical Kernel

System (GKS) standard[27] and ACM Siggraph Core standard have proposed the

following stnjcture for implementing the interactive components of graphics programs.

Terminology has been adapted from the GKS standard because the GKS proposal is

now the accepted ISO and ANSI standard.

Graphical input uses the concept of logical Input classes. Physical input devices

operate under these classes.

Locator provides a position in cartesian coordinate system.

Stroke provides a sequence of positions.

Valuator provides a real number.

Choice provides a non-negative number indicating a particular list item.

Pick provides a pick status, a graphical object name.

String provides a character string.

Each logical input device can be operated in three modes. At any one time, an input

device is in exactly one mode. The modes supported are given below. The

relationship between logical and physical input devices is explained using the concepts

of measure and trigger[51]. See Figure 1.1.

Each logical input device contains a measure, a trigger and an initial value. A

measure is the state of an active process which is available as a logical input value.

The measure process is in existence while an interaction with the logical input device

is taking place.

The trigger of a logical input device is a physical input device, with which the operator

can indicate the significant moment of time to take over the measure value. At these

moments the trigger is said to fire. A trigger can be seen as an active process

Measure Trigger

REQUEST MODE

sample

Measure

SAMPLE MODE

Await
Event

QUEUE

Measure Trigger

EVENT MODE

Figure 1.1. Logical Device Input Modes (From [51])

B S Bam User Interface Design

sending a message to one or more logical input devices when it fires.

Request Mode

The device only supplies data when requested. The application ceases computation

until the data has been supplied.

Sample Mode

The device is continually supplying data at set intervals. There is no trigger action.

Event Mode

When a device is triggered, an event report is issued, and if there is data it is either

used or queued. The program does not stop as in request mode.

Physical devices fall into one or more of these classes. Thus examples of locators are

puck and tablet, mouse. For most applications the interactivity can be extended

quite dramatically by simulating different logical classes using devices which do not

belong to that logical class. Thus the locator can be simulated by arrows on the

keyboard. Choice can be implemented by using light buttons on the screen and a pick

device.

1.1.3. Interaction techniques

A good user interface usually means that the appropriate interaction technique must

be used for the job in hand. A brief overview of some the common techniques used is

given below. These tasks directly modify the graphical image. They are classified as

controlling techniques! 18] because their purpose is to form and transform visible

objects, usually by continuous modification.

B S Barn User Interface Design

Stretching

A target object (such as a line or circle) has its shape distorted by forcing one of its

points to coincide with some specified position. Positioning is a key component and

locator simulation is used. Generally this technique is more usefully employed using

continuous rather than discrete feedback.

Some examples are:- Stretched lines. The stretched or "rubberbanded" line is a task

that maintains a line from some fixed reference point to point specified by a locator

position. As the latter point is moved the line is modified to follow. The resulting effect

is similar to a rubberband being stretched. Some refinements include constraining the

rubberbanding effect to horizontal and/or vertical lines.

Other variations of stretching include rubber rectangles, rubber circles and rubber

pyramids.

Sketching

This task involves the specification of a curved line. The significant characteristic of

this task is sampling, since this task depends entirely on continuous feedback. The

application determines either time sampling or space sampling. A line can be

sketched using a lightpen or mouse, or it may be shaped between fixed points by

adjusting the curvature using splining techniques, such as B-splines.

Manipulating

Operations are performed on a visible object such that the appearance of the object

remains the same but the position and orientation are altered.

Dragging occurs when a user picks or locates a graphical object and causes it to

coincide with some position on the screen determined by him. For example a circle on

B S Barn User Interface Design

the left hand side of the screen may be picked and moved across to the right hand

side.

Twisting occurs when an object is caused to rotate along a pre-determined axis. The

degree of twist is specified by a valuator device.

Scaiing occurs when a valuator scale is manipulated causing the object selected to

alter its size.

Shaping

The task moulds an object until it reaches a desired shape. In interactive graphics

systems shaping is dependent on information held internally. For example lines may

be internally represented using control points as in the case of B-splines. Thus the

shaping relies on manipulation of these control points. Control points may be dragged

to new positions and smoothing functions applied.

Other techniques

Some other techniques which do not fit so well in the above schema include:

Gravity fields. Here lines or other objects have an area around them which is sensitive

to selection. Thus selection of the endpoints of a line is made easier, because the

area of error is that much greater. This illustrated in figure 1.2.

Gridding. Here a grid is drawn over a region. Subsequent actions such as selections

and sketching are constrained to lie either on the points where the grid lines cross or

the regions between the grid lines. Gridding is useful for diagram editing for example.

1.2. Building user interfaces

B S Barn User Interface Design

The increasingly widespread use of personal workstations by non-computer trained

professionals has led to the need to develop user interfaces for advanced applications.

User Interfaces are one example of interactive graphical applications. They show the

characteristics discussed earlier and their internal structure is composed of the

interaction techniques described earlier in section 1.1. User interface design is a well

researched area and the need for some classification and definitions of the needs and

issues arising from user interface study must be met. The following report on existing

work attempts to meet this requirement.

1.2.1. User interface definitions

The User Interface (Ul) is the component between the user and the rest of the system.

The rest of the system may be just an application or include the overall system

hardware. Figure 1.3 highlights the main features of a User Interface.

Software Engineering principles dictate that the user interface should be a separate

module which handles all the interaction between the user and the application. This

separate module has been termed the User Interface Management System (UIMS)

in 1982[36].

There are several advantages to defining a Ul as a separate entity from the

application and the graphics package. Firstly, development, maintenance and future

extensions are made easier if the systems are defined in a modular layered fashion.

Secondly, device and application independence is useful in that the same interface

may be used across a variety of different hardware and applications. Finally, both the

application and the user interface can be developed independently of each other.

Writing interactive graphical programs using conventional programming languages is

both awkward and time consuming. A UIMS is designed to overcome these

shortcomings. Its purpose is to support the design/specification, implementation and

- 1 0 -

TASK

t
Interpret
the display

Process the
content

Plan and
take action

PRES ENTATI
LANGUAGE

USER

1

ACTION LANGUAGE

Generate
the display

Interpret the
User action

Application

Processing

Figure 1.3. The Basic User Interface

B S Barn User Interface Design

evaluation of human-computer dialogues. Adapted from Olsen et al[46] the goals of

UIMS designers are typically:-

1. reduce the duplicity of code across applications;

2. use a common module to make a uniform interface both within and across

applications.

The design of existing UIMS have largely been based on the following princip!es[54] in

addition to those mentioned above.

1. All variations of dialogue styles should be supported.

2. Ul design is an iterative process based on design-implementation-evaluation.

3. Design should be ideally carried out by experts in human factors rather than

programmers[19].

4. The effect on the application for which the interface is being developed

should be minimal.

5. The Tools should render complex interfaces maintainable, extendable and

easy to use.

Tools that are typically provided by the UIMS include:-

- a graphics package;

- standardised graphics communication protocols;

- a runtime support environment for the user dialogue;

- dialogue creation tools.

1.2.2. An abstract model for UIMS

A UIMS is essentially composed of two modules, a preprocessor to design and build

the user interface and a run-time support package providing the framework within

which the user interface will execute. The Ul definition file will contain the state

-11 -

Pre processor Run-time

Run-time

Generation Support

Definition

Figure 1.4. Requirements of a User Interface

B S Barn User Interface Design

transition information[54]. Figure 1.4 illustrates the basic requirements of a user

interface.

A UIMS goal is that it should be separate from the application but the framework within

which the UIMS will operate is largely affected by the relationship between the user

and the application. Three frameworks have been identified. They are the External,

Internal and Concurrent[23] frameworks. They correspond to the event, sample and

event/sample modes of graphics standards such as GKS.

External

Application procedures are invoked in response to user inputs. Thus the user is

in control.

Internal

The application has control, it requests various abstract devices when required

by the application.

Concurrent

This has a mixture of the internal and external frameworks.

Figure 1.5 illustrates the various frameworks for UIMS design.

We have already outlined the basic structure of a UIMS. Workshops have since

identified a more detailed structure of a UIMS. From a study of existing UIMS, Tanner

& Buxton present a notional model based on ’Glue Systems’ and ’Module Builders’.

1.2.3. Glue systems

In glue systems interactive dialogues are created by prepackaged tools; suitable

dialogues are selected by the user/programmer from a library. The UIMS provide

access to the library and a general support environment to bind the modules for

creation of the Ul. The power of these systems lie in the size of the library. An

- 1 2 -

UIMS

Appn. Appn.Appn.

GRAPHICAL SYSTEM

External Control

UIMS

Abstract
Device

Abstract
Device

Abstract
Device

GRAPHICAL SYSTEM

Internal Control

SCHEDULER

Appn. f UIMS Graphical
system

Concurrent

Figure 1.5. Frameworks for UIMS Design

B S Bam User Interface Design

example of such systems is MENULAY[9] and Dialogue Cell[26].

1.2.4. Module builder

These UIMS are concerned with the specification and implementation of the low-level

interaction primitives used in a dialogue (module). The modules are collected together

to form a library. Typically they are based around some special purpose programming

language and because of that they have greater expressive power but are that much

harder to learn. Examples include SYNGRAPH[47] and TIGER[36J. In Systems such

as the Mackintosh Toolbox and most Window Managers the routines are the library

portion. See section 1.5.

A novel approach to building the interaction has been put forward in Squeak[11].

Squeak is a user interface implementation language that exploits the essential

concurrency among multiple interaction devices. The language is based on concurrent

programming constructs that are compiled into conventional C. Squeak programs are

composed of processes executing in parallel. A process typically deals with a

particular action or external device. Communication between processes is achieved by

sending messages on channels. Channels are either primitive or non-primitive.

Primitive channels are predefined and provide access to external devices. Non

primitive channels are for ordinary message based communication.

A Squeak program is compiled by analysing all the possible execution sequences of

the program and expanding them into C code. There is no scheduling on the user

channels: scheduling and communication is translated into sequential code interleaved

with random choices and calls to the underlying event manager.

Parallel sequences are decomposed by advancing one of the processes by one step

and considering all the possible continuations of that and all the other processes. The

entire system state is then returned to the initial and the step repeated for another

- 1 3 -

Pre-processor Run-Time

RUN-TIME
SUPPORTGLUE SYSTEM

Module

DefinitionLibrary

MODULE BUILDER

Figure 1.6. Combining Glue Systems and Module Builders

B S Barn User Interface Design

path. There is some ’pruning’ and ’flattening’ to avoid deadlocks and redundant paths.

The remaining available paths are compiled as a dynamic random selection of which

path to take. Young et al[59] rightly point out that Squeak

"...suffers potentially explosive expansion when compiled into C code, effectively lim
iting its usefulness to the lowest levels of input processing. ”

Glue Systems and Module Builders can exist together. A UIMS that falls into that

category is PERIDOT[43]. Figure 1.6 shows how glue systems and module builders

can be combined together.

1.2.5. The Seeheim Model

This model for UIMS design was a result of working discussions held at the Seeheim

Workshop on User Interfaces and is discussed in detail by Green[23]. Members of the

group were Jan Derksen, Ernest Edmonds, Mark Green, Dan Olsen and Robert

Spence. It is now the main model which has been put forward for future design of

UIMS because of the advantages of modularity and the incorporation of design

concepts arising from experts in human factors. A description of the model is given

below.

The User Interface is divided into three components as shown in figure 1.7 below.

They are the Presentational Component, Dialogue Control and the Application

Interface Model.

The transformation of the communication between the user and the application across

this model can be discussed in terms of the language model introduced by Foley[19].

The language model is a convenient representation of the levels of interpreting or

transforming from the external to internal representation and vice versa. The model

regards a transformation as a process which can be broken down into a sequence of

steps: lexical analysis, syntactic analysis, semantic analysis, and conceptual analysis.

- 1 4 -

USER

Dictionary

Presentation
Application
Interface
ModelControl

Dialogue

Figure 1.7. The Seeheim Model

B S Bam User Interface Design

It is useful to provide a brief description of these terms.

Lexical Analysis determines how input and output tokens are formed from the

available hardware primitives (lexemes). Input and output lexemes are produced by the

input and output primitives respectively. Lexemes are the smallest units of input which

can be processed by the computer.

Syntactic Analysis deals with the syntax of the dialogue and defines the sequence of

allowed inputs to and from the application. The syntax is the set of rules used to

organise and order input and output lexemes. Abstract Syntax is a generalised

abstraction which can be represented by state transition diagrams for example.

Concrete Syntax is the set of concrete objects actually used in the syntax, for

example menu buttons, etc.

Semantic Analysis is a description of the functionality of the application. For example

it will define what information is needed for each operation on an object, how semantic

errors are to be handled and other similar context sensitive interpretations.

Conceptual Analysis defines the more abstract aspects of the interaction. It defines

the key concepts which must be mastered by the user. For example it will define which

interactive graphical objects will exist and also their relationships to each other.

Presentational component

The Presentational Component describes the physical appearance of the interface. It

reads the physical input devices and converts the raw data to a form usable by the

other components. The menus are a special aspect of the presentation component.

When a selection from a menu is made, the presentation component generates the

appropriate token to be used by the other sections. Thus we can observe that the

presentation component effectively carries out the lexical processing undertaken by the

- 1 5 -

B S Barn User Interface Design

UIMS. The notion of a separate module for presentation makes porting to different

display devices simple. The component can be easily changed to allow for a variety of

input devices. The screen layout can be altered to suit the user, for example switching

from a lefthand screen layout to a righthand layout.

Dialogue control component

The Dialogue control contains information relating to the dialogue between user and

the application. It converts tokens generated by the presentation component to

execute commands or passes back tokens from the application interface model to the

presentation component for visual feedback.

Only the dialogue component has access to what is essentially the dictionary

component. The dictionary is used to convert the lexical tokens received from the

presentational component to tokens which the application interface model can

understand.

This area of UIMS design has been the recipient of considerable research effort. As a

consequence there is considerable expertise in this area. A number of notations for

representing the user-computer dialogue have been developed. They tend to fall into

three basic categories:-

-Context Free Grammars;

-Recursive Transition Networks;

-Event Notations.

These notations will be described in more detail later on in this chapter and some

examples given.

- 1 6 -

B S Bam User Interface Design

Application interface model

The application interface model describes the interface between the UIMS and the rest

of the application. It holds the semantics of the application, the procedures of the

application which are available to the UIMS. This component exists only implicitly in

UIMS built before 1984. It is also in this module that the framework in which the UIMS

is to operate is defined. The external or internal model of execution is normally

proposed as an acceptable framework. Also at the Seeheim workshop a third

framework Mixed was proposed. There are essentially two communicating processes

for the user and the application. Some method of interleaving the execution of the

interface or the application is required. It could be implemented by co-routines or

multiple processes.

1.2.6. Examples of UIMS

A brief description of a number of key UIMS is given below. The list of UIMS is not

exhaustive but is meant to give a flavour of what a UIMS entails beyond the theoretical

structure discussed earlier.

Menulay

This is part of a UIMS[9] which aims to aid the design and implementation of menu

driven programs. It consists of two modules.

The first module, Menulay and Makemenu, is essentially a preprocessor to design and

specify the graphical layout and functionality of menu-driven programs. It allows the

construction of networks/hierarchies of menus and provides hooks for application

specific procedures. Menulay is itself menu-driven. It creates textual items such as

light buttons and icons and allows their size and colour, for example, to be modified

interactively. It generates a metacode which is input to an ancillary program

- 1 7 -

B S Bam User Interface Design

Makemenu which generates C code which will allow the incorporation of user supplied

function procedures.

The second module, the runtime support package, handles events, hit detection,

procedure invocation and management of the display. The code executed by this

module is generated automatically from the preprocessor.

It can be observed that this UIMS falls neatly into the simple model of a UIMS.

However it must be noted that there is no formal description of the input. The input

language is specified by selecting interactive techniques from a library and

incorporating them to form an interactive application. Thus Menulay is an example of a

Glue system.

SYNGRAPH

The SYNGRAPH tool[45,47] supports graphical applications. The input language is a

special form of BNF grammar. The menu and graphical valuator simulation is

automatically formatted and all prompting, echoing and error reporting is also

automatically generated. The modified BNF grammar has made possible a very

powerful undo/rubbing out facility. Additionally, the system is designed within the

framework of Conceptual, Semantic, Syntactic and Lexical levels as described in

earlier sections. The conceptual level (i.e. the thought process of the designer leading

to the initial design of the user interface) is not addressed. The semantic level is

represented by the commands available in the interface. However the influence of the

syntactic and lexical levels is greatest. At the lexical level there are the tokens which

represent user input, for example button presses. At the syntactic level, a sequence of

specific lexical tokens corresponds to a dialogue. A Pascal program is produced and

there are no evaluation tools provided.

- 1 8 -

B S Bam User Interface Design

The University of Alberta UIMS

The goal of this research was to build a UIMS following the abstract model proposed

at Seeheim. The UIMS[24] is divided into three components. The presentation

component which is concerned with the lexical level of the user interface is

implemented by a window based package WINDLIB. Screen layout, interaction

techniques and displaying are supported by an interactive layout program. The

Dialogue component supports all notations. However to achieve this flexibility the

underlying format is event notation as it has greater descriptive power. There are tools

to edit transition diagrams but at the moment there is no facility for going from BNF to

event form. This is the subject for current research. The application interface model

currently supports only one mode (User initiated).

Other UIMS

Other UIMS research efforts include the information display project at George

Washington University. The Abstract Interaction Handler{35] (AIH) has a number of

components:- an interaction language adapted from augmented transition networks; an

interpreter for that language; a set of ’style’ modules to handle interactions which are

style dependent, for example levels of prompts; a library of user profiles and

interaction techniques; and finally a logical screen handler.

User interfaces have been built using the ’programming by example’ paradigm as in

Tinker[39] and Peridot[43] In case of the latter, a variation on the theme is used -

’programming by demonstration’. The Higgens system[28] has concentrated on

efficient recovery and reversal in user interfaces, a hitherto under-researched area.

They have developed a special model which together with algorithms they have also

developed makes undo very cost effective. An object oriented approach to user

interface design has been developed by Lieberman[40] and in the GWUIMS[53].

- 1 9 -

B S Barn User Interface Design

Objected oriented design will be considered in greater detail in later chapters. The

concurrency aspects of User Interface design have been utilised in Squeak[H] and the

formal semantics of these aspects described.

1.3. Specification aspects of user interfaces

Formal Specification is now widely used in the field of software engineering because it

allows the designer to describe the external characteristics of system without going

into its internal structure. Formal specification of a system provides a source of

reference for both implementors and users. It is implementation independent and

provides a basis for proofs of correctness. In addition it allows the precise formulation

of queries and answers. In the traditional software cycle of :-

Requirements - Specification - Design - Implementation - Testing - Maintenance

formal specification covers requirements, specification and design.

Computer Graphics in general, has been the subject of a number of formal studies.

GKS is an example of an attempt at formalising graphics using English. Mallgren[41]

has formally specified hierarchical picture structures and user interaction using

algebraic techniques. His interaction specification will be the subject of further

discussion in chapter three. Duce[17] uses VDM to formally specify the user interface.

Formal specification methods have been applied to user interface design in a quite

comprehensive manner. In terms of the UIMS models described earlier, the dialogue

component has been the subject of most study. Broadly speaking most dialogue

specifications have fallen within the categories mentioned earlier. These are :- BNF,

state transition diagrams and event notations. Sections 1.3.1 to 1.3.3 describe the

three techniques in detail.

- 2 0 -

B S Barn User Interface Design

1.3.1. Context free grammars (BNF)

The theory of these grammars will not be discussed as it can be found in any standard

compiling theory text[2]. The underlying motivation for this model is that human-

computer interaction is a dialogue as in human-human communication. For both

cases there must be an agreed syntax if communication is to be effective. However, in

the latter case only one common language is used whereas in the case of the former

the human uses one language to describe the user’s actions while the computer use

another language to respond to the user’s actions. Thus the model attempts to unify

these two different approaches to communication.

The terminals in these grammars are the input tokens from the presentation

component. These tokens represent the user’s actions. The non-terminals and the

productions represent structure or syntax of the dialogue. There could be a command

associated with each non-terminal. Each production with the non-terminal on the left

hand side defines the syntax of the command. For example a BNF grammar for a

login command (shown in Figure 1.8a) could be:-

login ::= userid password

userid ::= ccharacter string>

password <character string>

This does not cover the response generated by the computer. As we shall see later,

program responses for state machines are attached to the arcs so, correspondingly,

program actions can be attached to each of the productions in the grammar.

One problem with this approach is the time when the production is used (R.H.S).

Bottom up parsing uses the production when all the symbols on the right hand side

have been used, top down parsing uses the production when the first symbol on the

-21 -

B S Barn User Interface Design

right hand side is met. in the examples presented here we assume a top down parse.

The second example describes the context-free grammar for a rubber band line. The

productions have been augmented by program actions which take place at certain

places during the dialogue. This modification has introduced three additional rules (d1,

62, d3).

line ::= button d1 end_point

end.point move 62 end.point
I button d3

d1

62

63

{ record first point}

{ draw line to current position }

{ record second point}

Reisner[49] provides an example of how BNF can be used to describe a user

interface. One problem with this technique is still unresolved. Sometimes it is difficult

to determine when something will occur, consequently it is not easy to handle how

the output tokens are to be produced. Thus error messages, prompting etc. are only

possible with the inclusion of largely unnecessary non-terminals and productions.

Olsen and Dempsey[47] have used BNF grammars for the construction of the user

interface for SYNGRAPH. They have allowed the designer of the dialogue to specify

an error recovery mechanism allowing for more natural and graceful error recovery.

1.3.2. State transition diagrams

This is the oldest notation used and its history can be traced back to Conway[12]. He

did not address the problem of interactive user interfaces. Parnas in 1969 proposes

- 2 2 -

B S Bam User Interface Design

the use of state diagrams for describing user interfaces[48]. Newman[44] in 1968

however, had already put this into practice in the seminal work The Reaction Handler’.

Jacob[30] used this technique for a military message system in 1983 but in this case

there was no interactive graphics requirement.

A State Transition Diagram is a collection of directed graphs. Each graph contains a

set of nodes (states) and a set of arcs (state transitions) representing the actions a

user can perform at a given stage of the interaction. A dialogue goes from one state to

another if a user performs the appropriate action (the arc label). The computer's side

of the dialogue is described by adding actions to the states. Figures 1.8a and 1.8b

provide some examples of state transition diagrams. The number of arcs/states

needed to represent all the states an interaction can go through can be quite large.

This problem has led to a number of partitioning schemes, typically subnetworks. An

extension of this is the use of recursion giving Recursive Transition Networks (RTN).

Partitioning and recursion make the RTN equivalent in power to BNF but they also

introduce non-determinism which should be treated with care in interactive systems

design as usually it is not possible to retrace a path that has generated output for the

user.

Another problem with this approach is handling unexpected user actions. The easiest

course is to ignore the user input. This is obviously not suitable. A second method is

to introduce a wild card. This matches all user actions not catered for. Such an action

leads to a state where error recovery can be attempted.

Kamran uses a variant of the RTN, the Augmented Transition Network (ATN) for the

model on which he bases his dialogue control[35]. An ATN is a network with a global

data structure attached to it. Functions can be assigned to arcs and their results

stored in the data structure. An ATN has significantly more computational power than

a normal transition network. It is important because it can implement context sensitive

dialogue, for example the data structure could hold information concerning a database

- 2 3 -

<password><userid>

Actions:
1) print ’login’

2) print ’password’

3) print login

Figure 1.8. a State Transition Diagram for the Login Command

buttonbutton move

move

Actions;

2) record first point

3) draw line to current position

4) record second point

Figure 1.8 b. Transition Diagram for Rubberbanded Line

B S Bam User Interface Design

and thus if a file is already open an appropriate message is given.

1.3.3. Event notations

This notation is not as well known as the notations described earlier. Each event has

a name and a collection of values that characterize the event. An event originates from

one or more input devices available to a graphics package or it can be generated by

the application. These events are processed by a number of event handlers. An event

handler is a special procedure which performs a set of actions based on the name of

the event it receives. These actions could be calculations, output of tokens or newly

generated events. Mallgren uses event algebra to describe user interfaces[41].

The procedural form of an event handler makes notations for events very similar to

programming languages.

A major advantage of the event model is its ability to describe multithreaded dialogues.

This is where a user is involved in more than one dialogue at the same time and is

also free to switch between dialogues. The multiple dialogues are possible because

all event handlers execute concurrently. Event models are commonly used to

implement window management systems. In an abstract form, once an event handler

has been created it is active until it is destroyed and only while an event handler is

active can it process events.

The user interface is described by all the event handlers it uses and a special event

handler serving as the main event handler in the user interface. The expressive power

of event notations allows other dialogue control models to be expressed in some event

notation. Green[25] takes advantage of this when providing multiple format dialogue

component construction. The following example is drawn from Green[25].

- 2 4 -

B S Bam User Interface Design

Eventhandler login is

Token
keyboardstring s;

Var
int state = 0;
string userid: password;

Event Init {
print "login";}

Event s: string {
if (state == 0) {

userid =s;
state= 1;
print "password";

}
else {

passwords s;
state= 0;
process_login_cmd(userid,password);

}

In addition to specification methods for the dialogue component, a number of

abstractions for both the user interface and interactive graphical applications have

been developed. These abstractions attempt to model the user interface in terms of

the user’s view and behaviour towards the user interface. Sections 1.3.4 to 1.3.6

describe some examples.

1.3.4. BOX: A layout abstraction

Coutaz[13] identifies the need for dialogue independence and the expression of

object-orientated I/O. He makes the assumption (based on current cognitive science

theory) that applications reason in terms of specific abstractions (or objects) to perform

a task. An object is made concrete by views of this object by specific agents. Thus an

object on a screen is viewed by two agents, the user and the application which owns

the object. Some views may be suitable for one agent and not the other, so an

additional view, that of the Box, is introduced. This represents an intermediate view

- 2 5 -

B S Bam User Interface Design

that both agents are happy with. The box view contains a specification of the object

which is used to format the object on the screen.

The box is only concerned with high level I/O. The application is only concerned with

manipulating the object and not by the process by which the manipulation is done. A

structural and spatial relationship is a second requirement. Thus objects may be

composed of other objects. Dynamic modification of a box must also be possible. A

box is specified by spatial and adornment attributes which determine the size and

appearance of a box.

The method of specifying the box is left unclear, the examples given in the paper

being insufficiently complex, and it seems that this particular tool is suitable only for

the expression of relatively simple objects such as menus, slots and forms.

1.3.5. The dialogue cell

Another abstraction has been provided by ten Hagen and Derksen[26]. A new

programming language construct called a Dialogue Cell is presented. It allows the

separation of algorithms from the dialogue design and makes use of the extensive

parallelism in user interface design. A dialogue cell is a unit which can completely

specify one step in a dialogue. It has four components.

Prompt

Initialises sub-dialogues and informs the user it is ready to accept input.

Symbol

Specifies the syntax of the input sentence, and how the input monitor will treat input

words.

Echo

The acceptance of an input by a dialogue cell. This is the method by which graphical

objects are dynamically maintained on the screen. There are two types of echo. Local

- 2 6 -

B S Barn User Interface Design

Echo: Objects disappear once the dialogue cell is no longer active. Global Echo:

Graphical objects persist on the screen.

Value

A value is associated with each symbol and thus attribute grammars can be

accommodated.

Dialogue cells can either be activated via direct calling as in the Request mode in

GKS, or as sub.cells by other dialogue cells. Input tokens can be collected for all

active cells and thus there is a multi-stream parser which processes input against each

syntax component for each dialogue cell. It does not matter in which order the inputs

arrive because the parser can dynamically add and remove syntax rules from the

currently active grammars. This allows for very flexible parameter collection.

The examples discussed so far have been mainly concerned with the dialogue

component. The following examples again are related to this aspect, but they are also

concerned with modelling graphical interaction at a more general level.

1.3.6. The device model of graphical interaction

The device model of interaction as discussed by Anson[4,5] describes an interactive

system (or device) in terms of its component devices and data paths (channels). There

are two views of a device. The outside of a device is composed of a visible state,

events and actions, while the inside contains details of variables needed to implement

the outside. Devices communicate with each other by reference to some aspect of the

outside view. The binding of events to actions is a channel. A channel is an ordered

pair with the source-event given first and the destination-action given last. For a

simple user interface manipulating keyboards, lightbuttons, cursor position, the devices

would be:-

- 2 7 -

B S Barn User Interface Design

1. tablet;

2. function keyboard;

3. cursor;

4. display.

Examples of Inputs and actions i.e. the channels are:-

(Tablet.PenPosition, Cursor.location)

(Tablet.PenDown, Cursor.Engage)

(Tablet.PenUp, Cursor.Disengage)

The extended notation described in the paper has been implemented as a functional

equivalent in UCSD Pascal.

Gangopadhyay[20] has similarly provided a set of programming language constructs

as an extension to Pascal. The constructs are based around events and event reports

with associated actions. Physical devices are not a priori grouped into logical classes

as in GKS. Instead an event of a certain type may be generated from any tool

depending how the operator uses it. A set of event types is defined:

Selection Event;

Location Event;

Button Event;

Value Event;

Keyboard Event;

Clock Event.

The application program declares expected events and their expected interpretations.

The procedural structure makes graphical programming straightforward.

Gangopadhyay observes that a single operation on a tool can generate many

invocations of several action processes. This can either be regarded as advantageous,

- 2 8 -

B S Barn User Interface Design

as he does, or it can introduce the notion of ambiguity. Since the application program

declares expected events, dis-ambiguating facilities are available and hence the

advantageous nature.

1.4. Modelling the user design process

Throughout this chapter human factors considerations have been implicit. It has been

long recognised that research in modelling the interactive processes needed by the

user will help the developer of a user interface make more informed specific design

decisions regarding presentation and dialogue language. Coutaz[14] calls for advice

from experts such as psychologists and graphics artists who have a better

understanding of human behaviour than have computer scientists.

Card, Moran and Newell[10] have attempted to model the knowledge a user must

have when carrying out tasks through the interface. The formal modelling of the user

knowledge process seeks to develop a representation and method for constructing the

representation so that early evaluation of user interfaces will allow economically

feasible changes to interfaces. This type of study is currently at a very early stage[33].

However Green[22] made an early attempt and a brief description of this work is given

below for completeness.

1.4.1. A methodology for user interface design

In Green’s methodology there are two components, the first, the User Model, is a

description of how the user views the task domain (the problem to be solved), and the

second is a formal description of the user interface.

In the User Model, the informal task analysis (working out the requirements), is

formalised using the concepts of objects (the entities in the problem to be solved), and

operators (the operations that can be performed on the objects to manipulate them).

- 2 9 -

B S Bam User Interface Design

The formal description is called the task model and is the basis of the methodology. It

is this aspect which is one of the earliest attempts to model the user thought process.

Also part of the User Model is the Control Model. The Control Model uses the same

notation but instead of describing the tasks to be performed it describes the

commands that are available to perform them.

The control model provides a high level description of the user interface, but a detailed

description is also needed. This is a specification language based on state machines.

The more pertinent aspect of this work is the fact that the various levels of

specification can be used to evaluate the interface. If there is no mapping between

specifications then there is something missing and more detail needs to be added

somewhere within the specification.

1.5. Window systems and user interface toolkits

Window Systems originated with Smalltalk at Xerox PARC. They have since been

developing in two basic directions, for the UNIX environment (powerful, bitmapped

graphics workstations) and for the lower end PC based systems.

PC-based systems include the Macintosh Environment and MS-Windows. These

systems provide the illusion of multiple independent processes, when in fact there are

not. Synchronisation is implicit in the single thread of control.

A window system is software that utilizes a graphics workstation by allowing a number

of applications to run concurrently thus increasing the productivity of the user. It does

this by dividing the screen into a number of regions or windows, where each window is

controlled by one application. The system maintains the windows. The user is allowed

to create and position windows at will.

The windows are laid out on the screen by one of two metaphors, desktop style or

- 3 0 -

B S Barn User Interface Design

tiled. The desktop metaphor more closely mirrors the working habits of a user as

windows are allowed to overlap over each other, rather like pieces of paper on a desk.

The tiled system does not allow overlap of windows, the windows are organised so

that they make maximum use of the screen and thus windows will vary in size (but will

still be rectangular).

Supplied with most window systems is a user interface toolkit. This is normally a

library of pre-defined procedures to which a user can link to create interactive graphics

applications. The facilities available with a toolkit vary with the type of window system.

For example, a kernel based window system such as SunWindows has available with

it the Suntools Toolkit[1]. the X window System has the Xtoolkit[50]. The essential

feature of all the toolkits is that they contain interaction objects such as scrollbars,

menus, button objects. Further, they contain facilities for the management of these

objects. Thus they fall into the module builder category discussed earlier. However

they do go a bit further in that some of the glue is also provided.

A common problem with such toolkits, is that they do not allow the sort of control and

uniformity that is required when building complex applications. Further, there is lack of

portability between toolkits even allowing for the common principles and thus an

application developed under SunWindows will not work under X.

1.6. This work

Writing interactive graphical programs is notoriously difficult. Generally, this difficulty

can be attributed to the asynchronous nature of user input; the lack of existing

"structured" programming techniques; and not ensuring that the synchronisation of

actions with user events is done within time constraints imposed by what is deemed

"user friendly".

-31 -

B S Barn User Interface Design

The research in UIMS and interactive language constructs has demonstrated that

there is still as yet no ideal methodology. User toolkits commonly available with

window systems allow easy construction of applications but introduce additional

problems of portability and suitability of design procedures. Programming language

constructs as exemplified by Gangopadhyay are not powerful enough, but at least he

clearly identifies a need for programming techniques for these type of applications.

Recent years have finally seen the maturation of research in Integrated Project

Support Environments (IPSEs). Typically, such an environment will include a number

of software tools and it is essential that the tools have a standard user interface to

reduce effort in learning new tools. A number of IPSEs embody this basic principle of

consistency.

In the field of Software Engineering, the ideas of ’structured programming’ have been

with us for some time[15,16]. Various methodologies have been advocated, but they

all rely on the premise that there exists a set of standard or conventional programming

language control constructs which can be used to write a program. These constructs

are:-

i f ... then ... else;

while... do;

repeat... until.

It has been shown that such restriction has resulted in a significant improvement in the

quality and cost of code produced. Figure 1.9 gives an indication of the ’effort

multiplier’ factors for software utilising various levels of modern programming

practice[8]. It is assumed that such practices are employed across the software cycle.

Methodologies which have proved their worth include Jackson Structured

Programming[29] and Structured Design[61,42]. Identification of similar constructs

- 3 2 -

1.40

1.30

1.20 Low

1.10

1.00 Normal

0.90

0.80 High

0.70

0.60

_ i_______i_______I___
Requirements Detailed Code
and Product design and
Design Unit test

Very high

Integration
and
test

Effort Multipliers

1.50

MODP rating

Very low

Figure 1.9. Effort multipliers by phase: Modern Programming Practices
(From [8])

B S Barn User Interface Design

which embody the concurrent, and largely event driven nature of graphical programs is

a prime consideration. This work identifies such constructs and it utilises and builds

upon the experience gained in UIMS design. In addition it attempts to provide a

prototype software tool which implements the constructs so derived.

- 3 3 -

B S Barn Graphical Interaction Management

2. The New Interaction Model

In this chapter we describe the basic control strategy used to implement interactive

systems. This scheduling strategy is termed the Interaction Model. We then go on to

describe the shortcomings of existing models. The second half of the chapter is a

detailed description of a model which more closely fits the characteristics of this type

of software. This model draws freely from both operating systems design and

compilation theory. Finally the model is compared with a formal description of an

earlier model proposed in some closely related research.

2.1. Existing models

Elsewhere we have stated that an interactive graphical program is essentially an event

driven activity, where an event is a user action supplied via some physical input

device. Typically the program responds to events and then waits for other events to

occur. More often than not, the major portion of an application’s execution time is

- 3 4 -

B S Barn The New Interaction Model

spent waiting for events to occur. This wait time corresponds to the user "Think Time"

i.e. the user is thinking of some action to perform[19]. The typical schema for an

interactive program reflects this wait time.

repeat
Wait for an event;
case event device of

1: action 1;
2: action 2;

n: action n;
end;

until exit;

Await Event routines such as this allow several input devices to be in use at the same

time. The program could be receiving input on some device and still be waiting for

events on another device. Thus events will need to have their status preserved and so

typically there is some queueing data structure. The result is a need for complex

event-decoding logic. We will need to determine which event device generated the

event and then search the queue for the event information.

Many applications however require input from only one device at a time. Also some

time-sharing systems prohibit the simultaneous use of several devices so the

generality of the event queue becomes a needless overhead. This leads us onto a

slight variation of the above scheduling loop. Instead of waiting for an event on any

device, there exists an event handler for each device attached to the system. Within

each event handler the scheduler waits on the data rather than the device. The

schema could be shown as:-

- 3 5 -

B S Barn The New Interaction Model

For a device A.

repeat
wait for an event from device A
case data from device A of

1: action 1;
2: action 2;

n: action n;
end;

until exit;

This basic schema is implemented for all devices used by the application. An

example illustrating an event handier for each device is now described.

Example

An interactive menu-driven program to draw boxes and lines at user supplied

positions on the screen. The basic input/output hardware configuration is:- display

device, tablet and mouse. The user’s actions are composed of the following sequence

of events: a button press in the menu area (corresponding to selection of a menu

option) followed by button presses in the drawing area (defining the opposite corners

of a rectangle or the vertices of a line).

For the program to carry out the required function, it needs to monitor the interactive

element by:-

1. checking for events in the menu area;

2. checking for events from the point device, in this case the mouse.

Finally the raw input data needs to be processed into useful information. The user

and program actions defining the interaction are summarised below.

User actions are:-

- a menu event;

- 3 6 -

B S Barn The New Interaction Model

- a point device event.

Program action are:-

- check for menu events;

- read menu event data;

- check for point device event;

- read point device event data.

An implementation of this is;-

program example;

var
r declarations */

begin

Initialise picture area;
Initialise the interface I_f.

while true do
begin

while test_menu(IJ)= empty do;
cmd= readmenu(IJ);
clr_menu(l_f);

while test_point_device(l_f)= empty do;
positionjl = read_point_device(l_f);
clr_point_device(l_f);

while test_point_device(Lf)= empty do;
position_2 = read_point_device(l_f);
clr_point_device(l_f);

case cmd of
line: drawline(position_1, position_2);
box: drawbox(position_1, position_2);

end;

end;
end.

There are two basic design faults with this model. Firstly, basing the design of the

scheduler around the data means that a separate function to clear data, unused or

used, needs to be provided. Ideally the event handler should simply return the new

- 3 7 -

B S Barn The New Interaction Model

data, calling clear operations as required and update the interface at the same time.

Secondly, all synchronisation to maintain user action fluidity is performed by the

sample program. The result is unstructured looping of the While statement before

each read to ensure that data is available.

Finally as there is concurrent access to the interface by both the application and the

user, there is a need for additional synchronisation requirements. These requirements

are sufficiently complex to indicate the provision of special purpose interaction

primitives in which the synchronisation needs of the user and the application are

embedded. The design of a suitable scheduler and its primitives is now described.

2.2. The New Interaction Model

To develop our new model we start with the premise that graphical interaction is

essentially an input-event driven activity. Generally interaction offers a rich set of

options, most of which will not be in use at any given time. A small number may be

intensively used (e.g. reading the tablet; updating the cursor position). Some will

occasionally start other actions. Also, most actions require a rapid response to

maintain fluid interaction.

Some definitions and associated terminology will now be introduced.

Application

A menu-driven graphical program.

Interaction

An application defined as tasks.

Window

A user defined area set within the screen of the display device.

- 3 8 -

B S Barn The New Interaction Model

Task

Within the constraints of graphical applications, a task can be defined as an object that

provides a means of performing an action specified by the user.

2.2.1. The scheduler

The first component of the new interaction model is a scheduler. We can develop the

scheduler by examining the role of tasks. A task can be seen as the conceptual unit

of all graphical applications in that all such applications can be defined in terms of

tasks. If an application is composed of tasks, a study of the interaction in the

application can be undertaken by a study of the interaction of its tasks. A typical

structure of an interaction application is given in figure 2.1.

Here f1...fn are functions which a user may wish to execute. They are made active by

appropriate selection of the function from the menu-window. Further, interdependence

of functions is indicated by directed arrows. For example a task which sketches lines is

dependent upon a task which allows the user to select inks. In terms of tasks, there is

a one to one correspondence between a function and a task. More significantly, boxes

labelled cursor-tracking and menu are also considered tasks, but they have a higher

priority as they occur earlier in the hierarchical structure.

These observations suggested that interaction can be handled by a fixed scheduler

scan with associated tasks. A large pool of worker tasks will typically be used, but

most tasks will lie dormant until needed and expire once used. Further, parameter

gathering should be separated from invoking the worker task, to maintain flexibility of

interaction and simplicity of workers. In outline, the Scheduler is:

- 3 9 -

Figure 2.1. Structure of an Interaction Application

B S Barn The New Interaction Model

repeat

for task:=1 to numtasks do
if active[task]

begin
If not runnable[task] then Try (task,gather); /* Collect parameters */
if runnable[task] then Try(task,perform); /* Perform the action 7
end;

until exit;

During a single scan of the task pool, the scheduler attempts to collect the necessary

parameters for any task t which is active but not runnable. If all the parameters for

task t have been collected the task is made runnable. In the same scan, if task t is

runnable, the task is performed.

This completes our introduction of the scheduler.

2.2.2. Tasks

The second component of the new interaction model is the Task. We require a Task

to have two components. The first is a parameter-gathering section and the second is

the code which performs the actions required of the task. It is immediately clear that

the first component corresponds to the user interface, i.e. it contains the interaction

requirements of the user and models the actions of the user. The second component

is clearly the the application interface. Correspondingly we need a mechanism for

switching between these two components.

To implement this we use a procedure Try both to collect parameters and to execute

the appropriate application-specific procedures. In outline Try is:-

- 4 0 -

B S Bam The New Interaction Model

procedure Try(t,op: Integer);
begin

case t of
1: case op of

gather: ...
perform: ...

end;
2: ...

n:
end;

end;

Each case on t introduces a section of code specific to the parameter gathering needs

of the task. When called as Try(t,gather), any parameters for the task are identified,

but no interpretation is made of them. For example, a task to draw a straight line

requires two pairs of (x,y) coordinates which will later be interpreted as the vertices of

the line.

Try(t,perform) runs task t to completion by binding the parameters to a call of the

appropriate worker task. We use this arrangement for convenience: the gather and

perform sections of a given task are lexically adjacent, making for easier maintenance.

2.2.3. Task progression

The third component of the new interaction model is a pair of mechanisms to control

the progress of tasks. The first of these controls the macro-behaviour of the task (the

way the scheduler treats it) while the second controls its micro-behaviour (how the

task executes).

For the macro-behaviour we note that, typically, most tasks are dormant until needed.

Even when needed they usually pass through a parameter-gathering phase before

completing and once more becoming dormant. We envisage a system (Figure 2.2) in

which tasks progress from frozen (no need to do anything); to suspended (lacking

enough parameters to run); to runnable (having a complete set of parameters and only

-41 -

FROZEN SUSPENDED

suspend (t)

freeze (t)

Figure 2.2 Transition of tasks between states

B S Barn The New Interaction Model

awaiting scheduling). We provide a task progression mechanism to reflect this. To

implement this progression we provide appropriate control booleans and trusted

primitives to manipulate them. For example, a task initiated from the menu progresses

from frozen to suspended, remaining in this state until its parameter needs are met,

when it subsequently becomes runnable. After being scheduled it might run to

completion and then return to its former frozen state. Transition between macro-states

is accomplished by the primitives used to label the arcs in the diagram in figure 2.2.

The primitives are of the form:-

procedure Run (task: Integer; progression: stage);
begin

runnable[task]:= true;
which[task]:= progression;

end;

procedure Suspend (task: integer);
begin

runnable[task]:s false;
end;

procedure Freeze (task: Integer);
begin

active[task]:= false;
runnabie[task]> false;

end;

procedure Thaw (task: Integer);
begin

active[task]:= true;
end;

Now we consider the micro-behaviour of a task. Not every task which reaches

runnable state will run to completion when it is scheduled. It may simply have reached

a stage where a certain parameter may be collected. Progression to a later stage

would then depend on that parameter being collected and any associated actions

being performed. Hence we can impose a degree of sequentiality within a specific

task. Thus we separate the perform section into three logical phases which we call

start, middle and finish. The table which holds the current stage value for each task.

- 4 2 -

B S Bam The New Interaction Model

Typically this is useful because a new task has set-up actions which can be assigned

to the start phase. The middle phase is used for the main part of the task and then

the finish phase can be used to tidy up. To give an example, the outer phases can be

used to change the cursor pattern back and forth to give feedback to the user, with the

actual task being invoked in the middle phase. In the definition of Run there is an

additional parameter progression which indicates the next stage of the current task to

be processed.

Tasks do not have to freeze when completed. It is in the nature of some that they will

gather one set of parameters, perform work and then repeatedly do the same thing.

Such tasks can be suspended rather than frozen, as the diagram makes clear. In this

way they continue to gather parameters as long as required.

This resemblance to finite state automata is fully documented in the case of user

interface specification. This characteristic has been further used in systems where

graphical programs are generated using interactive finite state machine editors.

Delineation into stages makes some housekeeping intricacies relatively easy to

implement. If a task requires variables to be initialised prior to the task running, the

necessary code can inserted into the start stage. Also, menu window management

problems such as menu highlight synchronisation (ensuring the correct menu box is

highlighted according to the current task) can be set up as start and finish actions.

Examples of task progression

We can give a better idea of how a task will progress from a frozen state to execution

of its primitives. As we stated earlier, some tasks are active ail the time and are

continually scheduled, some tasks run to completion on selection from the menu and

some run to completion only when their parameters have been collected.

Following figure 2.3, all tasks reside in the task pool. Some of the tasks in the pool are

- 4 3 -

Thaw (t)

SUSPENDEDFROZEN

Run (t, stage)Freeze (t)

Suspend (t)

START

MIDDLE

FINISH

Freeze (t)

Figure 2.3. Task Progression Showing both Macro and Micro States

B S Bam The New Interaction Model

frozen, while others are suspended.

Example 1. Cursor Tracking.

A common function in interaction is that of updating the screen cursor position to that

of the puck on the tablet. There is no user interaction required to do this and it takes

place continually. This task is always needed and so it alternates between suspended

and runnable. When the task is first scheduled it will be in the suspended state. The

scheduler executes a Try (task .gather) but, as no user-input parameters are required, it

immediately executes a Try(task.perform). The "perform" section of the task consists

of the code to update the cursor position and the task is then suspended in readiness

for its next call.

Example 2. Menu Management.

This is a task that detects button presses in the menu region. It is also always active.

The task is first scheduled to gather its parameter, a button press. If there has been

no button press it is not scheduled to perform, instead it is returned to the task pool

until the button press event occurs. At that point, it has gathered enough parameters,

it becomes runnable and it is scheduled to perform the primitive associated with the

menu task. This is usually to thaw the task associated with the menu button pressed.

On completion it is suspended, awaiting a further button press.

Example 3. A Menu Initiated task.

This task is always frozen until it has been initiated by the menu management task.

Once the task has been made runnable it follows the same route as the menu

management task with one significant difference. Once the application-specific

procedure has been performed the task is returned to the task pool in a frozen state.

- 4 4 -

B S Barn The New Interaction Model

2.2.4. Event detection

We have already mentioned that we expect interactive programs to be event driven, so

the fourth component of the new interaction model is a mechanism for detecting

events. It is commonly the conjunction of a button press (or release, or holding down)

with a specific area of screen/tablet which needs to be distinguished. We therefore

adopt:

procedure Event(butstate: button; region: area): boolean;

as an enquiry function. The function Event is required to test the puck state to see if it

corresponds to that named (e.g. button 1 just pressed) and also the region (e.g.

command menu). Event has to be sufficiently general to allow for pop-up menus,

overlapping menus etc. Butstate is defined to cover new, pressed and released where

new defines a button press, pressed represents a button held down and finally

released indicates a button has been released. It thus defines both level (held down

or remaining released) and transitory (just pressed or just released) states, an

important distinction. Region is used to identify the area on the screen/tablet where

the button action occurred.

2.2.5. Well-formed constructs

For the fifth component of our new interaction model we identify a number of well-

formed constructs. Structured programming uses a modest number of well-formed

constructs, where each construct displays some simple property. These are

repeat...until, while, for loop and if... then... else. Such constructs are satisfactory for

sequential programs but they are of less value for interactive programs as they do not

adequately reflect the asynchronous, fluid behaviour of such applications. This is

because interaction is typically used to direct the flow of control along a multitude of

- 4 5 -

B S Barn The New Interaction Model

paths.

This section contains details of some of the more suitable control constructs we have

identified up to the present time. These constructs are not sufficient in themselves for

complex interaction requirements, but when used in conjunction with additional type

declarations they are adequate. (Some of the type declarations are described in

section 4.4.)

Continual update

There are many applications in which part of the interaction requires a continual

update of program variables. Typically such variables are associated with control of

the displayed image. For example, a screen cursor may be continually updated under

program control to indicate the puck position. This is expressed as:

gather_n : Readpuck(x.y); Run(n); { Puck monitor)
perform_n: MoveCursor(x,y); Suspend(n); { Cursor update}

Continual update is also needed in such cases as thermometer scales, rubberbanded

lines and boxes and the dragging of windows.

Point and do

A simple form of interaction is the "point and do" action such as selecting "clear

screen” by pointing to a labelled menu box and pressing a puck button. There is then

an immediate effect which proceeds, out of further control, to completion. Such a task

will be permanently active and will run whenever a particular puck button is pressed

within a certain area on the screen. Other examples are deleting graphical objects,

pulling down a menu, scrolling a window and selecting an icon. There is also a

degenerate case in which the position of the puck is not relevant, corresponding to

using a puck button for a dedicated action such as menu pop-up. All such permanent

- 4 6 -

B S Bam The New Interaction Model

tasks can be coded in the form:

gather_n : if Event(button,viewport) then Run(n);
perform_n: execute(n);

Event recogniser

In principle menu-selection could be implemented as a number of point-and-do tasks,

treating each menu entry as a separate area of the screen. In practice this can be

cumbersome for all but very short menus. A conventional top-down approach to

manage this interaction has been adopted. At the top level, it is sufficient to identify

that a relevant event has occurred, namely that a new button press has just happened

in the menu. We thus get:

gather_n : If (Event(new.menu)) then Run(n); { Menu monitor}
perform_n: Thaw(Comm); Suspend(n); { Action the command }

The monitor component is already familiar. The action component uses procedure

Comm to decode the puck position and return the task number needed for that

command. This task is then enabled by Thaw. The event recogniser task takes no

further action until the next new press of a button in this menu. It has, however

caused a non-permanent task to spring to life (the one associated with the menu item)

and this will have its own Gather/Perform entry.

This particular construct is important as it can be used as the basis for a number of

interactions. Thus we can have an event recogniser task for detecting events in a

number of different windows.

2.3. Formal and informal approaches to user

interaction

- 4 7 -

B S Bam The New Interaction Model

Our new model has been derived pragmatically with the emphasis on the needs of the

practicing programmer. This approach can usefully be compared with formal

specification, for example as described by Mallgren in his thesis[41].

In this work he too has identified the need for synchronisation primitives. However his

work has concentrated on their algebraic specification rather than their utilisation. For

the example of section 2.1, the program can be simplified by defining interaction

primitives which combine the test, read and clear operations for each device. The

operations wait until the device has data and then return the data and clear the device.

This method will result in more readable programs (contrast the program below with

that in section 2.1). The waiting performed by the while statement still exists but now

at a lower level. This problem will exist while the scheduler is of this style and is based

around the sequential data type.

Program operations:

getmenu;

getpen.

User actions:

menuevent;

penevent.

The new sample program thus becomes:-

- 4 8 -

B S Barn The New Interaction Model

program example2;

var
r declarations 7

begin

Initialise picture area;
Initialise the interface I.

while true do
begin

cmd <- getmenu;
pos <- getpen;

case cmd of
line: drawline(position);
box: drawbox(position);

end;
end;

end.

A sequential datatype is a collection of unchangeable objects that are accessed from a

sequential process via some well defined operations. These objects can be

manipulated by creating new objects or by assigning them to variables.

Our own model is again a sequential datatype model, but the nature of the data

structures used, i.e. the booleans representing the states of the task, is such that each

task is uniquely identifiable. Therefore the sharing of data and state is not a problem.

The only data that is shared is that data input by the user and that particular problem

is described in detail later in this section.

At this point it is useful to discuss those aspects of our model which are related to the

issues raised in Mallgren’s thesis. As we mentioned earlier, unstructured looping is still

unresolved in the ’beautified’ program given above. The actions getmenu and getpen

are essentially event handlers which loop until an event occurs. In our model those

particular actions and similar ones are given a permanently active state and the single

structured loop, the while statement, ensures that these actions get scheduled.

Mallgren also assumes, once a command from the menu has been selected, that it

then enters its own controlling structures. Again this is undesirable because of its

- 4 9 -

B S Bam The New Interaction Model

unstructured nature. In the Interaction Model we propose, all control of the tasks

remain external.

Mallgren argues the concept of the shared datatype with internal states and

restrictions which can be imposed on those states is more suitable for the interfaces

we are concerned with. The interface is itself treated as a shared object. The problem

of ensuring data objects are available to one or more operations is overcome by using

a special event algebra to identify the states in which shared data variables can exist.

The event algebra is sufficient for describing the transfer of data through an interactive

interface, the synchronisation between the user and the application, but it does not

adequately model the user actions by which data is entered. User behaviour is

modelled by defining the set of user actions, where each action corresponds to a

specific user activity. A sequence of user actions is represented by a special program

called user description. For our earlier example, a user description is given below.

user example2;

begin
while true do
begin

menuevent;
penevent;

end;
end.

As well as primitive synchronisation operations, there also needs to be a set of low-

level operations for controlling user input. Mallgren identifies the following low-level

operations:-

Wait (device! ,device2,device3...device_n);

Test (device);

Read (device).

- 5 0 -

B S Bam The New Interaction Model

The Wait operation waits until any of the devices in its parameter list has data and

then returns the device name. The Test operation returns true if a particular device

has data available. The read operation returns the data available at a particular device.

The formal specification of low-level input primitives raises some questions, these

problems are identical to the ones that are also addressed by the informal Interaction

Model we propose. These problems are given below.

1. The Testdev operation makes it clear when data is available but is not clear when

data should be made unavailable. When should it return False?.

In the Interaction Model, when the Event(button,vlewport) primitive is used It

contains button state information which is subsequently available to all tasks bwer

down the scheduling loop. For example, some active task may have as part of its

gather section:-

If event(new,window) then
run(t,start);

Assume the function returns True. The task becomes runnable and executes the

appropriate portion of its perform section. However, tasks lower down the scheduling

bop, which are also active may require collection of the same parameter, so should

the same data/parameter be bound to the second task? Clearly, in some cases the

nullifying of data is desirable, but there are instances where we would wish data to be

available for all active tasks. The current (x,y) coordinates of the puck position is one

such case.

2. The Waitdev operation has the ambiguity of (1) and an additional one. If there are

more than one device ready which one should report back to the applbation?

3. The Readdev has its own problem. If additional data has arrived at a device, should

the data be ignored or queued?

-51 -

B S Bam The New Interaction Model

Mallgren makes the following assumptions and it is pertinent that these assumptions

are not dissimilar to the ones made by the author during the design of the Interaction

Model when the author was unaware of this work.

Assumptions

1. Testdev returns False only after data has been read.

2. Conflicts in Waitdev are resolved according to a pre-determined priority amongst

devices.

3. Input is not queued; newly arriving data is discarded.

The scheduler design in the Interaction Model largely resolves the related problems

associated with test and wait. The scheduler is essentially composed of a cyclical scan

through a pool of active tasks. The nature of the data structures ensures there is a

natural ordering of these tasks. Thus parameters/data become available to active tasks

in a specific order. It should be mentioned that in our case the Waitdev problem is

much simpler because there is only one physical input device which we are continually

sampling.

We can conclude that the Interaction Model described in this chapter is very similar to

that independently derived by Mallgren. While the convergence is not a proof that our

approach is correct, the fact that Mallgren and the author developed similar models

from very different starting points, using dissimilar techniques is striking. Mallgren has

formally specified an essentially complex problem which suggests that our model is a

viable one for programming the user interface for graphical problems.

It is also apparent that although Mallgren has concerned himself with the design of a

suitable scheduling mechanism and the appropriate synchronisation constructs arising

therefrom, he has not defined any ideal programming language constructs. Thus our

model improves on Mallgren’s model and in addition identifies some important

programming language primitives.

- 5 2 -

B S Barn The New Interaction Model

2.4. Summary

Starting from simple forms of interaction we have developed a new model based on

the pragmatics of programming user interfaces. This model consists of five major

components:

1. a scheduler;

2. a task model;

3. mechanisms for task progression;

4. an event detection primitive;

5. three well-formed constructs.

We have compared our own model with that formally developed by Mallgren and have

found several satisfactory parallels which reinforce our confidence.

In the following chapter the new model is used as the basis for an implementation of a

tool to assist the interface designer.

- 5 3 -

B S Bam Graphical Interaction Management

3. Implementing the New

Model

For the new model to be of use to the interface designer it needs to be embedded in a

programming language. Such a language has been implemented by the author and

given the name SIDL (Simple Interaction Design Language).

In order to create the language in a reasonably efficient way it was decided to build it

on C. This was done by writing a pre-processor to convert SIDL programs into C. The

pre-processor is called GRIP (Graphical Interaction Pre-processor).

This chapter first describes the reasons for developing the new specification language

and then continues with a section on how the language is implemented. A detailed

description of the syntax and some of the semantics of the language is provided.

- 5 4 -

B S Barn Implementing the New Model

3.1. The need for a design language

Natural language mirrors the thinking habits of people using the language. People are

constrained to think and express themselves in that language. If there is difficulty in

this, the language must be further developed by the invention of new idioms and the

like. This characteristic also applies to programming languages. A programming

language will typically influence the user in at least the following manner.

1. The language will determine how a particular problem will be solved and also the

range of problems that can be solved;

2. The basic programming constructs will affect the style of programming;

3. Portability and efficiency issues will vary according to the language used.

Traditional high level language design reflects these points and also the change in

computing technology. Thus we have had the development of static imperative

programming languages such as FORTRAN and COBOL. These languages reflect

their usage, FORTRAN in its suitability for numerical computation and COBOL with its

orientation to the data processing requirements of the business community.

Systems implementation languages evolved from assembly languages and their most

significant characteristic is that they allow the programmer direct access to machine

operations and addresses. Examples of these languages include BCPL and C.

Block structured languages are derived from static languages. They typically contain a

selection of control constructs and possess the ability to classify program objects to be

of a particular type. There is a limited amount of dynamic storage allocation called the

block structure. Languages of this class include Algol, Pascal and Ada.

Dynamic high level languages such as Lisp and Prolog have all storage management

performed dynamically and tend to be tailored for specific applications. Thus Lisp is

used for list processing applications.

- 5 5 -

B S Bam Implementing the New Model

3.1.1. Fourth generation languages

The 1970s and early 1980s saw the advent of a new generation of languages, the so-

called application generators and fourth generation languages (4GL). Their

development has arisen from the need to overcome the problems associated with

traditional software development.

The advantages of 4GL can be simply stated as :-

1. developers need not be professional programmers;

2. the tools are easy to use;

3. there is a high level of productivity.

Application generators are normally interactive and either generate third generation

high level language code or tables which drive the application directly. The

applications are very specific and there is virtually no flexibility.

4GL are mainly non-procedural, thus they do not require complex programming skills.

Applications created by 4GL take longer to develop than those by application

generators but the target problem environment is unrestricted.

So what are our criteria for a design language and where will our language reside in

the brief classification described above?

Our primary reason for designing a suitable language is to utilize the Interaction Model

defined in the preceding chapter. It is clearly inadequate to expect software designers

to follow some methodology and then fail to provide the tool environment to support

the methodology. Constraining the designer to use a language such as SIDL will

ensure that the subsequent design is consistent (in this case, with our methodology).

Our criteria for our language will now be briefly described and details amplified in later

sections as the need arises.

- 5 6 -

B S Bam Implementing the New Model

1. The language should reflect the Interaction Model such that the functions and the

objective of the program should be obvious from a static study of that program. Thus

the language may serve as an informal specification of the application being developed

allowing the design of an application to be discussed in detail.

2. The language should incorporate non-procedural elements so that the designer can

describe what is required without having to list the detailed steps on how it should be

achieved.

3. Interactive graphics programs are complex so some procedural elements will have

to be included so that flexibility is not lost. Thus at least some standard programming

constructs will have to be provided.

4. The language is primarily intended for use by programmers, thus it would be helpful

and it would ease the transition to use of this language if the language bore

resemblance to existing programming languages.

5. Interface design is an area which has considerable scope for discussion and

variation. Research is still trying to identify the factors that constitute an ideal interface.

In an attempt to define such an interface considerable effort has been put into the post

evaluation of interfaces and a number of tools are currently being developed. SIDL, as

well as being an informal specification of an application should also form the basis of

tools for late evaluation of interfaces.

6. The language should be expressed by a context free grammar so that construction

of the parser is simplified.

3.2. System design

Modern programming’s key concept for controlling complexity is abstraction - the

notion of emphasising particular detail. To this end, the design of SIDL is no different.

We have identified the requirements of interactive graphical applications as exemplified

- 5 7 -

B S Barn Implementing the New Model

by the Interaction Model and we allow the SIDL language to express only those

abstractions which are concerned with the interaction element.

In this section we are concerned with the philosophy behind the design and the

implementation of the language and its associated interpreter GRIP.

SIDL and GRIP are in essence a front end to the UNIX C compiler. A program written

in SIDL is used to generate a C program which contains the complete interaction

needs of an interactive graphical application. Thus we can immediately note that SIDL

falls into the category of 4GL in the simple classification outlined in section 3.1.

Further, because the language is targeted onto a very specific application area we can

associate it more closely with application generators.

3.2.1. Implementation approach

In this section we will first discuss the choice of development language, then we will

then go on to consider the first implementation and conclude by describing the final

implementation.

The development system was an HLH Orion 32 bit superminicomputer running UNIX

4.2 BSD. Suitable languages were essentially C and Pascal and, of these, C was

preferred. This was because, firstly, C forms a more coherent aspect of UNIX than

does Pascal. Secondly there are a large number of software tools available. The

availability of the following software tools affected the decision.

yacc and Lex : compiler construction tools,

adb, dbx: interactive debugging tools,

make and sees: configuration management tools,

cb: general purpose tools.

These two factors were of considerable importance when choosing the development

language.

- 5 8 -

B S Barn Implementing the New Model

Early attempts at implementation are now described for historical reasons. An

experimental syntax for SIDL was defined. The syntax was formally expressed using

BNF. The grammar rules were then used to construct a recursive descent syntax

analyser. As we were attempting to generate approximate C code quickly, the simplest

means of generating the code appropriate to the SIDL specification was by including

the code generation within the analyser.

Very briefly, syntax trees of the SIDL program were constructed, these data structures

were then used to generate C code. The SIDL syntax was however going through a

rapid metamorphosis: each change meant a change in the analyser which made

alteration to the syntax both difficult and unwelcome. Clearly a new approach was

required.

On the Unix System, several tools are available which allow the non-specialist to

define and process rich input languages. These tools were originally intended for the

development of classical compilers, but have proved useful in a wide variety of

applications as well.

One such tool is yacc[34] "Yet another compiler compiler". Yacc generates parsers

from an input specification language that describes the desired syntax. Each rule in a

yacc input is associated with a fragment of C code. As a rule is recognised the

appropriate code is invoked. The parsers generated by yacc consist of a finite state

machine and a stack. Yacc is based on the theory of LALR(1) parsers[2], and it

permits controlled use of ambiguous grammars, with disambiguating rules making it

much easier to handle traditionally difficult problems such as operator precedence and

the dangling else.

A similar tool Lex is used to generate lexical analysers[38]. Figure 3.1 indicates the

dependencies between various Unix tools and the interpreter derived from them.

As with the original attempt, it was decided to continue with the basic policy of

incorporating the code generation within the analyser. Within yacc this meant that for

- 5 9 -

SIDL
Specification

YACC

^ Syntax
Errors

SIDL
Program GRIP

Generated
ProgramSkeletal

Program

Application
Procedures

Executable
Program

Figure 3.1. GRIP Design

B S Bam Implementing the New Model

each syntactic structure successfully parsed the action part associated with that rule

invoked C code, which in turn generated the interaction C code.

3.3. An example application

To illustrate the syntactic structure of a SIDL program, a substantial example will now

be described. The full SIDL code for this application appears in Appendix B. We will

refer back to this example later in this chapter and also in Chapter 4. Vecfnt[6] is an

interactive graphical bitmap font editor which has been programmed in SIDL. The

application allows a user to create and edit bitmaps representing characters in a font.

The characters can be saved and retrieved from font files.

Figure 3.2 describes the layout of the screen. There are four screen regions: a

character edit region, a menu region, a font grid region, and the remainder of the

screen can also be considered as a separate region. The character edit region is

divided into a grid, each grid box representing a pixel. The font grid region is used for

storing the current font on the screen. The menu region is composed of a series of

buttons which the user selects to perform various editing functions. To aid the font

designer in laying out the character baseline, height etc a number of graphical objects

called "handles” are provided. These are movable rules superimposed on the

character edit region, shown as thick lines in Figure 3.2.

The standard input devices used are a puck with four buttons (however, they behave

as one logical button) and a keyboard for entering text strings.

The following functions are available.

There is a general purpose task which is independent of the menu, used for editing the

character area with the current colour.

All other tasks are initiated from the menu. They are:-

- 6 0 -

Savefont Loadfont Clr font

SaveChar Sel ascii SelChar

Black White Compmnt

Outline Createvec Editvec

Left Right Up

Vmirr Hmirr Down

Curve End Smooth

Clear Line Exit

Figure 3.2. Vecfnt - Bitmap Font Editor

B S Barn Implementing the New Model

Black, White and Complement.

These tasks set the ink with which the character is edited. Thus each time an edit grid

cell is selected using the puck, the cell is filled with the current ink. In the case of

Complement, if there is a black cell, it is replaced by a white cell and vice versa.

SelChar and SaveChar.

These tasks are used to select characters from the font grid area for editing purposes

or to save the current character in an appropriate font grid cell.

Left, Right, Up and Down.

These functions shift the current character in the edit area in the direction selected.

Line.

This function draws a line in the edit area with the current ink, between two user

selected points.

SaveFont and SelFont.

These functions either save the currently displayed font in a file or load a new font into

the font grid area.

As an example of its use, consider the following sequence of actions. The user

selects SelFont from the menu and enters a file name when prompted. The font is

displayed in the font grid area. The user next selects SelChar from the menu and then

selects a character from the Fontgrid area by a point and click. The character is

displayed in the edit area, where it is subsequently edited. The character can finally

be saved using the SaveChar function.

The purpose of this application was not to implement a fully blown font editor, although

that was an offshoot from the work, but was to create a test vehicle for the Interaction

Model. In the following sections we use this example to illustrate the SIDL syntax. In

addition we provide examples of some of the C code that is generated.

-61 -

B S Barn Implementing the New Model

3.4. The SIDL syntax

The syntactic structure of SIDL is similar to that of most programming languages in

that it can be described by context free grammars. A grammar is context free if the left

hand side of every production consists of a single non-terminal and the right hand side

consists of any non-empty sequence of terminals and non-terminals. For example.

A -> x B y ;

B -> z ;

The context free elements of SIDL are described using an extended BNF notation. A

full BNF definition is given in Appendix A. However to describe a language adequately,

the semantics and those aspects which are context dependent (such as type checking)

also need to described. We discuss these secondary aspects informally in the

following sections.

3.5. SIDL program structure

There are three sections to a basic SIDL program: a type section; window definitions;

task definitions. There can be none or any number of window or task definitions.

The syntactic form of SIDL closely follows that of Pascal. Thus, commas and semi

colons appear in similar positions as in Pascal. There were two reasons for adopting

this approach. Firstly, a more precise BNF definition could be obtained by making use

of the Pascal Language definition. Secondly, similarity to a high level language was

bound to be useful in the early experimentation with this language. All SIDL keywords

are in bold font.

- 6 2 -

B S Bam Implementing the New Model

INTERACT vecfnt;

TYPE
{ Type and Variable declarations }

ENDTYPE

WINDOW

END

TASK selchar;
TYPE
ENDTYPE

DO
END

3.5.1. Types

This section is loosely based on the Pascal Type and Var sections. Its purpose is to

declare and specify some of the global variables which will then be used to produce

tables for code generation. It is also used to specify the environmental/presentational

aspects of the application.

SIDL declarations are used to specify the number and names of windows (screen

regions) which will be required. An additional SIDL declaration is used to identify the

window to be used as the menu. The total number of tasks that will be operating in

the interaction is also specified.

NUMTASK 13;
WINDOWS = (menu,gridlfontgridlhand1lhand2>hand3);
MENU menu;

Colour maps can be defined in a variety of ways. Colours can be declared as specific

entries in the look up table with the required red, green and blue values, or they can

be specified as a range of colours occupying a number of entries in the look up table.

The start and end colours can either be default system supplied colours such as the

- 6 3 -

B S Barn Implementing the New Model

primary colours, or they can be user supplied r,g,b values, or a mixture of the two. A

few examples are shown below.

In example 1, the offcol is at entry 13 in the colour table and its red, green and blue

values are given by 0, 120 and 0 respectively. Example 2 uses a SIDL keyword

definition of RED to enter default system r,g,b values at entry 20. Examples 3 and 4

are used to specify a range of colours at certain positions in the look up table. Thus in

example 3, a range from colour (0,100,0) to white is specified. The range begins at

position 100 and is interpolated over 40 look up table entries. Example 4 specifies a

sunset between RED and YELLOW over 100 entries in the look up table.

COLOUR offcol(13,0,120,0); /* 1 7
COLOUR red_offcol (20, RED); r 2 7
COLOUR redjrange (100, 0,100,0) 40, WHITE; /* 3 7
COLOUR sunset (50, RED) 100, YELLOW; /* 4 7

The most important type declaration is that used to specify the mutual exclusion

tables. The function of the tables are described in detail in Chapter 4 but here we are

only concerned with the syntactic structure of the specification.

Each group of tasks is specified as a row together with its task type. The levels for

tasks describing Vecfnt are shown below.

MUTEXL- (backgmd,foregrnd,compment) OF TYPE 3;
MUTEXL= (selchar,savechar) OF TYPE 1;
MUTEXL= (line) OF TYPE 1;
MUTEXL= (left,right,up,down) OF TYPE 2;
MUTEXL= (clear,clearfnt,vmirror,hmirror) OF TYPE 2;
MUTEXL= (exit) OF TYPE 2;

The tasks are enclosed in parentheses and the types are indicated.

In addition to a general type section at the head of a SIDL program, there are also

type sections in window block and task block declarations. In the case of windows they

are used to describe the type of window being defined. Windows can be of the

following types.

- 6 4 -

B S Barn Implementing the New Model

STATIC windows are those which remain fixed in their position, MOTILE windows are

those which can be picked and dragged to a new location on the screen. VARIABLE

windows are those which can shrink or increase in size. There is an additional window

of type BITMAP which has bitmapped properties, thus scrolling can be implemented.

All window types are declared in the following manner. If there is no window type

declaration, it defaults to STATIC.

h an d le j: OF MOTILE;

This is a type definition for one of the handles in Vecfnt. The handles can be selected

and moved to a new position and thus it is of type MOTILE. Logically, the menu and

font grid area are fixed in their locations and are declared accordingly.

Type declarations for Tasks are currently limited to one type, at least in terms of

semantics. In section 4.2 we discuss aspects of parameter collection in detail, here we

are concerned with how to specify the parameters that a task has to collect before it

will run to completion.

In Chapter 2 we defined a parameter to be a combination of a button press and a

screen region, where button types are new, pressed and released. In complex task

specifications, a number of parameters are typically collected. In the example shown

below, the task Line requires two button presses in a window region to mark the two

ends of a line.

gridop: [NEW,grld,2] OF PARAMS;

The variable gridop is used to store the value of the current parameter being counted.

The information enclosed in the square brackets tells us that two NEW button presses

are required in the grid area.

- 6 5 -

B S Bam Implementing the New Model

3.5.2. Windows
«

When designing an interactive application using SIDL, the screen region is considered

as a composition of distinct regions where events can occur. These regions have to

be given certain attributes which will decide their presentation and their functionality.

The type definitions described in the earlier section give the reader an idea of some of

the functionality that is currently implemented.

SIDL differs from a (JIMS in the emphasis placed on appearance. In that respect it

does not provide the expressive power that a typical (JIMS would give. SIDL is more

concerned with specifying the behaviour of interactive applications and also of easing

the task of programming such systems. Thus windows are defined in a very simple

manner. A window definition is simply the bottom left (x.y) coordinates and the width

and height of the window. Initially, the user coordinate system is identical to that of

the screen coordinate system. If the rectangular region (for we are only concerned with

rectangular windows) is going to be composed of sub-regions (also rectangular) then

an automatic grid facility is available. The window definition for the font grid is given

below.

WINDOW fontgrid;
DO

HT: 331;
WIDTH: 539;
XBOT: 661;
YBOT: 110;
GRID: NUMH = 8;
GRID: NUMV =16

END

Note that the window is defined within a DO END block in a manner that is similar to

Pascal.

- 6 6 -

B S Bam Implementing the New Model

3.5.3. Tasks

As we have stated earlier, tasks are the basic building blocks of an application. They

are specified so that they implement both the user interface and the application

interface (See section 2.2.1). The SIDL language constructs closely model the

Interaction Model. Consider the following task specification examples taken from

Vecfnt.

In the first example there is a type declaration indicating that this task is to be initially

active, it is also not activated from the menu. Both examples display the two sided

nature of a task definition. The Gather section shows how the user’s behaviour is

communicated to the application and what action should take place. For the savechar

example, we can read the task as follows. If there is a button press in the menu button

associated with savechar then carry out the first stage, in this case it would be task

synchronisation activities (section 4.1). When the user finally presses button 2 while

TASK edit;
TYPE

INIT= ACTIVE;
ENDTYPE
DO

GATHER;
IF NEW(2) BUTTON IN grid THEN

runjt,start)
ELSE
IF PRESSED(2) BUTTON IN grid THEN

run(t,middle);
PERFORM;

DO
START:

DO
fillcell(xcoord.ycoord);
suspend(t)

END;
MIDDLE,FINISH:

DO
fillcell(xcoord.ycoord);
suspend(t)

END
END;

END

- 6 7 -

B S Barn Implementing the New Model

TASK savechar;
DO

GATHER;
IF NEW(2) BUTTON IN menu THEN

run(t,start)
ELSE
IF NEW(2) BUTTON IN fontgrid THEN

run(t,middle);
PERFORM;

START:
DO

bsync(t);
suspend(t)

END;
MIDDLE,FINISH:

DO
findentry(fontcomm);
savechar();
esync(t)

END;
END

over the font grid area, then perform the application primitive which saves the

character in that position. Note that the PERFORM section is the application interface.

When carrying out prototype activities, procedure stubs will usually be placed here.

Also note that once the task has completed it freezes until it is initiated again, whereas

the edit task simply suspends and is always waiting to collect its parameters.

3.6. Code generation

Code generation was accomplished by use of tables and pre-written files. As a SIDL

program is parsed, the type definitions are used to generate constants. All the window

definition information is collected into a table, whose structural definition closely

matches the structure definition in the final C program. The task definitions are

likewise collected into a table structure. Specific data declarations such as the mutual

exclusion groups and parameter information are also collected into tables.

- 6 8 -

B S Barn Implementing the New Model

Part of the overall system includes a skeletal C program. This contains the basic

primitives required by the interaction model. These are the event detection procedures,

procedures for identifying the menu box selected, all the primitives used to maintain

task progression and finally skeletal table structures.

As well as producing tables during the parse, a merge of the skeletal program and the

code tables is performed. The merge is done in the following manner. Throughout the

skeletal program a number of markers are embedded in the text. The basic operation

of the merge is to copy the skeletal file to a new file until a marker is met. Each

marker is uniquely identifiable and, according to the marker reached, the appropriate

code generation is carried out and subsequently inserted into the file. Thus for

example, when generating all the task #defines the task table is scanned and the code

generated at the position of the marker. Once the code has been generated, the

program continues to copy the skeletal file until it reaches another marker.

The first copy occurs when the SIDL program name is parsed. Other copies of the

skeletal file occur once all the window definitions have been processed.

During a parse of a Task definition, all the syntax encountered is translated into C.

The nature of the SIDL language ensures that the code generation is straight forward.

Only when certain control constructs peculiar to SIDL are met is there recourse to the

use of tables. Once all the task definitions have had their appropriate code generated,

that code is copied to the output C program and the merge continues.

The end result of the parse is a SIDL program listing which will contain any syntax

errors reported. If there are no errors then a C program containing the prototype

interaction is produced. Application specific procedures can then be added and the

resultant program is ready for compilation.

- 6 9 -

B S Bam Implementing the New Model

3.7. Summary

In this chapter, we have presented the reader with the reasons for the design of a

language for graphical interaction programming. The language and its implementation

have been presented. Examples showing its syntactic structure have been described.

In the following chapter we look at some of the issues which arise from interaction

management. We show how these are resolved by using the new interaction model

and its implementation.

- 7 0 -

B S Bam Graphical Interaction Management

4. Using the New Interaction

Model

In this chapter, we discuss some of the problems that are typically found with

interactive graphical programs. These problems are discussed from the baseline of our

new interaction model proposed in chapter 2. The solutions for these problems are

presented. In addition, we look at some problems which arise because of our model.

These can be regarded as the inherent disadvantages of using our model. The

discussion is illustrated with a mixture of example code generation and pseudo-code.

4.1. Task synchronisation

All good interfaces must allow unrestricted asynchronous activity from the user. This

freedom, however, makes the menu management a less than trivial problem. It is easy

-71 -

B S Barn Using the New Interaction Model

to envisage the case where the user makes ad hoc selections from the menu buttons

thereby initiating various functions and so losing any idea of what is happening.

Where initiated tasks require additional parameters (such as selections from another

menu), the problem is even more acute. The user must be able to select another task

while the current task is waiting for a parameter, and still be able to return to the

earlier task with the current state of that task intact. Furthermore this facility must be

provided in a manner that is user friendly.

These objectives have to a large extent been achieved in the new model by enforcing

a sub-structure over the tasks initiated from the menu.

An examination of menu-driven applications at Bath indicates that tasks initiated from

menus can be divided into three categories:

tasks which run to completion when selected;

tasks which require one or more parameters before running to completion;

tasks which, when selected, set parameters to be used by other tasks.

Furthermore, tasks can be assigned to Mutual Exclusion Groups, such that at most

one task from a group can be active at any time. In addition, the mutual exclusivity for

a group extends to any preserved tasks. We can infer three rules to control these

groups.

Rule 1:

Each group can have an active task, so suppose task A is in a different group

from active task B. If the user now selects task A, then task B has to be

preserved. It can therefore be re-instated later.

Rule 2:

Suppose tasks B and C are in the same group. If B is active and C becomes

active, then B has to be killed because the user has indicated a preference for C.

- 7 2 -

B S Barn Using the New Interaction Model

Rule 3:

Suppose B has earlier been preserved and that C is in the same group. If C now

becomes active, then the preserved state of B has to be discarded. This is

because this rule has essentially degenerated into Rule 2, thus the user has

again indicated a preference for C.

4.1.1. Task management algorithm

The task management rules are implemented by a set of tables, a stack and two

primitives which are accessible to the SIDL designer. Each task definition includes a

call to these primitives. The Bsync(t) primitive is called as the first action in the start of

the Perform section and the Esync(t) primitive is called as the first action of the finish

stage.

The Bsync function identifies the type of the task and the group within which the task

has been specified. Tasks can be of the types described earlier in section 4.1. In our

implementation the groups are simply a set of arrays. The function then performs the

following task management (related to the menu) according to the task type.

if the task is one where a parameter has been set, then the function simply kills the

task which is active in this group (there is implied mutual exclusion) and carries out

menu management activities i.e. switching on and off the appropriate menu buttons.

if the task is a run to completion type then the function searches all the groups. If

there is any active task its state is preserved in the stack and the menu management

activities are executed. Usually, only tasks which require additional parameters will be

affected.

Finally, when the task is one which requires additional parameters then the process is

more complex. Firstly, the tables used to store the status of a task are searched for ail

active tasks. If an active task is a member of the same group as the current task then

that task is killed, if the active task is a member of another group then the status of

- 7 3 -

B S Bam Using the New Interaction Model

that task is preserved on the stack. Secondly, the stack is searched for any tasks

which also belong to the group of the current task. Such tasks are also killed. This is

to maintain the mutual exclusivity of the group. The standard menu-management

activities are again performed.

The Esync(t) primitive is much simpler in operation. Similarly it determines the group

and task type of the current task, then according to the task type it performs some

basic operations.

For tasks which set parameters to be used by other tasks, it simply freezes the task.

The menu button light is not switched off, because it is used to indicate the current

parameter that will be used by other tasks. Run to completion tasks and tasks which

require additional parameters are processed in the same manner. Firstly, the menu

button light corresponding to this task is switched off and the task frozen. Secondly,

the top of the stack is popped and the task now available is made active, its menu

button light is put on and to all intents and purposes this is the current task.

4.1.2. Grouping tasks

The exact manner in which the tasks are collected into groups is determined by the

application designer. Typically the procedure is as follows. By and large, apart from

some low-level details, the functionality of an application is determined by the number

and type of menu options available. Thus menu options which perform similar tasks

are put in the same group, menu options which require the same number of

parameters or the same type of parameters may also be classified in one group.

If we look at an example the classification method will be clarified. Consider the

Vecfnt Graphics editor developed at Bath (section 3.3). The menu options are:- White,

Black, Complement, Selfont, Savefont, Left, Right, Up, Down, Horline, Verline,

SelChar, SaveChar. White, Black and Complement are examples of tasks which,

when selected, set a shared parameter to be used by other tasks. In this case they

- 7 4 -

B S Bam Using the New Interaction Model

set the ink or mode of action in which the editing task operates. The editing task

simply fills in a box (pointed to by the user) in the edit grid area with the current ink.

Because of their similar function they can be put in the same mutual exclusion group.

Tasks Left, Right, Up and Down shift the character currently being edited in one of

four directions. They are examples of run to completion tasks. They can also be put in

one group.

Selchar and Savechar are tasks which allow the user to select a character from the

font area for editing or to save the current character in the font. They require a

parameter (button click within the font grid) before running to completion. They are put

in one mutual exclusion group.

We can now demonstrate how this method allows relatively unrestricted use of the

menu.

Suppose the user has created a character in the edit grid area, and they are now

ready to save the character in the font grid area prior to storing on disk. The user

selects the task SaveChar. This task requires a button press over the font grid area

before it runs to completion. The user has not yet supplied the button press and during

the next few seconds decides to shift the newly created character towards the left.

They do this by repeated selection of the Left task from the menu until a satisfactory

position is reached. The user then supplies a button press in the font grid area and the

character is saved in that grid accordingly.

Hidden to the user, task SaveChar was suspended and, because task Left was of a

different type and therefore in a different group, Left executed and control was

returned to SaveChar.

4.2. Parameter collection

- 7 5 -

B S Barn Using the New Interaction Model

The collection of parameters (detection and decoding of button activity) is a problem

encountered in most graphical interaction problems. In this section we look at some of

the problems and their solutions (if any).

4.2.1. Parameter counting

Typically, task definitions require the user to specify the events necessary for a task to

run to completion. Where these events are unique there is no obvious difficulty.

However serious problems arise when two or more identical events need to be

detected. Events are considered identical if both the button type and the region are the

same.

In the painting system developed at Bath[58,57] there is a command Vwipe to paint a

rectangular region on the screen with a graded range of colours. The user specifies

the rectangle by clicking two diagonally opposite vertices in the drawing region. The

two extreme colours are specified by clicking two entries on the palette region. The

operation completes by interpolating colours as it draws horizontal lines to fill the

rectangle.

To avoid constraining the user, collection of the parameters can be done in any order.

The action to be taken when a particular parameter is collected therefore depends on

its sequence number within a particular region. For example, the first event in the

drawing region marks the first comer of the rectangle. This results in a rectangle being

rubberbanded on the screen from the marked position. The receipt of a second event

in the same region results in the second comer of the rectangle being marked. The

user selects the range of colours by two events in the palette region. Provided that a

count is kept for each region the colour and the rectangle parameter collection can be

interleaved. Thus the user can point to one corner, then to its colour, then to the

second corner and finally to its colour. Alternatively the user could indicate both

corners of the rectangle and then both colours, or even both colours and then both

- 7 6 -

B S Bam Using the New interaction Model

corners.

A critical observation is that each event, although not unique, may have actions

associated with it which depend upon the count. We can decide when to call worker

task for this command by keeping a total count of the number of parameters collected.

Example

For the task Vwipe (from UltraPaint), the interaction requirements are two window

regions Palette and Drawpad; two button presses to mark the region and two button

presses to select the colour range.

The actions to be associated with the parameters as they are collected are as follows:

Menu:
1: Make the task active;

Palette:
1: select first colour;
2: select second colour;

Drawpad:
1: fix first corner
2: rubberbox rectangle from the first comer to current cursor position.
3: fix second corner and draw rectangle.

Thus for these requirements, the first new button press in the Drawpad area fixes the

first comer of the wipe region. The next stage (2) is actually a dummy button press

used for breaking up the interaction into convenient sections. The second button press

(stage 3) is the second comer of the rectangle and results in the wipe region being

marked out. The interaction for the Palette region operates in a similar fashion.

We can now describe the implementation of this example interaction. Firstly, the

relevant window region counters are initialised. The Gather section attempts to collect

the various events as the user supplies them. The task is initiated by a button press in

the menu region. The start section carries out any necessary menu synchronisation

- 7 7 -

B S Barn Using the New Interaction Model

and the task suspends. When any of the other required events occur, the appropriate

window counter is incremented and the middle section is executed. Also during the

Gather, the current window variable is set. The middle section then performs the

application procedures specific to the current event being processed. Thus if the first

event in the palette region is being processed, the current window is palette and the

first event is that associated with selecting the first colour. Again the task suspends.

The Gather section also checks if all the parameters have been collected. If this is so,

the finish stage of the perform section is executed. This contains the application

procedure to perform the wipe.

- 7 8 -

B S Bam Using the New Interaction Model

initialise palette_counter to 0
initialise pad.counter to 0
Task VWIPE:

Gather:
begin
if Event (new, menu) then Run (t, start);
else

if Event (new, palette) then
begin
increment palette_counter;
set current_window to palette;
Run (t, middle);
end

else
If Event (new, drawpad) then

begin
increment pad_counter;
set current_window to drawpad;
Run (t, middle);
end

else
begin
Run (t, middle);
if complete set then Run (t, finish);
end;

end;
Perform: case stage of

start: begin
Bsync (t);
Suspend (t);

end;
middle: begin

case current_window of
palette:case pa!ette_counter of

1: select first colour;
2: select second colour;
end;

drawpad :case pad_counter of
1: fix first vertex,
2: rubberband.
3: draw rectangle;
end;

end
Suspend (t);

end;
finish: begin

wipe_region (vwipe);
Esync (t);
Freeze (t);
end;

end;
end;

- 7 9 -

B S Bam Using the New Interaction Model

4.2.2. Parameter anullment

In section 4.1 we looked at how tasks initiated from menus are synchronised using

similar tasks grouped together into tables and a set of rules which operate on these

tables. This method presumes that, if two tasks are in different mutual exclusion

groups and they require the same parameter, only one collects the parameter because

the other task is inactive. However, this does not actually happen, consider the case

below.

There are two tasks T1 and T2 in groups 1 and 2 respectively. Their order in the

scheduling loop is:-

procedure try (t, op: Integer);
begin

case t of
T1: action;
T2: action;

end;
end;

1) Task T2 is made active, the system then cyclically executes the T2 gather section

and attempts to collect its parameters.

2) T1 is selected (made active); this results in T2 being killed and its current state

being stored for future reactivation according to Rule 1 as stated in section 4.1.

3) T1 is now active and periodically attempts to collect its parameters.

4) The user provides the parameter which T1 collects and it runs to completion. The

primitives, operating on the tables, then re-initialise T2. These primitives are called

after the T1 has run to completion, but since T2 is lower down the scheduling bop and

the parameter just collected for T1 has not been cancelled , it is reused for T2.

- 8 0 -

B S Barn Using the New Interaction Model

There is an obvious method by which we can solve this particular problem but it is also

clear that the solution would remove advantages of the system we may wish to keep.

The solution is to anull all parameters when a task is re-initialised by the mutual-

exclusion primitives. Thus in the example above, at step 4, prior to re-initialisation of

T2 the parameter is anulled and so T2 would be forced to wait at least one scan of the

task pool.

A disadvantage of this solution is that it prevents the sharing of parameters between

tasks (section 4.2.4). This disadvantage is overcome by an simple extension to the

proposed solution. We can either introduce an additional attribute for a task

specification which indicates whether a task may or may not share parameters or we

can introduce a similar attribute for a parameter declaration. This would indicate if the

particular parameter is to be reusable. This second extension is preferable.

4.2.3. Binding parameters with a particular task

The method of choosing to which task a parameter should be bound needs attention.

Consider two tasks, T1 and T2, which require two pairs of parameters (x,y

coordinates). They have the same interaction requirements and perform the same

function i.e. drawing a line between two user selected endpoints, with one subtle

difference. T1 operates in Window W1 and T2 operates in Window ANY. See figure

4.1. The user interacts as follows:-

(1) T1 is made active; The first (x,y) pair for T1 is collected by a button press in W1.

This results in that point being fixed and rubberbanding ensuing. The rubberbanding is

restricted to W1.

(2) T2 is made active; the first (x,y) pair for T2 is collected, however this does not get

decoded as the second (x,y) pair for T1 because the Event occurred outside W1.

(Remember, an event/parameter is a combination of a buttontype and a window

-81 -

ANY

(1): Rubberbanded line in W1

(2): Rubberbanded line in ANY

Figure 4.1. Binding Parameters with a Particular Task.

B S Barn Using the New Interaction Model

region.) Rubberbanding for T2 also commences.

We now have T1 and T2 both active, both having collected their first parameters and

both are rubberbanding. We should note that T2 can rubberband over W1 because

W1 is contained within window ANY. Therefore a button press in the W1 area will

serve as the second (x,y) pair for both the tasks.

This scenario assumes that T1 and T2 exist in different mutual exclusion groups: it is

this property that allows them to be active simultaneously.

Clearly, it is desirable in some cases to collect the second set of parameters

separately for each task. This can be done at the application design stage. When the

designer is allocating the groups to which tasks will belong, they can decide that in this

case, T1 and T2 are essentially the same, so they can be assigned to the same

group. Thus according to Rule 2 the above scenario is not possible, and the problem

disappears.

4.2.4. Binding parameters with more than task

The converse of the above problem, for a parameter to be matched to more than one

task, is often a requirement. This is easily done and again it is specified at the design

level.

The designer puts the tasks with similar parameter requirements (where they have

also decided that parameter sharing is an advantage) in two different groups. The

natural hierarchy enforced by the scheduler ensures that the parameter gets used

twice. Again with reference to the painting system UitraPaint we can illustrate this case

with an example.

The Blend task is an editing operation on the colour palette in UitraPaint. Using the

RGB colour model, the colour palette entries between two user-selected colours are

blended to give a range of colours between them. The granularity of the blending

- 8 2 -

B S Bam Using the New Interaction Model

operation depends upon the number of entries between the two colours. Blend, like

Vwipe (in Section 4.2.1), uses two button presses in the palette region.

Consider the following scenario. Task Vwipe is currently active and it has two of its

four parameters collected, namely those which mark the rectangular region which will

subsequently be painted. Task Blend is selected and so, following rule 1, Vwipe is

saved. The user then supplies the Blend parameters, Blend is performed and

subsequently freezes. Task Vwipe is initiated and since it has been specified so that it

is executed after Blend, the parameters are used for this task as well. The fact that

there is an inbuilt dependency between tasks could be construed as a disadvantage

but in practice it reinforces the notion of a top-down structure. Thus in this particular

example, Vwipe can reuse parameters originally collected for Blend but not vice versa.

4.3. Task management

This section emphasizes some of the ideas put forward in section 4.1 and presents

discussion of some thoughts that arise from problems in task management.

4.3.1. Aborting tasks

There is often a requirement to abort a task. This may be for a number of reasons.

The user may have inadvertently selected an undesirable parameter. For example a

line may have had its first vertex positioned incorrectly. Or the user may simply no

longer require that task. Whatever the reason, the actual mechanics of task abortion

depends upon the type of the task and the problem environment. We are dealing with

highly interactive applications, where the vast majority of the user’s time is spent on

waiting rather than doing things, thus there is no great overload on the user. It is

reasonable to expect the user to carry out additional interactive activity and apply the

existing facilities to return to the desired state.

- 8 3 -

B S Barn Using the New Interaction Model

The simplest method of implementing task abortion is via the menu. We could have

allocated a specific task to abort other tasks but this would mean adding a hierarchy to

the menu structure. Remember, that our menu items are already in a group structure.

Instead, the mutual exclusion groups are used to implement the task abortion facility.

Note that our meaning of task abortion is restricted to aborting those tasks which have

not yet completed collection of their parameter set. Thus run to completion tasks

cannot be aborted. Task abortion is quite distinct from ’Undo’, in that ’Undo’ is

something that the designer would include in his or her design if it was necessary.

Tasks can be killed via the following methods. Selecting an alternative task will abort

the first task if both tasks exist in the same mutual exclusion group (From Rule 2).

Re-selecting the same task can have one of two effects. If part of the parameter set of

the active task has been collected then the task remains active, but it returns to a

stage where no parameters are available (The start stage of the task). If no

parameters have been collected then the task is killed.

4.3.2. Run to completion tasks that are slow

An interactive application will often contain a run to completion task which takes more

than thirty seconds in completing its purpose. Thirty seconds or more can be

considered a long time in a highly interactive application because feedback about the

progress of the task is desirable. Moreover, the user will not wish to be tied to that

task, they may want to perform some other interactive task.

In the painting system UitraPaint, the Fetch command gets a picture from disk and

puts it in the painting region. Disk access can be slow so a long delay is possible.

We can show how to implement this function with the interaction model as follows.

Firstly, the Fetch procedure is designed so that it delivers portions of a picture from

the disk. Each invocation of the Fetch procedure brings in a new portion of the picture.

Thus the data structures holding the picture need to be of such a design to allow that.

- 8 4 -

B S Barn Using the New Interaction Model

Secondly, the Fetch procedure has to send some information back to the interaction

model about its status. Thus when the final portion of the picture has been sent it

returns a value via its function parameter.

case fetch:
switch (o p) {
case Gather: If (event (new, menu)) run (t, start);

else
if (Signal) run (t, finish)
else run (t, middle);

break;
case Perform:

switch (stage) {
case start: Bsync (t);

readfile(); r 1 7
Suspend (t);
break;

case middle:
If (fetch ()) Signal (ON);
Suspend (t);
break;

case finish:
Freeze (t);
Esync (t);
break;

}
break;

)
break;

Thus this task behaves in the following manner. The task is first initiated by a button

press in the menu. The procedure readfile is invoked to carry out the basic

housekeeping for the Fetch procedure, such as opening files and setting the Signal

flag.

On the second and subsequent cycles of the scheduler, Fetch is executed, this brings

in portions of the picture. A check is made to see if all the picture has been fetched

- 8 5 -

B S Barn Using the New Interaction Model

and if so, a flag, is set. This flag is used to perform final task synchronisation.

By making it easier to break up a task into smaller sections it is possible to interleave

long running tasks with other tasks the user may wish to perform. With this scheduler,

other tasks can easily be set up and parameters collected easily.

4.3.3. Task hierarchies

There are essential two types of task hierarchy. There is a hierarchy between tasks

defined within the same interactive application and there is a hierarchy over

applications embedded within one another. In the first instance some tasks are

permanently scheduled because they are required all the time: cursor tracking and

menu management are good examples. Secondly, there may be a requirement to

have nested graphical programs. For example, during the development phase of an

application there will be a need to perform debugging operations. These operations

may require the use of an interactive graphics debugging aid. Typically the debugging

aid will have to be invoked by a menu option within the application currently being

developed.

During the development of UitraPaint an interactive graphics debugging tool

DEBUG[55] was produced. DEBUG is itself an interactive program, it has its own

tasks, menus, and its own control of the puck. The tool was subsequently redesigned

using our new interaction model.

This simple inclusion of an Interactive program within another maintains the inherent

topdown nature of the scheduler design but it does mean that there are some

duplicate tasks. For example, the cursor will be read twice, once by the main

application and secondly by the DEBUG program. There will also be two scheduling

loops. Obviously, control will return to the outer scheduler once DEBUG has been

terminated.

- 8 6 -

B S Barn

4.4. Multi-button pucks

Using the New Interaction Model

Discussion in this and earlier chapters has centered around pucks which have only

one button. Pucks with more than one button are modelled to behave as if they have

only one. This restriction was chosen because it was felt that most interactive

programs can have a satisfactory user interface with only one button. Only

occasionally is it desirable to have more than one button.

Even so the interaction model must allow for this, and the model implements multi

button pucks in the following manner.

We can consider the press of a specific button as a special task, a primitive task in the

same group as that of moving the cursor or detecting button presses in the menu.

The following sample of C code is an example of the typical code that is generated

when multi-button pucks are specified.

The task is specified in SIDL but it is given special attributes so that it is initially active,

and is independent of being initialised from the menu. It is also an example of a task

that does not freeze on completion of its associated primitive.

case leftbut:
switch (op) {
case Gather:

If (event (button (new, 2)) run (t, start);
break;

case Perform:
cursorsize (up);
Suspend (t);

break;

}
break;

Figure 4.2 Monitoring a specific button.

- 8 7 -

B S Barn Using the New Interaction Model

In the above example derived from the graphics debugger, a specific button press is

detected and in this case the result is an increase in the size of the rectangular cursor.

There is a corresponding task for decreasing the cursor size and this is associated

with another button.

4.5. Window management

Typically, windows provide an environment for task interaction. Many applications

however, also include interactions where the window itself is an active member. The

interaction needs of such windows vary and we have broadly classified the following

requirements.

1. Picking and dragging of objects/windows.

2. Resizeable windows.

3. Invisible Windows.

4. Overlapping Windows

5. Static or movable windows.

All these cases are required when implementing the user interface of window

management systems. The user interface to such systems can be built using SIDL

definitions, constructs and special primitives previously defined.

In Chapter 3 we described some the window types available. The general approach

taken is as follows. Windows which can be resized or re-positioned (cases 2 and 5)

have special regions generated for them. The interaction model has been extended to

detect events in these regions and there are pre-defined tasks which carry out the

required functionality. The Bitmap primitives used for scrolling purposes have been

developed at Bath[56]. These tasks and regions are only generated if such windows

are declared. Windows which are invisible can not have events associated with them.

- 8 8 -

B S Barn Using the New Interaction Model

4.6. Summary

In this chapter we have discussed some of the issues that arise in interactive graphical

applications.

We have shown how our new interaction model overcomes menu synchronisation

problems by enforcing a sub-structure over the elements in the menu.

We have described a number of interaction problems associated with parameter (user

input event) collection. In particular, problems concerning multiple identical events,

parameter reuse and binding of parameters have been highlighted.

The natural hierarchy of tasks within an interactive application has been described. In

addition we have shown how multi-button pucks and their interaction requirements can

be utilised by our new interaction model.

This chapter has indicated how the abstractions presented in our new interaction

model effectively illustrate the problems and issues that surround graphical interaction

management.

In the next chapter we will look at a number of alternative models for interaction

management. The models will be presented and a comparison with our own model

made.

- 8 9 -

B S Bam Graphical Interaction Management

5. Comparison of SIDL with

Other Models

We need to place the interaction model and the specification language SIDL described

in chapters two and three in the context of related models and techniques. This

chapter is a detailed study of two methods mentioned in chapter one. Emphasis will

be given to a specification language for interface design based on transition diagrams

and secondly to object-orientated techniques for user interface design. These

methods will be compared with our own approach.

5.1. The State diagram method

The use of state transition diagrams has a long history stretching back to Newman’s

"reaction handler" and they have also been used to provide a visual programming

- 9 0 -

B S Barn Comparison of SIDL with Other Models

metaphort31]. However, for the purpose of this chapter we will concentrate on the

recent work of Jacob[32].

In this work, direct manipulation user interfaces are discussed. A direct manipulation

user interface is characterised by an interacting collection of active and/or responsive

objects. These objects are graphical in nature. Once an object has been selected by

the user, a dialogue associated with that object begins. Thus the user sees a multitude

of small dialogues each of which may be interrupted or resumed under the control of a

master dialogue. Note that this is similar to the behaviour of co-routines.

Traditionally, user interfaces are highly moded, which has made them eminently

suitable to be represented by state transition diagrams in which the various modes are

described by a particular state. Direct Manipulation or interactive interfaces however

appear modeless. Many objects appear on the screen and the user can apply a

standard set of commands to any object. Thus the system always appears to be in

some "universal" or "top-level" mode. However a closer study reveals that there is in

fact a number of distinct modes. For example, moving a cursor over a pixel object

results in a mode change, because the set of possible user actions has altered. The

user may or may not select the object, but at least the choice is there. While the

cursor was not on the object, that choice did not exist.

If direct-manipulation interfaces are not really modeless why do they appear to

possess the advantages of modeless ones? The main stumbling block to moded user

interfaces normally occurs at the mode change boundary. If the mode change can be

made transparent to the user then the interface will appear modeless.

The specification language can now be described by focussing on a number of points.

1. It is generally accepted that a direct-manipulation interface is comprised of a

collection of objects[52] and thus the specification language is centered around a

collection of individual objects called interaction objects. Each such object has its own

dialogue specification. Such an object is also the smallest unit with which the user

-91 -

B S Barn Comparison of SIDL with Other Models

conducts a meaningful dialogue.

2. The individual dialogues relate to each other as a set of co-routines, where each

interaction object can suspend and resume from a retained state. There is also a

master executive co-routine.

3. Despite the surface appearance, there is a definite set of modes or states and thus

state transition diagrams are a suitable notation for describing the dialogue for

individual objects. Each individual object conducts a single-threaded dialogue with

serialised input and retained states whenever the dialogue is interrupted by that of

another object.

The specifications of individual objects are combined into an outer loop by the use of a

standard executive which operates by collecting the state diagrams of all the

interaction objects and executing them as a collection of co-routines, assigning events

to them and arbitrating between them as they proceed.

5.1.1. Tokens and component objects

A collection of low-level inputs and outputs which can be invoked by state diagrams is

defined by Jacob. Examples for input are button clicks and moving into specific

regions. For output they include highlighting, rubberbanding or other continuous

feedback. The internal details of these tokens are specified in some other distinct

manner.

Interaction objects may also be defined as a combination of other objects. They are

automatically instantiated whenever the enclosing object is created. They are

essentially instance variables.

Before we proceed with a discussion on the two models, it is helpful to give an

example. The example below is derived from Jacob[32].

- 9 2 -

B S Barn Comparison of SIDL with Other Models

5.1.2. An Example specification

A common interaction found in graphical interfaces is that of the ScrollBar. The

specification of ScrollBar is shown in figure 5.1. To use it the user points to it and

presses a mouse button; then as the mouse is moved, the bar on the screen drags to

follow it. When the button is released, the display is scrolled in proportion to the new

position of the bar. From contains a list of other interaction objects from which this

one inherits elements. Ivar is a list of instance variables and their initial values.

Methods are procedures unique to this object which are essentially the semantic

component of the interface. Tokens are definitions of each input and output token

used in the syntax diagram. Syntax is the input handler for this object. The diagram

specifies the sequence of the dialogue. States where the dialogue can be suspended

are shown with"+".

In this particular Interaction object, the diagram explicitly handles the unusual case

where the user depresses the button and, while holding it down, exits the scroll bar,

possibly performs other interactions, reenters the scroll bar with the button still pressed

down. This object will resume dragging when the cursor enters the scroll bar. For

comparison the scroll bar specification in SIDL is presented below.

Jacob’s specification has particular states where the interaction can be suspended. In

the scrollbar specification, these states are: prior to the scrollbar interaction being

initiated; the cursor entering the scrollbar region; during the update of the scrollbar

position and finally when the interaction has been completed. Similarly, the SIDL

specification also has states: prior to the task being initiated; during a scrollbar update;

and finally on completion of the task.

A clear difference between the two scrollbar specifications is that the SIDL

specification does not allow for the unusual case described above. In the paper,

Jacob has not made it clear if the user performs other actions with the button pressed

- 9 3 -

INTERACTION_OBJECT Scrollbar is

FROM: Genericltem;
IVARS:
position;
legend; := ’’Scroll” ;

METHODS;

Draw 0 { DrawBar (position, legend, scrollOffset); }

TOKENS;

iMove { —Any mouse motion within boundaries of position,
—return scaled X coordinate of mouse in scrollOffset—}

iLEFTDN { — Overloads standard definition of iLEFTDN with one that accepts
— same click then sets scrollOffset;= scaled X coord of mouse— }

oSHOWBAR { — Fill or erase bar up to location corresponding to scrollOffset —}

SYNTAX:
main

Act: ScrollDisplayEntries (scrollOffset)

iENTER iLEFTDN oSHOWBA: iLEFTUP

iMOVEiEXIT iEXIT

iENTER iLEFTUP

Act: ScrollDisplayEntries (scrollOffset)

end INTERACTION_OBJECT

Figure 5.1. Specification of a Scroll Bar. (From [Jacob 86]

B S Barn Comparison of SIDL with Other Models

down. Other user interaction may require the button in a released state, thus handling

this unusual case is unnecessary complication. For example, the user may need to

manipulate another object. On completion of the second interaction, they return to the

scrollbar interaction. The suspended state of the scrollbar interaction requires the user

to enter the scrollbar region with the button pressed. If the scrollbar is entered with the

button in an up state then the scrollbar interaction is re-initiated from the first state.

The provision of the additional state is unhelpful to the user and is not provided by

SIDL.

A useful advantage of the SIDL specification is that the scrollbar can be adjusted by

keeping the button pressed with the cursor anywhere on the screen. Thus it is not

necessary to maintain the cursor over a small region and perform intricate interactions.

Jacob’s specification restricts the interaction to the scrollbar region.

- 9 4 -

B S Barn Comparison of SIDL with Other Models

Interaction test;

Type

Endtype

Window scrollbar_region;
Do

I* scroll bar size and current position */
End

Task scrollbar;
DO

Gather;
If New Button(l) In scrollbarjregion Then

run(t,start);
Else

If Pressed Button(l) In any Then
run(t,middle);

Else
If Released Button(l) In any Then

run(t,finlsh);
Perform;

Start: grab_scrollbar;
suspend(t);

Middle: move_scrollbar();
suspend(t);

Finish: position_scrollbar();
scroll_region();
suspend(t);

End
Fig 2. SIDL Specification of a scroll bar.

5.1.3. Discussion of the state diagram method

The State Diagram model describes the main interaction in the graphics area as a

single thread dialogue with a main command loop. The command loop is implemented

as a "super co-routine". Our interaction model also has the same basic structure. As

described in chapter three, it is composed of cyclical scan of a task pool. Each active

task enters its own dialogue and suspends according to its state and the number of

events it has processed. In the interaction model the suspension of tasks is controlled

by primitives embedded within task bodies whereas in the state model all such control

is determined by the executive.

- 9 5 -

B S Barn Comparison of SIDL with Other Models

A direct manipulation interface is described as a collection of interaction objects, each

object being implemented as a co-routine. In the interaction model, an interactive

graphical application is also decomposed into individual tasks through which the user

conducts a dialogue. Here the principles are the same with just alternative terminology.

A co-routine goes through a number of states depending on the complexity of the

dialogue. It only suspends on those states where it expects input. Similarly Tasks go

through a number of states. However in the interaction model there are initially only

three states: start, middle and finish. If a dialogue is sufficiently complex to require

further states then the middle stage is sub-divided. This will only occur when there is

a large number of events to be processed, in which case the criterion for sub-division

is determined by the parameter count mechanism as described in chapter four. The

state diagram model simply includes additional states as necessary, but in a less

structured way.

When a co-routine does suspend, the executive retains the state of that co-routine. As

additional input tokens arrive, they are arbitrarily supplied to other co-routines currently

suspended and waiting for that token. If there is more than one co-routine waiting for

that same token a random choice is made. Jacob claims that in typical designs there

will only be one co-routine waiting. Similarly in the interaction model, events/tokens are

only supplied to active tasks (this is analgous to a suspended co-routine). In the case

of menu-driven applications the problem of more than one task waiting for the same

event is abstracted out by use of an enforced structure over a menu. This is explained

in detail in section 4.1. In simpler cases the cyclical scan of the scheduler determines

which active task receives the token.

The single threaded nature of the dialogue is inherent in both models: in one it is

represented by state transition diagrams; in the other it is described by procedural

statements.

- 9 6 -

B S Barn Comparison of SIDL with Other Models

In both models, cases of invalid events/tokens can easily be handled. In the state

model, this normally requires an additional state and arc within the diagram. In our

model the invalid events are removed at the procedural level. In both cases

input/output primitives are specified separately typically by the use of an orthodox

programming language. In the state model the presentational component is handled

separately whereas in the interaction model the presentational component is specified

within the interaction program albeit in a separate section.

There is no distinction made between the user and application interface in the state

model. Both interfaces are embedded within the syntax section. In the interaction

model the dichotomy is clearly visible and manifests itself by the Gather and Perform

sections.

Finally, Jacob has only specified simple interaction dialogues are. No attempt has

been made to indicate how tasks requiring multiple identical events can be catered for.

Concluding, there are basic similarities between the two models. Differences appear

to be cosmetic apart from the decision to implement as a set of co- routines or as a

fixed scan.

5.2. The object oriented approach

In this section we present a brief overview of the history and underlying concepts of

object oriented programming (OOP), we show how it has been used to design user

interface management systems and more significantly we show how OOP has been

used to study the interactions in graphical programs .

5.2.1. History and basic concepts

The history of object oriented programming has its ancestory in the programming

language Simula. However the term became first associated with Smalltalk[21].

- 9 7 -

B S Bam Comparison of SIDL with Other Models

Smalltalk is a sufficiently general instance of an object oriented programming language

that a treatment of it will suffice for both.

The Smalltalk programming environment was one of earliest products from the

Learning Research group at the Xerox Palo Alto Research Center. Smalltalk is

comprised of four pieces, a programming language kernel, a programming paradigm, a

programming system and a user interface model. There is not however a set of clean

cut boundaries.

The syntax and semantics of the Smalltalk compiler are provided by the programming

language kernel. The programming paradigm is the style of use of the kernel. The

programming system is the set of system objects and classes that provide the

framework for using the kernel and the paradigm. The user interface model is a

combination of the given user interface and the tailored user interface. It is the use

and usage of the systems building materials.

5.2.2. Basic concepts

Objects

The Smalltalk world (figure 5.2) is populated by items seen uniformly to be "objects”.

These objects are the sole inhabitants of a universe. In the diagram, the objects and

classes referring to the programming paradigm and the language kernel are the object

oriented aspects of Smalltalk.

Objects are uniform in that they all have the following properties:- inherent processing

ability, message communication and a common appearance, status and reference.

Further, no object is given any particular status, thus a "primitive” object such as

integer has the same class and properties as a user defined object. An object is also

referenced as a whole. An object cannot act as if it has been opened unless it has

been given the means to display that type of behaviour. Thus an object can behave

- 9 8 -

User Interface Model

(Objects and Classes)

Programming Paradigm

Language Kernel

(Objects and Classes)

Programming System Piece

Figure 5.2. The Smalltalk World

B S Bam Comparison of SIDL with Other Models

like a Pascal record type if it has been given the methods to do so.

The individually accessible components of an object are called the instance variables.

They can be both named and indexed. For example.

1. An object of class Point has named instance variables x and y which identify the

coordinates of a point.

2. An object of class Array contains only indexed instance variables. These are

identified by the integers 1 to the number of instance variables of the array.

Objects are self-describing, they include sizing information (number of instance

variables) and the class to which they belong.

Classes are the program modules of Smalltalk. Like the abstract data types provided

by the modules of Modula-2 and the packages of Ada[60], a class specifies the

instance variables contained in the objects of that class and the methods (functions)

that operate on the objects.

Smalltalk Classes are organised into a hierarchy with the class Object at the top.

Superclasses are more generic; sub-classes are more specialised. A class inherits the

named instance variables and methods of its superclasses.

Consider part of the Smalltalk hierarchy for the class Magnitude.

Magnitude
Character
Date
Time
Number

Float
Fraction
Integer

The class Magnitude contains methods for calculating the maximum and minimum of

numbers using comparison operators. The class Date will compare two dates, the

class Float will compare two floating point numbers.

- 9 9 -

B S Barn Comparison of SIDL with Other Models

A Smalltalk terminology translation adapted from Anderson[3] is given below:-

Method

Message

Protocol

Object

instance
variable

Class

a function definition

the invocation of a method i.e. a
function call

the specification of how a message
is sent to a method including the
method name and parameters

a record of fields

a field of a record

a record type and all the functions
that may be applied to record type.

Processing and Communication

In Smalltalk all processing activity takes place inside an object since an object is

responsible for providing its own computational behaviour. While an object is carrying

out some processing it may be independent of other objects but at other times it must

have a means of communicating with them. This is achieved by the mechanism of

message passing.

If a user wants an object to carry out some computation, they send that object a

message. If that object requires data or some further sub-computation to be performed

by another object it sends that second object a message.

Message sending is uniform in that the same mechanism is used for both a simple

addition and for a complex file service operation.

Although a message is very similar to that of a function call, there is a subtle

difference in that the caller of the function is not in control as in orthodox programming

systems. In OOP the sender relinquishes control both philosophically and actually, so

the interpretation of the message is left entirely up to its recipient.

- 1 0 0 -

B S Bam Comparison of SIDL with Other Models

5.2.3. OOP in user interfaces

In this and subsequent sections we will describe some applications of using OOP in

the design and implementation of user interfaces. Note that OOP has digressed from

its original meaning (described above with respect to Smalltalk) and it has now come

to mean abstract data types, data encapsulation, modularisation. This section will

utilize some of the newer meanings.

5.2.4. OOP for studying interaction

OOP techniques have been used to prototype video game design [37]. Designing

video games is an extremely expensive and complex process. The user interaction

functions are particularly complex because of the real-time components of a video

game. The low-level visual effects are also a difficult element. In the first instance,

however, the designer must conceptualize his design and in a ideal situation prototype

this design. To this end, Larrabee and Mitchell have designed and implemented a

special purpose language which has made the designers’ job easier and therefore

more creative. In the following section an outline of their approach is described and a

comparison with the author’s work is also presented.

A game in the special language (Gambit) is different from games in other languages.

In most languages the objects on the screen are considered as part of the game’s

global state (possibly as entries in large table) with the games controller maintaining

the table and performing any necessary calculations. In Gambit however, an object

oriented model is employed. Objects on the screen are not simply entries in a global

table, instead, they are described as objects in their own right, with each object

possessing its own local state and the necessary intelligence to maintain that state.

In most object-oriented languages a rigid chain of control is defined, with one object

controlling the game and sending messages to subordinate objects as necessary. In

-101 -

B S Bam Comparison of SIDL with Other Models

Gambit this hierarchy is hidden from the user, ail programmer defined objects are

equal, they ail interact with the system and with other objects. A Gambit object is an

instance of user-defined classes that are in a class definition module. Each class

definition contains a specification of what messages an object of that class can receive

and send and what actions to perform on receipt of a particular message.

At runtime, the objects are instantiated and they interact with the system facilities and

communicate with other objects via messages.

Space

Objects usually have a display of type picture and a location of type point. Together

these definitions describe the appearance and position of the object. Objects overlap

by being layered (similar in analogy to the desktop metaphor in window management

systems). Objects can also have an interaction boundary and when the interaction

boundaries of objects overlap the system detects this and notifies the objects if so

required. Note not all objects will be interested in this condition. For example, an

interaction may occur between a ball and a wall, but only the ball needs to be notified

of the collision.

Time

Time is modeled as a master clock that ticks at preset intervals, thus time is relative

rather than actual. This forms the basis of a scheduler. At each tick a fixed cycle of

activities is performed.

1. All new user input is detected and the appropriate objects
notified.

2. Objects that have requested *wake up’ times are sent messages after the
appropriate number of ticks.

3. Collisions are detected.

4. Objects requiring collision information are notified.

5. The display is updated.

- 1 0 2 -

B S Barn Comparison of SIDL with Other Models

Events

Asynchronous activity such as a button press is defined as a constant. Event

constants belong to classes defined by EventNames. Any object can declare an

interest in an event by the simple inclusion of the event constant in its definition.

The syntax of Gambit is designed in such a way that comparisons with Pascal and

Smalltalk are meaningful. Pascal-like syntax is used for constructs having the same

semantics as Pascal. Inter-object communication is borrowed from Smalltalk.

5.2.5. Discussion of the object oriented approach

The particular relevance of this implementation is that object oriented techniques have

been used to model a highly interactive environment.

Both Gambit and SIDL use Pascal-like syntax for operations which have the same

semantics. For semantics which can not be represented by existing language forms,

Gambit uses a Smalltalk adaptation whereas SIDL introduces its own.

Both languages introduce discrete objects into the interactive model. The operations

that each object can perform and the conditions under which they are performed are

explicitly declared within the object.

Gambit’s representation of objects is definitely OOP, whereas SIDL tasks are token

representations of the concepts. Also the design of the SIDL language is closer to the

procedural block structured model. This essential difference needs closer examination

and is discussed below.

The OOP model does not require a scheduler in the form used in SIDL. But the

operation of the clock provides the same semantics. A specific number of activities are

performed at each tick. We can consider a tick to be equivalent to a single cyclical

span of the tasks defined in a SIDL program.

- 1 0 3 -

B S Barn Comparison of SIDL with Other Models

One of the activities in Gambit monitors all user events. In SIDL a number of tasks

will monitor events that can be considered global; i.e. events that are of interest to all

tasks. Events which are specific to particular tasks are monitored by those tasks

themselves. In Gambit, a separate activity informs objects of events just received.

This bears comparison to a task monitoring events in the menu region of a menu-

driven program. The task detects a menu button task and then activates (informs) the

task associated with that button. Further, Events are user defined as constants.

Objects which will use these events are defined so that they see these event

constants. This is advantageous as duplication is avoided, however some clarity is

lost.

The ’detonate’ command normally sends a message to an object when either the

correct number of ticks has passed or when a specific event which the object is

interested in has happened. This is similar to the behaviour of a task which has been

suspended until it receives the event information it needs to proceed. The number of

ticks could be counted by an additional task which is always active and is therefore

always scheduled.

The advantages of a proper OOP model become obvious in the case where collisions

between objects are detected and the objects are subsequently informed. This is a lot

simpler and cleaner with the OOP model when we consider how we would implement

something similar using SIDL. We need tasks which simply update the screen with the

current position of the object. This can either be implemented as separate tasks for

each object, or one task for all the objects. The tasks will be permanently active and

thus be scheduled with every cycle of the scheduling loop. An additional task is

necessary to detect collisions using global information.

Interactions between objects are not easily implemented in SIDL because there is

usually a need for additional task definitions and the use of complex data structures.

Gambit achieves this by the message passing paradigm indigenous to OOP.

- 1 0 4 -

B S Barn Comparison of SIDL with Other Models

If we consider Gambit a bona fide example of Object-Oriented design then the

preceding discussion has indicated the concepts which SIDL can and cannot easily

implement, thus the discussion has served as a barometer informing us to what extent

SIDL is object oriented. In particular all the scheduling and asynchronous user event

monitoring can be implemented and it is only inter-object communication which poses

problems.

A general conclusion is that object-oriented design can be mimicked by use of large

global tables which represent the status of objects.

5.3. Summary

In this chapter two contrasting methods for interactive systems design have been

described. A comparison between these models and our own interaction model has

also been presented.

Firstly, an established dialogue design method (state machine) was described. We

have shown how this dialogue method, when extended for visual programming

purposes, bears a number of similarities to our own model. A typical interaction

dialogue has been illustrated using both Jacob’s method and ours. Some of the

weaknesses in Jacobs’s method have also been indicated.

Secondly, an overview of the fundamental concepts of OOP using Smalltalk-80 have

been provided. This is important because an increasing number of user interface

design methodologies display object oriented characteristics. We have described an

object oriented system for Video Game design (Gambit). This system has been

compared to our interaction model and the comparison has provided us with a

measure of the extent of the ’object oriented’ nature of our interaction model.

In the final chapter we give an indication of the success of this research and we

provide some pointers for future research in this field. We place particular emphasis

- 1 0 5 -

B S Barn Comparison of SIDL with Other Models

on the software engineering aspects of user interface design.

- 1 0 6 -

B S Barn Graphical Interaction Management

6. Conclusion

The automation of the production of user interfaces has been the main focus of

research in this field. To this end, a number of models for user interface specification

have been developed. The automation of user interface production, however, has

successfully evaded the real and more important issue of constructing user interfaces

which are based on sound software engineering principles. Even more importantly,

the ubiquitous nature of interactive graphical software, like that of concurrent software,

requires the extension of basic software engineering principles.

It was the author’s aim to identify the interaction requirements of interactive

applications. To be able to perform this task successfully, a number of such

applications were evaluated. The exercise was undertaken by considering a number of

significant issues. Firstly, the evaluation had to place the typical design structure of

interactive applications in relation to existing software engineering methodobgies.

Thus, software could make use of structured programming techniques but the resulting

- 1 0 7 -

B S Barn Conclusion

programs were not necessarily well structured.

At a lower level, the construction of individual components of typical applications was

also studied. In this case it was very clear that the existing methodologies were not

sufficient. In a wider context, user interface research has not adequately addressed

the issue of providing mechanisms of constructing those low-level interaction blocks

which give interactive graphics programs their unique characteristics. The general

approach has been to provide these blocks as libraries and the developer has no idea

as to how these blocks have been engineered. Where such details are available, the

over-riding impression is a lack of visible software engineering methodology.

Having identified the interaction requirements the next step was to provide a new set

of control constructs which were capable of being used alongside more traditional

constructs. Further, the fundamental ’repeat ... until' loop commonly found in

interactive applications was one of the principle sources of problems when considering

the issues of maintainability and extendibility. Thus a new basic interaction model was

designed. This new model allows the designer to place both the user and the

application code in small object-like units. The control constructs can be applied

consistently so that maintenance and extension of applications constructed with the

new model are not major problems.

The new model was tested by implementing some interactive graphical applications to

examine the feasibility of the model as a new design tool. Although the results were

successful, some additional tool support was still necessary: the final result was a

specification language SIDL and its preprocessor GRIP.

Future Work

There are a number of points where improvements can be made. We can continue to

identify additional higher level constructs which are geared towards particular types of

- 1 0 8 -

B S Bam Conclusbn

graphical interaction. However, the author believes that these additional constructs will

essentially be comprised of the constructs identified in this thesis.

The early evaluation of an interface design is an important area of research and there

is potential for a number of software tools for this area. Evaluation tools operating on

SIDL specifications could conceivably perform the following operations.

- Detection of Task Deadlock. This is the case where a task remains in an active

state because the event it is waiting for cannot be collected.

- Detection of Windows defined outside the screen area.

- Reporting of all overlapped windows, so the user has at least the option of deciding

whether the specification meets its requirements.

- Comparing specified events with events that are actually possible. For example, an

event may have been specified but it may not be possible for it to occur (perhaps

because the window with which the event is associated is outside the screen area).

- Human factors. Here we could look at the colours which have been specified, the

position of the menu and the typical puck movement across the tablet, for example.

This particular type of evaluation is currently subject to much research and some of

the anticipated results are suitable for inclusion in such software tools.

Research into integrated project support environments (IPSEs) has now finally come to

fruition. IPSEs provide a total software environment for all phases of the software

cycle. In addition the environment is highly structured and provides both security and

control over all objects within the environment.

Typically, an IPSE will include a number of software tools: a design methodology tool;

editors; language compilers; configuration management tools and project management

tools. It is now a basic requirement of all IPSEs that the user interface across all tools

- 1 0 9 -

B S Barn Conclusion

and indeed across the entire IPSE should be consistent. SIDL and GRIP could both

provide a consistent user interface and also be considered as a suitable tool for

integration into an IPSE. SIDL specifications could form part of design document

deliverables and the generated programs could be code deliverables.

The science of Software Metrics is now successfully used on conventional software.

Tools are available which perform complexity analyses on source code. This same

approach could now be applied to graphical software designs based on the New

Interaction Model. The analysis would be performed at the design specification level

rather than the source code level.

In this thesis, the author has identified the shortcomings in existing interactive software

design. Standard programming constructs are not powerful enough to fully express

the complexities of an interactive graphics application. This basic inadequacy has

been successfully translated into a number of interactive programming constructs

which, combined with the New Interaction Model, provide a means of constructing user

interfaces which embody sound design technique.

The New Interaction Model and the programming constructs have also provided us

with a vehicle to discuss the complex issues that surround graphical interaction. In

chapter 4 we provided a detailed discussion of such issues. Further, this work also

advances the possibility of a more quantitative approach to examining the needs of

graphical application.

-110-

B S Barn Graphical Interaction Management

References

1. Sun Microsystems Inc., Sunview Programmer’s Guide, Sun Microsystems Inc.,

Mountain View, Ca. (1986).

2. A.V Aho and J.D. Ullman, Principles of Compiler Design, Addison Wesley,

Reading, Mass. (1977).

3. J. Anderson and B. Fishman, “An Introduction to Object-Oriented Programming,”

BYTE, pp. 160-165 (May 1985).

4. Ed Anson, “The Semantics of Graphical Input,” pp. 115-126 in Methodology Of

Interaction, ed. Guedj,North Holland Co. (1980).

5. Ed Anson, “The Device Model of Interaction,” ACM SIGGRAPH Computer

Graphics 16(3) pp. 107-114 (1982).

6. B.S Bam, “Graphical Interaction for Font Editors,” Internal Report, University of

Bath (1985).

-111 -

B S Barn References

7. B.S Barn and P.J Willis, “Graphical Interaction Management,” Computer

Graphics Forum, (6) pp. 119-124 (1987).

8. B. W Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs,

NJ. (1980).

9. W. Buxton, M.R Lamb, D. Sherman, and K.C. Smith, “Towards A

Comprehensive User Interface Management System,” ACM SIGGRAPH

Computer Graphics 17(3) pp. 35-42 (1983).

10. S. Card, P.Moran, and B.Newell, The Psychology of Human Computer

Interaction, Lawrence Erlbaum Associates, Hilldale, NJ. (1981).

11. L. Cardelli and R. Pike, “Squeak: A Language for Communicating With Mice,"

ACM Siggraph Computer Graphics 19(3) pp. 199-204 (1985).

12. M.E Conway, “Design of a Separable Transition-Diagram Compiler,” Comm.

ACM 6(7) (1963).

13. J. Coutaz, ‘The Box, A Layout Abstraction For User Interface Toolkits,”

Technical Report, CMU-CS-84-167, Carnegie-Mellon University (1984).

14. J. Coutaz, “Abstractions for User Interface Design," IEEE. Computer

18(9)(1985).

15. E.W Dijkstra, “Goto Statement Considered Harmful,” Comm. ACM 11(3) pp.

147-148 (1968).

16. E.W Dijkstra, A Discipline Of Programming, Prentice-Hall, Englewood Cliffs, NJ.

(1976).

17. D. A Duce, “Concerning the Specification of User Interfaces," Computer

Graphics Forum A pp. 251-258 (1985).

18. J.D Foley, V.L Wallace, and P. Chan, “The Human Factors of Computer

Graphics Interaction Techniques,” IEEE Comp. Graphics and Applications, pp.

13-48 (November 1984).

-112-

B S Barn References

19. J.D. Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics,

Addison Wesley Inc. USA (1982).

20. D. Gangopadhyay, “A Framework for Modelling Graphical Interactions,'’ Software

Practice and Experience 12 pp. 141-151 (1981).

21. A. Goldberg and D. Robson, Smalitalk-80: The Language and its Implementation,

Addison-Wesley, Reading, Mass. (1983).

22. M. Green, “A Methodology For The Specification Of Graphical Interaction,” ACM

SIGGRAPH Computer Graphics 15(3) pp. 99-108 (1981).

23. M. Green, “Report on Dialogue Specification Tools,” Computer Graphics Forum

3 pp. 305-313 (1984).

24. M. Green, ‘The University of Alberta UIMS,” ACM Siggraph Computer Graphics

19(3) pp. 205-213 (1985).

25. M. Green, “Design notations and User Interface Management Systems,” pp. 99-

108 in Seeheim workshop on User Interface Management Systems, North

Holland Co. (1985).

26. P.J.W ten Hagen and J. Derksen, “Parallel Input and Feedback in Dialogue

Cells,” pp. 109-124 in Seeheim workshop on User Interface Management

Systems, North Holland Co. (1985).

27. F.R.A Hopgood, D.A. Duce, and D.C. Sutcliffe, Introduction to the Graphical

Kernel System (GKS), Academic Press, London (1983).

28. S.E Hudson and R. King, “Efficient Recovery and Reversal in Graphical

Interfaces Generated by the Higgens System," Graphics Interface ’85, pp. 151-

158 (1985).

29. M. A Jackson, Principles Of Program Design, Academic Press, London (1975).

30. R.J.K Jacob, “Using Formal Specifications in the Design of a Human Computer

Interface,” Comm. ACM 26(4) pp. 259-264 (1983).

- 1 1 3 -

B S Bam References

31. R.J.K Jacob, “A State Transition Diagram Language For Visual Programming,”

IEEE. Computer, pp. 51-59 (August 1985).

32. R.J.K Jacob, “A Specification Language for Direct-Manipulation User Interfaces,”

ACM Trans. On Graphics 5(4) pp. 283-318 (October 1986).

33. P. Johnson and M. Keane, “Preliminary Analysis for Design,” Draft Document,

Queen Mary College, University of London (1987).

34. S.C Johnson, “YACC: Yet Another Compiler-Compiler,” Computer Science

Technical Report 39, Bell Labs, (1975).

35. A. Kamran and M.B Feldman, “Graphics Programming Independent Of

Interaction Techniques and Styles,” ACM Siggraph Computer Graphics, pp. 58-

66 (January 1983).

36. D. Kasik, “A User Interface Management System,” ACM SIGGRAPH Computer

Graphics 16(3)(1982).

37. T. Larrabee and C.L. Mitchell, “Gambit: A Prototyping Approach to Video Game

Design,” IEEE Software, pp. 28-36 (1984).

38. M.E Lesk and E. Schmidt, “Lex - A Lexical Analyzer Generator,” Computer

Science Technical Report 32, Bell Labs, (1975).

39. H. Lieberman, “Constructing Graphical User Interfaces by Example,” Proc.

Graphics Interface Conf., pp. 295-302 (1982).

40. H. Lieberman, “There’s More to Menu Systems Than Meets the Screen,” ACM

SIGGRAPH Computer Graphics 19(3) pp. 181-189 (1985).

41. W. R Mallgren, Formal Specification of Interactive Graphics, MIT Press (1982).

42. Tom De Marco, Structured Analysis and System Specification, Yourdon Inc.,

New York (1978).

- 1 1 4 -

B S Barn References

43. B. A Myers and W. Buxton, “Creating Highly Interactive and Graphical User

Interfaces by Demonstration,” ACM Siggraph Computer Graphics 20(4) pp. 249-

258 (1986).

44. W. Newman, “A System For Interactive Graphical Programming,” Spring Joint

Comp. Conf., pp. 47-54 (1968).

45. D.R Olsen, “Automatic Generation Of Interactive Systems,” ACM SIGGRAPH

Computer Graphics 17(1) pp. 53-57 (1983).

46. D.R Olsen, W. Buxton, D. Kasik, R. Ehrich, J. Rhyne, and J. Sibert, “A Context

for User Interface Management,” IEEE Computer Graphics and App., pp. 33-42

(December 1984).

47. D.R Olsen and E.P Dempsey, “SYNGRAPH: A Graphical User Interface

Generator,” ACM SIGGRAPH Computer Graphics 17(3) pp. 43-50 (1983).

48. D.L Parnas, “On The Use Of Transition Diagrams In The Design Of A User

Interface For An Interactive Computer System," Proc. 24th Natl. ACM Conf., pp.

379-385 (1969).

49. P. Reisner, “Formal Grammar and Human Factors Design of an Interactive

Graphics System,” IEEE Trans. Soft. Eng. SE-7(2) pp. 229-240 (1981).

50. R.W Scheiffler and J. Getty, ‘The X Window System,” ACM Trans. Graphics

5 pp. 79-89 (April 1986).

51. J. Schoenhut, “Tutorial on the Graphical Kernel System (GKS),” Technical

Document, Friedrich-Alexander-Universitat, Erlangen-Nurnberg, Federal

Republic of Germany (1984).

52. B. Shneiderman, “Direct Manipulation: A Step Beyond Programming

Languages,” IEEE Computer, pp. 57-70 (August 1983).

53. J.l Sibert, W.D Hurley, and T.W Bleser, “An Object Oriented User Interface

Management System,” ACM Siggraph Computer Graphics 20 (4) pp. 259-268

- 1 1 5 -

B S Barn References

(1986).

54. P.P Tanner and W. Buxton, “Some Issues In Future UlMSs,” pp. 67-79 in

Seeheim workshop on User Interface Management Systems, North Holland Co.

(1985).

55. G.W Watters, “Debug,” Internal Document, University of Bath (1986).

56. G.W Watters, ‘The Bath fs Graphics Library,” Internal Document, University of

Bath (1986).

57. G.W Watters and P.J Willis, “UltraPaint: A New Approach to a Painting System,”

Computer Graphics Forum 6(2) pp. 125-132 (1987).

58. P.J Willis, “A Paint Program For The Graphic Arts,” Proc. of EuroGraphics Conf.,

pp. 109-120 (1984).

59. M. Young, R. Taylor, and D. Troup, “Software Environment Architectures and

User Interface Facilities," IEEE. Trans on Soft. Eng. SE-14(8) pp. 697-708

(1988).

60. S. Young, An Introduction to Ada, Wiley & Sons (1982).

61. E. Yourdon and L.L. Constantine, Structured Design, Prentice-Hall, Englewood

Cliffs, NJ. (1978).

Additional Bibliography

i

The following references were consulted but were not cited in the thesis. They are

included here to provide a more complete picture of this field of research.

1. J.L Bennett, “Tools for Building Advanced User Interfaces,” IBM Systems

Journal 25(3) (1986).

- 1 1 6 -

B S Barn References

2. G. Carson, “The Specification of Computer Graphics systems,” IEEE Comp.

Graphics and App., pp. 27-41 (September 1983).

3. C. Frasson and M. Erradi, “Graphics Interaction in Databases,” Graphics

Interface ’85, pp. 75-81 (1985).

4. J. Gait, “An Aspect of Aesthetics in Human-Computer Communications,” IEEE

Trans. Soft. Eng. SE-11(8) pp. 714-717 (1985).

5. M.J Goodfellow, “WHIM, the Window Handler and Input Manager,” IEEE Comp.

Graphics & App., pp. 46-52 (1986).

6. P. J Hayes, “Executable Interface Definitions using Form-Based Interface

Abstractions,” Computer Science Technical Report, CMU-CS-84-110, Camegie-

Mellon University (1984).

7. H. Lieberman, “Seeing what your programs are doing,” Int. J. Man-Machine

Studie 21 pp. 311-331 (1984).

8. T.E Lindquist, “Assessing the Usability of Human-Computer Interfaces,” IEEE

Software, pp. 74-82 (January 1985).

9. R.L London and R.A Duisberg, “Animating Programs Using Smalltalk,” IEEE.

Computer, pp. 61-71 (August 1985).

10. J.A Pitcaim-Hill, “Menus and Menu Systems, An Approach to the User

Interface,” Computing Laboratory Report No 24, University Of Kent (1984).

11. M.H Richer and W.J. Clancey, “Guidon-Watch: A Graphic Interface for Viewing a

Knowledge-Based System,” IEEE Comp. Graphics & App., pp. 51-64

(November 1985).

12. M. Shaw, E. Borrison, M. Horowitz, T. Lane, D. Nichols, and R. Pausch,

“Descartes: A Programming Language Approach to Interactive Display

Surfaces," ACM Sigplan Notices, pp. 100-111 (1983).

- 1 1 7 -

B S Barn References

13. P.P Tanner, D.A Mackay, D.A Stewart, and M.Wein, “A Multitasking Switchboard

Approach to User Interface Management,” ACM Siggraph Computer Graphics

20(4)(1986).

- 1 1 8 -

B S Barn Graphical Interaction Management

Appendix A. The SIDL Syntax

YACC Grammar

Note:

The following symbols are meta-symbols belonging to the extended BNF formalism

and not symbols of the language SIDL.

::= I { }

The curly brackets denote possible repitition of the enclosed symbols zero or more

times.

-119 -

B S Barn Appendix A

I DENT and INTCONST are higher level representations for identifiers and integer

constants respectively.

SIDL keywords are in bold upper-case.

program ::= restofprogram

restofprogram ::= programheading block END 7

programheading INTERACT IDENT

block ::= optdefnpt optwindandtaskpt optstatpt

optdefnpt ::= emptyj TYPE doblk ENDTYPE

definitions ::= typekeywd IDENT
| MENU IDENT
j typekeywd INTCONST | typekeywd ’=’ types
j partype OF PARAMS
| IDENT 7 OF VARIABLE
| IDENT 7 OF MOTILE
| MUTEXL mutype OF TYPE 3INTCONST
| INIT V ACTIVE
j COLOUR colconst rgbvalue lutentries limitcol
j constraintdec
j constraintuse
j IDENT 7 OF bmaptype
j parstatustype

parstatustype ::= PARSTATUS pspars

pspars '(’ psblk ’)’
9

psblk ::= { 7 IDENT }
9

bmaptype ::= POPUP | STATIC

colconst ::= IDENT;

rgbvalue ::= ’(’ lut_entry 7 redv 7 greenv 7 bluev')'
»

lut_entry ::= INTCONST

- 120-

B S Barn Appendix A

redv ::=

greenv

bluev

lutentries

limitcol ::=

colours

mutype

mutypeblk

types

typeblk ::=

typekeywd

constraintuse :

constraintdec :

regionorline

conid ::=

INTCONST

= INTCONST

INTCONST

empty | INTCONST

empty | colours

BLACK
| WHITE
| RED
| GREEN
| BLUE
| MAGENTA
| CYAN
| YELLOW

:= ’(’ mutypeblk ’)’

{ 7 IDENT }

’(’ typeblk y

{ 7 IDENT }

::= WINDOWSSY | NUMTASKSY

CONSTRAINT 7 IDENT

:= CONSTRAINT IDENT regionorline

REGION 7 IDENT
| LINE 7 horvertline conid

r null 7 | *(’ conidblk ’)’

-121 -

B S Barn Appendix A

conidblk ::= xylevel | xylevel leftvert rightvert
»

xylevel ::= INTCONST
9

leftvert INTCONST
9

rightvert :> INTCONST
9

horvertline ::= HORIZ | VERTICAL
9

optwindandtaskpt::= empty | windtaskdecpt
9

optstatpt ::= empty | statementpt
9

windtaskdecpt ::= windortaskdec | windtaskdecpt windortaskdec
9

windortaskdec ::= windowdec | taskdec
9

windowdec ::= windowheading block
9

windowheading ::= WINDOW IDENT
9

taskdec ::= taskheading block
9

taskheading ::= TASK IDENT
9

statementpt ::= compoundstment;
9

compoundstment DO doblk END
9

doblk | statement | doblk statement
9

statement ::= empty
| simpstatement
j structstment
j winassnstment
j c_statment
j definitions

- 122 -

B S Bam Appendix A

c_statment

c_body ::=

winassnstment

horvert ::=

winkeywd

simpstatement :

procstatement :

procidentifier

parblock ::=

identconst ::=

labelstment ::=

startstment

middlestment

finishstment ::=

structstment

empty

::= winkeywd INTCONST
| GRID horvert INTCONST ;

NUMH | NUMV

| WIDTH
| YBOT
| XBOT

:= GATHER
| PERFORM
| VARIANT
j procstatement
| STUB
| COLLECT
j INTCONST statement

:= procidentifier | IDENT ’(’ parblock

IDENT

{ 7 identconst}

IDENT | INTCONST

startstment | middlestment | finishstment

START

= MIDDLE

FINISH

compoundstment
| condstment
j stagestment

- 1 2 3 -

B S Barn Appendix A

parsdatablk

parsdatastment

stagestment

labelstmentlst

condstment

withpart

usecondstment

partype ::=

expression

optbutid ::=

buttonpart ::=

windowpart

empty

| usecondstment
j parsdatablk;

parsdatastment | parsdatablk parsdatastment
9

::= PARSDATA IDENT statement
i

= labelstmentlst statement
9

labelstment | labelstmentlst 7 labelstment
f

= IF expression THEN statement
| IF expression THEN statement

ELSE statement
| withpart IF expression THEN statement
j withpart IF expression THEN statement

ELSE statement
9

WITH IDENT
9

USE ’(* IDENT INTCONST ’)’ statement
9

IDENT *[’ buttonpart 7 IDENT 7 INTCONST *]’
9

buttonpart optbutid BUTTON IN windowpart
9

empty | ’(’ INTCONST ’)'
9

NEW | PRESSED | RELEASED
9

= ANY | IDENT

- 124-

B S Barn Graphical interaction Management

Appendix B. A SIDL Program

The following is a SIDL program for the font editor Vecfnt. The functionality of the

editor has been described in Chapter 3. The first type section contains the

presentational definitions and also the specification of the mutual exclusion tables. The

subsequent blocks define the various screen regions that will be required. The final

section contains the task specifications implementing the functionality of the program.

INTERACT vec;

TYPE
MENU menu;
NUMTASK 13;
WINDOWS = (menu,grid,fontgrid,hand1,hand2,hand3);

COLOUR bg (11,200,80,70);
COLOUR dl (12,225,221,225);
COLOUR off col (13,0,120,0);
COLOUR oncol (14,150,150,0);
COLOUR offcol (13,0,120,0);
COLOUR mtext (15,200,200,200);
COLOUR ccol (16,255,255,255);
COLOUR redink (17,200,0,0);
COLOUR blueink (18,0,200,0);
COLOUR greenink (18,0,200,0);

MUTEXL= (backgrnd,foregrnd,compment) OF TYPE 3;

- 1 2 5 -

B S Barn Appendix B

MUTEXL= (selchar.savechar) OF TYPE 1;
MUTEXL= (line) OF TYPE 1;
MUTEXL= (left.right.up.down.clear.clearfnt.vmirror.hmirror) OF TYPE 2;
MUTEXL= (exit) OF TYPE 2;

ENDTYPE

WINDOW grid;
DO

HT: 500;
WIDTH: 450;
XBOT: 100;
YBOT: 400;
GRID: NUMH=32;
GRID: NUMV=32

END

WINDOW fontgrid;
DO

HT: 331;
WIDTH: 539;
XBOT: 661;
YBOT: 110;
GRID: NUMH=8;
GRID: NUMV=16

END

WINDOW scratch;
DO

HT: 300;
WIDTH: 300;
XBOT: 200;
YBOT: 100

END

WINDOW menu;
DO

HT: 489;
WIDTH: 350;
XBOT: 750;
YBOT: 400;
GRID: NUMH=8;
GRID: NUMV=3

END

WINDOW handl;
TYPE

handl: OF MOTILE;
ENDTYPE
DO

HT: 20;
WIDTH: 20;
XBOT: 400;
YBOT: 400

END

- 1 2 6 -

B S Barn Appendix B

WINDOW hand2;
TYPE

hand2: OF MOTILE;
ENDTYPE
DO

HT: 20;
WIDTH: 20;
XBOT: 500;
YBOT: 400

END

WINDOW hand3;
TYPE

hand3: OF MOTILE;
ENDTYPE
DO

HT: 20;
WIDTH: 20;
XBOT: 600;
YBOT: 400

END

TASK backgmd;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t);
selectop(bground);
esync(t)

END;
END

TASK foregmd;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t);
selectop(fground);
esync(t)

END;
END

TASK compment;
DO
GATHER;

mn(t,start);
PERFORM;

DO
bsync(t);
selectop(cment);
esync(t)

- 1 2 7 -

B S Barn Appendix B

END;
END

TASK selchar;
DO
GATHER;

IF NEW(2) BUTTON IN menu THEN run(t,start)
ELSE

IF NEW(2) BUTTON IN fontgrid THEN
run(f, middle);

PERFORM;
START: DO bsync(t); suspend(t) END;
MIDDLE.FINISH: DO findentry(fontcomm);

selchar(); esync(t)
END;

END

TASK savechar;
DO
GATHER;

IF NEW(2) BUTTON IN menu THEN run(t,start)
ELSE

IF NEW(2) BUTTON IN fontgrid THEN
run(t, middle);

PERFORM;
START: DO bsync(t); suspend(t) END;
MIDDLE.FINISH: DO findentry(fontcomm);

savechar(); esync(t)
END;

END

TASK line;
TYPE

gridop : [NEW.grid.2] OF PARAMS;
ENDTYPE
DO

GATHER;
IF NEW(2) BUTTON IN menu THEN run(t,start)
ELSE

WITH gridop
IF NEW(2) BUTTON IN grid THEN STUB
ELSE

DO
$ { $;
run(t, middle);
USE (gridop = 2) run(t,finish);
$) $

END;
PERFORM;

START: DO on(); $ gridop = -1; $; suspend(t) END;
MIDDLE: DO

$ switch (gridop) { $;
$ case 0: bsync(t); savcod; gridop++; suspend(t); break; $;
$ case 1: rubberit(xcoord.ycoord); suspend(t); break; $;
$ case 2: suspend(t); break; $;

- 1 2 8 -

B S Barn Appendix B

$ case default: break; $;
$ } /* switch */ $

END;
FINISH: DO line(xcoord.ycoord); esync(t) END;

END

TASK left;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); procleft(); esync(t)

END;
END

TASK right;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); right(); esync(t)

END;
END

TASK up;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); procup(); esync(t)

END;
END

TASK down;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); procdown(); esync(t)

END;
END

TASK vmirror;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); vermirror(); esync(t)

END;
END

-129 -

B S Barn Appendix B

TASK hmirror;
DO
GATHER;

run(t, start);
PERFORM;

DO
bsync(t); mirrorQ; esync(t)

END;
END

TASK clear;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); cleargrid(); esync(t)

END;
END

TASK clearfnt;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t); clrfnt(); esync(t)

END;
END

TASK exit;
DO
GATHER;

run(t,start);
PERFORM;

DO
bsync(t);
finishit();
esync(t)

END;
END

TASK handmon;
TYPE

handl: OF MOTILE;
ENDTYPE
DO

GATHER;
IF NEW BUTTON IN any THEN run(t.start)
ELSE

IF PRESSED BUTTON IN any THEN mn(t,middle)
ELSE

IF RELEASED BUTTON IN any THEN run(t,finish);
PERFORM;

START: DO bsync(t); suspend(t) END;

- 1 3 0 -

B S Barn Appendix B

MIDDLE:DO suspend(t) END;
FINISH:DO esync(t) END;

END

TASK edit;
TYPE

INIT= ACTIVE;
ENDTYPE
DO
GATHER;

IF NEW(2) BUTTON IN grid THEN
run(t,start)

ELSE
IF PRESSED(2) BUTTON IN grid THEN

run(t,middle);
PERFORM;

DO
START: DO fillcell(xcoord,ycoord); suspend(t) END;
MIDDLE.FINISH: DO fillcell(xcoord.ycoord); suspend(t) END

END;
END

END.

- 131 -

B S Barn Graphical Interaction Management

Appendix C. Publication

The following paper "Graphical Interaction Management co-authored by P.J. Willis

was presented at Eurographics(UK) in March 1987. It was published in Computer

Graphics Forum.6, 119-124. 1987.

- 1 3 2 -

119

Graphical Interaction Management

Balbir S. Barn and Philip Willis f

Abstract
Graphical interfaces and interactive graphical pro
grammes are awkward to write because of a lack of
top-down structure. A methodology for constructing
graphical programs will be described, together with a
system that generates the basic interaction requirements
for such applications.

1. Introduction
The advent of the bitmapped high resolution graphics
workstation has led to a proliferation of graphics inter
faces to existing application programs and, more
importantly, has resulted in an increasing number of
interactive graphical applications. Unfortunately, the
attendant problems of scheduling mechanisms; inter
preting mouse/ tablet input; screen layout and interrupt
handling associated with such applications have all
been dealt with in a highly unsatisfactory manner, each
programmer solving the problem in an individually
stylised fashion.

Research in graphical interaction has concen
trated on the study and development of user interface
management systems (UIMS), ranging from theoretical
studies1 to practical systems such as TIGER2, MENU-
LAY3 and SYNGRAPH4. Automatic generation of
user interfaces has relieved the programmer of some of
the problems mentioned earlier, but still fails to ease
the complexity of programming the basic building
blocks of these applications. These building blocks
include the fundamental interaction techniques such as
picking, dragging and rubberbanding. The asynchro
nous, multiple-processes nature of graphical programs
continues to be major a hurdle that consumes a
programmer’s effort

Software development in most other computing
fields follows some sort of methodology. Typically we

This paper was presented at the EUROGRAPHICS
(UK) Conference, Norwich, April 13-15 1987

 ̂ School of Mathematical Sciences
University of Bath
Claverton Down
Bath, Avon,
BA2 7AY
England

North-Holland
Computer Graphics Forum 6 (1987) 119-124

have JSD and HIPO charts for commercial applica
tions, and data flow diagrams for systems/scientific
applications. There is however, no equivalent tech
nique for specifying the building blocks of graphical
programs. Instead each application is re-designed, with
implementations varying only slightly. The methods
used are ad hoc leading to future problems of mainte
nance and portability.

We present a methodology for programming the
interaction techniques used in graphical programs. In
addition, we provide details of a tool we are currently
developing which uses this methodology to generate the
basic interaction code for such applications. We first
describe the interaction model on which the methodol
ogy is based. Then we discuss some well-formed con
structs which help the designer of interactive systems.
Next we discuss our approach to implementation using
a preprocessor. Finally we describe in detail the result
ing language.

2. Interaction Model
In this section we describe the basics of our manage
ment system. We have conservatively assumed that no
special kernel support is available. In particular we
make no special assumptions about interrupts. The
resulting software should thus be easier to port across
systems supporting our chosen base language, C.

2.1. The Scheduler
We start with the premise that graphical interaction is
essentially an input-event driven activity. Generally
interaction offers a rich set of options, most of which
will not be in use at any given time. A small number
may be intensively used (e.g reading the tablet; updat
ing the cursor position). Some will occasionally start
other actions. Also, most actions require a rapid
response to maintain fluid interaction.

These observations suggested that interaction can
be handled by a fixed scheduler scan with associated
tasks. A large pool of worker tasks will typically be
used, but most tasks will he dormant until needed and
expire once used. Further, parameter gathering should
be separated from invoking the worker task, to main
tain flexibility of interaction and simplicity of workers.
In outline, th; Scheduler is:

i

120 B.S. Bam et d. / Graphical Interaction Management

repeat
for task: * 1 to num tasks do

if active[task]
begin
if not runnable[task] then Try(task,gather);

/* Collect parameters */
if runnableftask] then Try(task,perform);

/* Perform the action */
end;

until exit;
During a single scan of the task pool, the scheduler
attempts to collect the necessary parameters for any
task t which is active but not runnable. If all the
parameters for task t have been collected the task is
made runnable. In the same scan, if task t is runnable,
the task is performed.

2.2. Tasks
We require a Task to have two components. The first
is a parameter-gathering section and the second is the
code which performs the actions required of the task.
Correspondingly we need a mechanism for switching
between these two components.

To implement this we use a procedure Try both
to collect parameters and to execute the appropriate
application-specific procedures. In outline Try is:-

procedure Try(integer: t,op);
begin

case t of
1: case op of

gather:
perform: ...

end;
2: ...

n:
end;

end;

Each case on t introduces a section of code specific to
the parameter gathering needs of the task. When called
as Try(t,gather), any parameters for the task are
identified, but no interpretation is made of them. For
example, a task to draw a straight line requires two
pairs of (x,y) coordinates which will later be interpreted
as the vertices of the line.

TryfUperform) runs task t to completion by bind
ing the parameters to a call of the appropriate worker
task.

23. Task Progression
Typically, most tasks are dormant until needed. Even
when needed they usually pass through a parameter-

gathering phase before completing and once more
becoming dormant. We envisage a system in which
tasks progress from dormant (no need to do anything);
to active (lacking enough parameters to run); to runn
able (having a complete set of parameters and only
awaiting scheduling). We provide a task progression
mechanism to reflect this. Tasks correspondingly pro
gress from frozen to thawed to runnable and we pro
vide the appropriate control booleans with trusted
primitives to manipulate them. For example, a task
initiated from the menu is thawed, it remains in the
thawed state until its parameter needs are met, when it
subsequently becomes runnable. After being scheduled
it might run to completion and then return to its
former frozen state. Transition between states is accom
plished by the primitives used to label the arcs in the
diagram below.

thaw(t) nin(i)

SUSPENDED RUNNABLE

frceze(t) suspend(t)

Figure 1. Transition of tasks between states

Not every task which reaches runnable state will
run to completion when it is scheduled. It may simply
have reached a stage where a certain parameter may be
collected. Progression to a later stage would then
depend on that parameter being collected and any asso
ciated actions being performed. Hence we can impose a
degree of sequentiality within a specific task. Thus we
have the perform section logically separated into three
phases start, middle and finish. Typically this is useful
because a new task has set-up actions which can be
assigned to the start phase. The middle phase is used
for the main part of the task and then the finish phase
can be used to tidy up. To give an example, the outer
phases can be used to change the cursor pattern back
and forth to give feedback to the user, with the actual
task being invoked in the middle phase.

Tasks do not have to freeze when completed. It
is in the nature of some that they will gather one set of
parameters, perform work and then repeatedly do the
same thing. Such tasks can be suspended rather than
frozen, as the diagram makes clear. In this way they
continue to gather parameters as long as required.

This resemblance to finite state automata is fully
documented in the case of user interface
specification**6. This characteristic has been further
used in systems where graphical programs are gen
erated using interactive finite state machine editors6*7.

B.S. Bam etal. / Graphical Interaction Management 121

Delineation into stages makes some
housekeeping intricacies relatively easy to implement.
If a task requires variables to be initialised prior to the
task running, the necessary code can inserted into the
start stage. Also, menu window management problems
such as menu highlighting synchronisation (ensuring
the correct menu box is highlighted according to the
current task) can be set up as start and finish actions.

2.4. Event Detection
We have already mentioned that we expect this style of
interactive program to be event driven, so we also need
a means of identifying such events. It is commonly the
conjunction of a button press (or release, or holding
down) with a specific area of screen/tablet which needs
to be distinguished. We therefore adopt:

Event(butstate: button; region: area): Boolean:

as an enquiry function. The function Event is required
to test the puck state to see if it corresponds to that
named (eg. button 1 just pressed) and also the region (
eg. command menu). Event has to be sufficiently gen
eral to allow for pop-up menus, overlapping menus etc.
Butstate is defined to cover new, pressed and released
where new defines a button press, pressed represents a
button held down and finally released indicates a but
ton has been released. It thus defines both level and
transitory states, an important distinction. Region is
used to identify the area on the screen/tablet where the
button action occurred.

3. WeO-Fonned Constructs
Structured programming uses a modest number of
well-formed constructs, where each construct displays
some simple property. These constructs are satisfactory
for sequential applications but they are of less value for
interactive programs as they do not adequately reflect
the behaviour of such applications. This section con
tains details of some of the more suitable control con
structs we have identified up to the present time. These
constructs are not sufficient in themselves for complex
interaction requirements, but when used in conjunction
with additional type declarations they are adequate.
Some of the type declarations are described in section
4.4.

For each construct we will typically need to
describe the code needed at both the Gather and Per
form labels (see sections 2 and S.l) for a task n entry.

3.1. Continual update
Commonly, a screen cursor is continually updated
under program control to indicate the puck position.
This is expressed as:

gather_n : Readpuck(x.y); Run(n); (Puck monitor }
pcrform n: MoveCursor(x,y); Suspend(n); { Cursor update)

3.2. Point and do
A simple form of interaction is the "point and do"
action, an example is selecting "clear screen" by point
ing to a labelled box and pressing a puck button.
There is an immediate effect which proceeds, out of
further control, to completion. Such a task will be per
manently active and will run whenever a particular
puck button is pressed within a certain area on the
screen. There are also degenerate cases corresponding
to using a puck button for a dedicated action (indepen
dent of screen position). All such permanent tasks can
be coded in the form such as:
gather_n : if Event(button,viewport) then Run(n);
perfonn_n: execute(n);

33. Event recogniser
In principle menu selection could be implemented as a
number of point-and-do tasks. In practice this can be
cumbersome for all but very short menus. A conven
tional top-down approach to manage this interaction
has been adopted. At the top level, it is sufficient to
identify that a relevant event has occurred, namely that
a new button press has just happened in the menu. We
thus get :
gather_n: if (Event(new,menu)) then Run(n); (Menu monitor)
perform n: ThawfComm); Suspend(n); (Action the command)

The monitor component is already familiar. The action
component uses procedure Comm to decode the puck
position, returning the the task number needed for that
command. This task is then enabled by Thaw. The
event recogniser task takes no further action until the
next new press of a button in this menu. It has, how
ever caused a non-permanent task to spring to life and
this will have its own Gather/Perform entry.

This particular construct is important as it can
be used as the basis for a number of interactions. Thus
we can have an event recogniser task for detecting
events in a number of different windows.

4. The SIDL Language
In the implementation, descriptions of the interaction
model are encoded in the abstract high-level
specification language SIDL (Simple Interaction Design
Language). The salient features of typical graphical
interaction methods have been incorporated as struc
tures of this language. Some of the features have been
provided as a result of studies of existing window

i

122 B.S. Bam et al. / Graphical Interaction Management

management systems. Typical component parts of
SIDL are described below.

4.1. Tasks and Windows
An application is considered as a set of tasks, with the
user generating events via the puck in specified regions
on the screen/tablet (window). We can observe that
our language must provide means of specifying the
interactions of tasks in terms of events in windows.

A SIDL program is composed of program
blocks, each of which is either a window or a task
definition. Both definitions vary in complexity accord
ing to the interaction requirements. Window
definitions typically specify size, position on the screen,
borders and other external features. There are various
types of windows but, for the purpose of this discus
sion, we can simply say a window is a uniquely
identifiable area on the screen where an event can
occur. The command menu is a special case of window
which is pre-defined in the skeletal program as it is
integral to the applications we are concerned with.

Task definitions are more complex. Their SIDL
structure closely follows that of the interaction model.
This similarity aids code generation and the structure is
relatively straightforward without being ambiguous. A
task definition is broadly divided into three sections:-
Type definitions, Gather and Perform. Type definitions
will be ignored for the moment

The Gather section is primarily concerned with
the collection of parameters (events). The Perform sec
tion executes application-specific code on the collection
of a particular event Together these sections display
the control constructs described earlier. A number of
tasks are predefined and are largely concerned with
either low-level details or monitoringother tasks.

Task definitions are directly translated to C code
and form case entries in the main scheduling procedure
Try as described in the IM (see section 2).

4.2. Task Synchronisation
All good interfaces must allow unrestricted asynchro
nous activity from the user. This freedom, however,
makes the menu management a less than trivial prob
lem. It is easy to envisage the case where the user
makes ad hoc selections of menu buttons thereby ini
tiating various functions and so losing any idea of what
is happening. Where initiated tasks require additional
parameters (such as selections from another menu), the
problem is even more acute. The user must be able to
select another task while the current task is waiting for
a parameter, and still be able to return to the earlier
task with the current state of that task intact. Further
more, this facility must be provided in a manner that is
user friendly.

These objectives have to a large extent been
achieved by enforcing a sub-structure over tasks ini
tiated from the menu. A study of two menu driven
applications developed at Bath indicates that tasks ini
tiated from menus can be divided into three categories:
tasks which run to completion when se lec ted ta sks which
require one or more parameters before running to comple
tion; and finally tasks which when selected set parame
ters to be used by other tasks. Furthermore, tasks can
be assigned to Mutual Exclusion Groups , that at most
one task in a group can be active at any time. We can
infer three rules to control these groups.
Rule 1: Each group can have an active task so sup

pose task A is in a different group to active
task B. If A now becomes active, then the
state of B has to be preserved. Task B can
therefore be reinstated later.

Rule 2: Suppose tasks B and C are in the same group.
If B is active and C becomes active then B has
to be killed.

Rule 3: Suppose B has earlier been preserved and that
C is in the same group. If C now becomes
active, then the preserved state of B has to be
discarded.

The groups are represented aa rows in a table and
primitives are provided which carry out the rules
described above.

43. Window Management
Typically, windows provide an environment for task
interaction. Many applications however, also include
interactions where the window itself is an active
member. The interaction needs of such windows vary
and we have broadly classified the following
requirements
1. Picking and dragging of objects/windows
2. Stretching Windows
3. Invisible Windows
4. Overlapping Windows
5. Static or Movable Windows
Case 1 is an example of a common interaction; we have
extended the definition of windows to include the
specification of pixel objects. Cases 2, 3 and 4 are typi
cal of facilities found in window management systems.
Although we are not directly concerned with the
development of such applications, their interaction is of
interest, and providing some of their facilities within
SIDL is justifiable.

For S, the following window types are currently
implemented:- static, motile and variable. Static win
dows remain fixed in their originally specified position.

B.S. Bam et al / Graphical Interaction Management 123

Motile windows are those which can be selected and
moved to some new location. They are commonly used
to represent screen objects. For example: a paddle in a
simple ball/paddle game. Variable windows can be
moved to a new location and have their size altered.
Windows default to static unless otherwise indicated.

Most interactions are based on the detection of
events in a region. The region varies with the type of
window and also with time. For example, to alter the
size of a window requires the detection of an event in
one of four regions, where each region specifies a
comer of the window to be stretched.

Using control constructs similar to that used for
menu selection (see section 3.3), pre-defined window
monitor tasks (one for each window type) are used to
identify a button press in a window. As there may be
more than one window of the same type, the appropri
ate window is identified and the task containing the
interaction code for operations on that window is ini
tiated. This task will have been specified by the user.

4.4. Parameter Collection
The collection of parameters (detection and decoding of
button activity) is a problem encountered in most
graphical interaction applications.

Typically, task definitions require the user to
specify the events necessary for a task to run to com
pletion. Where these events are unique, there is no
obvious difficulty. However, serious problems arise
where two or more identical events need to be detected.
Events are considered identical if both the button type
and the region are the same.

In the painting system at Bath8*6, there is a com
mand to paint a rectangular region on the screen with a
range of colours. The user specifies the rectangle with
two diagonally opposite vertices in the drawing region.
The two colours are specified by indicating two entries
in the palette region. The elements in each pair are
identical. To avoid constraining the user, collection of
the four parameters can be done in any order. The
action to be taken when a particular parameter is col
lected therefore depends on its sequence number within
a particular region. For example, the first event in the
drawing region marks the first comer of the rectangle.
This results in a rectangle being rubberbanded from
that marked position. The receipt of a second event in
the same region results in the second comer of the rec
tangle being marked. The user selects the range of
colours by two events in the palette region. Provided
that a count is kept for each region the colour and rec
tangle parameter collection can be interleaved. A
critical observation is that each event, although not
unique, may have actions associated with it which
depend on the count We can decide when to call the

worker task for this command by keeping a total count
of the number of parameters collected.

5. The GRIP Preprocessor
In this section we describe the basic structure of the
preprocessor and its use of UNIX| software tools.

The basic scenario of the preprocessor is as fol
lows. The user describes the interaction model for an
application in a specification language. This descrip
tion is then used to generate a program containing the
interactions in our target high-level language C. The
generated program will contain facilities to include
application-specific procedures. This approach is
orthodox and displays many of the characteristics of
current UIMS.

In the implementation, the abstract high-level
specification language SIDL is used to describe the
interaction needs of the application. The GRaphical
Interaction Preprocessor (GRIP) generates the C code
contained within a skeletal program which also holds
the necessary information to set up the display.

5.1. System Outline
The development of GRIP and SIDL is UNIX depen
dent, because of our desire to utilize the rich library of
software tools available. Yacc is a program that gen
erates a parser from a grammatical description of a
language9*6. The class of specifications accepted is very
general: LALR(1) grammars with disambiguating rules.
We use it both to parse a SIDL program and to gen
erate code. Cb is a program that pretty prints a C pro
gram. We use it to beautify the code generated from
the preprocessor.

GRIP

. Yacc

Generated

Program
Skeletal
Program

Application

Procedures

SIDL
Program

Executable
Program

Syntax
Errors

Figure 2. System Structure

t UNIX is a trademark of Bell Laboratories.

124 B.S. Bam et al. / Graphical Interaction Management

The bulk of the preprocessor is contained within
the file used to drive yacc. The file contains both the
lexical analyser module and the code generator module:
experimental requirements have dictated this structure.
Once a satisfactory language design has been imple
mented, the production of a special purpose syntax
analyser and code generator will remove the depen
dence on yacc. Figure 2 shows the system.

6. Concluding Remarks
In this paper, we have discussed the basis of the design
of our hybrid UIMS. We have presented a methodol
ogy which we think aids the design of multi-process
event driven graphical applications. We have also out
lined the practical aspects of some of the integral com
ponents of the language which we use to represent our
model. We are still currently in the development phase
of GRIP: our language is still undergoing significant
design changes and we are trying to identify more
well-defined control constructs.

We envisage fundamental design changes in the
preprocessor, as at the moment error reporting is res
tricted to syntactical errors in SIDL source programs:
there is only minimal error recovery (performed by
“yacc”). The semantics of interaction specification
need to be statically analysed in the preprocessing stage
and errors reported. However, given that no language
definition can be complete, postfix semantic error
reporting seems viable, with interaction errors being
reported with reference to both the SIDL program and
the generated C program.

Even at this prototype stage, the system has
shown that it is possible to specify complex interactions
and automatically generate C code that is both easily
maintainable and extensible, hence reducing the
development cost of such applications. Additionally,
rapid prototyping facilities will produce better quality
user interfaces.

7. Acknowledgments
The work described here was supported by a grant
from the SERC. We would also like to thank Geoff
Watters for his many useful comments on this work.

References

1. M Green, “A Methodology For The Specification
Of Graphical Interaction,” AC M S1GGRAPH
Computer Graphics 15(3) (1981).

2. D Kasik, “A User Interface Management Sys
tem,” AC M SIGGRAPH Computer Graphics 16(3)
(1982).

3. W Buxton, M R Lamb, D Sherman, and K C
Smith, “Towards A Comprehensive User Inter
face Management System,” AC M SIGGRAPH
Computer Graphics 17(3) (1983).

4. D R Olsen and E P Dempsey, “SYNGRAPH A
Graphical User Interface Generator,” AC M SIG
GRAPH Computer Graphics 17(3) (1983).

5. D L Paraas, “On The Use Of Transition
Diagrams In The Design Of A User Interface For
An Interactive Computer system,” Proc. 24th
Natl. AC M Conf (1969).

6. R J K Jacob, “Using Formal Specifications in the
Design of a Human Computer Interface,” Comm.
AC M 26(4) (1983).

7. R J K Jacob, “A State Transition Diagram
Language For Visual Programming,” IEEE Com
puter (August 1985).

8. P J Willis, “A Paint Program For The Graphic
Arts,” Proc. o f EuroGraphics (1984).

9. S C Johnson, “YACC: Yet Another Compiler-
Compiler,” in UNIX Programmers Manual, Bell
Labs (1978).

